JP2008256081A - Ferritic stainless steel screw - Google Patents

Ferritic stainless steel screw Download PDF

Info

Publication number
JP2008256081A
JP2008256081A JP2007098544A JP2007098544A JP2008256081A JP 2008256081 A JP2008256081 A JP 2008256081A JP 2007098544 A JP2007098544 A JP 2007098544A JP 2007098544 A JP2007098544 A JP 2007098544A JP 2008256081 A JP2008256081 A JP 2008256081A
Authority
JP
Japan
Prior art keywords
screw
stainless steel
ferritic stainless
weight
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007098544A
Other languages
Japanese (ja)
Inventor
Takashi Yajima
矢島  隆
Kenji Fukuda
憲治 福田
Shigeru Yamanaka
茂 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUEMU WORKS CO Ltd
Original Assignee
MARUEMU WORKS CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUEMU WORKS CO Ltd filed Critical MARUEMU WORKS CO Ltd
Priority to JP2007098544A priority Critical patent/JP2008256081A/en
Publication of JP2008256081A publication Critical patent/JP2008256081A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferritic stainless steel screw which has strength equivalent to that of the conventional austenite-based stainless steel screw (SUSXM7), extends the lifetime of a die assembly for forming the screw and has corrosion resistance excellent than a temper colored austenitic stainless steel screw after being colored for color matching with a member, the screw using low-cost ferritic stainless steel. <P>SOLUTION: The ferritic stainless steel screw is produced through making the tensile strength of a wire drawing material made of ferritic stainless steel 570 to 700 MPa and further by making the tensile strength after screw form rolling 580 to 730 MPa, the ferritic stainless steel having a chrome volume of 16 to 20% by weight, a carbon volume of 0.005 to 0.02% by weight, and a nitrogen volume of 0.005 to 0.02% by weight. Then, an oxidizing color development process for forming a film of 0.5 μm or less in thickness is applied to the screw. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、締結に使用されるフェライト系ステンレスねじに関するものである。 The present invention relates to a ferritic stainless steel screw used for fastening.

従来、建築用のサッシ等の締結等には、耐食性と強度を兼ね備えたSUSXM7を中心としたオーステナイト系ステンレス製の締結ねじが使用されてきた。この種の締結ねじには、主に耐食性を付与するためのニッケルや主にねじの成形性と金型寿命を向上させるための銅をかなりの量含有している。これらの元素は高価であるため、素材とその製品であるねじの価格を上昇させるとともに、時には価格変動を誘発し、ねじの素材の供給を不安定なものにしている。   Conventionally, an austenitic stainless steel fastening screw centered on SUSXM7, which has both corrosion resistance and strength, has been used for fastening architectural sashes and the like. This type of fastening screw contains a considerable amount of nickel mainly for imparting corrosion resistance and mainly copper for improving the moldability and die life of the screw. Since these elements are expensive, they increase the price of the material and its product screws, and sometimes induce price fluctuations, which make the supply of the screw material unstable.

高価なニッケルや銅をほとんど含まないフェライト系ステンレスねじは、オーステナイト系ステンレスねじと同様に、ねじ成形後の焼入れ硬化処理を行わず、ねじ加工前の伸線材の引張り強さとねじ転造加工による加工硬化により、ねじの軸力等の諸特性に重要な役割を果たすねじの引張り強さが決まる。ただし、フェライト系ステンレスはオーステナイト系ステンレスに比べて加工硬化率が小さいため、これを補い高いねじの引張り強さを得るためには、伸線材の高強度化(引張り強さを高くすること)が必要となる。そこで、ねじのような三次元の加工ではないが、曲げ加工のような二次元の加工が施される板材において、製品の高強度化のために素材の高強度化が特許文献1にて提案されている。   Like austenitic stainless steel screws, ferritic stainless steel screws that contain almost no expensive nickel or copper are not subjected to quench hardening after thread forming, but are processed by the tensile strength of the wire drawing material before threading and screw rolling. Curing determines the tensile strength of the screw that plays an important role in various characteristics such as the axial force of the screw. However, since ferritic stainless steel has a lower work hardening rate than austenitic stainless steel, it is necessary to increase the strength of the wire drawing material (to increase the tensile strength) in order to compensate for this and obtain a high tensile strength of the screw. Necessary. Therefore, Patent Document 1 proposes to increase the strength of a material in order to increase the strength of a plate material that is not a three-dimensional processing such as a screw but is subjected to a two-dimensional processing such as bending. Has been.

