JP2008256404A - Thermofluorescent dose measuring element - Google Patents

Thermofluorescent dose measuring element Download PDF

Info

Publication number
JP2008256404A
JP2008256404A JP2007096540A JP2007096540A JP2008256404A JP 2008256404 A JP2008256404 A JP 2008256404A JP 2007096540 A JP2007096540 A JP 2007096540A JP 2007096540 A JP2007096540 A JP 2007096540A JP 2008256404 A JP2008256404 A JP 2008256404A
Authority
JP
Japan
Prior art keywords
rays
thermofluorescence
radiation
powder
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007096540A
Other languages
Japanese (ja)
Other versions
JP4934767B2 (en
Inventor
Kazusato Fukuda
和悟 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Sangyo University
Original Assignee
Osaka Sangyo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Sangyo University filed Critical Osaka Sangyo University
Priority to JP2007096540A priority Critical patent/JP4934767B2/en
Publication of JP2008256404A publication Critical patent/JP2008256404A/en
Application granted granted Critical
Publication of JP4934767B2 publication Critical patent/JP4934767B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To quantitatively evaluate a radiation amount with one thermofluorescent dose measuring element by distinguishing gamma rays and neutron rays from the other radiations. <P>SOLUTION: Tb<SB>4</SB>O<SB>7</SB>powder of 0.06 wt.%, Sm<SB>2</SB>O<SB>3</SB>powder of 0.03 wt.% and Gd<SB>2</SB>O<SB>3</SB>powder of 0.36 wt.% are added to CaF<SB>2</SB>powder and uniformly mixed. The mixed powder is filled into a mold and is subjected to pressure forming in a disc shape. It is further sintered at 1100°C for two hours in air atmosphere to obtain a sintered body of a thermofluorescent dose measuring element. When each radiation of ultraviolet rays, X-rays, gamma rays and neutron rays is applied to the sintered body and a glow peak curve 1 is evaluated, peaks of the ultraviolet rays and the X-rays are observed near 100°C, while those of the gamma rays and the neutron rays are observed near 150°C. This shows that the peaks of gamma rays and neutron rays can be distinguished from those of other radiations even in a mixed radiation field. Moreover, the radiation amount of each radiation can be quantitatively evaluated from the area of the part enclosed by the glow peak curve and a heating temperature axis 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、紫外線や中性子線等の線種を分別して、その照射量を定量評価する熱蛍光線量測定素子に関する。   The present invention relates to a thermofluorescence dosimetry element that classifies line types such as ultraviolet rays and neutron rays and quantitatively evaluates the amount of irradiation.

熱蛍光線量測定素子としては、フッ化カルシウムCaFやフッ化リチウムLiF等の母材に、テルビウムTb、サマリウムSm、ガドリニウムGd等の希土類元素を添加したものがある。これらの添加元素は、紫外線、X線、ガンマ線、中性子線等の放射線の照射によって、エネルギー的に励起された状態となる。この励起状態は添加元素の種類によって異なり、例えばGdは、紫外線や中性子線等に対して高い感度を有しており、これらの放射線の照射によって励起されやすい。上記照射によって励起されたGd、はTbへ励起エネルギーを受け渡し(エネルギー遷移)、Gd自体は元の安定なエネルギー状態(基底状態)に戻る。 As a thermofluorescence dosimetry element, there is an element obtained by adding a rare earth element such as terbium Tb, samarium Sm or gadolinium Gd to a base material such as calcium fluoride CaF 2 or lithium fluoride LiF. These additive elements are energized by irradiation with radiation such as ultraviolet rays, X-rays, gamma rays, and neutron rays. This excited state differs depending on the type of additive element. For example, Gd has high sensitivity to ultraviolet rays, neutron rays, and the like, and is easily excited by irradiation with these radiations. Gd excited by the irradiation delivers excitation energy to Tb (energy transition), and Gd itself returns to the original stable energy state (ground state).

この励起エネルギーを受け取ったTbは少なくとも数日以上の間、安定的に上記励起状態を維持し、この励起状態の熱蛍光線量測定素子を室温から300℃程度まで昇温すると、励起されたTbが基底状態に戻り、その際に上記励起状態と基底状態のエネルギー差に対応した発光が生じる(特許文献1及び2参照)。   The Tb that has received this excitation energy stably maintains the above excited state for at least several days. When the temperature of the thermoluminescent dosimetry element in this excited state is raised from room temperature to about 300 ° C., the excited Tb is Returning to the ground state, light emission corresponding to the energy difference between the excited state and the ground state occurs at that time (see Patent Documents 1 and 2).

