JP2008256636A - Methods of quantitatively determining nitrate nitrogens, anions, and nitrogens in three states - Google Patents
Methods of quantitatively determining nitrate nitrogens, anions, and nitrogens in three states Download PDFInfo
- Publication number
- JP2008256636A JP2008256636A JP2007101398A JP2007101398A JP2008256636A JP 2008256636 A JP2008256636 A JP 2008256636A JP 2007101398 A JP2007101398 A JP 2007101398A JP 2007101398 A JP2007101398 A JP 2007101398A JP 2008256636 A JP2008256636 A JP 2008256636A
- Authority
- JP
- Japan
- Prior art keywords
- eluent
- nitrate
- ions
- sample
- nitrite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
本発明は下水処理水中の硝酸態窒素、陰イオン及び三態窒素の定量方法に関する。 The present invention relates to a method for quantifying nitrate nitrogen, anions and trinitrogen in sewage treated water.
下水処理の大きな役割の一つとして下水中のアンモニア態窒素の除去がある。下水に混入しているし尿やその他の有機物から由来するアンモニア態窒素は下水処理工程における生物的処理過程で亜硝酸態窒素または硝酸態窒素を経て窒素ガスとして大気中に放出される。このため、下水処理工程の評価にはアンモニア態窒素、亜硝酸態窒素、硝酸態窒素の存在比を知ることが重要である。硝酸態窒素の分析方法としては、非特許文献1に例示されているように、ブルシン法、還元蒸留法、銅・カドミウム還元−ナフタレンエチレンジアミン吸光光度法、イオンクロマト法がある。特に、前記イオンクロマト法によれば亜硝酸態窒素と硝酸態窒素を同時に分析することができる。
ブルシン法、還元蒸留法、及び銅・カドミウム還元−ナフタレンエチレンジアミン吸光光度法はいずれも吸光光度法を行うものであるので発色を得るための前処理工程が非常に煩雑となる。特に、還元蒸留法はイオン電極法にも適用できるがその前処理工程が煩雑であることに変わりはないので分析に時間がかかることに加え分析誤差が生じやすい。 Since the brucine method, the reductive distillation method, and the copper / cadmium reduction-naphthalene ethylenediamine absorptiometry method all perform absorptiometry, the pretreatment process for obtaining a color is very complicated. In particular, the reductive distillation method can be applied to the ion electrode method, but the pretreatment process is still complicated, so that analysis takes time and analysis errors are likely to occur.
一方、イオンクロマト法は硝酸態窒素を亜硝酸態窒素やその他の成分と分析装置のカラムで分離するため煩雑な前処理工程を有しておらず簡便あると共に分析精度が高い。 On the other hand, the ion chromatographic method separates nitrate nitrogen from nitrite nitrogen and other components from the column of the analyzer, and thus does not have a complicated pretreatment step and is simple and has high analysis accuracy.
硝酸態窒素は下水中で硝酸イオンとして存在し、亜硝酸態窒素は亜硝酸イオンとして存在するので、これらのイオンの測定にイオンクロマト法が利用される場合、陰イオン交換クロマトグラフが適用されている。 Nitrate nitrogen exists as nitrate ions in sewage, and nitrite nitrogen exists as nitrite ions. When ion chromatography is used to measure these ions, anion exchange chromatography is applied. Yes.
亜硝酸イオン及び硝酸イオンを定量するには溶離液としてフタル酸の水溶液を使用する陰イオン交換クロマトグラフ法があるが、この方法では、下水処理の有機物の分解によって生成する低分子量有機物の一種であるシュウ酸が硝酸イオンの溶出位置と完全に重複する。このため、硝酸イオンの正確な濃度の定量ができなくなり、下水処理工程のアンモニア態窒素の処理挙動を評価することができない。 There is an anion exchange chromatography method using an aqueous solution of phthalic acid as an eluent to quantify nitrite and nitrate ions, but this method is a kind of low molecular weight organic matter produced by decomposition of organic matter in sewage treatment. Some oxalic acid completely overlaps with the nitrate ion elution position. For this reason, the exact concentration of nitrate ions cannot be quantified, and the treatment behavior of ammonia nitrogen in the sewage treatment process cannot be evaluated.