オーステナイト系ステンレスねじに替わる高強度、高耐食のねじをつくる為には、ねじ頭部の圧造時の内部割れの問題を解決しなければならない。すなわち、この現象は、材料を圧縮変形させた際に側面にせん断割れが生じるまでの加工度(限界据込み率)特性と関係があるが、この特性において一般にオーステナイト系ステンレスは他のステンレスより優れているからである。この内部割れを回避しようと、焼なましにより伸線材の硬さを下げると高強度のねじが得られない。この頭部の内部割れの問題を解決し、高強度で高耐食のねじを作るためにステンレス鋼の二相領域を利用し、また複雑な熱処理によりねじを加工する方法が特許文献2にて提案されている。   In order to make high-strength, high-corrosion-resistant screws that can replace austenitic stainless steel screws, the problem of internal cracking during forging of the screw head must be solved. In other words, this phenomenon is related to the workability (limit upsetting ratio) characteristics until shear cracking occurs on the side surface when the material is compressed and deformed. In this characteristic, austenitic stainless steel is generally superior to other stainless steels. Because. In order to avoid this internal crack, a high-strength screw cannot be obtained if the hardness of the wire drawing material is lowered by annealing. Patent Document 2 proposes a method of using a stainless steel two-phase region to solve this problem of internal cracks in the head, and making a high-strength, high-corrosion-resistant screw, and processing the screw by complex heat treatment. Has been.

従来、オーステナイト系ステンレスねじの着色には、多種の着色が可能なテンパー着色が主に行われてきたが、フェライト系ステンレスねじでは耐食性が低下するために使用されなかった。また、オーステナイト系ステンレスでは、水酸化ナトリウムを用いた黒染め処理が行われ、これもねじに適用されてきた。着色は黒色系に限定されるが、フェライト系ステンレスにも同様な処理を行うために、硝酸をもちいた黒染めの方法が特許文献3にて提案されている。     Conventionally, temper coloring which can be variously colored has been mainly performed for coloring austenitic stainless steel screws, but ferrite stainless steel screws have not been used because corrosion resistance is lowered. In addition, austenitic stainless steel is subjected to black dyeing using sodium hydroxide, which has also been applied to screws. Although coloring is limited to black, Patent Document 3 proposes a black dyeing method using nitric acid in order to perform the same treatment on ferritic stainless steel.

特開2005−330580号公報JP 2005-330580 A 特開平9−314276号公報JP-A-9-314276 特開2001−20084号公報Japanese Patent Laid-Open No. 2001-20084

高価なニッケルおよび銅が0.5重量%以下あるいは不純物レベルに抑えた低コストのフェライト系ステンレスを用いて、ねじの引張り強さをオーステナイト系ステンレスねじ(SUSXM7)と同等まで向上させ、また、製造工程においては、ねじ成形のための圧造用金型寿命を延長して、ねじ成形のコストを併せて低減させる。すなわち、低コストで、強度においてオーステナイト系ステンレスねじの代用が可能なフェライト系ステンレスねじを提供することを課題とする。     Using low-cost ferritic stainless steel with less than 0.5% by weight of expensive nickel and copper or impurity levels, the tensile strength of screws is improved to the same level as austenitic stainless steel screws (SUSXM7). In the process, the life of the forging die for screw forming is extended and the cost of screw forming is also reduced. That is, an object is to provide a ferritic stainless steel screw that can be used in place of an austenitic stainless steel screw at low cost.