特開平7−97570号公報JP 7-97570 A 特許第3250192号公報Japanese Patent No. 3250192

この発光が最も強く生じる温度(熱蛍光グローピーク温度)は、上記添加元素の種類及び放射線の線種によって異なることが分かっており、測定する放射線の線種によって、上記添加元素の種類及びその組み合わせを適宜選択する。   It has been found that the temperature at which this luminescence is most intense (thermofluorescence glow peak temperature) varies depending on the type of the additive element and the radiation line type, and the type of additive element and the combination thereof depending on the radiation line type to be measured. Is appropriately selected.

この熱蛍光線量測定素子は、放射線等を扱う現場において作業者が作業衣に常時着用し、放射線漏洩事故が生じた際に、その作業者の被曝量を測定するために使用されることがある。この場合、その作業者の被曝量のみならず、どのような線種の放射線等を被曝したかを知ることが、事故処理において重要である。そのため、どのような放射線種を被曝する恐れがあるか予め想定し、その放射線種に対応した熱蛍光線量測定素子を用いる必要がある。   This thermofluorescence dosimetry element is sometimes worn by workers at work sites that handle radiation, etc., and is used to measure the exposure of workers when a radiation leakage accident occurs. . In this case, it is important in the accident processing to know not only the dose of the worker but also what type of radiation or the like was exposed. Therefore, it is necessary to assume in advance what kind of radiation is likely to be exposed and to use a thermofluorescence dose measuring element corresponding to the radiation type.

上記放射線の中でも、ガンマ線や中性子線は遮蔽物に対する透過能力が高いため、紫外線やX線等の他の放射線と比較して、人体への悪影響がはるかに大きい。そのため、特にガンマ線や中性子線を他の放射線と分別して評価し得る熱蛍光線量測定素子の開発が望まれている。   Among the above-mentioned radiations, gamma rays and neutron rays have a high transmission ability with respect to the shielding material, so that the adverse effects on the human body are much greater than other radiations such as ultraviolet rays and X-rays. Therefore, it is desired to develop a thermofluorescence dosimetry element that can evaluate gamma rays and neutron rays separately from other radiation.

上記のように、熱蛍光線量測定素子は、特定の放射線の線種に対応して、使用する熱蛍光線量測定素子の種類を適宜選択する必要がある。そのため、複数種の放射線を扱う現場(複数種の放射線を被曝する恐れがある現場)においては、数種類の熱蛍光線量測定素子を併用しなければならず煩雑である。   As described above, it is necessary for the thermofluorescence dosimetry element to appropriately select the type of thermofluorescence dosimetry element to be used corresponding to the specific radiation line type. Therefore, in a site where a plurality of types of radiation are handled (a site where there is a risk of exposure to a plurality of types of radiation), several types of thermofluorescence dosimetry elements must be used in combination.

そこで、この発明は、一つの熱蛍光線量測定素子で、複数の放射線の線種、特にガンマ線及び中性子線を他の放射線と分別して、その照射量を定量評価することを課題とする。   Accordingly, an object of the present invention is to classify a plurality of radiation types, particularly gamma rays and neutron rays, from other radiations and to quantitatively evaluate the irradiation dose with one thermofluorescence dosimetry element.

上記の課題を解決するため、この発明は、CaFの母材に、Tb、Sm、及び、Gdの各酸化物を適切な比率で添加し、熱蛍光線量測定素子を構成することとしたのである。具体的には、上記各添加物の添加量は、Tbを0.01〜0.2重量%、Smを0.01〜0.2重量%、及び、Gdを0.01〜1重量%の各範囲とするのが好ましい。 In order to solve the above-mentioned problems, the present invention adds a Tb, Sm, and Gd oxide at an appropriate ratio to a CaF 2 base material to constitute a thermofluorescence dose measuring element. is there. Specifically, the amount of each additive is 0.01 to 0.2% by weight of Tb 4 O 7 , 0.01 to 0.2% by weight of Sm 2 O 3 , and Gd 2 O 3. Is preferably in the range of 0.01 to 1% by weight.