また、シュウ酸は下水中の有機物の分解挙動の指標の一つであるが、一般の陰イオンクロマトグラフでは硝酸イオンと亜硝酸イオンの同時分析をすることができない。 In addition, oxalic acid is one of the indicators of the decomposition behavior of organic substances in sewage, but it is not possible to analyze nitrate ions and nitrite ions simultaneously with a general anion chromatograph.
そこで、請求項1の硝酸態窒素の定量方法は溶離液に炭酸系溶離液を用いた陰イオンクロマトグラフによって試料中の硝酸イオンの定量を行うことを特徴とする。この発明によればシュウ酸を含んだ試料(例えば下水処理水)中の硝酸イオンを定量できる。 Therefore, the nitrate nitrogen quantification method according to claim 1 is characterized in that nitrate ions in a sample are quantified by anion chromatography using a carbonate-based eluent as an eluent. According to this invention, nitrate ions in a sample containing oxalic acid (for example, sewage treated water) can be quantified.
請求項2の硝酸態窒素の定量方法は溶離液に炭酸系溶離液を用いた陰イオンクロマトグラフによって試料中の亜硝酸イオンと硝酸イオンの定量を行うことを特徴とする。この発明によればシュウ酸を含んだ試料(例えば下水処理水)中の亜硝酸イオンと硝酸イオンとを同時に定量できるので前記試料に含まれるアンモニア態窒素の処理挙動の把握が可能となる。 The method for quantifying nitrate nitrogen according to claim 2 is characterized in that nitrite ions and nitrate ions in a sample are quantified by anion chromatography using a carbonate-based eluent as an eluent. According to the present invention, since nitrite ions and nitrate ions in a sample containing oxalic acid (for example, sewage treated water) can be simultaneously determined, it is possible to grasp the treatment behavior of ammonia nitrogen contained in the sample.
請求項3の陰イオンの定量方法は溶離液に炭酸系溶離液を用いた陰イオンクロマトグラフによってシュウ酸イオンと亜硝酸イオンと硝酸イオンとの定量を行うことを特徴とする。この発明によれば、シュウ酸イオンと亜硝酸イオンと硝酸イオンとを同時に定量できるので下水処理における有機物の分解挙動を把握できる。 The method for quantifying anions according to claim 3 is characterized in that oxalate ions, nitrite ions and nitrate ions are quantified by anion chromatography using a carbonate-based eluent as an eluent. According to this invention, since oxalate ions, nitrite ions, and nitrate ions can be simultaneously determined, it is possible to grasp the decomposition behavior of organic substances in sewage treatment.
請求項4の三態窒素の定量方法は、溶離液に炭酸系溶離液を用いた陰イオンクロマトグラフによって試料中のシュウ酸イオンと亜硝酸イオンと硝酸イオンとの定量を行った後に、前記試料を陽イオンクロマトグラフに供して前記試料中のアンモニウムイオンの定量を行うことを特徴とする。この発明によれば、シュウ酸を含んだ試料(例えば下水処理水)中のアンモニウムイオンと亜硝酸イオンと硝酸イオンとを同時に定量できるので前記試料に含まれるアンモニア態窒素の処理挙動の把握が可能となる。 The method for quantifying trinitrogen according to claim 4 is characterized in that the oxalate ion, nitrite ion and nitrate ion in the sample are quantified by anion chromatography using a carbonate-based eluent as the eluent, and then the sample Is subjected to cation chromatography to quantify ammonium ions in the sample. According to the present invention, ammonium ions, nitrite ions, and nitrate ions in a sample containing oxalic acid (for example, sewage treated water) can be simultaneously determined, so that it is possible to grasp the treatment behavior of ammonia nitrogen contained in the sample. It becomes.
