JP2008255926A - Rankine cycle system - Google Patents

Rankine cycle system Download PDF

Info

Publication number
JP2008255926A
JP2008255926A JP2007100431A JP2007100431A JP2008255926A JP 2008255926 A JP2008255926 A JP 2008255926A JP 2007100431 A JP2007100431 A JP 2007100431A JP 2007100431 A JP2007100431 A JP 2007100431A JP 2008255926 A JP2008255926 A JP 2008255926A
Authority
JP
Japan
Prior art keywords
gas
rankine cycle
heat
cycle system
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007100431A
Other languages
Japanese (ja)
Inventor
Ryoichi Hori
亮一 堀
Norimitsu Matsudaira
範光 松平
Shiro Nakajima
史朗 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2007100431A priority Critical patent/JP2008255926A/en
Publication of JP2008255926A publication Critical patent/JP2008255926A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Rankine cycle system increased in thermal efficiency by forming a high-pressure cycle. <P>SOLUTION: This Rankine cycle system comprises a compressor 2 for increasing the pressure of a liquid medium, an evaporator 3 for changing the pressurized liquid medium into a gas by heating, a superheater 4 for further adding heat to the gas, an expander 5 for converting the energy of the heated gas into a kinetic energy, and a condenser 7 for returning the converted gas into a liquid. A heat source higher in temperature than the heat source of the evaporator 3 is used as the heat source of the supercharger 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、低沸点冷媒を用いたランキンサイクルシステムに関する。   The present invention relates to a Rankine cycle system using a low boiling point refrigerant.

従来、従来熱回生システムとして、車両における冷却水の熱エネルギーを利用して冷媒(R134a等)を気体にし、そのエネルギーを電力や動力に変換するランキンサイクルの研究が行われている。   2. Description of the Related Art Conventionally, as a conventional heat regeneration system, research has been conducted on a Rankine cycle in which refrigerant (R134a or the like) is converted into gas using the thermal energy of cooling water in a vehicle and the energy is converted into electric power or power.

ランキンサイクルのコンポーネント部品としては、液媒体の圧力を上げる圧縮機、圧力が上がった液に熱を加えて気体にする蒸発器、気体に更に熱を加える過熱器、熱が加えられた気体のエネルギーを運動エネルギーに変換する膨張器、変換し終わった気体のエネルギーを液体に戻す凝縮器からなり、蒸発器及び過熱器の熱源としてラジエータの冷却水の熱エネルギーが用いられている(例えば、特許文献1参照。)。
特開2004−308424号公報
Rankine cycle component parts include a compressor that raises the pressure of the liquid medium, an evaporator that heats the liquid that has been pressurized to gas, a superheater that further heats the gas, and the energy of the heated gas Is used as a heat source for the evaporator and superheater (for example, Patent Documents). 1).
JP 2004-308424 A

しかしながら、従来のランキンサイクルでは、ランキンサイクルの熱効率を向上させる為には高圧側(圧縮機出口から膨張器入口までの区間)と低圧側(膨張器出口から圧縮機入口までの区間)の圧力差を大きく取れば良いが、低圧側の圧力を下げると、凝縮器入口の冷媒温度と外気温度との温度差が少なくなるため、凝縮器本体のサイズ(容量)が大きくなりすぎるという問題があり、また、逆に、高圧側の圧力を上げると、熱源であるラジエータの冷却水の温度が100度以下であるため、適当なサイクルを組めなくなるという問題点があった。   However, in the conventional Rankine cycle, in order to improve the thermal efficiency of the Rankine cycle, the pressure difference between the high pressure side (section from the compressor outlet to the expander inlet) and the low pressure side (section from the expander outlet to the compressor inlet) However, if the pressure on the low-pressure side is reduced, the temperature difference between the refrigerant temperature at the condenser inlet and the outside air temperature decreases, so the size (capacity) of the condenser body becomes too large. On the other hand, when the pressure on the high pressure side is increased, the temperature of the cooling water of the radiator, which is the heat source, is 100 degrees or less, so that there is a problem that an appropriate cycle cannot be assembled.

本発明の解決しようとする課題は、高圧のサイクルを組むことが可能になり、熱効率を向上させることができるランキンサイクルシステムを提供することにある。   The problem to be solved by the present invention is to provide a Rankine cycle system capable of assembling a high-pressure cycle and improving thermal efficiency.