上記のように複数の添加物を同時添加すれば、複数の放射線の線種に対して測定感度を得ることができる。しかも、上記添加比率とすることで、各線種の上記熱蛍光グローピークが明確に分離され得る。そのため、複数の放射線が混在している混合放射場、特にガンマ線及び中性子線と、他の放射線とが混合している場合においても、一つの熱蛍光線量測定素子で、上記線種(ガンマ線及び中性子線と、その他の線種)が分別でき、しかも、上記分別ごとに照射量が定量的に評価できる。   If a plurality of additives are added simultaneously as described above, measurement sensitivity can be obtained for a plurality of radiation line types. Moreover, the thermofluorescence glow peak of each line type can be clearly separated by setting the addition ratio. For this reason, even when a mixed radiation field in which a plurality of radiations are mixed, in particular, when gamma rays and neutron rays are mixed with other radiation, the above-described line type (gamma rays and neutrons) is obtained with one thermofluorescence dosimetry element. Line and other line types) can be separated, and the dose can be evaluated quantitatively for each of the above classifications.

上記熱蛍光グローピークの分離を一層明確なものとするには、上記各添加物の添加量をTbを0.05〜0.07重量%、Smを0.02〜0.04重量%、及び、Gdを0.3〜0.4重量%の各範囲とすることがより好ましい。 In order to further clarify the separation of the thermoluminescent glow peak, the amount of each additive is 0.05 to 0.07 wt% for Tb 4 O 7 and 0.02 to 0 for Sm 2 O 3 . It is more preferable that 0.04% by weight and Gd 2 O 3 be in the respective ranges of 0.3 to 0.4% by weight.

上記熱蛍光線量測定素子は、原材料であるCaF、Tb、Sm及びGdの各粉末を均一に混合した上で型枠に入れ、型枠中の混合粉末に圧力を加えて成形体とし、さらにこの成形体を1000〜1200℃に加熱した加熱炉中で焼結することによって得られる。 The thermofluorescence dosimetry element is prepared by uniformly mixing the raw materials CaF 2 , Tb 4 O 7 , Sm 2 O 3 and Gd 2 O 3 powders and then putting them in a mold, It is obtained by applying pressure to form a molded body, and further sintering the molded body in a heating furnace heated to 1000 to 1200 ° C.

この発明によると、一つの熱蛍光線量測定素子で、上記線種(ガンマ線及び中性子線と、その他の線種)が分別でき、しかも、上記分別ごとに照射量が定量的に評価できる。   According to the present invention, the above-mentioned line types (gamma rays and neutron rays and other line types) can be classified with a single thermofluorescence dosimetry device, and the dose can be quantitatively evaluated for each of the above classifications.

(実施例1)
CaF粉末(純度99.99%、レアメタリック製)に、0.06重量%のTb粉末(純度99.99%、レアメタリック製)、0.03重量%のSm粉末(純度99.99%、レアメタリック製)及び0.36重量%のGd粉末(純度99.99%、三津和化学薬品製)を均一に混合し、この混合粉末を型枠に充填し、直径6mm及び厚さ1mmの円板状に加圧成形した。この成形体を白金坩堝内に置いて、1100℃で2時間、大気雰囲気中で焼結し、熱蛍光線量測定素子の焼結体を得た。
Example 1
CaF 2 powder (purity 99.99%, rare metallic), 0.06 wt% Tb 4 O 7 powder (purity 99.99%, rare metallic), 0.03% wt Sm 2 O 3 powder (Purity 99.99%, rare metallic) and 0.36 wt% Gd 2 O 3 powder (purity 99.99%, Mitsuwa Chemicals) are mixed uniformly, and this mixed powder is filled into a mold. Then, it was pressure-molded into a disk shape having a diameter of 6 mm and a thickness of 1 mm. This molded body was placed in a platinum crucible and sintered in the air atmosphere at 1100 ° C. for 2 hours to obtain a sintered body of a thermoluminescent dose measuring element.