したがって、請求項1の発明によれば下水処理の過程で有機物の分解によって生成するシュウ酸を含んだ処理水中の硝酸イオンをシュウ酸の影響を受けずに定量できる。 Therefore, according to the invention of claim 1, nitrate ions in the treated water containing oxalic acid generated by the decomposition of organic substances in the course of sewage treatment can be quantified without being influenced by oxalic acid.
また、請求項2及び請求項4の発明によれば前記シュウ酸を含んだ処理水中のアンモニア態窒素の硝化の過程で発生する亜硝酸態窒素と硝酸態窒素とを同時に定量できるので下水処理の過程でのアンモニア態窒素の処理挙動を効率的に把握できる。 Further, according to the invention of claim 2 and claim 4, since nitrite nitrogen and nitrate nitrogen generated in the process of nitrification of ammonia nitrogen in the treated water containing oxalic acid can be simultaneously determined, sewage treatment It is possible to efficiently grasp the processing behavior of ammonia nitrogen in the process.
さらに、請求項3の発明によれば前記処理水に含まれるシュウ酸、亜硝酸態窒素及び硝酸態窒素を同時に定量できるので下水処理の過程での有機物の処理挙動を把握できる。 Furthermore, according to the invention of claim 3, since oxalic acid, nitrite nitrogen and nitrate nitrogen contained in the treated water can be simultaneously determined, it is possible to grasp the treatment behavior of organic substances in the process of sewage treatment.
図1は発明の実施形態に係る定量方法の手順を示したフローチャートである。 FIG. 1 is a flowchart showing a procedure of a quantitative method according to an embodiment of the invention.
S1では試料である下水処理水を攪拌して均一にする。 In S1, the sample sewage treated water is stirred and made uniform.
S2では前記攪拌した下水処理水を保留粒子径0.21μmのフィルターでろ過する。 In S2, the stirred sewage treated water is filtered with a filter having a retained particle diameter of 0.21 μm.
S3では前記ろ過処理した下水処理水を炭酸系の溶離液で分離する陰イオンクロマトグラフで亜硝酸イオン及び硝酸イオンのピーク面積値を算出する。 In S3, peak area values of nitrite ions and nitrate ions are calculated by an anion chromatograph that separates the filtered sewage treated water with a carbonaceous eluent.
S4では前記陰イオンクロマトグラフに供した下水処理水を陽イオンクロマトグラフに供給してアンモニウムイオンのピーク面積値を算出する。 In S4, the sewage treated water supplied to the anion chromatograph is supplied to the cation chromatograph, and the peak area value of ammonium ion is calculated.
S5では予め算出した既知濃度の亜硝酸イオン、硝酸イオン、アンモニウムイオンのピーク面積値から試料濃度を計算する。 In S5, the sample concentration is calculated from the peak area values of nitrite ions, nitrate ions, and ammonium ions of known concentrations calculated in advance.
S6では亜硝酸イオン、硝酸イオン、アンモニウムイオンの濃度比からアンモニア態窒素の処理挙動を評価する。 In S6, the treatment behavior of ammonia nitrogen is evaluated from the concentration ratio of nitrite ions, nitrate ions, and ammonium ions.