さらに、部材との色合わせのために必要となるねじの着色処理において、オーステナイト系ステンレスのテンパー着色と同様に多種の着色が可能であり、またその耐食性において、このオーステナイト系ステンレスのテンパー着色品と同等以上に向上させることができる前記フェライト系ステンレスの着色されたねじを提供することを課題とする。     Furthermore, in the coloring process of the screw required for color matching with the member, various types of coloring are possible in the same manner as the temper coloring of austenitic stainless steel, and in the corrosion resistance, this austenitic stainless temper colored product It is an object of the present invention to provide a colored screw of the ferritic stainless steel that can be improved to the same level or higher.

本発明のフェライト系ステンレスねじは、クロム量が16〜20重量%、炭素量が0.005〜0.02重量%および窒素量が0.005〜0.02重量%の範囲にあるフェライト系ステンレスねじであって、ねじを加工する前の伸線材の引張り強さが570〜700MPaで、ねじ転造加工後のねじの引張り強さが580〜730MPaであることを特徴とする。   The ferritic stainless steel screw of the present invention is a ferritic stainless steel having a chromium content of 16 to 20% by weight, a carbon content of 0.005 to 0.02% by weight and a nitrogen content of 0.005 to 0.02% by weight. The tensile strength of the wire drawing material before processing the screw is 570 to 700 MPa, and the tensile strength of the screw after thread rolling is 580 to 730 MPa.

さらに、前記フェライト系ステンレスねじであって、0.50μm以下の厚さの酸化発色層生成処理を行うことを特徴とする。   Further, the ferritic stainless steel screw is characterized in that an oxidation coloring layer generation treatment having a thickness of 0.50 μm or less is performed.

本発明によれば、オーステナイト系ステンレスねじと同等の強度をもつフェライト系ステンレスねじの製作が可能となり、また、素材コストのみならず圧造における金型寿命の延長による製造コストを低減して、ねじのトータルコストを大きく削減することができる。また、部材との色合わせのために必要となる着色処理においては多種の着色が可能で、耐食性においてはオーステナイト系ステンレスのテンパー着色品と同等以上の締結用のフェライト系ステンレスねじを作ることが可能となる。   According to the present invention, it is possible to manufacture a ferritic stainless steel screw having the same strength as an austenitic stainless steel screw, and reduce not only the material cost but also the manufacturing cost by extending the die life in the forging, Total cost can be greatly reduced. In addition, various types of coloring are possible in the coloring process required for color matching with members, and it is possible to make ferritic stainless steel screws for fastening that are equal to or better than tempered colored austenitic stainless steel in terms of corrosion resistance. It becomes.

本発明の実施形態について以下、図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1(a)に示す伸線材1の化学成分において、ねじ表面に均一で安定した不働態皮膜を生成させて高い耐食性を得るために、クロム量は16重量%以上とし、また、ねじ成形時およびねじの製品特性にとって有害となる脆化(この場合シグマ脆性)を防止するために、その上限は20重量%とする。   In the chemical composition of the wire drawing material 1 shown in FIG. 1 (a), in order to produce a uniform and stable passive film on the screw surface to obtain high corrosion resistance, the chromium amount is set to 16% by weight or more, and at the time of screw forming In order to prevent embrittlement (in this case, sigma brittleness) that is harmful to the product characteristics of the screw, the upper limit is 20% by weight.

炭素量については、800℃以上の高温でオーステナイト相の生成による冷却時のマルテンサイトの発生を防止し、ねじに有害となる脆化の危険を避けるために、0.05重量%以下が要求される。さらに、限界据え込み率を高めて圧造加工性を向上させるために、窒素を含めてそれぞれを0.02重量%以下に限定した。ただし、加工硬化による強度を確保するために下限をそれぞれ0.005重量%以上とする。こうして、脆化を避けながらねじの強度を確保することができる。   The amount of carbon is 0.05% by weight or less in order to prevent martensite generation during cooling due to the formation of an austenite phase at a high temperature of 800 ° C. or higher and to avoid the risk of embrittlement that is harmful to screws. The Furthermore, in order to increase the limit upsetting rate and improve the forging workability, each including nitrogen was limited to 0.02% by weight or less. However, the lower limit is set to 0.005% by weight or more in order to ensure the strength by work hardening. Thus, the strength of the screw can be ensured while avoiding embrittlement.