(実施例2)
実施例1で得た熱蛍光線量測定素子に、低圧水銀灯を光源とする紫外線(波長253.7nm、照射強度約0.4J/分・cm)を最大180秒間照射した。さらに照射後の熱蛍光線量測定素子を室温から300℃まで20℃/分の速度で昇温し、その昇温の際の熱蛍光グローピークを測定した。
この場合、図1(a)に示すように100℃付近に熱蛍光グローピークが観察された。また、その温度以外に目立ったピークは観察されなかった。
このグラフにおいてグローピーク曲線1と加熱温度軸2がなす部分3の面積を求め、この面積と、同熱蛍光線量測定素子を用いて既知量の紫外線を照射した際の上記面積に相当する面積とを比較することで、照射した紫外線量を推定することができる。
また、図1(b)に示すように照射時間が180秒までは、熱蛍光強度は照射時間に対して直線的に増加し続けており、熱蛍光強度は飽和状態には至らなかった。このことより、この熱蛍光線量測定素子はこの紫外線強度の下においては、少なくとも180秒までは紫外線量を定量的に測定できるといえる。
(Example 2)
The thermofluorescence dosimetry device obtained in Example 1 was irradiated with ultraviolet rays (wavelength 253.7 nm, irradiation intensity of about 0.4 J / min · cm 2 ) using a low-pressure mercury lamp as a light source for a maximum of 180 seconds. Furthermore, the thermofluorescence dosimetry device after irradiation was heated from room temperature to 300 ° C. at a rate of 20 ° C./min, and the thermofluorescence glow peak at the time of the temperature increase was measured.
In this case, as shown in FIG. 1A, a thermofluorescent glow peak was observed around 100 ° C. In addition, no conspicuous peak was observed except for the temperature.
In this graph, the area of the portion 3 formed by the glow peak curve 1 and the heating temperature axis 2 is obtained, and this area and the area corresponding to the above-described area when a known amount of ultraviolet rays are irradiated using the thermoluminescent dose measuring element. Can be estimated.
Further, as shown in FIG. 1B, the thermofluorescence intensity continued to increase linearly with respect to the irradiation time until the irradiation time reached 180 seconds, and the thermofluorescence intensity did not reach saturation. From this, it can be said that this thermofluorescence dosimetry device can quantitatively measure the amount of ultraviolet rays for at least 180 seconds under this ultraviolet ray intensity.

(実施例3)
実施例1で得た熱蛍光線量測定素子に、X線(0.15C/分・kg)をそれぞれ最大120秒間照射した。さらに照射後の熱蛍光線量測定素子を室温から240℃まで20℃/分の速度で昇温し、その昇温の際の熱蛍光グローピークを測定した。
この場合、図2(a)に示すように、実施例1において紫外線を照射した場合と同様に、100℃付近に熱蛍光グローピークが観察された。また、その温度以外に目立ったピークは観察されなかった。
このグラフにおいてグローピーク曲線1と加熱温度軸2がなす部分3の面積を求め、この面積と、同熱蛍光線量測定素子を用いて既知量のX線を照射した際の上記面積に相当する面積とを比較することで、照射したX線量を推定することができる。
また、図2(b)に示すように照射時間が120秒までは、熱蛍光強度は照射時間に対して直線的に増加し続けており、熱蛍光強度は飽和状態には至らなかった。このことより、この熱蛍光線量測定素子はこのX線強度の下においては、少なくとも120秒まではX線量を定量的に測定できるといえる。
(Example 3)
The thermofluorescence dosimetry device obtained in Example 1 was irradiated with X-rays (0.15 C / min · kg) for a maximum of 120 seconds, respectively. Furthermore, the thermofluorescence dosimetry device after irradiation was heated from room temperature to 240 ° C. at a rate of 20 ° C./min, and the thermofluorescence glow peak during the temperature increase was measured.
In this case, as shown in FIG. 2A, a thermofluorescence glow peak was observed at around 100 ° C. as in the case of irradiation with ultraviolet rays in Example 1. In addition, no conspicuous peak was observed except for the temperature.
In this graph, the area of the portion 3 formed by the glow peak curve 1 and the heating temperature axis 2 is obtained, and this area and the area corresponding to the above-mentioned area when a known amount of X-rays are irradiated using the thermoluminescent dose measuring element Can be estimated.
In addition, as shown in FIG. 2B, the thermofluorescence intensity continued to increase linearly with respect to the irradiation time until the irradiation time was 120 seconds, and the thermofluorescence intensity did not reach saturation. From this, it can be said that this thermofluorescence dosimetry element can quantitatively measure the X-ray dose for at least 120 seconds under this X-ray intensity.