上記課題を解決するため請求項1記載のランキンサイクルシステムは、液媒体の圧力を上げる圧縮機と、圧力が上がった液に熱を加えて気体にする蒸発器と、気体に更に熱を加える過熱器と、熱が加えられた気体のエネルギーを運動エネルギーに変換する膨張器と、変換し終わった気体のエネルギーを液体に戻す凝縮器とを備えたランキンサイクルシステムにおいて、前記過熱器の熱源として前記蒸発器の熱源より高い温度の熱源が用いられることを特徴とする手段とした。   In order to solve the above-mentioned problem, a Rankine cycle system according to claim 1 is a compressor for increasing the pressure of a liquid medium, an evaporator for adding heat to a liquid whose pressure has been increased to form a gas, and superheating for further adding heat to the gas. In the Rankine cycle system comprising: a condenser; an expander that converts energy of the heated gas into kinetic energy; and a condenser that converts the converted energy of the gas back into a liquid, as the heat source of the superheater A heat source having a temperature higher than that of the evaporator is used.

本発明のランキンサイクルシステムでは、上述のように、過熱器の熱源として蒸発器の熱源より高い温度の熱源が用いられることにより、高圧のサイクルを組むことが可能になり、熱効率を向上させることができるようになるという効果が得られる。   In the Rankine cycle system of the present invention, as described above, a heat source having a higher temperature than the heat source of the evaporator is used as the heat source of the superheater, so that a high-pressure cycle can be assembled and the thermal efficiency can be improved. The effect of being able to do it is obtained.

以下にこの発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

この実施例のランキンサイクルシステムは、請求項1〜3に記載の発明に対応する。   The Rankine cycle system of this embodiment corresponds to the invention described in claims 1 to 3.

まず、この実施例のランキンサイクルシステムを図面に基づいて説明する。   First, the Rankine cycle system of this embodiment will be described with reference to the drawings.

図1はこの実施例のランキンサイクルシステムが車両の廃熱を利用するランキンサイクルシステムに適用された例を示すシステム図、図2はこの実施例の作用を説明する圧力−エンタルピ線図である。   FIG. 1 is a system diagram showing an example in which the Rankine cycle system of this embodiment is applied to a Rankine cycle system using waste heat of a vehicle, and FIG. 2 is a pressure-enthalpy diagram illustrating the operation of this embodiment.

このランキンサイクルシステムが適用される車両の廃熱を利用するランキンサイクルシステムは、図1に示すように、液媒体の圧力を上げる圧縮機2と、圧力が上がった液冷媒にさらに熱を加えて気体にする蒸発器3と、気体に更に熱を加える過熱器4と、熱が加えられた気体のエネルギーを運動エネルギーに変換する膨張器5と、変換された運動エネルギーで発電する発電機51と、電気を保存するバッテリ6と、変換し終わった気体のエネルギーを液冷媒に戻す凝縮器7と、を備えている。   As shown in FIG. 1, the Rankine cycle system using waste heat of a vehicle to which the Rankine cycle system is applied is configured such that a compressor 2 that raises the pressure of the liquid medium and further heat is applied to the liquid refrigerant that has increased in pressure. An evaporator 3 for converting gas, a superheater 4 for further applying heat to the gas, an expander 5 for converting the energy of the heated gas into kinetic energy, and a generator 51 for generating electric power using the converted kinetic energy, The battery 6 for storing electricity and the condenser 7 for returning the converted energy of the gas to the liquid refrigerant are provided.

さらに詳述すると、この実施例では、冷媒として低沸点冷媒(R−134a)が用いられ、また、上記蒸発器3の熱源として、エンジン8で発生した廃熱エネルギーであるラジエータ9の冷却水の熱エネルギーが用いられる一方、上記過熱器4の熱源として、ラジエータ9の冷却水の熱よりは高い温度であるトランスミッション10のミッションオイルが用いられている。   More specifically, in this embodiment, a low boiling point refrigerant (R-134a) is used as the refrigerant, and the cooling water of the radiator 9 which is waste heat energy generated in the engine 8 is used as the heat source of the evaporator 3. While heat energy is used, the transmission oil of the transmission 10 having a temperature higher than the heat of the cooling water of the radiator 9 is used as the heat source of the superheater 4.

次に、この実施例の作用を説明する。   Next, the operation of this embodiment will be described.

この実施例のランキンサイクルシステムでは上述のように構成されるため、圧縮機2から吐出された高圧の液冷媒は、蒸発器3においてエンジン8で発生した廃熱エネルギー(ラジエータ9の冷却水の熱エネルギー)によって熱が加えられた後、過熱器4においてさらに熱が加えられて高圧の気体に変換される。   Since the Rankine cycle system of this embodiment is configured as described above, the high-pressure liquid refrigerant discharged from the compressor 2 is the waste heat energy generated by the engine 8 in the evaporator 3 (the heat of the cooling water of the radiator 9). After heat is applied by (energy), further heat is applied in the superheater 4 and converted into a high-pressure gas.

この熱が加えられた気体のエネルギーは、膨張機5において運動エネルギーに変換され、この運動エネルギーで発電機51を回転させることで電気エネルギーに変換され、バッテリ6に蓄電される。   The energy of the gas to which this heat is applied is converted into kinetic energy in the expander 5, and is converted into electric energy by rotating the generator 51 with this kinetic energy, and is stored in the battery 6.

そして、変換し終わった気体のエネルギーは凝縮器7で液冷媒に戻された後、圧縮機2に戻され、再び圧縮して送り出される。   The converted energy of the gas is returned to the liquid refrigerant by the condenser 7 and then returned to the compressor 2 where it is compressed again and sent out.

次に、この実施例の効果を説明する。   Next, the effect of this embodiment will be described.

この実施例のランキンサイクルシステムでは、上述のように、過熱器4の熱源として蒸発器3の熱源より高い温度の熱源が用いられることにより、高圧のサイクルを組むことが可能になり、これにより、熱効率を向上させることができるようになるという効果が得られる。   In the Rankine cycle system of this embodiment, as described above, a heat source having a higher temperature than the heat source of the evaporator 3 is used as the heat source of the superheater 4, thereby making it possible to form a high-pressure cycle. The effect that thermal efficiency can be improved is obtained.

また、この実施例のランキングサイクルシステムでは、冷媒として低沸点冷媒(R−134a)が用いられているが、従来のように蒸発器3と過熱器4の熱源としてラジエータの冷却水を用いた場合は、冷却水温度領域が100度以下であるため、図2の点線で示すように、高圧側を冷媒臨界圧P以上にすることができないのに対し、この実施例では、過熱器4の熱源として100度以上のミッションオイルを用いることにより、図2の実線で示すように、高圧側を冷媒臨界圧P以上にする事ができ、これにより、冷媒臨界圧以下でのサイクルより少ない熱量で気体にすることが出来、膨脹機5に液体が流れる事が少なくなる。   Further, in the ranking cycle system of this embodiment, a low boiling point refrigerant (R-134a) is used as the refrigerant, but when the cooling water of the radiator is used as the heat source of the evaporator 3 and the superheater 4 as in the prior art. Since the cooling water temperature region is 100 degrees or less, the high pressure side cannot be made higher than the refrigerant critical pressure P as shown by the dotted line in FIG. 2, whereas in this embodiment, the heat source of the superheater 4 As shown by the solid line in FIG. 2, the high pressure side can be set to the refrigerant critical pressure P or higher as shown by the solid line in FIG. The liquid can flow less into the expander 5.

また、過熱器4の熱源にトランスミッション10のミッションオイルを利用することで、過熱器4がミッションオイルを冷やすクーラーの役割を果たす。   Further, by using the transmission oil of the transmission 10 as a heat source for the superheater 4, the superheater 4 serves as a cooler for cooling the transmission oil.

以上本実施例を説明してきたが、本発明は上述の実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。   Although the present embodiment has been described above, the present invention is not limited to the above-described embodiment, and design changes and the like within the scope not departing from the gist of the present invention are included in the present invention.

例えば、実施例では、車両の廃熱を利用する例を示したが、熱源は任意である。また、車両に適用する場合、蒸発器3の熱源としては、排気ガスの熱を利用するようにしてもよい。   For example, in the embodiment, the example of using the waste heat of the vehicle is shown, but the heat source is arbitrary. Moreover, when applying to a vehicle, as a heat source of the evaporator 3, you may make it utilize the heat | fever of exhaust gas.

実施例のランキンサイクルシステムが車両の廃熱を利用するランキンサイクルに適用された例を示すシステム図である。It is a system figure showing an example where a Rankine cycle system of an example was applied to a Rankine cycle using waste heat of vehicles. 実施例の作用を説明する圧力−エンタルピ線図である。It is a pressure-enthalpy diagram explaining the effect | action of an Example.

