JP2008256272A - Heat consumer device of regional cooling-heating system and its operating method - Google Patents

Heat consumer device of regional cooling-heating system and its operating method Download PDF

Info

Publication number
JP2008256272A
JP2008256272A JP2007099268A JP2007099268A JP2008256272A JP 2008256272 A JP2008256272 A JP 2008256272A JP 2007099268 A JP2007099268 A JP 2007099268A JP 2007099268 A JP2007099268 A JP 2007099268A JP 2008256272 A JP2008256272 A JP 2008256272A
Authority
JP
Japan
Prior art keywords
heat
cold
medium
cooling
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007099268A
Other languages
Japanese (ja)
Other versions
JP5032181B2 (en
Inventor
Hiroaki Tomita
弘明 富田
Toshiyuki Ikeda
利幸 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2007099268A priority Critical patent/JP5032181B2/en
Publication of JP2008256272A publication Critical patent/JP2008256272A/en
Application granted granted Critical
Publication of JP5032181B2 publication Critical patent/JP5032181B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a peak value of a cooling load in cooling in summer, and to reduce a peak value of a heating load in heating in winter. <P>SOLUTION: The device is provided with a cold storage device 15 for heat-exchanging a cold heat medium 1 and water W by a cold storage heat exchanger 14 and storing cold in a cold storage tank 13, a cold take-out device 20 for heat-exchanging the water W of the cold storage tank 13 and a cold take-in medium 5 and cooling the cold take-in medium 5 by the cold of the cold storage tank 13, and a heat recovery refrigerator 28 for taking in a warm heat take-in medium 10 and water W of the cold storage tank 13 and simultaneously performing both of heating of the warm heat take-in medium 10 and cooling of the water W of the cold storage tank 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、地域冷暖房システム(DHC:District Heat and Cooling system)によって熱源から供給される温水、蒸気、冷水等の熱媒体を冷暖房及び給湯等に利用するための地域冷暖房システムの熱需要家装置及びその運転方法に関するものである。   The present invention relates to a heat consumer device of a district cooling and heating system for using a heat medium such as hot water, steam, and cold water supplied from a heat source by a district heating and cooling system (DHC) for cooling and heating and hot water supply. It relates to the driving method.

地域冷暖房システム(DHC)においては、地域ごとに備えた冷暖房プラント(熱源)により冷水、低温水、中温水、高温水、蒸気等の冷熱媒体と温熱媒体が製造され、地域配管を通じて、限定地域内の熱需要家に冷熱媒体及び温熱媒体を循環供給することで熱を供給する。循環供給される熱媒体は、一種のみの場合と、多種併用の場合とがあるが、一般には冷房用の冷熱媒体と暖房用の温熱媒体とが用いられる。熱源から供給された熱媒体は一般に各熱需要家に備えられた主熱交換器により熱交換されて、冷房、暖房、給湯等に用いられる。   In the district cooling and heating system (DHC), cooling and heating media such as cold water, low-temperature water, medium-temperature water, high-temperature water, and steam are manufactured by the cooling and heating plants (heat sources) provided for each region, and are distributed within limited areas through regional piping Heat is supplied by circulating and supplying a cooling medium and a heating medium to the heat consumers. There are cases where only one kind of heat medium is circulated and there are cases where a plurality of heat mediums are used in combination. In general, a cooling medium for cooling and a heating medium for heating are used. The heat medium supplied from the heat source is generally heat-exchanged by a main heat exchanger provided in each heat consumer and used for cooling, heating, hot water supply, and the like.

地域冷暖房システム事業者に対して熱需要家から支払われる使用料金は、各熱媒について、契約熱量に基づく基本料金と熱量の使用量に対応して変動する従量料金との合計額となっている。ここで、基本料金は、熱需要家が使用する冷房負荷及び暖房負荷のピーク値に基づいて定められており、基本料金は動力を除いた年間の空調エネルギコストのかなりの割合を占めている。   The usage fees paid by heat consumers to the district heating and cooling system operators are the total of the basic fee based on the contract heat amount and the pay-as-you-go fee that varies according to the amount of heat used for each heating medium. . Here, the basic charge is determined based on the peak values of the cooling load and the heating load used by the heat consumers, and the basic charge occupies a considerable proportion of the annual air conditioning energy cost excluding power.

上記従来の地域冷暖房システムにおいて、利用者である熱需要家側の立場から考えると、各需要家の冷房負荷や暖房負荷のピーク値は季節や時間帯によって著しい差があり、冷熱媒体から供給を受けたい冷熱量や温熱媒体から供給を受けたい温熱量がそれぞれの負荷のピーク値まで達するのは年間を通して数時間、或いは数十時間程度であり、大半の供給を受けたい冷熱量や温熱量は、設定された負荷のピーク値に相当する能力量の3割程度以下である。   In the above-mentioned conventional district heating and cooling system, from the standpoint of the heat consumer who is the user, the peak value of the cooling load and heating load of each consumer varies significantly depending on the season and time zone. The amount of cold and heat that you want to receive and the amount of heat that you want to receive from the heating medium reach the peak value of each load for several hours or tens of hours throughout the year. It is about 30% or less of the capacity amount corresponding to the peak value of the set load.

従って、各熱需要家は上記したように短期間での負荷のピーク値に基づいて設定された高い基本料金を年間を通して支払うことになり、このために、地域冷暖房システムが排熱利用による経済性、環境、安全性等の面で優れていることが認められながらも普及され難い要因となっていた。   Therefore, each heat consumer pays a high basic fee set based on the peak load value in a short period of time as described above. However, while being recognized as being excellent in terms of environment, safety, etc., it has been a factor that is difficult to spread.

従って、各熱需要家が冷熱媒体から供給を受けたい冷熱量や温熱媒体から供給を受けたい温熱量の最大値を低減して基本料金を低減することにより地域冷暖房システムを利用し易いものにすることが望まれている。   Therefore, each heat consumer can make the district cooling and heating system easier to use by reducing the basic charge by reducing the maximum amount of cold heat that is desired to be supplied from the cooling medium and the amount of heat that is desired to be supplied from the heating medium. It is hoped that.

この問題を解決するために、地域熱源システムにおける熱需要家に、熱源からの冷熱を蓄熱する蓄冷槽と、蓄冷槽と並列して設けられた補助蓄冷槽の水を冷却するようにした冷水発生用補助冷凍機とを備え、熱負荷側を循環する冷熱媒に直列に冷熱を与えるように構成されたものが知られている(例えば特許文献1参照。)。
特開平05―26480号公報
In order to solve this problem, cold water is generated by cooling the water in the cold storage tank that stores cold heat from the heat source and the auxiliary cold storage tank provided in parallel with the cold storage tank, to heat consumers in the district heat source system. There is known an apparatus that is configured to provide cold heat in series to a cooling medium circulating in the heat load side, for example (see Patent Document 1).
JP 05-26480 A

上記特許文献1に示す地域熱源システムでは、熱需要家に、熱源からの冷熱を蓄熱する蓄冷槽と、蓄冷槽と並列して設けられた補助蓄冷槽の水を冷却するようにした冷水発生用補助冷凍機とを備え、熱負荷側を循環する冷熱媒に直列に冷熱を与えるように構成しているため、夏期の夜間に冷熱を蓄熱しておき、夏期の昼間の冷房負荷のピーク時に蓄冷槽、補助蓄冷槽に蓄熱した冷熱を利用することによって、夏期の冷房負荷のピーク値を低く設定することができる。   In the district heat source system shown in the above-mentioned Patent Literature 1, for cold water generation, heat is stored in a cold storage tank for storing cold heat from the heat source and water in an auxiliary cold storage tank provided in parallel with the cold storage tank. It is equipped with an auxiliary chiller and is configured to provide cold heat in series to the cooling medium circulating on the heat load side, so that cold heat is stored at night in the summer and stored at the peak of the daytime cooling load in the summer. By using the cold stored in the tank and the auxiliary cold storage tank, the peak value of the cooling load in summer can be set low.

しかし、冬期の暖房時、特に朝の立ち上げ時の暖房負荷のエネルギピーク値を低減することについては全く考慮されておらず、よって各熱需要家は冬期の暖房時における暖房負荷のピーク値に応じた高い基本料金を支払う必要があるという問題を有していた。   However, no consideration is given to reducing the energy peak value of the heating load during heating in winter, especially at the start-up in the morning, so that each heat consumer has the peak value of the heating load during heating in winter. There was a problem that it was necessary to pay a high basic fee accordingly.

本発明は、上記実情に鑑みてなしたもので、夏期の冷房時における冷暖房プラント(熱源)から地域配管を通じて熱需要家に循環供給される冷熱媒体の熱供給量を低減すると共に、中間期及び冬期に熱源から地域配管を通じて熱需要家に循環供給される冷熱媒体及び温熱媒体の熱供給量を低減できるようにした地域冷暖房システムの熱需要家装置及びその運転方法を提供しようとするものである。   The present invention has been made in view of the above circumstances, and reduces the heat supply amount of the cooling medium that is circulated and supplied from the air conditioning plant (heat source) to the heat consumers through the regional piping during the cooling in summer, The present invention seeks to provide a cooling medium that is circulated and supplied from a heat source to a heat consumer from a heat source in the winter season and a heat consumer device of a district heating and cooling system that can reduce the heat supply amount of the heating medium, and an operation method thereof. .

本発明は、熱源からの冷熱媒体と温熱媒体を地域の各需要家に導き、各需要家に備えた冷熱主熱交換器を介して冷熱媒体の冷熱により冷熱取入媒体を冷却して冷房負荷に供給し、各需要家に備えた温熱主熱交換器を介して温熱媒体の温熱により温熱取入媒体を加熱して暖房負荷に供給し、熱需要家側には1年を通じて冷熱取入媒体を冷却して供給すべき冷房負荷が存在している地域冷暖房システムの熱需要家装置であって、
前記冷熱媒体と蓄冷槽から汲み上げた水とを蓄冷熱交換器を介して熱交換して冷熱を蓄冷槽に蓄熱する冷熱貯蔵装置と、
蓄冷槽から汲み上げた水と冷熱取入媒体とを取出熱交換器を介して熱交換して蓄冷槽の水の冷熱により冷熱取入媒体を冷却する冷熱取出装置と、
温熱取入媒体と蓄冷槽の水を取り入れて温熱取入媒体の加熱と蓄冷槽の水の冷却とを同時に行う熱回収冷凍機と
を備えたことを特徴とする地域冷暖房システムの熱需要家装置、に係るものである。
The present invention guides the cooling medium and the heating medium from the heat source to each consumer in the region, cools the cooling heat intake medium by the cooling heat of the cooling medium through the cooling main heat exchanger provided for each consumer, and cooling load To supply heat to the heating load by heating the hot medium with the heat of the hot medium through the hot main heat exchanger provided for each consumer. A heat consumer device of a district cooling and heating system in which there is a cooling load to be supplied after cooling,
A cold storage device that heat-exchanges the cold medium and water pumped from the cold storage tank via a cold storage heat exchanger to store cold in the cold storage tank;
A cold heat extractor that takes out the water pumped from the cold storage tank and the cold heat intake medium through a heat exchanger and cools the cold heat intake medium with the cold heat of the water in the cold storage tank;
A heat consumer device for a district heating and cooling system, comprising a heat recovery refrigerator that takes in the water from the heat intake medium and the cold storage tank and simultaneously heats the heat intake medium and cools the water in the cold storage tank , Related to