(実施例4)
実施例1で得た熱蛍光線量測定素子に、コバルト60を線源とするガンマ線を11.5μSv照射した。さらに照射後の熱蛍光線量測定素子を室温から300℃まで20℃/分の速度で昇温し、その昇温の際の熱蛍光グローピークを測定した。
この場合、図3に示すように150℃付近に熱蛍光グローピークが観察された。また、250℃以上の温度領域で熱蛍光強度がやや高くなっているものの、特段に目立ったピークは観察されなかった。
このグラフにおいてグローピーク曲線1と加熱温度軸2がなす部分3の面積を求め、この面積と、同熱蛍光線量測定素子を用いて既知量のガンマ線を照射した際の上記面積に相当する面積とを比較することで、照射したガンマ線量を推定することができる。
Example 4
The thermofluorescence dosimetry device obtained in Example 1 was irradiated with 11.5 μSv of gamma rays using cobalt 60 as a radiation source. Furthermore, the thermofluorescence dosimetry device after irradiation was heated from room temperature to 300 ° C. at a rate of 20 ° C./min, and the thermofluorescence glow peak at the time of the temperature increase was measured.
In this case, as shown in FIG. 3, a thermoluminescent glow peak was observed at around 150 ° C. In addition, although the thermofluorescence intensity was slightly higher in the temperature range of 250 ° C. or higher, no particularly conspicuous peak was observed.
In this graph, the area of the portion 3 formed by the glow peak curve 1 and the heating temperature axis 2 is obtained, and this area and the area corresponding to the above-mentioned area when a known amount of gamma rays are irradiated using the thermoluminescent dose measuring element. Can be used to estimate the irradiated gamma dose.

(実施例5)
実施例1で得た熱蛍光線量測定素子に、中性子線を4.18mSv照射した。さらに照射後の熱蛍光線量測定素子を室温から300℃まで20℃/分の速度で昇温し、その昇温の際の熱蛍光グローピークを測定した。
この場合、図4に示すように150〜160℃付近に熱蛍光グローピークが観察された。また、250℃以上の温度領域で熱蛍光強度がやや高くなっているものの、特段に目立ったピークは観察されなかった。
このグラフにおいてグローピーク曲線1と加熱温度軸2がなす部分3の面積を求め、この面積と、同熱蛍光線量測定素子を用いて既知量の中性子線を照射した際の上記面積に相当する面積とを比較することで、照射した中性子線量を推定することができる。
(Example 5)
The thermofluorescence dosimetry device obtained in Example 1 was irradiated with 4.18 mSv of neutron beam. Furthermore, the thermofluorescence dosimetry device after irradiation was heated from room temperature to 300 ° C. at a rate of 20 ° C./min, and the thermofluorescence glow peak at the time of the temperature increase was measured.
In this case, as shown in FIG. 4, a thermofluorescent glow peak was observed around 150 to 160 ° C. In addition, although the thermofluorescence intensity was slightly higher in the temperature range of 250 ° C. or higher, no particularly conspicuous peak was observed.
In this graph, the area of the portion 3 formed by the glow peak curve 1 and the heating temperature axis 2 is obtained, and this area and the area corresponding to the above-mentioned area when a known amount of neutron beam is irradiated using the thermoluminescent dose measuring element. The neutron dose irradiated can be estimated.

図1から図4に示したように、ガンマ線及び中性子線の熱蛍光グローピークと、紫外線及びX線の熱蛍光グローピークとは約50℃程度ずれている。そのため、例えば、X線とガンマ線が混在する混合放射場においても両線種を明確に分別することができる。   As shown in FIGS. 1 to 4, the thermofluorescence glow peaks of gamma rays and neutrons are shifted from the thermofluorescence glow peaks of ultraviolet rays and X-rays by about 50 ° C. Therefore, for example, even in a mixed radiation field in which X-rays and gamma rays are mixed, both line types can be clearly separated.

また、上述したように、いずれの線種においても特定の熱蛍光グローピーク以外に目立ったピークは観察されないため、紫外線及びX線と、ガンマ線及び中性子線とが重なり合っている場合においても、ピーク位置の温度さえ特定できれば、その温度によって上記線種を特定することができる。   In addition, as described above, no conspicuous peak other than the specific thermofluorescent glow peak is observed in any line type. Therefore, even when ultraviolet rays and X-rays overlap with gamma rays and neutron rays, As long as the temperature can be specified, the line type can be specified by the temperature.