符号の説明Explanation of symbols

2 圧縮機
3 蒸発器
4 過熱器
5 膨張器
51 発電機
6 バッテリ
7 凝縮器
8 エンジン
9 ラジエータ
10 トランスミッション
2 Compressor 3 Evaporator 4 Superheater 5 Expander 51 Generator 6 Battery 7 Condenser 8 Engine 9 Radiator 10 Transmission

Claims (3)

液媒体の圧力を上げる圧縮機と、圧力が上がった液に熱を加えて気体にする蒸発器と、気体に更に熱を加える過熱器と、熱が加えられた気体のエネルギーを運動エネルギーに変換する膨張器と、変換し終わった気体のエネルギーを液体に戻す凝縮器とを備えたランキンサイクルシステムにおいて、
前記過熱器の熱源として前記蒸発器の熱源より高い温度の熱源が用いられることを特徴とするランキンサイクルシステム。
A compressor that raises the pressure of the liquid medium, an evaporator that adds heat to the gas to increase the gas to a gas, a superheater that adds more heat to the gas, and converts the energy of the heated gas into kinetic energy In a Rankine cycle system comprising an expander and a condenser for returning the energy of the converted gas to a liquid,
A Rankine cycle system, wherein a heat source having a temperature higher than that of the evaporator is used as a heat source of the superheater.
請求項1に記載のランキンサイクルシステムにおいて、前記蒸発器の熱源として内燃機関における冷却水の熱エネルギー、又は排気ガスの熱が用いられ、前記過熱器の熱源としてミッションオイルの熱が用いられることを特徴とするランキンサイクルシステム。   In the Rankine cycle system according to claim 1, heat energy of cooling water in an internal combustion engine or heat of exhaust gas is used as a heat source of the evaporator, and heat of mission oil is used as a heat source of the superheater. Characteristic Rankine cycle system. 請求項1または2に記載のランキンサイクルシステムにおいて、低沸点冷媒が用いられていることを特徴とするランキンサイクルシステム。   The Rankine cycle system according to claim 1 or 2, wherein a low boiling point refrigerant is used.
JP2007100431A 2007-04-06 2007-04-06 Rankine cycle system Pending JP2008255926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007100431A JP2008255926A (en) 2007-04-06 2007-04-06 Rankine cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007100431A JP2008255926A (en) 2007-04-06 2007-04-06 Rankine cycle system

Publications (1)

Publication Number Publication Date
JP2008255926A true JP2008255926A (en) 2008-10-23

Family

ID=39979719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007100431A Pending JP2008255926A (en) 2007-04-06 2007-04-06 Rankine cycle system

Country Status (1)

Country Link
JP (1) JP2008255926A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101087544B1 (en) 2009-10-06 2011-11-29 한국에너지기술연구원 Rankine power cycle and Control system
US8415699B2 (en) 2010-04-15 2013-04-09 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, and illumination system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101087544B1 (en) 2009-10-06 2011-11-29 한국에너지기술연구원 Rankine power cycle and Control system
US8415699B2 (en) 2010-04-15 2013-04-09 Lg Innotek Co., Ltd. Light emitting device, light emitting device package, and illumination system

Similar Documents

Publication Publication Date Title
Zhou et al. A review and future application of Rankine Cycle to passenger vehicles for waste heat recovery
CA2743764C (en) Dual cycle rankine waste heat recovery cycle
AU2010264462B2 (en) System and method for managing thermal issues in one or more industrial processes
Teng et al. Achieving high engine efficiency for heavy-duty diesel engines by waste heat recovery using supercritical organic-fluid Rankine cycle
EP2522828A2 (en) Organic rankine cycle systems using waste heat from charge air cooling
EP2514931A1 (en) Integration of waste heat from charge air cooling into a cascaded organic rankine cycle system
Latz et al. Selecting an expansion machine for vehicle waste-heat recovery systems based on the Rankine cycle
CN101892879A (en) Thermal power plant waste heat generating set using working medium phase-change circulation
JP2006348876A (en) Steam supply system and power generation plant
CN105102769A (en) Waste heat recovery system and a method of controlling the mass flow rate of a positive displacement expander comprised in such a system
CN104929805A (en) Vehicle engine waste heat recycling device using reheat type organic Rankine cycle technology
WO2016002711A1 (en) Waste heat regeneration system
JP2008255926A (en) Rankine cycle system
CN107208572B (en) Heat exchanger, energy recycle device and ship
JP2005273543A (en) Waste heat utilization device
JP2008202474A (en) Exhaust heat recovery device and engine
Zhao et al. Study on the performance of organic Rankine cycle-heat pump (ORC-HP) combined system powered by diesel engine exhaust
CN204984638U (en) Vehicle engine waste heat recovery device of organic rankine cycle of hot type technique again
JP2011140879A (en) Waste heat recovery system of supercharged engine
JP2006258087A (en) Rotary type external combustion engine
US20150240668A1 (en) Working medium mixture for steam engines
JP6298369B2 (en) Waste heat recovery device
Jung et al. Study on the Application of the Waste Heat Recovery System to Heavy-Duty Series Hybrid Electric Vehicles
JP2015140669A (en) waste heat regeneration system
JP2008255863A (en) Rankine cycle system