図2は実施例として陰イオンクロマトグラフの溶離液に炭酸酸系溶離液を用いて得られた下水処理水の陰イオンクロマトグラムである。このクロマトグラムは図1のフローチャートに基づき下水処理生成物であるシュウ酸を含む下水処理水が保留粒子径0.21μmのフィルターによってろ過された後に炭酸系の溶離液(1.8mMのNa2CO3及び1.7mMのNaHCO3の水溶液。流速は1.5ml/分に設定した。)を用いた陰イオン交換分離するイオンクロマトグラフ(ダイオネクス製DX−AQ)に供されて下水処理水中の硝酸イオンが検出されて得られたものである。イオンの検出には電気伝導度検出器(ダイオネクス製)を用いた。 FIG. 2 is an anion chromatogram of sewage treated water obtained by using a carbonate-based eluent as an eluent of an anion chromatograph as an example. This chromatogram is based on the flow chart of FIG. 1, and sewage treated water containing oxalic acid, which is a sewage treatment product, is filtered through a filter having a retained particle diameter of 0.21 μm, and then a carbonate-based eluent (1.8 mM Na 2 CO 3 and 1.7 mM aqueous solution of NaHCO 3 (flow rate set at 1.5 ml / min)) and subjected to ion chromatography (Dionex DX-AQ) using anion exchange separation, nitric acid in sewage treated water This is obtained by detecting ions. An electric conductivity detector (Dionex) was used for ion detection.
一方、図3は比較例として従来法に基づき陰イオンクロマトグラフの溶離液にフタル酸系溶離液を用いて得られた下水処理水の陰イオンクロマトグラムである。このクロマトグラムは図1のフローチャートに基づき下水処理生成物であるシュウ酸を含む下水処理水が保留粒子径0.21μmのフィルターによってろ過された後に、フタル系の溶離液(2.5mMフタル酸及び2.5mMトリスバッファを含む。流速は1.0mL/分に設定した。)で陰イオン交換分離するイオンクロマトグラフ(東亜電波工業製ICA−3000)に供されて下水処理水中の硝酸イオンが検出されて得られたものである。イオンの検出には電気伝導度検出器(東亜電波工業製)を用いた。 On the other hand, FIG. 3 is an anion chromatogram of sewage treated water obtained as a comparative example using a phthalic acid-based eluent as an eluent of an anion chromatograph based on a conventional method. This chromatogram is based on the flow chart of FIG. 1, after sewage treatment water containing oxalic acid, which is a sewage treatment product, is filtered through a filter having a retention particle size of 0.21 μm, a phthalic eluent (2.5 mM phthalic acid and It contains 2.5 mM Tris buffer. The flow rate was set at 1.0 mL / min.) And was subjected to ion chromatograph (ICA-3000 manufactured by Toa Denpa Kogyo Co., Ltd.) to detect nitrate ions in sewage treated water. It was obtained. An electric conductivity detector (manufactured by Toa Denpa Kogyo Co., Ltd.) was used for ion detection.
また、表1にはフタル酸系溶離液(比較例)、炭酸系溶離液(実施例)をそれぞれ用いた陰イオンクロマトグラフによって測定された試料(下水処理前の下水及び下水処理後の下水)の亜硝酸イオン及び硝酸イオンの濃度(mg/L)を示した。 Table 1 shows samples measured by anion chromatography using phthalic acid-based eluent (comparative example) and carbonic acid-based eluent (example) (sewage before sewage treatment and sewage after sewage treatment). The concentration (mg / L) of nitrite ion and nitrate ion was shown.
図2に示されたように炭酸系溶離液を用いた陰イオンクロマトグラフによるとシュウ酸は硝酸イオンと完全に分離独立して溶出し、硝酸イオンの検出の妨害にならならないことが確認できる。このようにこの陰イオンクロマトグラフの溶離液に炭酸系の処理液が用いられるとシュウ酸が亜硝酸イオンとも完全に分離独立して溶出し、硝酸イオン、亜硝酸イオンともに正確に定量できることが示された。 As shown in FIG. 2, according to the anion chromatograph using a carbonic acid-based eluent, it can be confirmed that oxalic acid elutes completely and independently from nitrate ions and does not interfere with detection of nitrate ions. Thus, when a carbonic acid treatment solution is used as the eluent of this anion chromatograph, oxalic acid is completely separated and separated from nitrite ions, indicating that both nitrate ion and nitrite ion can be accurately determined. It was done.
一方、図3に示されたように比較例に係るフタル酸系溶離液を用いた陰イオンクロマトグラフの場合、シュウ酸は硝酸イオンと分離しないで溶出し、硝酸イオンの検出の妨害となってしまうことが確認できる。このことは表1に示された比較例と実施例の硝酸イオン濃度の比較からも明らかである。 On the other hand, in the case of the anion chromatograph using the phthalic acid-based eluent according to the comparative example as shown in FIG. 3, oxalic acid elutes without being separated from nitrate ions, which hinders detection of nitrate ions. Can be confirmed. This is also clear from the comparison of nitrate ion concentrations in the comparative example and the example shown in Table 1.
次いで、下水処理生成物である炭酸系の溶離液で陰イオン交換分離するイオンクロマトグラフを用いて、下水処理水中のシュウ酸を定量した。図4に定量方法の手順を示したフローチャートを示した。 Next, oxalic acid in the sewage treated water was quantified using an ion chromatograph that performs anion exchange separation with a carbonate-based eluent that is a sewage treatment product. FIG. 4 shows a flowchart showing the procedure of the quantification method.
S41では試料である下水処理水を攪拌して均一にする。 In S41, the sample sewage treated water is agitated and made uniform.
S42では前記攪拌した下水処理水を保留粒子径0.21μmのフィルターでろ過する。 In S42, the agitated sewage treated water is filtered through a filter having a retained particle diameter of 0.21 μm.
S43では前記ろ過処理した下水処理水を炭酸系の溶離液で分離する陰イオンクロマトグラフに供してシュウ酸のピーク面積値を算出する。 In S43, the peak area value of oxalic acid is calculated by subjecting the filtered sewage treated water to an anion chromatograph that separates with a carbonate-based eluent.
S44では予め算出した既知濃度のシュウ酸のピーク面積値から試料濃度を計算する。 In S44, the sample concentration is calculated from the peak area value of oxalic acid having a known concentration calculated in advance.
S45ではシュウ酸濃度から下水中の有機物の分解挙動を評価する。 In S45, the decomposition behavior of organic matter in sewage is evaluated from the oxalic acid concentration.
以上のフローチャートに基づきシュウ酸を含む下水処理水を保留粒子径0.21μmのフィルターでろ過した後に炭酸系の溶離液(1.8mMのNa2CO3及び1.7mMのNaHCO3の水溶液。流速は1.5ml/分に設定した。)で陰イオン交換分離するイオンクロマトグラフ(ダイオネクス製DX−AQ)を用いて下水処理水中のシュウ酸を定量した。シュウ酸の検出には電気伝導度検出器(ダイオネクス製)を用いた。 Based on the above flowchart, sewage-treated water containing oxalic acid is filtered through a filter having a retention particle size of 0.21 μm, and then a carbonate-based eluent (an aqueous solution of 1.8 mM Na 2 CO 3 and 1.7 mM NaHCO 3 . Was set at 1.5 ml / min.), And oxalic acid in sewage treated water was quantified using an ion chromatograph (DX-AQ manufactured by Dionex) that performs anion exchange separation. An electric conductivity detector (manufactured by Dionex) was used for detection of oxalic acid.
表1にフタル酸系溶離液(比較例)、炭酸系溶離液(実施例)をそれぞれ用いた陰イオンクロマトグラフによって測定した試料(下水処理前の下水及び下水処理後の下水)のシュウ酸の濃度(mg/L)を示した。そして、前記検出電気伝導度検出器の検出によって得られた図2及び図3に記載の陰イオンクロマトグラムに基づき有機物の分解挙動を評価した。 Table 1 shows the oxalic acid concentrations of samples (sewage before sewage treatment and sewage after sewage treatment) measured by anion chromatography using phthalic acid-based eluent (comparative example) and carbonic acid-based eluent (example). Concentration (mg / L) was indicated. And the decomposition | disassembly behavior of organic substance was evaluated based on the anion chromatogram of FIG.2 and FIG.3 obtained by the detection of the said detection electrical conductivity detector.
図2のクロマトグラムから明らかなように炭酸系の溶離液を用いた陰イオンクロマトグラフによれば硝酸イオン及び亜硝酸イオンと同時にシュウ酸を定量することができ、簡便に下水処理における有機物の分解を把握できることが確認された。一方、図3のクロマトグラムに示されたようにフタル酸系の溶離液を用いた陰イオンクロマトグラフではシュウ酸の定量が不可能であることが確認された。 As can be seen from the chromatogram in Fig. 2, anion chromatography using a carbonate-based eluent can quantitate oxalic acid simultaneously with nitrate and nitrite ions. Was confirmed. On the other hand, as shown in the chromatogram of FIG. 3, it was confirmed that oxalic acid could not be quantified by anion chromatography using a phthalic acid-based eluent.
次いで、図1に示されたフローチャートに基づき下水処理生成物であるシュウ酸を含む下水処理水を保留粒子径0.21μmにフィルターでろ過し、陽イオンクロマトグラフ(東亜電波工業製ICA−3000)でアンモニウムイオンを定量した。その結果を表1に示した。 Next, based on the flowchart shown in FIG. 1, sewage treatment water containing oxalic acid, which is a sewage treatment product, is filtered through a filter to a retained particle size of 0.21 μm, and a cation chromatograph (ICA-3000 manufactured by Toa Denpa Kogyo Co., Ltd.). The ammonium ions were quantified with The results are shown in Table 1.
また、前記下水処理水を保留粒子径0.21μmのフィルターでろ過し、炭酸系の溶離液(1.8mMのNa2CO3及び1.7mMのNaHCO3の水溶液。流速は1.5ml/分に設定した。)で陰イオン交換分離するイオンクロマトグラフ(ダイオネクス製DX−AQ)を用いて、前記下水処理水中の亜硝酸イオン及び硝酸イオンを定量した。アンモニウムイオン、亜硝酸イオン及び硝酸イオンの検出には電気伝導度検出器(ダイオネクス製)を用いた。この検出によって得られたクロマトグラムが図2に示されている。 The sewage-treated water is filtered through a filter having a retention particle size of 0.21 μm, and a carbonate-based eluent (1.8 mM Na 2 CO 3 and 1.7 mM NaHCO 3 aqueous solution. The flow rate is 1.5 ml / min. The nitrite ions and nitrate ions in the sewage treated water were quantified using an ion chromatograph (DX-AQ manufactured by Dionex) that performs anion exchange separation. An electric conductivity detector (manufactured by Dionex) was used to detect ammonium ions, nitrite ions and nitrate ions. The chromatogram obtained by this detection is shown in FIG.
一方、比較例として前記下水処理水を保留粒子径0.21μmのフィルターでろ過し、フタル酸系の溶離液(2.5mMフタル酸及び2.5mMトリスバッファを含む。流速は1.0mL/分に設定した。)で陰イオン交換分離するイオンクロマトグラフ(東亜電波工業製ICA−3000)を用いて、前記下水処理水中の亜硝酸イオン及び硝酸イオンを定量した。この検出によって得られたクロマトグラムが図3に示されている。 On the other hand, as a comparative example, the sewage treated water is filtered through a filter having a retention particle size of 0.21 μm, and a phthalic acid-based eluent (including 2.5 mM phthalic acid and 2.5 mM Tris buffer. The flow rate is 1.0 mL / min. The nitrite ions and nitrate ions in the sewage treated water were quantified using an ion chromatograph (ICA-3000, manufactured by Toa Denpa Kogyo Co., Ltd.) that performs anion exchange separation. The chromatogram obtained by this detection is shown in FIG.
表1、図2及び図3に示された下水処理前後の下水中のアンモニウムイオン、亜硝酸イオン、硝酸イオンの濃度の比較から明らかなように炭酸系の溶離液を用いた陰イオンクロマトグラフによる陰イオンの定量方法によればシュウ酸の影響を受けることなくアンモニア態窒素の処理挙動を評価できることが確認された。 As can be seen from the comparison of the ammonium ion, nitrite ion, and nitrate ion concentrations in the sewage before and after the sewage treatment shown in Table 1, FIG. 2 and FIG. 3, an anion chromatograph using a carbonate-based eluent was used. It was confirmed that the treatment behavior of ammonia nitrogen could be evaluated by the anion determination method without being affected by oxalic acid.
以上のように陰イオンクロマトグラフの溶離液に炭酸系溶離液を用いた本発明に係る定量方法によれば下水処理の過程で有機物の分解によって生成するシュウ酸を含んだ処理水中の硝酸イオンをシュウ酸の影響を受けずに定量できる。また、前記シュウ酸を含んだ処理水中のアンモニア態窒素の硝化の過程で発生する亜硝酸態窒素と硝酸態窒素とを同時に定量できるので下水処理の過程でのアンモニア態窒素の処理挙動を効率的に把握できる。さらに、前記処理水に含まれるシュウ酸、亜硝酸態窒素及び硝酸態窒素を同時に定量できるので下水処理の過程での有機物の処理挙動を把握できる。 As described above, according to the quantification method according to the present invention using the carbonic acid-based eluent as the eluent of the anion chromatograph, nitrate ions in the treated water containing oxalic acid generated by the decomposition of organic substances in the process of sewage treatment can be obtained. Can be quantified without being affected by oxalic acid. In addition, nitrite nitrogen and nitrate nitrogen generated in the nitrification process of ammonia nitrogen in the treated water containing oxalic acid can be determined simultaneously, so that the treatment behavior of ammonia nitrogen in the process of sewage treatment is efficient. Can grasp. Furthermore, since oxalic acid, nitrite nitrogen, and nitrate nitrogen contained in the treated water can be simultaneously determined, it is possible to grasp the treatment behavior of organic substances during the sewage treatment process.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007101398A JP2008256636A (en) | 2007-04-09 | 2007-04-09 | Methods of quantitatively determining nitrate nitrogens, anions, and nitrogens in three states |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007101398A JP2008256636A (en) | 2007-04-09 | 2007-04-09 | Methods of quantitatively determining nitrate nitrogens, anions, and nitrogens in three states |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008256636A true JP2008256636A (en) | 2008-10-23 |
Family
ID=39980335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007101398A Pending JP2008256636A (en) | 2007-04-09 | 2007-04-09 | Methods of quantitatively determining nitrate nitrogens, anions, and nitrogens in three states |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008256636A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106596770A (en) * | 2016-12-13 | 2017-04-26 | 四川大学 | Low-pressure anion-cation chromatographic-spectrophotometric method for simultaneous online automatic analysis of trace ammonium ions and nitrite ions in water sample |
CN111398478A (en) * | 2020-04-23 | 2020-07-10 | 珠江水利委员会珠江水利科学研究院 | Gas-mass spectrum chromatography combined detection method for ammonia nitrogen and isotope content thereof in water sample |
CN111521693A (en) * | 2019-02-01 | 2020-08-11 | 鲁南制药集团股份有限公司 | Method for detecting isosorbide mononitrate |
-
2007
- 2007-04-09 JP JP2007101398A patent/JP2008256636A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106596770A (en) * | 2016-12-13 | 2017-04-26 | 四川大学 | Low-pressure anion-cation chromatographic-spectrophotometric method for simultaneous online automatic analysis of trace ammonium ions and nitrite ions in water sample |
CN106596770B (en) * | 2016-12-13 | 2019-03-29 | 四川大学 | Simultaneously in on-line automatic analysis water-like micro ammonium ion and nitrite ion low pressure anions and canons chromatography-photometry |
CN111521693A (en) * | 2019-02-01 | 2020-08-11 | 鲁南制药集团股份有限公司 | Method for detecting isosorbide mononitrate |
CN111521693B (en) * | 2019-02-01 | 2021-01-29 | 鲁南制药集团股份有限公司 | Method for detecting isosorbide mononitrate |
CN111398478A (en) * | 2020-04-23 | 2020-07-10 | 珠江水利委员会珠江水利科学研究院 | Gas-mass spectrum chromatography combined detection method for ammonia nitrogen and isotope content thereof in water sample |
CN111398478B (en) * | 2020-04-23 | 2022-09-02 | 珠江水利委员会珠江水利科学研究院 | Gas-mass spectrometry-chromatography combined detection method for ammonia nitrogen and isotope content thereof in water sample |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
O'Sullivan et al. | An ICP-MS procedure to determine Cd, Co, Cu, Ni, Pb and Zn in oceanic waters using in-line flow-injection with solid-phase extraction for preconcentration | |
Caban et al. | Matrix effects and recovery calculations in analyses of pharmaceuticals based on the determination of β-blockers and β-agonists in environmental samples | |
Altun et al. | Study of the factors affecting the performance of microextraction by packed sorbent (MEPS) using liquid scintillation counter and liquid chromatography-tandem mass spectrometry | |
Yang et al. | Isotopic fractionation of mercury induced by reduction and ethylation | |
Ngongang et al. | Analysis of nine N-nitrosamines using liquid chromatography-accurate mass high resolution-mass spectrometry on a Q-Exactive instrument | |
Lin et al. | Quantitative determination of perchlorate in bottled water and tea with online solid phase extraction high-performance liquid chromatography coupled to tandem mass spectrometry | |
Brombach et al. | Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry | |
Washington et al. | Analysis of perfluorinated carboxylic acids in soils II: optimization of chromatography and extraction | |
Gilchrist et al. | A review of oxyhalide disinfection by-products determination in water by ion chromatography and ion chromatography-mass spectrometry | |
Krawczyk et al. | Silver nanoparticles as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the atomic absorption spectrometric determination of mercury in water samples | |
Wong et al. | JEM spotlight: recent advances in analysis of pharmaceuticals in the aquatic environment | |
Zhu et al. | Determination of REEs in seawater by ICP-MS after on-line preconcentration using a syringe-driven chelating column | |
Sonke et al. | Determination of neodymium–fulvic acid binding constants by capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS) | |
Jimmy et al. | Separation and determination of Cr (III) by titanium dioxide-filled column and inductively coupled plasma mass spectrometry | |
Čelić et al. | Environmental analysis: Emerging pollutants | |
Abdolmohammad-Zadeh et al. | Monitoring of thiocyanate as a biomarker in saliva and serum samples by a combination of solid-phase extraction based on a layered double hydroxide nano-sorbent and gas chromatography | |
Huang et al. | Simultaneous determination of peroxydisulfate and conventional inorganic anions by ion chromatography with the column‐switching technique | |
JP2008256636A (en) | Methods of quantitatively determining nitrate nitrogens, anions, and nitrogens in three states | |
Liu et al. | Determination of trace indium in urine after preconcentration with a chelating‐resin‐packed minicolumn | |
Ma et al. | Simultaneous determination of nitroimidazoles and amphenicol antibiotics in water samples using ultrasound-assisted dispersive liquid–liquid microextraction coupled with ultra-high-performance liquid chromatography with tandem mass spectrometry | |
Benkhedda et al. | Hyphenation of flow injection on-line preconcentration and ICP-MS for the rapid determination of 226 Ra in natural waters | |
Quinto et al. | Microextraction by packed sorbent coupled with gas chromatography–mass spectrometry: A comparison between “draw-eject” and “extract-discard” methods under equilibrium conditions for the determination of polycyclic aromatic hydrocarbons in water | |
Tang et al. | Design of experiments (DoE) to develop and to optimize extraction of psychoactive substances | |
Hu et al. | An LC-MS-MS method for the determination of perfluorinated surfactants in environmental matrices | |
Zachariadis et al. | Effect of sample matrix on sensitivity of mercury and methylmercury quantitation in human urine, saliva, and serum using GC‐MS |