上記熱蛍光グローピークは、添加元素の種類及びその添加量が変わると、そのピーク位置の温度や高さが変化したり、複数のピークが表れたりするため、複数の線種を分別するには、Tbを0.01〜0.2重量%、Smを0.01〜0.2重量%、及び、Gdを0.01〜1重量%とするのが好ましい。
さらに、上記線種を明確に分別するには、Tbを0.05〜0.07重量%、Smを0.02〜0.04重量%、及び、Gdを0.3〜0.4重量%とすることがより好ましい。
The above-mentioned thermofluorescence glow peak changes the temperature and height of the peak position and the appearance of multiple peaks when the type and amount of the additive element changes. , Tb 4 O 7 is preferably 0.01 to 0.2% by weight, Sm 2 O 3 is 0.01 to 0.2% by weight, and Gd 2 O 3 is preferably 0.01 to 1% by weight. .
Further, in order to clearly distinguish the above line types, 0.05 to 0.07 wt% of Tb 4 O 7 , 0.02 to 0.04 wt% of Sm 2 O 3 , and Gd 2 O 3 are used. It is more preferable to set it as 0.3 to 0.4 weight%.

この熱蛍光線量測定素子は、太陽光中の紫外線のように比較的強度が低い放射線に対しても高い感度を有している。そのため、この熱蛍光線量測定素子を紫外線センサーとして使用することもできる。   This thermofluorescence dosimetry device has a high sensitivity to radiation with a relatively low intensity such as ultraviolet rays in sunlight. Therefore, this thermofluorescence dosimetry element can also be used as an ultraviolet sensor.

(比較例)
CaF粉末(純度99.99%、レアメタリック社製)に、0.06重量%のTb粉末(純度99.99%、レアメタリック社製)及び0.36重量%のGd粉末(純度99.99%、三津和化学薬品株式会社製)を均一に混合し、この混合粉末を型枠に充填し、直径6mm及び厚さ1mmの円板状に加圧成形した。この成形体を白金坩堝内に置いて、1100℃で2時間、大気雰囲気中で焼結し、熱蛍光線量測定素子の焼結体を得た。
この熱蛍光線量測定素子に、低圧水銀灯を光源とする紫外線(波長253.7nm、照射強度約0.4J/分・cm)を最大180秒間照射した。さらに照射後の熱蛍光線量測定素子を室温から300℃まで20℃/分の速度で昇温し、その昇温の際の熱蛍光グローピークを測定した。
この場合、図5(a)に示すように90〜100℃付近及び250℃付近の2箇所に熱蛍光グローピークが観察された。
(Comparative example)
CaF 2 powder (purity 99.99%, manufactured by Rare Metallic), 0.06 wt% Tb 4 O 7 powder (purity 99.99%, manufactured by Rare Metallic) and 0.36 wt% Gd 2 O Three powders (purity 99.99%, manufactured by Mitsuwa Chemicals Co., Ltd.) were uniformly mixed, and this mixed powder was filled into a mold and pressure-molded into a disk shape having a diameter of 6 mm and a thickness of 1 mm. This molded body was placed in a platinum crucible and sintered in the air atmosphere at 1100 ° C. for 2 hours to obtain a sintered body of a thermoluminescent dose measuring element.
The thermofluorescence dosimetry device was irradiated with ultraviolet rays (wavelength: 253.7 nm, irradiation intensity: about 0.4 J / min · cm 2 ) using a low-pressure mercury lamp as a light source for a maximum of 180 seconds. Furthermore, the thermofluorescence dosimetry device after irradiation was heated from room temperature to 300 ° C. at a rate of 20 ° C./min, and the thermofluorescence glow peak at the time of the temperature increase was measured.
In this case, as shown in FIG. 5A, thermoluminescent glow peaks were observed at two locations near 90 to 100 ° C. and 250 ° C.

また、この熱蛍光線量測定素子に、コバルト60を線源とするガンマ線を11.5μSv照射した。さらに照射後の熱蛍光線量測定素子を室温から300℃まで20℃/分の速度で昇温し、その昇温の際の熱蛍光グローピークを測定した。
この場合、図5(b)に示すように250℃付近に大きなピークが観察されるとともに、150℃付近にも小さなピークが観察された。
このように、紫外線又はガンマ線を照射したいずれの場合も2箇所に熱蛍光グローピークが観察され、しかも、そのうち250℃付近のピークは重なり合っているため、両者を分別して評価することは困難である。
Further, the thermofluorescence dose measuring element was irradiated with 11.5 μSv of gamma rays using cobalt 60 as a radiation source. Furthermore, the thermofluorescence dosimetry device after irradiation was heated from room temperature to 300 ° C. at a rate of 20 ° C./min, and the thermofluorescence glow peak at the time of the temperature increase was measured.
In this case, as shown in FIG. 5B, a large peak was observed near 250 ° C., and a small peak was also observed near 150 ° C.
Thus, in any case irradiated with ultraviolet rays or gamma rays, thermofluorescent glow peaks are observed in two places, and the peaks around 250 ° C. are overlapped. Therefore, it is difficult to evaluate the two separately. .