一方、前記範囲の炭素量および窒素量では、クロム炭化物およびクロム窒化物の析出が抑制されるので、十分な固溶クロムを表面に残すことにより不働態皮膜そのものを安定化し、また粒界のクロム欠乏相の発生も最小にして粒界腐食を抑える。このように炭素量、窒素量を前記範囲に限定することは、ねじの耐食性の向上にも大きく寄与する。   On the other hand, when the carbon content and nitrogen content are within the above ranges, precipitation of chromium carbide and chromium nitride is suppressed, so that the passive film itself is stabilized by leaving sufficient solid solution chromium on the surface, and chromium at the grain boundary is also present. Minimize the occurrence of deficient phases and suppress intergranular corrosion. Limiting the amount of carbon and the amount of nitrogen to the above ranges greatly contributes to the improvement of the corrosion resistance of the screw.

一般にねじの引張り強さは、図1(a)に示すねじ用の伸線材1の引張り強さと、図1(c)に示す転造加工後のねじ5におけるねじ山谷部6を造るための転造による加工硬化によって決まる。前記成分のフェライト系ステンレスの伸線材1は、圧延および伸線加工され、加工ひずみが導入された線材に所定の焼なまし処理を行った後、低加工率の伸線(スキンパス)が施されるが、これらの加工履歴により伸線材1の引張り強さが決まる。フェライト系ステンレスは結晶粒を微細化して強度を上げることが難しいこと等を踏まえて、われわれは熱処理パラメータ(焼なまし温度×加熱時間の常用対数)を標準のなまし条件よりもやや下げる方向で最適調整することで、該伸線材1の引張り強さを通常のフェライト系ステンレスねじ用伸線材よりも高く設定し、且つその範囲が、続く図1(b)に示すねじ頭加工後のねじ2において、ねじ頭部3やねじ溝部4に割れや欠陥が生じないことを確認して、最適な焼なまし条件とそれに応じた引張り強さの範囲に関する知見を得た。すなわち、焼なまし温度と加熱時間をある範囲に設定することで、伸線材1の引張り強さを570〜700MPaとし、この範囲では、ねじ圧造の際にねじ頭部3およびねじ溝部4の内外周部に割れなどが生じず、図1(c)のねじ山谷部6を転造加工する際の加工硬化により、転造加工後のねじ5の引張り強さが580〜730MPaに上昇することを見出した。   In general, the tensile strength of a screw is the same as that of the wire drawing material 1 for screw shown in FIG. 1 (a) and that for forming a thread valley 6 in the screw 5 after rolling shown in FIG. 1 (c). It depends on the work hardening by construction. The ferritic stainless steel wire drawing material 1 is rolled and drawn, subjected to predetermined annealing treatment, and then subjected to wire drawing (skin pass) at a low processing rate. However, the tensile strength of the wire drawing material 1 is determined by these processing histories. Considering that it is difficult to increase the strength by refining the crystal grains of ferritic stainless steel, we will reduce the heat treatment parameters (annealing temperature x common logarithm of heating time) slightly lower than the standard annealing conditions. By optimal adjustment, the tensile strength of the wire drawing material 1 is set to be higher than that of a normal ferritic stainless steel screw drawing material, and the range of the screw 2 after screw head processing shown in FIG. In the above, it was confirmed that no cracks or defects were generated in the screw head 3 or the screw groove 4, and knowledge about the optimum annealing conditions and the range of the tensile strength corresponding thereto was obtained. That is, by setting the annealing temperature and the heating time in a certain range, the tensile strength of the wire drawing material 1 is set to 570 to 700 MPa. In this range, the inside and outside of the screw head 3 and the screw groove 4 are formed during screw forging. No cracks occur in the peripheral part, and the tensile strength of the screw 5 after the rolling process is increased to 580 to 730 MPa by work hardening when the thread valley part 6 in FIG. 1 (c) is rolled. I found it.