本発明は、請求項1に記載の地域冷暖房システムの熱需要家装置において、
夏期の夜間は冷熱貯蔵装置を運転して蓄冷槽に冷熱を蓄熱しておき、
夏期の昼間は冷熱媒体の冷熱により冷熱主熱交換器を介して冷熱取入媒体を冷却することに加えて冷熱取出装置を運転して蓄冷槽の冷熱により冷熱取入媒体を冷却することにより、冷熱主熱交換器を介して冷熱取入媒体の冷却に費やされる冷熱媒体の冷熱のピーク値を低減することを特徴とする地域冷暖房システムの熱需要家装置の運転方法、に係るものである。
The present invention relates to a heat consumer device for a district cooling and heating system according to claim 1,
During the summer night, the cold storage device is operated to store the cold energy in the cold storage tank,
In the summer daytime, in addition to cooling the cold intake medium through the cold heat main heat exchanger by the cold heat of the cold medium, by operating the cold extractor and cooling the cold intake medium by the cold energy of the cold storage tank, The present invention relates to a method for operating a heat consumer device of a district cooling and heating system, characterized in that the peak value of the cooling energy of the cooling medium consumed for cooling the cooling heat intake medium is reduced through the cooling heat main heat exchanger.

本発明は、請求項1に記載の地域冷暖房システムの熱需要家装置において、
冬期の朝の立ち上げ時は、温熱媒体の温熱により温熱主熱交換器を介して温熱取入媒体を加熱することに加えて、前日に冷熱取入媒体の冷房負荷からの還り側の温熱を蓄冷熱交換器を介して蓄冷槽に蓄えた還水を蒸発器側熱源として熱回収冷凍機を運転し、熱回収冷凍機の凝縮器側で生成する温熱により温熱取入媒体を加熱し、
冬期の昼間は、蓄冷槽に温熱を蓄えた還水を蒸発器側熱源として熱回収冷凍機を運転して熱回収冷凍機の凝縮器側で生成する温熱により温熱取入媒体を加熱しながら、冷熱媒体の冷熱により冷熱主熱交換器を介して冷熱取入媒体を冷却することに加えて冷熱取出装置を運転して蓄冷槽の水の冷熱により冷熱取入媒体を冷却して蓄冷槽に還水の温熱を蓄え、
冬期の夜間は、蓄冷槽から汲み上げた水と冷熱取入媒体とを冷熱取出装置の取出熱交換器を介して熱交換して冷熱取入媒体を冷却し、同時に冷熱取出装置により蓄冷槽に還水の温熱を蓄えるよう運転することにより、温熱主熱交換器を介して温熱取入媒体の加熱に費やされる温熱媒体の温熱のピーク値を低減することを特徴とする地域冷暖房システムの熱需要家装置の運転方法、に係るものである。
The present invention relates to a heat consumer device for a district cooling and heating system according to claim 1,
When starting up in the morning in the winter season, in addition to heating the heat intake medium through the main heat exchanger by the heat of the heat medium, the temperature of the return side from the cooling load of the heat intake medium on the previous day is also measured. Operate the heat recovery refrigerator using the return water stored in the cold storage tank via the cold storage heat exchanger as the evaporator side heat source, and heat the heat intake medium with the heat generated on the condenser side of the heat recovery refrigerator,
During the daytime in winter, while operating the heat recovery refrigerator using the return water that stores the heat in the cold storage tank as the evaporator heat source and heating the heat intake medium with the heat generated on the condenser side of the heat recovery refrigerator, In addition to cooling the cold heat intake medium through the cold heat main heat exchanger with the cold heat of the cold medium, the cold heat extractor is operated and the cold heat intake medium is cooled with the cold heat of the cold storage tank and returned to the cold storage tank. Store the heat of water,
During the winter night, the water drawn from the cool storage tank and the cold heat intake medium are heat exchanged via the heat extractor of the cold heat extractor to cool the cold heat intake medium and simultaneously returned to the cold storage tank by the cold heat extractor. Heat consumers of district cooling and heating systems, characterized by reducing the peak temperature of the heating medium spent on heating the heating medium via the heating main heat exchanger by operating to store the temperature of the water This relates to an operation method of the apparatus.

本発明は、請求項1に記載の地域冷暖房システムの熱需要家装置において、
中間期の暖房負荷があり、かつ冷房負荷より暖房負荷が小さい場合に、
蓄冷槽に温熱を蓄えた還水を蒸発器側熱源として熱回収冷凍機を運転し、熱回収冷凍機の凝縮器側で生成する温熱により温熱取入媒体を加熱しながら、冷熱媒体の冷熱により冷熱主熱交換器を介して冷熱取入媒体を冷却することに加えて冷熱取出装置を運転して蓄冷槽の水の冷熱により冷熱取入媒体を冷却して蓄冷槽に温熱を蓄えて、蓄冷槽の熱の授受収支を1日単位で合わせる運転を行うことにより、温熱主熱交換器を介して温熱取入媒体の加熱に費やされる温熱媒体の温熱のピーク値を低減することを特徴とする地域冷暖房システムの熱需要家装置の運転方法、に係るものである。
The present invention relates to a heat consumer device for a district cooling and heating system according to claim 1,
When there is an intermediate heating load and the heating load is smaller than the cooling load,
The heat recovery refrigerator is operated using the return water stored in the cold storage tank as the heat source on the evaporator side, and the heat intake medium is heated by the heat generated on the condenser side of the heat recovery refrigerator. In addition to cooling the cold heat intake medium via the cold heat main heat exchanger, the cold heat extractor is operated to cool the cold heat intake medium with the cold heat of the cold storage tank and store the heat in the cold storage tank to store the cold It is characterized by reducing the peak value of the temperature of the heating medium consumed for heating the heating medium via the heating main heat exchanger by performing an operation of adjusting the heat transfer balance of the tank in units of one day. The present invention relates to a method for operating a heat consumer device of a district cooling and heating system.

本発明の地域冷暖房システムの熱需要家装置及びその運転方法によれば、夏期の冷房時における熱源から地域配管を通じて熱需要家に循環供給される冷熱媒体の最大値を低減すると共に、冬期に熱源から地域配管を通じて熱需要家に循環供給される冷熱媒体及び温熱媒体の熱供給量の最大値を低減することができ、よって熱需要家が地域冷暖房システムを利用する際の基本料金を低減できるという優れた効果を奏し得る。   According to the heat consumer device and the operation method of the district cooling and heating system of the present invention, the maximum value of the cooling medium that is circulated from the heat source during cooling in the summer to the heat consumer through the local piping is reduced, and the heat source is used in the winter. Can reduce the maximum value of the cooling medium that is circulated and supplied to the heat consumers through the regional piping and the heat supply amount of the heating medium, thereby reducing the basic charge when the heat consumers use the district heating and cooling system An excellent effect can be achieved.

又、中間期及び冬期に熱源から地域配管を通じて熱需要家に循環供給される冷熱媒体及び温熱媒体の熱供給量の積算値を、熱回収冷凍機によって冷房負荷及び暖房負荷から回収した熱量により削減し、熱回収ヒートポンプによる使用エネルギ削減による省エネルギもしくは二酸化炭素発生削減が図れる。   In addition, the integrated value of the amount of heat supplied from the heat source through the local piping to the heat consumers from the heat source in the intermediate and winter seasons is reduced by the amount of heat recovered from the cooling load and heating load by the heat recovery refrigerator. In addition, it is possible to save energy or reduce carbon dioxide generation by reducing the energy used by the heat recovery heat pump.

又、冬期に暖房と冷房が必要なときには、熱回収冷凍機により温熱取入媒体を加熱すると同時に蓄冷槽に冷熱を蓄熱できるので、この蓄熱した冷熱により冷房負荷の多いときに冷熱取入媒体を冷却することにより、毎日、冷熱媒体の冷熱や温熱媒体の温熱を利用せずに冷房や暖房が行える時間帯が作り出せ、従量料金を低減できる効果がある。   In addition, when heating and cooling are required in winter, the heat recovery medium can be used to heat the heat intake medium and at the same time to store the cold energy in the cold storage tank. By cooling, it is possible to create a time zone in which cooling and heating can be performed every day without using the cooling heat of the cooling medium and the heating medium, thereby reducing the usage fee.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明を実施する形態の一例を示す概略構成図である。図1では、熱源からは6℃の冷熱媒体1が地域配管を介して各熱需要家に供給されており、熱需要家で冷熱が利用された場合にはリターン側の冷熱媒体1’は例えば13℃に加熱されて熱源に戻される。一方、熱需要家で冷熱が利用されない場合は、6℃の冷熱媒体1の供給は、後述の温度調節器7の一部の制御弁7aの働きで停止される。   FIG. 1 is a schematic configuration diagram showing an example of an embodiment of the present invention. In FIG. 1, a cooling medium 1 of 6 ° C. is supplied from a heat source to each heat consumer via a regional pipe, and when cold heat is used by a heat consumer, the return-side cooling medium 1 ′ is, for example, It is heated to 13 ° C. and returned to the heat source. On the other hand, when cold heat is not used by a heat consumer, the supply of the cold medium 1 at 6 ° C. is stopped by the action of some control valves 7a of the temperature regulator 7 described later.

又、熱源からは55℃の温熱媒体2が地域配管を介して各熱需要家に供給されており、熱需要家で温熱が利用された場合にはリターン側の温熱媒体2’は例えば47℃に温度が低下して熱源に戻される。一方、熱需要家で温熱が利用されない場合は、55℃の温熱媒体2の供給は、後述の温度調節器12の一部の制御弁12aの働きで停止される。   Further, a 55 ° C. heating medium 2 is supplied from the heat source to each heat consumer via a regional pipe, and when the heat consumer uses the heat, the return-side heating medium 2 ′ is 47 ° C., for example. The temperature drops to the heat source. On the other hand, when heat is not used by a heat consumer, the supply of the heating medium 2 at 55 ° C. is stopped by the action of some control valves 12a of the temperature regulator 12 described later.

各熱需要家には冷熱主熱交換器6が備えてあり、各熱需要家に備えた冷房機等の冷房負荷3の例えば15℃の冷熱取入媒体5はポンプ4により前記冷熱主熱交換器6に供給されて前記6℃の冷熱媒体1と熱交換し、7〜8℃に冷却された冷熱取入媒体5’となって冷房負荷3に供給されるようになっている。前記冷熱主熱交換器6には、冷熱取入媒体5’の温度に基づいて冷熱媒体1の流量を制御弁7aで調節することにより冷房負荷3に供給する冷熱取入媒体5’の温度を常に例えば7℃の設定温度に保持して、適当な冷熱を冷房負荷3に与えるようにした温度調節器7が備えられている。   Each heat consumer is equipped with a cold heat main heat exchanger 6, and a cold heat intake medium 5 of, for example, 15 ° C. of the cooling load 3 such as a cooling machine provided for each heat consumer is exchanged by the pump 4 with the cold heat main heat exchange. Heat is exchanged with the cold medium 1 at 6 ° C. supplied to the vessel 6, and is supplied to the cooling load 3 as a cold intake medium 5 ′ cooled to 7 to 8 ° C. In the cold heat main heat exchanger 6, the temperature of the cold heat intake medium 5 ′ supplied to the cooling load 3 is adjusted by adjusting the flow rate of the cold heat medium 1 with the control valve 7 a based on the temperature of the cold heat intake medium 5 ′. For example, a temperature controller 7 is provided which always maintains a set temperature of, for example, 7 ° C. and applies appropriate cooling heat to the cooling load 3.

又、各熱需要家には温熱主熱交換器11が備えてあり、各熱需要家に備えた暖房機等の暖房負荷8の例えば40℃の温熱取入媒体10はポンプ9により前記温熱主熱交換器11に供給されて前記55℃の温熱媒体2と熱交換し、50℃に加熱された温熱取入媒体10’となって暖房負荷8に供給されるようになっている。前記温熱主熱交換器11には、温熱取入媒体10’の温度に基づいて温熱媒体2の流量を制御弁12aで調節することにより暖房負荷8に供給する温熱取入媒体10’の温度を常に例えば50℃の設定温度に保持して、適当な温熱を暖房負荷8に与えるようにした温度調節器12が備えられている。   Each heat consumer is provided with a heat main heat exchanger 11, and a heat intake medium 10, for example, 40 ° C. of a heating load 8 such as a heater provided for each heat consumer is pumped by a pump 9. The heat exchange medium 11 is supplied to the heat exchanger 11 to exchange heat with the 55 ° C. heating medium 2, and is supplied to the heating load 8 as a heat intake medium 10 ′ heated to 50 ° C. In the heat main heat exchanger 11, the temperature of the heat intake medium 10 'supplied to the heating load 8 is adjusted by adjusting the flow rate of the heat medium 2 with the control valve 12a based on the temperature of the heat intake medium 10'. For example, a temperature controller 12 is provided which is always kept at a set temperature of, for example, 50 ° C. and applies appropriate heat to the heating load 8.

上記構成において、熱需要家には水Wが貯水された蓄冷槽13と、該蓄冷槽13からポンプ13aで汲み上げた水Wと前記冷熱媒体1とを熱交換する蓄冷熱交換器14とからなる冷熱貯蔵装置15が設けてあり、該冷熱貯蔵装置15の運転により冷熱媒体1の冷熱を蓄冷槽13の水Wに蓄熱するようにしている。前記蓄冷熱交換器14には、冷却後の水Wの温度に基づいて冷熱媒体1の流量を制御弁16aで調節することにより蓄冷槽13に供給する水Wを常に例えば7℃の設定温度に保持する温度調節器16を備えている。   In the above configuration, the heat consumer includes a cold storage tank 13 in which water W is stored, and a cold storage heat exchanger 14 that exchanges heat between the cold storage medium 1 and the water W pumped from the cold storage tank 13 by the pump 13a. A cold storage device 15 is provided, and the cold heat of the cold medium 1 is stored in the water W of the cold storage tank 13 by the operation of the cold storage device 15. The cold storage heat exchanger 14 always adjusts the water W supplied to the cold storage tank 13 to a set temperature of, for example, 7 ° C. by adjusting the flow rate of the cooling medium 1 with the control valve 16a based on the temperature of the cooled water W. The temperature controller 16 to hold | maintain is provided.

更に、蓄冷槽13と冷熱取入媒体5,5’との間には、蓄冷槽13からポンプ17により供給する水Wと、ポンプ18により供給される前記冷熱取入媒体5とを熱交換し、蓄冷槽13の冷熱を冷熱取入媒体5’に供給(放熱)するようにした取出熱交換器19を有する冷熱取出装置20を備えている。前記取出熱交換器19には、冷却後の冷熱取入媒体5’の温度に基づいて前記ポンプ17による流量を調節することにより冷却後の冷熱取入媒体5’の温度を常に例えば8℃の設定温度に保持する温度調節器21を備えている。   Further, between the cold storage tank 13 and the cold heat intake medium 5, 5 ′, heat exchange is performed between the water W supplied from the cold storage tank 13 by the pump 17 and the cold heat intake medium 5 supplied by the pump 18. A cold heat take-out device 20 having a take-out heat exchanger 19 adapted to supply (dissipate heat) the cold heat of the cold storage tank 13 to the cold heat take-in medium 5 ′ is provided. In the extraction heat exchanger 19, the temperature of the cooled heat intake medium 5 ′ is always set to, for example, 8 ° C. by adjusting the flow rate by the pump 17 based on the temperature of the cooled cold intake medium 5 ′. A temperature controller 21 that holds the set temperature is provided.

図中22は冷熱制御器であり、該冷熱制御器22には冷熱取入媒体5’の温度信号23aと冷熱取入媒体5の温度信号23bと冷熱取入媒体5の流量信号23cとが入力されて冷熱制御器22内で冷房負荷が演算され、又、冷熱制御器22にはピーク契約冷熱媒体熱量値23d(固定)が入力されると共に、朝/昼/夜のスケジュール23eがタイマ入力され、更に、後述する温熱制御器34からの温熱制御器動作状態信号36a及び、後述する蓄熱量演算器37からの蓄熱量信号24が入力されている。又、冷熱制御器22は、前記ポンプ4の制御信号25a、前記ポンプ13aの制御信号25b、前記ポンプ18の制御信号25cを出力するようになっていると共に、前記温熱制御器34へ冷熱制御器動作状態信号25d及び冷房負荷演算値25eを出力するようになっている。   In the figure, reference numeral 22 denotes a cold heat controller. The cold heat controller 22 receives a temperature signal 23a of the cold heat intake medium 5 ', a temperature signal 23b of the cold heat intake medium 5, and a flow rate signal 23c of the cold heat intake medium 5. Then, the cooling load is calculated in the cooling controller 22, and the peak contract cooling medium heat quantity value 23d (fixed) is input to the cooling controller 22 and the morning / day / night schedule 23e is input to the timer. Furthermore, a heat controller operation state signal 36a from a heat controller 34 described later and a heat storage amount signal 24 from a heat storage amount calculator 37 described later are input. The cooling controller 22 outputs a control signal 25 a of the pump 4, a control signal 25 b of the pump 13 a, and a control signal 25 c of the pump 18, and also supplies a cooling controller to the heating controller 34. An operation state signal 25d and a cooling load calculation value 25e are output.

図中34は温熱制御器であり、該温熱制御器34には、前記冷熱制御器22からの冷熱制御器動作状態信号25d及び冷房負荷演算値25eと蓄熱量演算器37からの蓄熱量信号24が入力されていると共に、温熱取入媒体10’の温度信号35aと温熱取入媒体10の温度信号35bと温熱取入媒体10の流量信号35cとが入力され、更に、温熱制御器34には、ピーク契約温熱媒体熱量値35dと熱回収冷凍機の冷房能力/暖房能力信号35eと朝/昼/夜のスケジュール23eが入力されている。又、温熱制御器34は、前記冷熱制御器22に温熱制御器動作状態信号36aを出力すると共に、前記ポンプ9の制御信号36b及び後述するポンプ26,27の制御信号36cを出力するようになっている。   In the figure, reference numeral 34 denotes a thermal controller. The thermal controller 34 includes a thermal controller operation state signal 25 d from the cold controller 22, a cooling load calculation value 25 e, and a heat storage amount signal 24 from the heat storage amount calculator 37. , The temperature signal 35a of the heat input medium 10 ', the temperature signal 35b of the heat input medium 10, and the flow rate signal 35c of the heat input medium 10 are input. The peak contract heating medium heat quantity value 35d, the cooling / heating capacity signal 35e of the heat recovery refrigerator, and the morning / day / night schedule 23e are input. The thermal controller 34 outputs a thermal controller operating state signal 36a to the cold controller 22 and also outputs a control signal 36b of the pump 9 and control signals 36c of pumps 26 and 27 described later. ing.

図中37は蓄熱量演算器であり、該蓄熱量演算器37には、蓄冷槽13に備えた温度検出器38からの温度検出信号39と、蓄熱量不足判断値40とが入力されており、蓄熱量を演算してその蓄熱量信号24を前記冷熱制御器22と温熱制御器34に出力するようになっている。前記蓄冷槽13の内部は、図1aに示すように連通した複数の部屋41に区画されており、各部屋41の一方から他方に向かって冷熱を蓄熱するようになっており、各部屋41に備えた温度検出器38により各部屋41の水Wの温度を検出することにより、蓄冷槽13の蓄熱量を求めるようにしている。例えば、各温度検出器38の検出温度について、検出器個数の90%が設定温度(7℃)に高い温度から到達したときを満蓄と判断するようにしている。   In the figure, reference numeral 37 denotes a heat storage amount calculator, and a temperature detection signal 39 from a temperature detector 38 provided in the cold storage tank 13 and a heat storage amount shortage determination value 40 are input to the heat storage amount calculator 37. The heat storage amount is calculated, and the heat storage amount signal 24 is output to the cooling controller 22 and the heat controller 34. As shown in FIG. 1 a, the inside of the cold storage tank 13 is partitioned into a plurality of rooms 41 that communicate with each other, and cold heat is stored from one of the rooms 41 toward the other. The amount of heat stored in the cold storage tank 13 is obtained by detecting the temperature of the water W in each room 41 with the temperature detector 38 provided. For example, regarding the detected temperature of each temperature detector 38, when 90% of the number of detectors reaches the set temperature (7 ° C.) from a high temperature, it is determined that the battery is fully stored.

一方、図1の前記蓄冷槽13と温熱取入媒体10,10’との間には、温熱取入媒体10をポンプ26により取り入れると共に、前記蓄冷槽13の水Wをポンプ27により取入れるようにした熱回収冷凍機28を備えている。該熱回収冷凍機28には、蓄冷槽13に供給する水Wの温度に基づいて前記ポンプ27を調節することにより蓄冷槽13に供給する水Wの温度を常に例えば7℃の設定温度に保持する温度調節器29を備えている。   On the other hand, between the cold storage tank 13 and the thermal intake medium 10, 10 ′ in FIG. 1, the thermal intake medium 10 is taken in by the pump 26 and the water W in the cold storage tank 13 is taken in by the pump 27. A heat recovery refrigerator 28 is provided. In the heat recovery refrigerator 28, the temperature of the water W supplied to the cold storage tank 13 is always maintained at a set temperature of, for example, 7 ° C. by adjusting the pump 27 based on the temperature of the water W supplied to the cold storage tank 13. A temperature controller 29 is provided.

前記熱回収冷凍機28は、その一例を図2に示すように、圧縮機30と水冷凝縮器31と水冷却器32(蒸発器)とを備えており、ガス状の熱媒を圧縮機30で加圧して水冷凝縮器31に導き、水冷凝縮器31において40℃の温熱取入媒体10で冷却することにより熱媒を液化し、その液を膨張弁33で膨張させて水冷却器32に供給することにより液が気化する潜熱により14℃の水Wの熱を奪って水Wを7℃に冷却して蓄冷槽13に供給するようになっている。このとき、前記水冷凝縮器31に供給した40℃の温熱取入媒体10は、ガスが液化する際の発熱による熱を吸収して50℃の温熱取入媒体10’となって戻される。   As shown in FIG. 2, the heat recovery refrigerator 28 includes a compressor 30, a water-cooled condenser 31, and a water cooler 32 (evaporator), and uses a gaseous heat medium as the compressor 30. The water medium is pressurized and led to the water-cooled condenser 31, and the heat medium is liquefied by cooling with the hot-water intake medium 10 at 40 ° C. in the water-cooled condenser 31, and the liquid is expanded by the expansion valve 33 to the water cooler 32. The heat of the water W at 14 ° C. is taken away by the latent heat that the liquid vaporizes, so that the water W is cooled to 7 ° C. and supplied to the cold storage tank 13. At this time, the 40 ° C. heat intake medium 10 supplied to the water-cooled condenser 31 absorbs heat due to heat generated when the gas is liquefied, and is returned as a 50 ° C. heat intake medium 10 ′.

従って、前記熱回収冷凍機28は、蓄冷槽13に対する冷熱の蓄熱と、温熱取入媒体10の加熱とを同時に行うことができる。   Therefore, the heat recovery refrigerator 28 can simultaneously perform cold heat storage in the cold storage tank 13 and heating of the heat intake medium 10.

次に上記形態の作動を説明する。   Next, the operation of the above embodiment will be described.

本発明は、需要家側には1年を通じて冷熱取入媒体を冷却して供給すべき冷房負荷が存在している場合に関するものである。以下では、例えば関東地方のように夏期(6月〜9月)と、中間期(3月〜5月及び10月,11月)と、冬期(12月〜2月)のシーズンにおける、事務所ビル等の始業時刻が9時で終業時刻が19時の建物について、立ち上がり時間が1時間掛かり、終業時刻から残留運転を1時間行うような設備(このとき、冬期の朝の期間は8時から暖房立上り時刻11時まで、昼は11時から20時(冬以外8時から20時)まで、夜は20時から翌日8時までというスケジュールであり、休日は夜と見なす)についてその運転制御や運転パターンについて説明する。勿論、建物の用途や地域により時期や時刻が変わる場合も同様に考える。   The present invention relates to a case where there is a cooling load on the consumer side that should cool and supply the cold intake medium throughout the year. In the following, for example, in the Kanto region, in the summer season (June-September), the mid-term season (March-May and October, November), and the winter season (December-February) Buildings that have a start time of 9 o'clock and an end time of 19:00, such as a building that takes 1 hour to rise and runs for 1 hour from the end time (in this case, the winter morning period starts at 8 o'clock) The heating rise time is 11:00, the daytime is from 11:00 to 20:00 (from 8 to 20:00 except for winter), the night is from 20:00 to the next day at 8am, and holidays are considered to be night) The operation pattern will be described. Of course, the same applies when the time and time change depending on the purpose and area of the building.

図3は夏期と中間期・冬期とを判断するステップS1が夏期と判断した時の運転を示すフローチャートであり、夏期と判断されない中間期・冬期は信号Aにより図4のフローチャートで運転される。   FIG. 3 is a flowchart showing the operation when step S1 for determining the summer period and the intermediate period / winter period is determined to be the summer period, and the intermediate period / winter period not determined to be the summer period is operated according to the flowchart of FIG.

図3に示す夏期では、主に冷熱制御器22により演算・判断されるのであるが、ステップS2で昼(8:00〜20:00)又は夜(20:00〜8:00)が判断され、昼の場合は、ステップS3で熱需要家冷房負荷合計a(各系統の流量、温度差、つまり全系統での流量信号23cと、温度信号23a,23bの差、により演算した熱量の合計)と、ピーク契約冷熱媒体熱量値b(図1の23d)とを比較し、a≧bであればステップS4のように冷熱取出装置20を運転して蓄冷槽13の冷熱の放熱+DHC(地域冷暖房システム)の冷熱利用(つまり、熱源からの冷熱媒体の冷熱により冷熱主熱交換器を介して冷熱取入媒体を冷却して冷房負荷に供給すること)で、ピーク契約冷熱媒体熱量値bを越えないようにポンプ17,18をその流量と共に制御する。a<bであればステップS5のように冷熱取出装置20を運転せずにDHCの冷熱利用を継続する。   In the summer shown in FIG. 3, the calculation / determination is mainly performed by the cooling / heating controller 22, but the daytime (8: 00: 00: 00) or night (20: 00: 00-8: 00) is determined in step S <b> 2. In the case of daytime, the heat consumer cooling load total a in step S3 (the total amount of heat calculated by the flow rate and temperature difference of each system, that is, the difference between the flow signal 23c in all systems and the temperature signals 23a and 23b) Is compared with the peak contract cold medium heat quantity value b (23d in FIG. 1), and if a ≧ b, the cold extractor 20 is operated as in step S4 and the cold storage heat dissipation in the regenerator 13 + DHC (district cooling / heating) System) (that is, cooling the cold intake medium through the main heat exchanger and supplying it to the cooling load by cooling the cold medium from the heat source) and exceeding the peak contract cold medium heat value b Pumps 17 and 18 To control along with the flow. If a <b, the cold heat utilization of the DHC is continued without operating the cold heat extractor 20 as in step S5.

夜の場合は、ステップS6により熱需要家冷房負荷合計aと、ピーク契約冷熱媒体熱量値bとを比較し、a≧bであればステップS7のように冷熱取出装置20を運転して蓄冷槽13の冷熱の放熱+DHCの冷熱利用で、ピーク契約冷熱媒体熱量値bを越えないようにポンプ17,18をその流量と共に制御する。しかし、通常ではステップS7は発生しない。ステップS6においてa<bであればステップS9のように熱需要家冷房負荷合計a+蓄熱の負荷(蓄冷槽の満蓄時取り出せる最大の冷熱量から、24で示される演算された蓄熱量を減じた冷熱量を残りの夜時間で除した負荷を示す。)とピーク契約冷熱媒体熱量値bの比較を行って、a+蓄熱の負荷<bであればステップS10のように冷熱貯蔵装置15を運転(ポンプ13aを定流量運転)して蓄冷槽13に冷熱を蓄熱する。ただし、翌日が休日の場合は蓄熱しない(翌日が平日の場合のみ蓄熱)。ステップS11において、図1aの温度検出器38による複数の検出温度の個数の90%が設定温度(7℃)になると満蓄と判断される。(この場合、蓄熱量不足判断値は検出温度の個数の割合で規定しているが、蓄熱量演算器37で演算した蓄熱量に基づいて規定しても勿論良い。)ステップS9においてa+蓄熱の負荷>bであれば蓄熱はしない。   In the case of night, the total heat demander cooling load “a” is compared with the peak contract cooling medium heat quantity value “b” in step S6. If a ≧ b, the cold storage device 20 is operated by operating the cooling / heat extraction device 20 as in step S7. The pumps 17 and 18 are controlled together with their flow rates so as not to exceed the peak contract cold medium heat quantity value b by using 13 cold heat radiation + DHC cold utilization. However, step S7 does not normally occur. If a <b in step S6, the total heat demander cooling load a + the heat storage load (the maximum amount of cold energy that can be taken out when the cold storage tank is fully stored is subtracted from the calculated amount of heat storage shown in 24 as in step S9. The load obtained by dividing the amount of cold energy by the remaining night time is compared) and the peak contract cold medium heat amount value b is compared. If a + heat storage load <b, the cold storage device 15 is operated as in step S10 ( The pump 13a is operated at a constant flow rate), and cold energy is stored in the cold storage tank 13. However, heat is not stored when the next day is a holiday (only when the next day is a weekday). In step S11, when 90% of the plurality of temperature detected by the temperature detector 38 of FIG. 1a reaches the set temperature (7 ° C.), it is determined that the battery is fully stored. (In this case, the heat storage shortage determination value is defined by the ratio of the number of detected temperatures, but may be defined based on the heat storage amount calculated by the heat storage amount calculator 37.) In step S9, a + heat storage If load> b, no heat is stored.

ステップS12の終了は通常はNOの判断でスタートに戻る。ここでYESの判断は本システムを全体停止するという意味である。正月休み等しか適用する期間はない。夜間も本システムは動作している。   The end of step S12 usually returns to the start when NO is determined. Here, the determination of YES means that the entire system is stopped. There is no period to apply only for New Year holidays. The system is operating at night.

図4に示す中間期・冬期(信号A)では、冷熱制御器22と温熱制御器34との両方により演算・判断されるのであるが、ステップS13で温度信号35a,35bと流量信号35cの計測値を演算して暖房負荷の有無を判断し、暖房負荷がない場合は信号Bにより図3のステップS2の前に戻る。   In the intermediate period / winter period (signal A) shown in FIG. 4, the calculation and determination are performed by both the cooling controller 22 and the heating controller 34. In step S13, the temperature signals 35a and 35b and the flow signal 35c are measured. The value is calculated to determine the presence or absence of the heating load. If there is no heating load, the process returns to step S2 in FIG.

暖房負荷が発生すると、まず冷熱取出装置20に対し運転信号を送り、冷房負荷に冷熱取入媒体を供給した後、ステップS14により熱需要家暖房負荷合計c(各系統の流量、温度差(つまり、全系統の流量信号35cと、温度信号35a,35bの差)により演算した熱量の合計)と、熱回収冷凍機28の暖房能力d(初期入力35e)とを比較し、c≦dならばステップS15のように熱回収冷凍機28(ポンプ27とポンプ26も連動により動作する、冷凍機系統をいう)のみの暖房運転を行う(熱回収冷凍機28単体の能力制御は本体内に内蔵されており、熱回収冷凍機28単体の出口もしくは入口水温を計測して冷凍機自身で能力制御する回路を持っている。)。c>dならばステップS16により熱回収冷凍機28の運転及びDHCの温熱利用(つまり、熱源からの温熱媒体の温熱により温熱主熱交換器を介して温熱取入媒体を冷却して暖房負荷に供給すること)とする。   When a heating load is generated, first, an operation signal is sent to the cooling / heat extraction device 20 to supply a cooling / heating intake medium to the cooling load. The total amount of heat calculated by the flow rate signal 35c of all systems and the difference between the temperature signals 35a and 35b) and the heating capacity d (initial input 35e) of the heat recovery refrigerator 28 are compared. As in step S15, heating operation is performed only for the heat recovery refrigerator 28 (which refers to a refrigerator system in which the pump 27 and the pump 26 also operate in conjunction) (capacity control of the heat recovery refrigerator 28 alone is built in the main body. It has a circuit that measures the outlet or inlet water temperature of the heat recovery refrigerator 28 alone and controls the capacity of the refrigerator itself.) If c> d, the operation of the heat recovery refrigerator 28 and the utilization of the DHC heat (ie, the heat intake medium is cooled by the heat of the heat medium from the heat source through the heat main heat exchanger in step S16 to the heating load). Supply).

更に、ステップS17により熱回収冷凍機28の冷房能力e(初期入力35e)と、熱需要家冷房負荷合計a(各系統の流量、温度差(つまり、全系統の流量信号23cと、温度信号23a,23bの差)により演算した熱量の合計)とを比較し、e≧a(つまり、冬期の朝立ち上がり時の状態)であればステップS18により蓄冷槽13が満蓄かをステップS11と同様な方法で判断し、蓄冷槽満蓄ならば、ステップS19により熱回収冷凍機28保護のために熱回収冷凍機28を停止してDHCの温熱利用とする。蓄冷槽満蓄でないならば、ステップS20のように熱回収冷凍機28を運転して蓄冷槽13に冷熱を蓄熱しながら、熱回収冷凍機の暖房能力を利用する。これは、蓄冷槽を利用することにより、冷房負荷<熱回収冷凍機28の冷房能力の場合でも余った冷熱を蓄冷槽がバッファとして吸収するよう働くので、暖房負荷に応じて熱回収冷凍機28を運転できるため、図1の構成と違う蓄冷槽13が無く熱回収冷凍機28のみ設置する場合と比べて、熱回収冷凍機28が運転できる時間が長くなる。よって、蓄冷槽13を利用することにより温熱の基本料金低減と冷熱・温熱使用量の低減を図ることができる。   Further, in step S17, the cooling capacity e (initial input 35e) of the heat recovery refrigerator 28 and the heat consumer cooling load total a (flow rate and temperature difference of each system (that is, the flow signal 23c of all systems and the temperature signal 23a) , 23b)), and if e ≧ a (that is, the state of rising in the morning in winter), whether or not the cold storage tank 13 is fully stored in step S18 is the same as in step S11. If it is determined by the method and the cold storage tank is fully charged, the heat recovery refrigerator 28 is stopped to protect the heat recovery refrigerator 28 in step S19 to use the DHC heat. If the cold storage tank is not fully charged, the heating capacity of the heat recovery refrigerator is utilized while operating the heat recovery refrigerator 28 to store the cold energy in the cold storage tank 13 as in step S20. This is because, by using the cool storage tank, the cool storage tank absorbs the remaining cool heat as a buffer even if the cooling load <the cooling capacity of the heat recovery refrigerator 28, so that the heat recovery refrigerator 28 is used according to the heating load. 1 can be operated, the time during which the heat recovery refrigerator 28 can be operated becomes longer than when only the heat recovery refrigerator 28 is installed without the cold storage tank 13 different from the configuration of FIG. Therefore, by using the cold storage tank 13, it is possible to reduce the basic heat charge and reduce the amount of cold / heat used.

ステップS17においてe<a(つまり、冬期の昼もしくは中間期の昼の状態)であれば、ステップS21のように蓄冷熱利用が可能か(つまり、冷熱取出装置20が運転可能か)を、図1aの蓄冷槽13に設置した温度検出器38による検出温度の検出数個数の10%以上が設定温度(例えば7℃)以下となっていた場合を利用可能と判断し、蓄熱利用可能であればステップS22のように熱回収冷凍機28の運転を継続し、かつ冷熱取出装置20の運転も継続して(運転要求信号を出す)蓄冷槽13の冷熱を放熱し、このとき冷房負荷に応じてポンプ17,18をその流量と共に制御する。冷熱の不足分はステップS23のようにDHCの冷熱利用(つまり、ポンプ4を動作させて、かつ温度調節器7により制御すること)とする。ステップS21において蓄冷熱利用が不可の場合、つまり蓄冷槽13に設置した温度検出器38による検出温度の検出器個数の90%以上が高設定温度(例えば14℃)を越えていた場合は、冷熱取出装置20を停止した後、ステップS23のようにDHCの冷熱利用とする。   If e <a in step S17 (that is, the daytime in winter or the daytime in the intermediate period), whether or not the cold storage heat can be used as in step S21 (that is, whether or not the cold-heat extraction device 20 can be operated) If 10% or more of the number of detected temperatures by the temperature detector 38 installed in the cold storage tank 1a is less than the set temperature (for example, 7 ° C.), it is determined that it can be used. As in step S22, the operation of the heat recovery refrigerator 28 is continued, and the operation of the cold heat extractor 20 is also continued (outputting an operation request signal) to dissipate the cold heat in the cold storage tank 13, and at this time according to the cooling load. The pumps 17 and 18 are controlled together with their flow rates. The shortage of cold heat is assumed to be DHC cold use (that is, the pump 4 is operated and controlled by the temperature regulator 7) as in step S23. If the use of regenerative heat is not possible in step S21, that is, if 90% or more of the number of detectors of the temperature detected by the temperature detector 38 installed in the regenerator 13 exceeds a high set temperature (for example, 14 ° C.) After the take-out device 20 is stopped, the DHC is used as cold energy as in step S23.

ステップS24の終了は通常はNOの判断で図3のスタートに戻る。ここでYESの判断は本システムを全体停止するという意味である。   The end of step S24 normally returns to the start of FIG. Here, the determination of YES means that the entire system is stopped.

尚、図3において、夜間電力を用いて蓄冷槽13に蓄冷する場合、夜は通常22時から翌朝8時までとして説明したが、本形態では地域冷暖房システムの冷熱媒体1を利用しているために、決められた時間はなく例えば19時から8時としてもよく、熱需要家の熱利用の形態に応じて設定することができる。   In FIG. 3, when cold storage is performed in the cold storage tank 13 using nighttime electric power, it has been described that the night is normally from 22:00 to 8:00 the next morning, but in this embodiment, the cooling medium 1 of the district cooling and heating system is used. In addition, there is no set time, and it may be, for example, from 19:00 to 8:00, and can be set according to the form of heat use by heat consumers.

上記地域冷暖房システムの熱需要家装置の運転方法を、パターン分けしたそれぞれについて図5〜図10を参照して説明する。各図中運転を行っている系路は太線で示している。   The operation method of the heat consumer device of the district cooling and heating system will be described with reference to FIGS. In each figure, the operating route is shown by a thick line.

図5は夏期の夜間の運転を示したもので、冷熱貯蔵装置15を運転し、蓄冷熱交換器14により冷熱媒体1と蓄冷槽13から汲み上げた水Wとを熱交換して、7℃に冷却した水Wを蓄冷槽13に戻すことを繰り返して蓄熱している。蓄熱は、蓄冷槽13に設置した温度検出器38による検出温度の検出器個数の割合などを蓄熱量演算器37にて演算した信号に基づき制御される。夜間に冷房負荷3側に供給する冷熱は、ポンプ4を運転し、冷熱主熱交換器6を介して温度調整器7の制御のもと冷熱媒体1の冷熱により冷熱取入媒体5を冷却し、このとき冷房負荷に応じてポンプ4をその流量と共に制御する。   FIG. 5 shows the operation at night in the summer. The cold storage device 15 is operated, and the cold storage medium exchanger 14 exchanges heat between the cold medium 1 and the water W drawn from the cold storage tank 13 to reach 7 ° C. Returning the cooled water W to the cold storage tank 13 is repeated to store heat. The heat storage is controlled based on a signal calculated by the heat storage amount calculator 37 such as the ratio of the number of detectors of the temperature detected by the temperature detector 38 installed in the cold storage tank 13. The cooling heat supplied to the cooling load 3 side at night operates the pump 4 and cools the cooling heat intake medium 5 by the cooling heat of the cooling medium 1 under the control of the temperature regulator 7 through the cooling heat main heat exchanger 6. At this time, the pump 4 is controlled together with the flow rate according to the cooling load.

図6は夏期の昼間の運転を示したもので、冷熱貯蔵装置15は停止され、ポンプ4を運転して冷熱主熱交換器6により冷熱媒体1の冷熱により冷熱取入媒体5を温度調整器7の制御のもと冷熱媒体1の冷熱により冷熱取入媒体5を冷却し、このとき冷房負荷に応じてポンプ4をその流量と共に制御することに加え、冷熱取出装置20を運転して、蓄冷槽13に蓄熱した冷熱を放熱し取出熱交換器19を介して冷熱取入媒体5を冷却する。このとき冷房負荷に応じてポンプ17,18をその流量と共に制御する。そして同時に、冷熱取出装置20により蓄冷槽へ戻される還水の温熱が蓄冷槽13に蓄えられる。   FIG. 6 shows the operation during the daytime in the summer. The cold storage device 15 is stopped, the pump 4 is operated, and the cold heat intake medium 5 is cooled by the cold heat of the cold medium 1 by the cold heat main heat exchanger 6. Under the control of 7, the cold intake medium 5 is cooled by the cold heat of the cold medium 1. At this time, in addition to controlling the pump 4 together with its flow rate according to the cooling load, the cold extractor 20 is operated to store the cold The cold energy stored in the tank 13 is radiated and the cold heat intake medium 5 is cooled via the heat extraction heat exchanger 19. At this time, the pumps 17 and 18 are controlled together with their flow rates according to the cooling load. At the same time, the warm heat of the return water returned to the cold storage tank by the cold energy extraction device 20 is stored in the cold storage tank 13.

このように、夏期の昼間の冷房負荷3が最大となるときに、熱源の冷熱媒体1の冷熱と蓄冷槽13に蓄熱した冷熱を用いて冷房することにより、冷房負荷3のために冷熱媒体1を利用するピーク値は低減される。   In this way, when the cooling load 3 in the daytime in summer is maximized, the cooling medium 1 is cooled for the cooling load 3 by cooling using the cooling heat of the cooling medium 1 serving as the heat source and the cooling heat stored in the cold storage tank 13. The peak value using is reduced.

図11は図1の形態における夏期の冷房負荷及び冷熱使用量を熱量RT(1RTは3024kcal/H)で縦軸に、時間を横軸に取って関係を示したものであり、冷房負荷を実線で示し、熱需要家が使用する冷熱媒体1から受け取る冷熱使用量を破線で示しており、蓄冷槽13に蓄熱される蓄冷熱をハッチングで示している。ここで、冷房負荷は消費する熱量(プラス側)であるのに対し、冷熱使用量と蓄冷熱は冷凍機で冷凍する熱量(マイナス側)であるが、熱量の絶対値として大きさのみを示している。図11において、冷房負荷のピーク値は1500RTであるのに対し、図1の形態により冷熱使用量のピーク値は1200RTに抑えられていることが示されている。従って、契約熱量は1500RTではなく1200RTでよく、契約熱量に基づく基本料金が削減可能である。冷房負荷が高い夏期昼間の時間帯に前記蓄冷槽13に蓄熱された冷熱を冷熱取入媒体5に放熱し、冷熱使用量を1500RT−1200RT=300RT分低減するために、夜間冷熱貯蔵装置15を9時間運転し、300RTを9時間で2700RT分(ハッチング部分)蓄熱し、その蓄熱を昼間の9時間で1時間に300RTずつ(クロスハッチング部分)冷熱取出装置20により取り出すのである。   FIG. 11 shows the relationship between the cooling load and the amount of heat used in summer in the form of FIG. 1 with the heat amount RT (1RT is 3024 kcal / H) on the vertical axis and the time on the horizontal axis. The amount of cold usage received from the cooling medium 1 used by the heat consumer is indicated by a broken line, and the cold storage heat stored in the cold storage tank 13 is indicated by hatching. Here, while the cooling load is the amount of heat consumed (plus side), the amount of cold usage and the amount of cold storage heat are the amount of heat frozen by the refrigerator (minus side), but only the magnitude is shown as the absolute value of the amount of heat. ing. In FIG. 11, the peak value of the cooling load is 1500 RT, whereas the peak value of the amount of cooling energy used is suppressed to 1200 RT by the form of FIG. 1. Therefore, the contract heat amount may be 1200 RT instead of 1500 RT, and the basic charge based on the contract heat amount can be reduced. In order to reduce the amount of cold used by 1500 RT-1200 RT = 300 RT in order to radiate the cold stored in the cold storage tank 13 to the cold storage medium 5 during the summer daytime when the cooling load is high, the night cold storage device 15 is provided. It is operated for 9 hours, and 300 RT is stored for 2700 RT minutes (hatched portion) in 9 hours, and the stored heat is taken out by the cold heat take-out device 20 by 300 RT per hour (cross-hatched portion) in 9 hours in the daytime.

図7は中間期の昼間及び夜間の暖房負荷が無いときの運転を示したもので、冷熱貯蔵装置15と冷熱取出装置20は停止され、ポンプ4を運転して冷熱主熱交換器6により冷熱媒体1の冷熱により冷熱取入媒体5を温度調整器7の制御のもと冷熱媒体1の冷熱により冷熱取入媒体5を冷却し、このとき冷房負荷に応じてポンプ4をその流量と共に制御している。   FIG. 7 shows the operation when there is no midday and nighttime heating load. The cold storage device 15 and the cold extraction device 20 are stopped, the pump 4 is operated, and the cold heat is generated by the cold main heat exchanger 6. The cold intake medium 5 is cooled by the cold heat of the medium 1 under the control of the temperature regulator 7, and the cold heat intake medium 5 is cooled by the cold heat of the cold medium 1. At this time, the pump 4 is controlled along with the flow rate according to the cooling load. ing.

このときは、図12に示すように、冷房負荷の全てが冷熱媒体1の冷熱(冷熱使用量)によって賄われることとなる。これは、暖房負荷が無いので熱回収冷凍機28を運転した際に発生する温熱(温熱取入媒体を加熱する)を使用できず、蓄熱するバッファもないため、熱回収冷凍機28を運転できないことによる。   At this time, as shown in FIG. 12, all of the cooling load is covered by the cooling energy (cooling energy consumption) of the cooling medium 1. This is because there is no heating load, so the heat generated when the heat recovery refrigerator 28 is operated (heating the heat intake medium) cannot be used, and there is no buffer for storing heat, so the heat recovery refrigerator 28 cannot be operated. It depends.

図8は冬期の朝の立ち上げ時における冷房負荷<暖房負荷のときの運転を示したものである。ここで、朝と昼間と夜間の区別については、朝は始業時間から立上げ時間を差し引いた時間〜11:00頃まで(暖房立上げ終了時間)とする。例えば、始業9:00の場合で立上げ時間が1時間であると8:00〜11:00である。又、昼は11:00〜終業時間+1時間程度、例えば11:00〜19:00である。又、夜は例えば19:00〜翌日8:00とすることができるが、その建物の用途や地域によって変わることはいうまでもない。   FIG. 8 shows the operation when the cooling load is less than the heating load when starting up in the morning in winter. Here, regarding the distinction between morning, daytime, and nighttime, in the morning, it is from the start time minus the start-up time to about 11:00 (heating start-up end time). For example, when the start time is 9:00 and the start-up time is 1 hour, it is 8:00 to 11:00. In the daytime, it is 11:00 to 10:00, and the end time is about 1 hour, for example, 11:00 to 19:00. Also, the night can be set, for example, from 19:00 to 8:00 the next day, but it goes without saying that it varies depending on the use of the building and the area.

図8において、立上げ時は、ポンプ9を運転して温熱主熱交換器11により温熱媒体2の温熱により温熱取入媒体10を加熱することに加えて、熱回収冷凍機28を運転することにより熱回収冷凍機28によって生成される50℃の温熱により温熱取入媒体10を加熱して温熱取入媒体10'として暖房負荷に供給する。一方、熱回収冷凍機28は前日の夜に冷熱を放熱した蓄冷槽13の還水の14℃の温熱を蒸発器側熱源として運転でき、温熱取入媒体を加熱した結果のヒートポンプとしての動作により、蓄冷槽13から汲みだした14℃の温熱をもった水Wを7℃に冷却して蓄冷槽13に戻すことを繰り返して蓄熱することとなる。蓄冷熱利用が可能か(つまり、冷熱取出装置20が運転可能か)を、蓄冷槽13に設置した温度検出器38による検出温度の検出数個数の10%以上が設定温度(例えば7℃)以下となっていた場合を利用可能と判断して、冷熱取出装置20を運転することで蓄冷槽13に蓄熱される冷熱により冷熱取入媒体5を冷却できる。これにより、冬期の冷房負荷は、冷熱媒体1の冷熱を利用しなくともポンプ4を停止して冷熱取出装置20のみ運転することで賄えることとなる。   In FIG. 8, at the time of start-up, the heat recovery refrigerator 28 is operated in addition to operating the pump 9 and heating the heat intake medium 10 by the heat of the heat medium 2 by the heat main heat exchanger 11. Thus, the heat intake medium 10 is heated by the 50 ° C. heat generated by the heat recovery refrigerator 28 and supplied to the heating load as the heat intake medium 10 ′. On the other hand, the heat recovery refrigerator 28 can be operated with the temperature of 14 ° C. of the return water of the regenerator 13 that dissipated the cold the night before as an evaporator-side heat source, and as a result of the operation as a heat pump as a result of heating the heat intake medium. Then, the water W having a heat of 14 ° C. drawn from the cold storage tank 13 is repeatedly cooled to 7 ° C. and returned to the cold storage tank 13 to store heat. Whether or not the use of cold storage heat is possible (that is, whether or not the cold heat extraction device 20 can be operated) is 10% or more of the number of detected temperatures detected by the temperature detector 38 installed in the cold storage tank 13 is equal to or lower than the set temperature (eg, 7 ° C.) It is judged that the case where it has become can be used, and the cold energy intake medium 5 can be cooled by the cold energy stored in the cold storage tank 13 by operating the cold energy extractor 20. Thereby, the cooling load in winter can be covered by stopping the pump 4 and operating only the cooling / heat extraction device 20 without using the cooling heat of the cooling medium 1.

このように、冬期の朝の暖房負荷8が最大となるときに、熱源の温熱媒体2の温熱と熱回収冷凍機28の運転による温熱を用いて暖房することにより、暖房負荷8のために温熱媒体2を利用するピーク値を低減することができる。   In this way, when the heating load 8 in the morning in the winter season is maximized, the heating load 8 is heated by using the heat of the heat source 2 and the heat of the heat recovery refrigerator 28 to heat the heating load 8. The peak value using the medium 2 can be reduced.

図13では、図1の形態における冬期の暖房負荷及び熱回収冷凍機加熱能力を熱量RTで縦軸に、時間を横軸に取って関係を示したものであり、暖房負荷を実線で示し、熱回収冷凍機28による温熱取入媒体10を加熱する加熱能力を破線で示しており、熱需要家が使用する温熱媒体2から受け取る温熱使用量を点を施した領域で示している。これから、昼間のピーク時以外は暖房負荷を熱回収冷凍機28の加熱能力で賄うことができ、従って暖房負荷の朝のピーク値は700RTであるところ、ピーク時の熱回収冷凍機28の加熱能力400RTを差し引いた300RTにまで、温熱媒体2から受け取る温熱使用量を削減でき、契約熱量は700RTではなく300RTでよく、契約熱量に基づく基本料金が削減可能である。   In FIG. 13, the winter heating load and the heat recovery refrigerator heating capacity in the form of FIG. 1 are shown in relation to the amount of heat RT on the vertical axis and the time on the horizontal axis, and the heating load is shown by a solid line, The heating capability of heating the heat intake medium 10 by the heat recovery refrigerator 28 is indicated by a broken line, and the amount of heat used received from the heat medium 2 used by the heat consumer is indicated by a dotted area. From this, the heating load can be covered by the heating capacity of the heat recovery refrigerator 28 except during peak hours in the daytime. Accordingly, the morning peak value of the heating load is 700 RT, and the heating capacity of the heat recovery refrigerator 28 at the peak time. The usage amount of heat received from the heating medium 2 can be reduced to 300 RT minus 400 RT, and the contract heat amount may be 300 RT instead of 700 RT, and the basic charge based on the contract heat amount can be reduced.

図9では冬期の昼間ないし中間期の昼間で、冷房負荷>暖房負荷のときの運転を示すもので、熱回収冷凍機28を運転することにより熱回収冷凍機28で生成する50℃の温熱により温熱取入媒体10を加熱して温熱取入媒体10'として暖房負荷に供給する。一方、熱回収冷凍機28は前日の夜に冷熱を放熱した蓄冷槽13の還水の14℃の温熱を蒸発器側熱源として運転でき、温熱取入媒体を加熱した結果のヒートポンプとしての動作により、蓄冷槽13から汲みだした14℃の温熱をもった水Wを7℃に冷却して蓄冷槽13に戻すことを繰り返して蓄熱することとなる。更に、蓄熱されていた蓄冷槽13の冷熱や、追加で熱回収冷凍機28で蓄熱される冷熱を冷熱取出装置20を運転して取り出し、冷熱取入媒体を冷却して冷房負荷へ供給する。この運転でも不足する冷房負荷の処理熱量は、冷熱媒体1の冷熱を利用するようポンプ4を運転して並行して冷熱取入媒体5を冷却する。   FIG. 9 shows the operation when the cooling load is greater than the heating load during the daytime in the winter period or the daytime in the intermediate period. By operating the heat recovery refrigerator 28, the temperature of 50 ° C. generated by the heat recovery refrigerator 28 is shown. The heat intake medium 10 is heated and supplied to the heating load as a heat intake medium 10 ′. On the other hand, the heat recovery refrigerator 28 can be operated with the temperature of 14 ° C. of the return water of the regenerator 13 that dissipated the cold the night before as an evaporator-side heat source, and as a result of the operation as a heat pump as a result of heating the heat intake medium. Then, the water W having a heat of 14 ° C. drawn from the cold storage tank 13 is repeatedly cooled to 7 ° C. and returned to the cold storage tank 13 to store heat. Further, the cold energy stored in the cold storage tank 13 and the cold energy additionally stored in the heat recovery refrigerator 28 are taken out by operating the cold energy extraction device 20, and the cold energy intake medium is cooled and supplied to the cooling load. The processing heat quantity of the cooling load that is insufficient even in this operation causes the cooling medium intake medium 5 to be cooled in parallel by operating the pump 4 so as to use the cooling energy of the cooling medium 1.

図14には、図1の形態における冬期の冷房負荷及び熱回収冷凍機冷却能力を熱量RTで縦軸に、時間を横軸に取って関係を示したものであり、冷房負荷を実線で示し、熱回収冷凍機28による冷熱取入媒体5を冷却する冷却能力を破線で示している。これにより、図14に示す如く、実線で示す冷房負荷に対し熱回収冷凍機28の冷却能力を最大限に利用して冷却し、不足分を冷熱媒体1の冷熱によって冷却するようにすると、冷熱媒体1の冷熱の利用量を最小限にすることができ、契約熱量における従量料金についても削減できる。   FIG. 14 shows the relationship between the cooling load and the cooling capacity of the heat recovery refrigerator in the form of FIG. 1 on the vertical axis in terms of heat quantity RT and the time on the horizontal axis, and the cooling load is indicated by a solid line. The cooling capacity for cooling the cold intake medium 5 by the heat recovery refrigerator 28 is indicated by a broken line. As a result, as shown in FIG. 14, when the cooling load indicated by the solid line is used to cool the cooling capacity of the heat recovery refrigerator 28 to the maximum, and the shortage is cooled by the cooling heat of the cooling medium 1. The usage amount of the cold heat of the medium 1 can be minimized, and the usage fee for the contract heat amount can also be reduced.

図10は冬期の夜間の運転を示すもので、冷熱取出装置20を運転することにより蓄冷槽13の蓄熱を冷熱取入媒体5に放熱する。そして、翌日の冬期の朝立上げ時に熱回収冷凍機28を運転可能なように、蓄冷槽13の還水の14℃の温熱を一定量以上蓄えて、熱回収冷凍機28の蒸発器側熱源として利用できるようにしておく。   FIG. 10 shows the operation at night in the winter, and the stored heat in the cold storage tank 13 is radiated to the cold intake medium 5 by operating the cold extractor 20. Then, the heat recovery refrigerator 28 is stored at a predetermined amount or more so that the heat recovery refrigerator 28 can be operated at the start-up of the winter morning of the next day, and the evaporator-side heat source of the heat recovery refrigerator 28 is stored. Make it available as

上記したように、本発明の地域冷暖房システムの熱需要家装置及びその運転方法によれば、夏期の冷房時における冷房負荷のピーク値を低減すると共に、冬期の暖房時における暖房負荷のピーク値を低減することができ、よって熱需要家が地域冷暖房システム利用する際の基本料金を低減することができる。   As described above, according to the heat consumer device of the district cooling and heating system of the present invention and the operation method thereof, the peak value of the cooling load during the cooling in summer and the peak value of the heating load during the heating in winter are reduced. Therefore, it is possible to reduce the basic charge when the heat consumer uses the district cooling and heating system.

又、冬期に暖房と冷房が必要な時には、熱回収冷凍機により温熱を供給すると同時に蓄冷槽に冷熱を蓄熱できるので、この冷熱を冷房負荷に供給することにより冷熱媒体の冷熱の利用量を削減できるので従重料金を低減することができる。   In addition, when heating and cooling are required in winter, heat can be stored in the cool storage tank at the same time that heat is supplied by the heat recovery refrigerator, so the amount of cooling medium used can be reduced by supplying this cooling to the cooling load. Since this is possible, it is possible to reduce the fee.

なお、本発明の地域冷暖房システムの熱需要家装置及びその運転方法は、上記形態にのみ限定されることなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the heat consumer apparatus of the district air conditioning system of this invention and its operating method are not limited only to the said form, Of course, various changes can be added within the range which does not deviate from the summary of this invention.

本発明を実施する形態の一例としての地域冷暖房システムの熱需要家装置の全体概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic block diagram of the heat consumer apparatus of the district heating / cooling system as an example which implements this invention. 図1の蓄冷槽の蓄熱量を求める方法の一例を示す側面図である。It is a side view which shows an example of the method of calculating | requiring the heat storage amount of the cool storage tank of FIG. 図1における熱回収冷凍機一例を示す構成図である。It is a block diagram which shows an example of the heat | fever recovery refrigerator in FIG. 夏期における冷房負荷のみが使用される場合の運転フローチャートである。It is a driving | operation flowchart in case only the cooling load in summer is used. 中間期・冬期における冷房負荷と暖房負荷の両方が使用される場合の運転フローチャートである。It is an operation | movement flowchart in the case of using both the air_conditioning | cooling load and heating load in a middle period and winter. 夏期の夜間の運転を示す作動図である。It is an operation | movement figure which shows the driving | operation at night of the summer. 夏期の昼間の運転を示す作動図である。It is an operation | movement figure which shows the driving | operation of the daytime of summer. 中間期の昼間及び夜間の冷房が必要で暖房負荷が無いときの運転を示す作動図である。It is an operation | movement figure which shows the driving | operation when the air_conditioning | cooling of the daytime and night of an intermediate period is required and there is no heating load. 冬期の朝の立ち上げ時における運転を示す作動図である。It is an action | operation figure which shows the driving | operation at the time of start-up of the morning of winter. 冬期の昼間における運転を示す作動図である。It is an action | operation figure which shows the driving | operation in the daytime of winter. 冬期の夜間の運転を示す作動図である。It is an operation | movement figure which shows the driving | operation at night of the winter season. 図1の形態における冷房負荷と冷熱使用量と蓄冷熱の関係を示す線図である。It is a diagram which shows the relationship between the cooling load in the form of FIG. 冷房負荷と冷熱使用量との関係を示す線図である。It is a diagram which shows the relationship between a cooling load and the amount of cold usage. 暖房負荷と熱回収冷凍機加熱能力との関係を示す線図である。It is a diagram which shows the relationship between a heating load and heat recovery refrigerator heating capacity. 冷房負荷と熱回収冷凍機冷却能力との関係を示す線図である。It is a diagram which shows the relationship between a cooling load and heat recovery refrigerator cooling capacity.

符号の説明Explanation of symbols

1,1’ 冷熱媒体
2,2’ 温熱媒体
3 冷房負荷
5,5’ 冷熱取入媒体
6 冷熱主熱交換器
8 暖房負荷
10,10’ 温熱取入媒体
11 温熱主熱交換器
13 蓄冷槽
14 蓄冷熱交換器
15 冷熱貯蔵装置
19 取出熱交換器
20 冷熱取出装置
28 熱回収冷凍機
W 水
DESCRIPTION OF SYMBOLS 1,1 'Cold medium 2,2' Heat medium 3 Cooling load 5,5 'Cold heat intake medium 6 Cold heat main heat exchanger 8 Heating load 10,10' Heat intake medium 11 Heat main heat exchanger 13 Cold storage tank 14 Cold storage heat exchanger 15 Cold storage device 19 Extraction heat exchanger 20 Cold extraction device 28 Heat recovery refrigerator W Water

Claims (4)

熱源からの冷熱媒体と温熱媒体を地域の各需要家に導き、各需要家に備えた冷熱主熱交換器を介して冷熱媒体の冷熱により冷熱取入媒体を冷却して冷房負荷に供給し、各需要家に備えた温熱主熱交換器を介して温熱媒体の温熱により温熱取入媒体を加熱して暖房負荷に供給し、熱需要家側には1年を通じて冷熱取入媒体を冷却して供給すべき冷房負荷が存在している地域冷暖房システムの熱需要家装置であって、
前記冷熱媒体と蓄冷槽から汲み上げた水とを蓄冷熱交換器を介して熱交換して冷熱を蓄冷槽に蓄熱する冷熱貯蔵装置と、
蓄冷槽から汲み上げた水と冷熱取入媒体とを取出熱交換器を介して熱交換して蓄冷槽の水の冷熱により冷熱取入媒体を冷却する冷熱取出装置と、
温熱取入媒体と蓄冷槽の水を取り入れて温熱取入媒体の加熱と蓄冷槽の水の冷却とを同時に行う熱回収冷凍機と
を備えたことを特徴とする地域冷暖房システムの熱需要家装置。
The cooling medium and the heating medium from the heat source are guided to each consumer in the region, and the cooling heat intake medium is cooled by the cooling heat of the cooling medium through the cooling main heat exchanger provided for each consumer and supplied to the cooling load. The heat intake medium is heated by the heat of the heat medium through the heat main heat exchanger provided for each consumer and supplied to the heating load. The heat consumer side cools the heat intake medium throughout the year. A heat consumer device of a district cooling and heating system in which there is a cooling load to be supplied,
A cold storage device that heat-exchanges the cold medium and water pumped from the cold storage tank via a cold storage heat exchanger to store cold in the cold storage tank;
A cold heat extractor that takes out the water pumped from the cold storage tank and the cold heat intake medium through a heat exchanger and cools the cold heat intake medium with the cold heat of the water in the cold storage tank;
A heat consumer device for a district heating and cooling system, comprising a heat recovery refrigerator that takes in the water from the heat intake medium and the cold storage tank and simultaneously heats the heat intake medium and cools the water in the cold storage tank .
請求項1に記載の地域冷暖房システムの熱需要家装置において、
夏期の夜間は冷熱貯蔵装置を運転して蓄冷槽に冷熱を蓄熱しておき、
夏期の昼間は冷熱媒体の冷熱により冷熱主熱交換器を介して冷熱取入媒体を冷却することに加えて冷熱取出装置を運転して蓄冷槽の冷熱により冷熱取入媒体を冷却することにより、冷熱主熱交換器を介して冷熱取入媒体の冷却に費やされる冷熱媒体の冷熱のピーク値を低減することを特徴とする地域冷暖房システムの熱需要家装置の運転方法。
In the heat consumer apparatus of the district heating and cooling system according to claim 1,
During the summer night, the cold storage device is operated to store the cold energy in the cold storage tank,
In the summer daytime, in addition to cooling the cold intake medium through the cold heat main heat exchanger by the cold heat of the cold medium, by operating the cold extractor and cooling the cold intake medium by the cold energy of the cold storage tank, A method for operating a heat consumer device of a district cooling and heating system, characterized in that the peak value of the cooling energy of the cooling medium consumed for cooling the cooling heat intake medium is reduced via the cooling heat main heat exchanger.
請求項1に記載の地域冷暖房システムの熱需要家装置において、
冬期の朝立ち上げ時は、温熱媒体の温熱により温熱主熱交換器を介して温熱取入媒体を加熱することに加えて、前日に冷熱取入媒体の冷房負荷からの還り側の温熱を蓄冷熱交換器を介して蓄冷槽に蓄えた還水を蒸発器側熱源として熱回収冷凍機を運転し、熱回収冷凍機の凝縮器側で生成する温熱により温熱取入媒体を加熱し、
冬期の昼間は、蓄冷槽に温熱を蓄えた還水を蒸発器側熱源として熱回収冷凍機を運転して熱回収冷凍機の凝縮器側で生成する温熱により温熱取入媒体を加熱しながら、冷熱媒体の冷熱により冷熱主熱交換器を介して冷熱取入媒体を冷却することに加えて冷熱取出装置を運転して蓄冷槽の水の冷熱により冷熱取入媒体を冷却して蓄冷槽に還水の温熱を蓄え、
冬期の夜間は、蓄冷槽から汲み上げた水と冷熱取入媒体とを冷熱取出装置の取出熱交換器を介して熱交換して冷熱取入媒体を冷却し、同時に冷熱取出装置により蓄冷槽に還水の温熱を蓄えるよう運転することにより、温熱主熱交換器を介して温熱取入媒体の加熱に費やされる温熱媒体の温熱のピーク値を低減することを特徴とする地域冷暖房システムの熱需要家装置の運転方法。
In the heat consumer apparatus of the district heating and cooling system according to claim 1,
When starting up in the morning in the winter, in addition to heating the heat intake medium via the heat main heat exchanger by the heat of the heat medium, the heat on the return side from the cooling load of the heat intake medium the previous day is stored in the cold storage heat. The heat recovery refrigerator is operated using the return water stored in the cold storage tank via the exchanger as the evaporator-side heat source, and the heat intake medium is heated by the heat generated on the condenser side of the heat recovery refrigerator,
During the daytime in winter, while operating the heat recovery refrigerator using the return water that stores the heat in the cold storage tank as the evaporator heat source and heating the heat intake medium with the heat generated on the condenser side of the heat recovery refrigerator, In addition to cooling the cold heat intake medium through the cold heat main heat exchanger with the cold heat of the cold medium, the cold heat extractor is operated and the cold heat intake medium is cooled with the cold heat of the cold storage tank and returned to the cold storage tank. Store the heat of water,
During the winter night, the water drawn from the cool storage tank and the cold heat intake medium are heat exchanged via the heat extractor of the cold heat extractor to cool the cold heat intake medium and simultaneously returned to the cold storage tank by the cold heat extractor. Heat consumers of district cooling and heating systems, characterized by reducing the peak temperature of the heating medium spent on heating the heating medium via the heating main heat exchanger by operating to store the temperature of the water How to operate the device.
請求項1に記載の地域冷暖房システムの熱需要家装置において、
中間期の暖房負荷があり、かつ冷房負荷より暖房負荷が小さい場合に、
蓄冷槽に温熱を蓄えた還水を蒸発器側熱源として熱回収冷凍機を運転し、熱回収冷凍機の凝縮器側で生成する温熱により温熱取入媒体を加熱しながら、冷熱媒体の冷熱により冷熱主熱交換器を介して冷熱取入媒体を冷却することに加えて冷熱取出装置を運転して蓄冷槽の水の冷熱により冷熱取入媒体を冷却して蓄冷槽に温熱を蓄えて、蓄冷槽の熱の授受収支を1日単位で合わせる運転を行うことにより、温熱主熱交換器を介して温熱取入媒体の加熱に費やされる温熱媒体の温熱のピーク値を低減することを特徴とする地域冷暖房システムの熱需要家装置の運転方法。
In the heat consumer apparatus of the district heating and cooling system according to claim 1,
When there is an intermediate heating load and the heating load is smaller than the cooling load,
The heat recovery refrigerator is operated using the return water stored in the cold storage tank as the heat source on the evaporator side, and the heat intake medium is heated by the heat generated on the condenser side of the heat recovery refrigerator. In addition to cooling the cold heat intake medium via the cold heat main heat exchanger, the cold heat extractor is operated to cool the cold heat intake medium with the cold heat of the cold storage tank and store the heat in the cold storage tank to store the cold It is characterized by reducing the peak value of the temperature of the heating medium consumed for heating the heating medium via the heating main heat exchanger by performing an operation of adjusting the heat transfer balance of the tank in units of one day. Operation method of heat consumer device of district air conditioning system.
JP2007099268A 2007-04-05 2007-04-05 Heat consumer device for district cooling and heating system and operation method thereof Active JP5032181B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007099268A JP5032181B2 (en) 2007-04-05 2007-04-05 Heat consumer device for district cooling and heating system and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099268A JP5032181B2 (en) 2007-04-05 2007-04-05 Heat consumer device for district cooling and heating system and operation method thereof

Publications (2)

Publication Number Publication Date
JP2008256272A true JP2008256272A (en) 2008-10-23
JP5032181B2 JP5032181B2 (en) 2012-09-26

Family

ID=39980006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099268A Active JP5032181B2 (en) 2007-04-05 2007-04-05 Heat consumer device for district cooling and heating system and operation method thereof

Country Status (1)

Country Link
JP (1) JP5032181B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034472A (en) * 2011-07-14 2013-02-21 Mitsubishi Plastics Agri Dream Co Ltd Solution culture system, solution culture method using the same, and solution culture pot
KR20190018443A (en) * 2016-07-19 2019-02-22 이.온 스베리지 에이비 Method for controlling heat transfer between a local cooling system and a local heating system
CN109564009A (en) * 2016-07-19 2019-04-02 瑞典意昂公司 Heat transfer system
CN113357719A (en) * 2020-03-04 2021-09-07 贵州电网有限责任公司 Comprehensive energy recycling device
CN117091439A (en) * 2023-10-18 2023-11-21 华清安泰能源股份有限公司 Energy storage water tank and energy supply system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439579A (en) * 1990-06-04 1992-02-10 Technol Res Assoc Super Heat Pump Energ Accum Syst Heating system and heating/cooling system employing heat pump
JPH0445332A (en) * 1990-06-13 1992-02-14 Ebara Corp Region cooling/heating system
JPH04113139A (en) * 1990-09-04 1992-04-14 Ebara Corp District cooling/heating system
JPH04158174A (en) * 1990-10-22 1992-06-01 Ebara Corp Heating and cooling system with heat pump
JPH0526480A (en) * 1991-07-24 1993-02-02 Takenaka Komuten Co Ltd District heat source system
JPH06213482A (en) * 1993-01-12 1994-08-02 Hitachi Ltd Heat accumulating device and heat supplying system
JP2001004175A (en) * 1999-06-23 2001-01-12 Sharp Corp Integral type heat storage air-conditioner
JP3170393B2 (en) * 1993-07-28 2001-05-28 川崎重工業株式会社 Driving method and apparatus for district heating and cooling system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439579A (en) * 1990-06-04 1992-02-10 Technol Res Assoc Super Heat Pump Energ Accum Syst Heating system and heating/cooling system employing heat pump
JPH0445332A (en) * 1990-06-13 1992-02-14 Ebara Corp Region cooling/heating system
JPH04113139A (en) * 1990-09-04 1992-04-14 Ebara Corp District cooling/heating system
JPH04158174A (en) * 1990-10-22 1992-06-01 Ebara Corp Heating and cooling system with heat pump
JPH0526480A (en) * 1991-07-24 1993-02-02 Takenaka Komuten Co Ltd District heat source system
JPH06213482A (en) * 1993-01-12 1994-08-02 Hitachi Ltd Heat accumulating device and heat supplying system
JP3170393B2 (en) * 1993-07-28 2001-05-28 川崎重工業株式会社 Driving method and apparatus for district heating and cooling system
JP2001004175A (en) * 1999-06-23 2001-01-12 Sharp Corp Integral type heat storage air-conditioner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013034472A (en) * 2011-07-14 2013-02-21 Mitsubishi Plastics Agri Dream Co Ltd Solution culture system, solution culture method using the same, and solution culture pot
KR20190018443A (en) * 2016-07-19 2019-02-22 이.온 스베리지 에이비 Method for controlling heat transfer between a local cooling system and a local heating system
CN109477643A (en) * 2016-07-19 2019-03-15 瑞典意昂公司 Method for controlling the heat transmitting between local cooling system and hot spot system
CN109564009A (en) * 2016-07-19 2019-04-02 瑞典意昂公司 Heat transfer system
KR102168624B1 (en) * 2016-07-19 2020-10-21 이.온 스베리지 에이비 Method for controlling heat transfer between a local cooling system and a local heating system
CN109477643B (en) * 2016-07-19 2021-12-03 瑞典意昂公司 Method for controlling heat transfer between a localized cooling system and a localized heating system
US11226108B2 (en) 2016-07-19 2022-01-18 E.On Sverige Ab Heat transfer system
CN113357719A (en) * 2020-03-04 2021-09-07 贵州电网有限责任公司 Comprehensive energy recycling device
CN117091439A (en) * 2023-10-18 2023-11-21 华清安泰能源股份有限公司 Energy storage water tank and energy supply system
CN117091439B (en) * 2023-10-18 2024-02-06 华清安泰能源股份有限公司 Energy storage water tank and energy supply system

Also Published As

Publication number Publication date
JP5032181B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP6857883B2 (en) Geothermal utilization system and geothermal utilization method
JP7221337B2 (en) Local thermal energy consumer assembly and local thermal energy generator assembly for district thermal energy distribution system
JP6261724B2 (en) Heat pump chilling system and control method thereof
US20120055419A1 (en) Demand management for water heaters
JP5032181B2 (en) Heat consumer device for district cooling and heating system and operation method thereof
JP2006183933A (en) Photovoltaic system
WO2016098483A1 (en) Heat source system management device, heat source system management method, and program
US9391492B2 (en) Facility for transforming heat energy
JP6107958B2 (en) Heat storage system
KR102209215B1 (en) In-line heated solar thermal storage collector
US20150338137A1 (en) Method for controlling an integrated cooling and heating facility
JP5492712B2 (en) Water supply temperature control apparatus and method
JP2014010631A (en) Device and method for optimal operation control of energy network
US8107804B2 (en) Energy accummulator system
EP3740720A1 (en) Method and system of cooling in heat generation by combustion
JP2005321852A (en) Heat load prediction control system
CN109579177B (en) Air conditioner and hot water supply system
KR101616053B1 (en) Heat storage type heat pump system for preventing liquid refrigerant exposure damage in demand
EP3892925B1 (en) A heating system, a method, a computer program, a computer-readable medium and a control device
JP7452584B2 (en) hot water production system
JP2637510B2 (en) Thermal storage cooling and heating system
CA2753031C (en) Demand management for water heaters
JP2001227780A (en) Air conditioning system
JP2921667B2 (en) Ice heat storage control device
JP2001132989A (en) District heat supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120628

R150 Certificate of patent or registration of utility model

Ref document number: 5032181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250