実施例2において、紫外線を照射した熱蛍光線量測定素子の(a)はグローピーク曲線、(b)は熱蛍光強度の照射時間依存性、を示すグラフIn Example 2, (a) is a glow peak curve and (b) is a graph showing the irradiation time dependence of thermofluorescence intensity of a thermofluorescence dosimetry element irradiated with ultraviolet rays. 実施例3において、X線を照射した熱蛍光線量測定素子の(a)はグローピーク曲線、(b)は熱蛍光強度の照射時間依存性、を示すグラフIn Example 3, (a) is a glow peak curve and (b) is a graph showing the irradiation time dependence of thermofluorescence intensity of a thermofluorescence dosimetry element irradiated with X-rays. 実施例4において、ガンマ線を照射した熱蛍光線量測定素子のグローピーク曲線を示すグラフIn Example 4, the graph which shows the glow peak curve of the thermofluorescence dosimetry element irradiated with the gamma ray 実施例5において、中性子線を照射した熱蛍光線量測定素子のグローピーク曲線を示すグラフIn Example 5, the graph which shows the glow peak curve of the thermofluorescence dosimetry element irradiated with the neutron beam 比較例において、(a)は紫外線、(b)はガンマ線、を照射した熱蛍光線量測定素子のグローピーク曲線を示すグラフIn a comparative example, (a) is a graph showing a glow peak curve of a thermofluorescence dosimetry element irradiated with ultraviolet rays and (b) is irradiated with gamma rays.

符号の説明Explanation of symbols

1 グローピーク曲線
2 加熱温度軸
3 グローピーク曲線と加熱温度軸がなす部分
1 Glow peak curve 2 Heating temperature axis 3 Glow peak curve and heating temperature axis

Claims (3)

Tbを0.01〜0.2重量%、Smを0.01〜0.2重量%、及び、Gdを0.01〜1重量%含有するCaF焼結体からなる熱蛍光線量測定素子。 CaF 2 sintered containing 0.01 to 0.2% by weight of Tb 4 O 7 , 0.01 to 0.2% by weight of Sm 2 O 3 , and 0.01 to 1% by weight of Gd 2 O 3 Thermoluminescent dosimetry element consisting of body. Tbを0.05〜0.07重量%、Smを0.02〜0.04重量%、及び、Gdを0.3〜0.4重量%含有するCaF焼結体からなる熱蛍光線量測定素子。 Tb 4 O 7 and 0.05 to 0.07 wt%, the Sm 2 O 3 0.02 to 0.04% by weight, and, CaF 2 containing Gd 2 O 3 0.3 to 0.4 wt% A thermofluorescence dosimetry element made of a sintered body. Tbを0.01〜0.2重量%、Smを0.01〜0.2重量%、及び、Gdを0.01〜1重量%含有するCaFを1000〜1200℃で焼結することによって得られる熱蛍光線量測定素子の製造方法。 1000 CaF 2 containing 0.01 to 0.2 wt% Tb 4 O 7 , 0.01 to 0.2 wt% Sm 2 O 3 , and 0.01 to 1 wt% Gd 2 O 3 The manufacturing method of the thermofluorescence dosimetry element obtained by sintering at -1200 degreeC.
JP2007096540A 2007-04-02 2007-04-02 Thermofluorescence dosimetry element Expired - Fee Related JP4934767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007096540A JP4934767B2 (en) 2007-04-02 2007-04-02 Thermofluorescence dosimetry element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007096540A JP4934767B2 (en) 2007-04-02 2007-04-02 Thermofluorescence dosimetry element

Publications (2)

Publication Number Publication Date
JP2008256404A true JP2008256404A (en) 2008-10-23
JP4934767B2 JP4934767B2 (en) 2012-05-16

Family

ID=39980122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007096540A Expired - Fee Related JP4934767B2 (en) 2007-04-02 2007-04-02 Thermofluorescence dosimetry element

Country Status (1)