表1に、図1(b)のねじ圧造の際にねじ頭部3およびねじ溝部4の内外周部に割れなどが生じず、且つ圧造加工に用いられる金型の寿命が20000回以上を保証する伸線材1の引張り強さの範囲と転造加工後のねじ5の引張り強さについて、代表的なオーステナイト系ステンレスのSUSXM7ねじ(以下、比較例1とする)および一般的なフェライト系ステンレスのSUS430ねじ(比較例2とする)と本発明品(実施例1および実施例2)の比較を示す。それぞれのねじ加工前の伸線材1の引張り強さを上昇させれば、ねじの引張り強さも上昇するが、金型に負荷がかかり、摩耗あるいは疲労により早期寿命となる。比較例1の伸線材の引張り強さは500〜540MPaに制限され、これを越えると金型の早期寿命で量産が不可能となる。比較例2については限界据えこみ率が小さいため、前出の圧造時の際のねじ頭部3およびねじ溝部4の内外部の欠陥を防ぐためにはその伸線材1の引張り強さは表1の範囲に限定される。   Table 1 shows that there is no cracking in the inner and outer periphery of the screw head 3 and the screw groove 4 during the screw forging shown in FIG. 1 (b), and the life of the mold used for forging is guaranteed to be 20000 times or more. Regarding the range of tensile strength of the drawn wire 1 and the tensile strength of the thread 5 after the rolling process, a typical austenitic stainless steel SUSXM7 screw (hereinafter referred to as Comparative Example 1) and a general ferritic stainless steel A comparison of a SUS430 screw (referred to as Comparative Example 2) and a product of the present invention (Example 1 and Example 2) is shown. If the tensile strength of the wire drawing material 1 before each threading is increased, the tensile strength of the screw also increases, but a load is applied to the mold, and the life is shortened due to wear or fatigue. The tensile strength of the wire drawing material of Comparative Example 1 is limited to 500 to 540 MPa, and if it exceeds this, mass production becomes impossible with an early life of the mold. In Comparative Example 2, since the limit upsetting rate is small, the tensile strength of the wire drawing material 1 is as shown in Table 1 in order to prevent internal and external defects of the screw head 3 and the screw groove 4 during the above-described forging. Limited to range.

Figure 2008256081
Figure 2008256081

部材との色合わせのために必要となる各種のねじの着色には、耐食性を落とさないために120℃以下の低い温度で処理でき、また、高クロムで低炭素および低窒素である該ねじの化学成分の特性を生かして、高耐食の酸化発色皮膜を生成させる。まず、前処理として、該ねじを十分に脱脂・洗浄し、その後、10〜20%の硝酸に浸漬して表面を不働態化処理する。浸漬には、複雑な形状のねじの表面に均一な不働態皮膜を生成させるために、ねじを一定数量投入したバレルケースを回転・撹拌させることが好ましい。こうして不働態皮膜は、ねじ頭部3とねじ溝部4およびねじ山谷部5の隅々まで均一に不働態皮膜を形成して耐食性を保証するとともに、続く酸化発色処理の酸化層の厚さを均一に近づけ、色むらを最小限にする役割を果たす。この後、120℃以下で硫酸をベースにした酸化剤溶液に浸漬して所望する色に応じた厚さの酸化発色層を生成させ、図1(d)に示す着色処理されたねじ7を得る。   The coloring of various screws required for color matching with the member can be processed at a low temperature of 120 ° C. or less so as not to deteriorate the corrosion resistance, and is high chromium, low carbon and low nitrogen. Utilizing the characteristics of chemical components, a highly corrosion-resistant oxidation coloring film is formed. First, as a pretreatment, the screw is sufficiently degreased and washed, and then immersed in 10 to 20% nitric acid to passivate the surface. For dipping, it is preferable to rotate and agitate a barrel case in which a certain number of screws are charged in order to generate a uniform passive film on the surface of the screw having a complicated shape. In this way, the passive film uniformly forms a passive film to every corner of the screw head 3, the screw groove portion 4 and the screw thread valley portion 5 to ensure the corrosion resistance, and the thickness of the oxide layer in the subsequent oxidation color treatment is uniform. It plays a role in minimizing color unevenness. Thereafter, it is immersed in an oxidizing agent solution based on sulfuric acid at 120 ° C. or lower to form an oxidized coloring layer having a thickness corresponding to a desired color, and a colored screw 7 shown in FIG. 1 (d) is obtained. .

一般に、ステンレス鋼の酸化層は光の透過性があり、層の屈折率と厚さの違いによる光路差で特定の波長のものが反射して強調されることにより、色として認識される。厚さは0.50μmを越えると酸化部分と内部の物理的特性の差により剥離等の問題が生じる恐れがあるため、0.50μm以下に限定される。尚、不働態化皮膜は数ナノメートル程度の酸化層であり、不働態化処理のみを施し、透明な酸化膜として金属白色のねじに使用する場合も本発明に含まれる。   In general, a stainless steel oxide layer is light transmissive, and is recognized as a color by reflecting and emphasizing a specific wavelength due to the optical path difference due to the difference in refractive index and thickness of the layer. If the thickness exceeds 0.50 μm, there is a possibility that a problem such as peeling may occur due to a difference in physical properties between the oxidized portion and the inside. The passivated film is an oxide layer of about several nanometers, and the present invention includes a case where only a passivating process is performed and the metal white screw is used as a transparent oxide film.

こうして、素材の成分を生かした不働態化処理および酸化発色処理により、従来のフェライト系ステンレスねじでは難しかった耐食性を有した着色処理が可能となる。すなわち、クロム量および炭素量、窒素量を前記範囲に限定することにより、表面がほぼ均一で十分にクロムが固溶した面で覆われ、局部的なクロム欠乏層が生じることがなく、酸化発色処理後も局部電池ができにくい高耐食な表面構造となる。こうして、テンパー着色処理を施した比較例1のSUSXM7よりも、均一な酸化クロムで覆われることにより、耐食性において本発明のフェライト系ステンレスねじの方が優位となる。   In this way, the passivating process and the oxidative coloring process utilizing the ingredients of the material enable a coloring process having corrosion resistance, which was difficult with conventional ferrite stainless steel screws. In other words, by limiting the amount of chromium, the amount of carbon, and the amount of nitrogen to the above ranges, the surface is almost uniform and sufficiently covered with a solid solution surface of chromium, and a local chromium-deficient layer is not generated, and oxidation coloring Even after treatment, the surface structure becomes highly corrosion-resistant, making it difficult to produce a local battery. Thus, the ferritic stainless steel screw of the present invention is superior in corrosion resistance by being covered with uniform chromium oxide rather than the SUSXM7 of Comparative Example 1 subjected to the temper coloring treatment.

本発明で、M4トラス小ねじを製作した場合の実施例を示す。   An embodiment in the case where an M4 truss machine screw is manufactured according to the present invention will be described.

素材には、炭素量、窒素量を抑えたNSSC160R(新日鐵住金ステンレス株式会社)の伸線用ロッドを使用した。主な成分は、クロム量16.5重量%、炭素量0.01重量%、窒素量0.01重量%で、ニッケル、銅はそれぞれ0.5重量%以下である。上記の素材は、連続鋳造、熱間圧延にてコイル線材φ5.5mmにつくられ、これを穴ダイス伸線加工でφ3.53mmまで伸線後、焼きなましを行い、その後、低加工率伸線(スキンパス)を行いφ3.45mmのねじ成形用の伸線材1を作製した。これを圧造機(ヘッダー)にてねじ頭部3とねじ溝部4を加工してねじ頭加工後のねじ2を作製後、平転造装置にてねじ山谷部6を転造加工してM4トラスの転造加工後のねじ5に成形した。転造加工後のねじ5は、十分に脱脂洗浄後、処理用のバレルケースを回転・撹拌させながら20%硝酸液に約30分浸漬することにより不働態化処理を行った。その後、硫酸をベースにした酸化剤を含む溶液を90℃に加熱してブロンズ色の酸化発色8を得て実施例1とした。実施例2は不働態化処理のみを行い、金属白色のねじとした。また、比較例1にSUSXM7、比較例2にSUS430のブロンズ色のM4トラス小ねじを示す。ただし、比較例1は一般にオーステナイト系ステンレスに行われるテンパー着色処理を行い、また、比較例2は今回の発明品と同等の不働態化処理およびブロンズ色の酸化発色8をおこなった。     NSSC160R (Nippon Steel & Sumikin Stainless Steel Co., Ltd.) wire drawing rod with reduced carbon and nitrogen content was used as the material. The main components are chromium content of 16.5% by weight, carbon content of 0.01% by weight and nitrogen content of 0.01% by weight, and nickel and copper are each 0.5% by weight or less. The above-mentioned material is made into a coil wire φ5.5 mm by continuous casting and hot rolling, and after drawing this to φ3.53 mm by hole die drawing, it is annealed and then drawn at a low processing rate ( (Skin pass) was performed to produce a wire drawing material 1 for screw forming with a diameter of 3.45 mm. After this, the screw head 3 and the screw groove portion 4 are processed by a forging machine (header) to produce the screw 2 after the screw head processing, and then the screw thread valley portion 6 is rolled by a flat rolling device to form an M4 truss. This was formed into a screw 5 after the rolling process. The screw 5 after the rolling process was sufficiently degreased and washed, and then subjected to a passivation treatment by immersing it in a 20% nitric acid solution for about 30 minutes while rotating and stirring the barrel case for treatment. Thereafter, a solution containing an oxidizing agent based on sulfuric acid was heated to 90 ° C. to obtain a bronze oxidative coloring 8 and was taken as Example 1. In Example 2, only the passivation treatment was performed to obtain a metal white screw. Moreover, the comparative example 1 shows SUSDXM7 and the comparative example 2 shows the bronze M4 truss machine screw of SUS430. However, the comparative example 1 performed the temper coloring process generally performed to austenitic stainless steel, and the comparative example 2 performed the passivation process equivalent to the present invention product, and the bronze oxidation coloring 8.

表2に、実施例1、2および比較例1、2の中間加工品および製品の試験結果を示す。金型寿命は、ねじ頭部3およびねじ溝部4の圧造加工用の金型の寿命である。耐食性は、製品である着色処理されたねじ7について、塩水噴霧試験(5%食塩水、JIS)により評価した。実施例1および2は、金型寿命、耐食性において比較例1より優れ、また、ねじの引張り強さおよび耐食性において比較例2よりも優れている。   Table 2 shows the test results of the intermediate processed products and products of Examples 1 and 2 and Comparative Examples 1 and 2. The die life is the life of a die for forging the screw head 3 and the screw groove 4. Corrosion resistance was evaluated by a salt spray test (5% saline, JIS) for the colored screw 7 as a product. Examples 1 and 2 are superior to Comparative Example 1 in mold life and corrosion resistance, and are superior to Comparative Example 2 in tensile strength and corrosion resistance of screws.

Figure 2008256081
Figure 2008256081

本発明に係わるねじを製作する工程を示す図である。It is a figure which shows the process of manufacturing the screw concerning this invention.

符号の説明Explanation of symbols

1 伸線材
2 ねじ頭加工後のねじ
3 ねじ頭部
4 ねじ溝部
5 転造加工後のねじ
6 ねじ山谷部
7 着色処理されたねじ
8 酸化発色
DESCRIPTION OF SYMBOLS 1 Wire drawing material 2 Screw after screw head processing 3 Screw head 4 Screw groove part 5 Screw after rolling process 6 Screw thread valley part 7 Screw processed with coloring 8 Oxidation coloring

Claims (2)

クロム量が16〜20重量%、炭素量が0.005〜0.02重量%および窒素量が0.005〜0.02重量%の範囲にあるフェライト系ステンレスねじであって、ねじを加工する前の伸線材の引張り強さが570〜700MPaで、ねじ転造加工後のねじの引張り強さが580〜730MPaであることを特徴とするフェライト系ステンレスねじ。   A ferritic stainless steel screw having a chromium content of 16 to 20% by weight, a carbon content of 0.005 to 0.02% by weight, and a nitrogen content of 0.005 to 0.02% by weight. A ferritic stainless steel screw characterized in that the tensile strength of the previous wire drawing material is 570 to 700 MPa, and the tensile strength of the screw after thread rolling is 580 to 730 MPa. 前記締結用のフェライト系ステンレスねじであって、0.50μm以下の厚さの酸化発色層生成処理を行うことを特徴とする請求項1に記載のフェライト系ステンレスねじ。
2. The ferritic stainless steel screw according to claim 1, wherein the ferritic stainless steel screw for fastening is subjected to an oxidation coloring layer generation treatment having a thickness of 0.50 μm or less.
JP2007098544A 2007-04-04 2007-04-04 Ferritic stainless steel screw Pending JP2008256081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098544A JP2008256081A (en) 2007-04-04 2007-04-04 Ferritic stainless steel screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098544A JP2008256081A (en) 2007-04-04 2007-04-04 Ferritic stainless steel screw

Publications (1)

Publication Number Publication Date
JP2008256081A true JP2008256081A (en) 2008-10-23

Family

ID=39979843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098544A Pending JP2008256081A (en) 2007-04-04 2007-04-04 Ferritic stainless steel screw

Country Status (1)

Country Link
JP (1) JP2008256081A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021112A (en) * 2019-07-29 2021-02-18 株式会社アサヒメッキ Method of producing chemical coloring stainless steel article

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021112A (en) * 2019-07-29 2021-02-18 株式会社アサヒメッキ Method of producing chemical coloring stainless steel article
JP7272584B2 (en) 2019-07-29 2023-05-12 株式会社アサヒメッキ Method for manufacturing chemically colored stainless steel products

Similar Documents

Publication Publication Date Title
CN101918599B (en) Coating and the method for stiffener members and coating thereof and hardenable strip steel is made for preparing steel
JP2007224366A (en) High strength stainless steel spring and its manufacturing method
JP4632931B2 (en) Induction hardening steel excellent in cold workability and its manufacturing method
TWI606124B (en) Steel for mechanical structure for cold room processing and manufacturing method thereof
JP5413835B2 (en) Soft nitrided crankshaft member and steel material for soft nitrided crankshaft
JP5676146B2 (en) Pressure ring and manufacturing method thereof
TW201928085A (en) Al-base plated steel sheet, method for manufacturing al-base plated steel sheet, and method for manufacturing vehicle component
WO2015023002A1 (en) Pressure ring
KR20140007489A (en) High-strength hot-dipped galvanized steel sheet having excellent plating adhesion, and method for producing same
TWI595101B (en) Cold forging and quenching and tempering after the delay breaking resistance of the wire with excellent bolts, and bolts
JPWO2019111931A1 (en) Aluminum-based plated steel sheet, method for manufacturing aluminum-plated steel sheet, and method for manufacturing automotive parts
JP2014201811A (en) Carburized component, method of manufacturing the same and steel for carburized component
JP5060083B2 (en) Piston ring manufacturing method
JP5099660B2 (en) High strength tapping screw
JP5762843B2 (en) Pressure ring and manufacturing method thereof
JP5763260B2 (en) Wire for pressure ring and manufacturing method thereof
JP2008256081A (en) Ferritic stainless steel screw
JP6095822B1 (en) Martensitic stainless steel sheet and metal gasket manufacturing method
JP6454103B2 (en) Pressure ring
KR20150074645A (en) Material for high carburizing steel and method for producing gear using the same
JP2017186652A (en) Non-heat-treated wire rod for bolt, non-heat-treated steel wire for bolt and methods for manufacturing them, and non-heat-treated bolt
JPH0688166A (en) Die for hot working excellent in heat cracking resistance
WO2016068082A1 (en) Method for manufacturing steel for high-strength hollow spring
JP3779584B2 (en) Linear or bar steel with excellent deformability and machine parts
CN104532167A (en) Preparation method of high temperature-resistant alloy die steel