Country Link
JP (1) JP4934767B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4431701B1 (en) * 2009-09-04 2010-03-17 学校法人立教学院 Method for producing thermoluminescent plate, method for producing thermoluminescent laminate, thermoluminescent plate, and thermoluminescent laminate
WO2010064594A1 (en) * 2008-12-01 2010-06-10 学校法人立教学院 Thermofluorescent stack, thermofluorescent plate, process for producing thermoflorescent stack, process for producing thermofluorescent plate, and method of acquiring three-dimensional radiation dose distribution
JP2011145246A (en) * 2010-01-18 2011-07-28 Osaka Sangyo Univ Thermoluminescence dose measuring element and radiation detector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064594A1 (en) * 2008-12-01 2010-06-10 学校法人立教学院 Thermofluorescent stack, thermofluorescent plate, process for producing thermoflorescent stack, process for producing thermofluorescent plate, and method of acquiring three-dimensional radiation dose distribution
US8704182B2 (en) 2008-12-01 2014-04-22 Rikkyo Gakuin Thermoluminescent layered product, thermoluminescent plate, method of producing thermoluminescent layered product, method of producing thermoluminescent plate and method of acquiring three-dimensional dose distribution of radiation
JP4431701B1 (en) * 2009-09-04 2010-03-17 学校法人立教学院 Method for producing thermoluminescent plate, method for producing thermoluminescent laminate, thermoluminescent plate, and thermoluminescent laminate
JP2011052179A (en) * 2009-09-04 2011-03-17 Rikkyo Gakuin Method for producing thermofluorescent plate like body, method for producing thermofluorescent laminate, thermofluorescent plate like body and thermofluorescent laminate
JP2011145246A (en) * 2010-01-18 2011-07-28 Osaka Sangyo Univ Thermoluminescence dose measuring element and radiation detector

Also Published As

Publication number Publication date
JP4934767B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
Lochab et al. Nanocrystalline MgB4O7: Dy for high dose measurement of gamma radiation
Duragkar et al. Versatility of thermoluminescence materials and radiation dosimetry–A review
Kortov Materials for thermoluminescent dosimetry: Current status and future trends
Pradhan et al. Recent developments of optically stimulated luminescence materials and techniques for radiation dosimetry and clinical applications
Nieto Present status and future trends in the development of thermoluminescent materials
Okada et al. Optically-and thermally-stimulated luminescences of Ce-doped SiO2 glasses prepared by spark plasma sintering
Kaur et al. Sm3+ and Gd3+ Co-doped lead phosphate glasses for γ-rays shielding and sensing
Okada et al. Radiation-induced luminescence centres in Sm: MgF2 ceramics
Mhareb et al. Thermoluminescence properties of lithium magnesium borate glasses system doped with dysprosium oxide
Junot et al. Dosimetric and optical properties of CaSO4: Tm and CaSO4: Tm, Ag crystals produced by a slow evaporation route
Prabhu et al. 0.25–30 kGy γ Irradiation-induced modifications on the density, optical absorption, thermo-, and photo-luminescence of the 10BaO–20ZnO–20LiF-49.3 B2O3-0.7 Er2O3 glass
Schuyt et al. Modelling the radioluminescence of Sm2+ and Sm3+ in the dosimeter material NaMgF3: Sm
JP4934767B2 (en) Thermofluorescence dosimetry element
JP5692883B1 (en) Thermophosphor and thermoluminescent radiation detection device
Oza et al. Luminescence study of Dy or Ce activated LiCaBO3 phosphor for γ‐ray and C5+ ion beam irradiation
Annalakshmi et al. Dosimetric characteristics of manganese doped lithium triborate thermoluminescent material
Chopra et al. TL dosimetry of nanocrystalline Li2B4O7: Cu exposed to 150 MeV proton, 4 MeV and 9 MeV electron beam
Andrade et al. Thermoluminescence and kinetic parameters of Dy3+-doped LiYF4
Oliveira et al. Optically and thermally stimulated luminescence of CaB6O10: Ce, LiCl: Basic properties
Sakaguchi et al. Photoluminescence and dosimetric properties of Tb-doped Na3AlF6 ceramics
Lakshmanan Development and application of solid forms of CaSO4: Dy thermoluminescent dosemeters in radiation protection dosimetry—A review
Mohammed et al. Impact of Zn2+ ions co-doping on the TL properties of Cu2+ ion-doped calcium lithium borate glass irradiated by various radiation sources
WO2017119329A1 (en) Dosimeter using magnesium oxide and radiation dose measuring method
Chopra et al. Thermoluminescent study of borates for dosimetric applications
Riesen et al. Optical storage phosphors and materials for ionizing radiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees