JP2008255550A - Water-swelling fibrillated fiber and sheet-like material using the same - Google Patents

Water-swelling fibrillated fiber and sheet-like material using the same Download PDF

Info

Publication number
JP2008255550A
JP2008255550A JP2007292149A JP2007292149A JP2008255550A JP 2008255550 A JP2008255550 A JP 2008255550A JP 2007292149 A JP2007292149 A JP 2007292149A JP 2007292149 A JP2007292149 A JP 2007292149A JP 2008255550 A JP2008255550 A JP 2008255550A
Authority
JP
Japan
Prior art keywords
water
swellable
fibrillated fiber
fiber
fibrillated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007292149A
Other languages
Japanese (ja)
Other versions
JP4866332B2 (en
Inventor
Makoto Otsubo
誠 大坪
Tetsuya Akamatsu
哲也 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2007292149A priority Critical patent/JP4866332B2/en
Publication of JP2008255550A publication Critical patent/JP2008255550A/en
Application granted granted Critical
Publication of JP4866332B2 publication Critical patent/JP4866332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Artificial Filaments (AREA)
  • Paper (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fibrillated fiber in which binder performance such as dispersibility, adhesiveness and drying shrinkage property of an aromatic polyamide fibrid which is existing water-swelling fibrillated fiber are enhanced. <P>SOLUTION: The water-swelling fibrillated fiber is composed of para-aromatic polyamide and satisfies the following items: (a) catching ratio of the fiber using a wire net having 37 μm wire intervals and 42 mesh is ≤3 wt.% and a wire net through content of the fiber using a wire net having 10 μm wire intervals and 140 mesh is ≥30 wt.% in a sieving test, (b) water content of the fiber has 70-99% water content and (c) the fiber has fibrils having ≤100 nm fiber diameter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高機能紙等の用途で使用されるフィブリル化繊維及びそれを含有するシート状物及びその製造方法に関する。   The present invention relates to a fibrillated fiber used for applications such as high-performance paper, a sheet-like material containing the same, and a method for producing the same.

従来から電池・キャパシタセパレータ、電気絶縁紙、フィルターペーパー、プリント配線基板用基材、湿式摩擦材紙などに代表される高機能紙の紙力増強を目的として、様々な手法が提案されている。例えば、(1)抄紙密度を上げる、(2)繊維状結合材を添加するなどである。これらの手法が有効な場合もあるが、含浸紙の分野においては未だ効果的な方法が見出せていない。   Conventionally, various methods have been proposed for the purpose of enhancing the paper strength of high-performance paper represented by battery / capacitor separator, electrical insulating paper, filter paper, printed wiring board base material, wet friction material paper and the like. For example, (1) increasing the papermaking density, (2) adding a fibrous binder. Although these methods may be effective, an effective method has not yet been found in the field of impregnated paper.

即ち、(1)の方法は、製造時の機械的な制約のために限界があり、強度の改良にはそれほど貢献しない。また、(2)の方法に関しては、特開昭58−197400号公報にセルロースパルプ繊維を水中に懸濁させ、高圧化にホモジナイザーを繰り返し通過させる特殊な叩解手段を適用させて製造されたマイクロフィブリル化セルロースを結合材として添加する手法が提案され、抄紙原料中に少量添加することで、確かに紙力の増強は見られるが、この繊維はセルロースからなるため、耐熱性などの面でその使用分野に制約がでるといった問題点がある。   That is, the method (1) has a limit due to mechanical limitations during manufacturing and does not contribute much to the improvement of strength. Regarding the method (2), a microfibril produced by applying special beating means in which cellulose pulp fibers are suspended in water and repeatedly passed through a homogenizer for high pressure is disclosed in JP-A-58-197400. A method of adding cellulose acetate as a binder has been proposed, and by adding a small amount in the papermaking raw material, the paper strength is certainly enhanced, but since this fiber is made of cellulose, its use in terms of heat resistance etc. There is a problem that the field is restricted.

一方、特開平3−152130号公報及び特公平8−19633号公報では原料に耐熱性に優れる芳香族ポリアミドなどの剛直鎖合成高分子短繊維を用い、高圧化でのホモジナイザー処理で叩解処理を施した微細なフィブリルを数多く有する繊維状物を抄紙原料に添加することで、フィブリル同士の絡合によりペーパーシート強度が向上し、また、ポリマー自体の物性も反映して耐熱性、電気絶縁性にも優れたペーパーシートが得られることを考案している。しかし、ホモジナイザー処理により発生した剛直鎖合成高分子短繊維のフィブリルによる紙補強メカニズムは微細なフィブリル同士の絡合のみであり、補強効果は十分とは言えなかった。   On the other hand, in Japanese Patent Application Laid-Open No. 3-152130 and Japanese Patent Publication No. 8-19633, a rigid linear synthetic polymer short fiber such as an aromatic polyamide having excellent heat resistance is used as a raw material, and a beating process is performed by a homogenizer process at high pressure. By adding a fibrous material having many fine fibrils to the papermaking raw material, the strength of the paper sheet is improved by entanglement of the fibrils, and the heat resistance and electrical insulation properties are also reflected, reflecting the physical properties of the polymer itself. It is devised that an excellent paper sheet can be obtained. However, the paper reinforcement mechanism by the fibrils of the rigid linear synthetic polymer short fibers generated by the homogenizer treatment is only entanglement between the fine fibrils, and the reinforcement effect cannot be said to be sufficient.

これに対し、WO2004/099476号公報、特公昭35−11851号公報、特公昭37−5732号公報等に示される芳香族ポリアミドフィブリッドは、繊維内部に多量の水分を保持しているために乾燥時に大きく収縮し、又芳香族ポリアミドフィブリッド同士もしくは他成分を接着するバインダー機能を発揮することが知られている。したがって、これらを添加した紙の補強メカニズムは繊維の接着、絡合のみではなく、絡合した状態での乾燥収縮による抱きかかえ効果も加わってさらに強度の高いシート状物が得られる。しかしながら、繊維径の大きい成分を多量に含む芳香族ポリアミドフィブリッドは抄造法などによりシート化した際にフィブリッドの分散性が悪く、十分にそのバインダー機能が活かされていなかった。又さらに接着性や乾燥収縮性の向上したフィブリル化繊維が望まれていた。   On the other hand, the aromatic polyamide fibrids shown in WO2004 / 099476, JP-B-35-11851, JP-B-37-5732, etc. are dried because they retain a large amount of moisture inside the fiber. It is known that it sometimes shrinks greatly and exhibits a binder function for bonding aromatic polyamide fibrids or other components. Therefore, the reinforcing mechanism of the paper to which these are added is not only the adhesion and entanglement of the fibers, but also the holding effect due to drying shrinkage in the entangled state, and a sheet material having higher strength can be obtained. However, an aromatic polyamide fibrid containing a large amount of a component having a large fiber diameter has poor dispersibility of the fibrid when formed into a sheet by a papermaking method or the like, and the binder function has not been fully utilized. Further, fibrillated fibers having improved adhesion and drying shrinkage have been desired.

特開昭58−197400号公報JP 58-197400 A 特開平3−152130号公報JP-A-3-152130 特公平8−19633号公報Japanese Patent Publication No.8-19633 WO2004/099476号公報WO2004 / 099476 特公昭35−11851号公報Japanese Patent Publication No. 35-11851 特公昭37−5732号公報Japanese Patent Publication No. 37-5732

現行芳香族ポリアミドフィブリッドの分散性、接着性、乾燥収縮性等バインダー性能を高めたフィブリル繊維を提供する。   Provided is a fibril fiber having improved binder properties such as dispersibility, adhesion, and drying shrinkage of current aromatic polyamide fibrils.

特定の有機高分子重合体からなり、 篩い分け試験において線間隔37μm、42メッシュ金網の捕集割合が3wt%以下、且つ線間隔10μm、140メッシュ金網通過分が30wt%以上であり、含水率が70〜99%であり、繊維径100nm以下のフィブリルを有する水膨潤性フィブリル化繊維とする。   It consists of a specific organic polymer, and in the sieving test, the line spacing is 37 μm, the collection rate of 42 mesh wire mesh is 3 wt% or less, the line interval is 10 μm, and the 140 mesh wire mesh passage is 30 wt% or more, A water-swellable fibrillated fiber having a fibril with a fiber diameter of 100 nm or less is 70 to 99%.

該水膨潤性フィブリル化繊維は、有機高分子重合体溶液を水系凝固液中に導入し、攪拌等のせん断をかけた状態で凝固させることによって得られた有機高分子重合体含水成形物及び/又は該有機高分子重合体含水成形物を原料として叩解処理して得られたものであり、繊維結晶構造内部に多量に水を保持しているため公知のリファイナーやビーター、ミル、高圧ホモジナイザー、摩砕装置等で処理することによって容易に繊維粒子サイズを細かくすることが出来、又繊維径100nm以下の微細なフィブリルを多量に有するものとすることが出来る。その結果として表面積が大幅に増大するためフィブリッド同士もしくは他成分との接着や絡合が増加するだけでなく、乾燥収縮も増大しバインダー機能が向上する。本発明の水膨潤性フィブリル化繊維を含むシート状物は大幅に強度等が向上する。   The water-swellable fibrillated fiber is obtained by introducing an organic polymer solution into an aqueous coagulation solution and coagulating it in a state where shearing such as stirring is applied, and / Alternatively, it is obtained by beating the organic polymer polymer-containing molded product as a raw material, and since a large amount of water is retained inside the fiber crystal structure, a known refiner, beater, mill, high-pressure homogenizer, By treating with a crusher or the like, the fiber particle size can be easily reduced, and a large amount of fine fibrils having a fiber diameter of 100 nm or less can be provided. As a result, the surface area is greatly increased, so that not only adhesion and entanglement between fibrids or other components is increased, but also drying shrinkage is increased and the binder function is improved. The sheet-like material containing the water-swellable fibrillated fiber of the present invention is greatly improved in strength and the like.

本発明でいう水膨潤性フィブリル化繊維とは、一般的なフィブリル化繊維(一般的にフィブリル化繊維とは、繊維形成性重合体の短繊維をリファイナーやビーター、ミル、高圧ホモジナイザー、摩砕装置等の装置によりその主軸に沿って機械的、物理的にランダムに解裂して形成された多数のフィブリルを有する繊維状物を指す)と異なり、微小のフィブリルを多数有する微小短繊維で且つ繊維の結晶構造が強固に形成されること無く、非結晶状態で水分子又は水分が結晶構造内に存在するようなもの(単にフィブリッドとも呼ぶこともある)のフィブリル化度合いが更に進んだものを指す。このような水膨潤性フィブリル化繊維は有機高分子重合体溶剤溶液を有機高分子重合体の貧溶媒或いは非溶媒凝固液中に導入し、攪拌等のせん断をかけた状態で凝固させることによって得られた微小のフィブリルを有する薄葉状、鱗片状の小片、又は、ランダムにフィブリル化した微小繊維を更に叩解処理して得られる。   The water-swellable fibrillated fiber referred to in the present invention is a general fibrillated fiber (generally a fibrillated fiber is a fiber-forming polymer short fiber refiner, beater, mill, high-pressure homogenizer, grinding device. Unlike a fibrous material having a large number of fibrils formed by mechanically and physically randomly cleaving along its main axis by an apparatus such as a device, a short fiber having a large number of microfibrils and a fiber This means that the degree of fibrillation is further advanced in the case where water molecules or moisture are present in the crystal structure in an amorphous state (sometimes simply referred to as fibrils) without forming a solid crystal structure. . Such a water-swellable fibrillated fiber is obtained by introducing an organic polymer polymer solvent solution into a poor solvent or non-solvent coagulating solution of the organic polymer polymer and coagulating it in a state where shearing such as stirring is applied. It is obtained by further beating a thin leaf-like or scaly piece having fine fibrils formed or randomly fibrillated fine fibers.

本発明における「有機高分子重合体」としては、パラ型全芳香族ポリアミドや、メタ型全芳香族ポリアミド、ポリ−p−フェニレンベンゾビスオキサゾール(PBO)ホモポリマー等があげられるが、有機高分子重合体の種類、構造、重合度などは特に限定されるものではなく、溶剤に溶解可能な有機高分子重合体で、且つその有機高分子重合体が水を主体とした凝固液で凝固される有機高分子重合体および溶媒であれば特に限定されるものではない。   Examples of the “organic polymer” in the present invention include para-type wholly aromatic polyamide, meta-type wholly aromatic polyamide, poly-p-phenylenebenzobisoxazole (PBO) homopolymer, and the like. The type, structure, degree of polymerization, etc. of the polymer are not particularly limited. The polymer is an organic polymer that can be dissolved in a solvent, and the organic polymer is solidified by a coagulation liquid mainly composed of water. There is no particular limitation as long as it is an organic polymer and a solvent.

本発明において、「芳香族ポリアミド」とは、アミド結合の60%以上、好ましくは85%以上が芳香環に直接結合した線状高分子化合物を意味する。このような芳香族ポリアミドとしては、例えば、ポリメタフェニレンイソフタルアミドおよびその共重合体、ポリパラフェニレンテレフタルアミドおよびその共重合体、ポリ(パラフェニレン)−コポリ(3,4−ジフェニルエーテル)テレフタルアミドなどが挙げられるが、これに限定されるものではない。高耐熱性および耐化学薬品性の観点から、ポリパラフェニレンテレフタルアミド、もしくは、その共重合体であるポリ(パラフェニレン)−コポリ(3,4−ジフェニルエーテル)テレフタルアミドが好ましい。   In the present invention, “aromatic polyamide” means a linear polymer compound in which 60% or more, preferably 85% or more of amide bonds are directly bonded to an aromatic ring. Examples of such aromatic polyamides include polymetaphenylene isophthalamide and copolymers thereof, polyparaphenylene terephthalamide and copolymers thereof, poly (paraphenylene) -copoly (3,4-diphenyl ether) terephthalamide, and the like. However, it is not limited to this. From the viewpoint of high heat resistance and chemical resistance, polyparaphenylene terephthalamide or poly (paraphenylene) -copoly (3,4-diphenyl ether) terephthalamide which is a copolymer thereof is preferable.

本発明における好ましい水膨潤性フィブリル化繊維としては、例えば、WO2004/099476号公報、特公昭35−11851号公報、特公昭37−5732号公報等に記載された方法により、アラミド重合体溶液をその沈澱剤とを剪断力の存在する系において混合することにより製造されるフィブリッドや、特公昭59−603号公報に記載された方法により、光学的異方性を示す高分子重合体溶液から成形した分子配向性を有する成形物に、叩解等の機械的剪断力を与えてランダムにフィブリル化させたものを例示することができる。   As a preferred water-swellable fibrillated fiber in the present invention, for example, an aramid polymer solution is prepared by the method described in WO2004 / 099476, JP-B-35-11851, JP-B-37-5732, etc. Molded from a polymer solution exhibiting optical anisotropy by a fibrid produced by mixing with a precipitating agent in a system in which shear force exists, or by the method described in Japanese Patent Publication No. 59-603. Examples of the molded product having molecular orientation may include fibrillation at random by applying mechanical shearing force such as beating.

又本発明の水膨潤性フィブリル化繊維は製造工程で乾燥、その製造において一旦乾燥工程を経ている芳香族ポリアミド短繊維をリファイナーやビーター、ミル、高圧ホモジナイザー、摩砕装置等の処理により高度にフィブリル化させた芳香族ポリアミドパルプとは異なり、乾燥時に大きな収縮を示す。このとき、水膨潤性フィブリル化繊維同士及び他成分を抱きかかえた状態で乾燥収縮するため、優れたバインダー性能を有する。   The water-swellable fibrillated fiber of the present invention is dried in the production process, and the aromatic polyamide short fiber once subjected to the drying process in the production is highly fibrillated by treatment with a refiner, beater, mill, high-pressure homogenizer, grinding device, etc. Unlike the aromatic polyamide pulp, which is made into a large amount, it shows a large shrinkage when dried. At this time, since the water-swellable fibrillated fibers and other components are held and dried and contracted, it has excellent binder performance.

含水率が70wt%以上であれば上記で説明した方法で得られた水膨潤性フィブリル化繊維に限定されるものではなく、例えば、フィルムやフィラメント製造工程において意図的に乾燥させずに上記のような叩解等のフィブリル化処理を施して得られた水膨潤性フィブリル化繊維でもかまわない。   If the water content is 70 wt% or more, it is not limited to the water-swellable fibrillated fiber obtained by the method described above. For example, as described above without intentionally drying in the film or filament manufacturing process Water-swellable fibrillated fibers obtained by performing a fibrillation treatment such as beating may be used.

また、本発明の水膨潤性フィブリル化繊維の粒子サイズとして、JIS P−8207で規定されている篩い分け度試験機を用いて、42メッシュ金網の捕集割合が3wt%以下かつ、140メッシュ金網通過分が30wt%以上であることが必要で、50wt%以上であることがより好まく、80wt%以上であることがさらに好ましい。該水膨潤フィブリル化繊維の含水率が70〜99wt%であっても、42メッシュ金網捕集分が3wt%以上もしくは140メッシュ金網通過分が30wt%以下であるときは、これらを用いてシート状物を作成しても水膨潤フィブリル化繊維の分散性が悪いため均質なシートが得られず、十分な強力が得られない。   Further, as a particle size of the water-swellable fibrillated fiber of the present invention, using a sieving degree tester specified in JIS P-8207, the collection rate of 42 mesh wire mesh is 3 wt% or less and 140 mesh wire mesh. The passing portion needs to be 30 wt% or more, more preferably 50 wt% or more, and further preferably 80 wt% or more. Even when the water content of the water-swelled fibrillated fiber is 70 to 99 wt%, when the 42 mesh wire mesh collection is 3 wt% or more or the 140 mesh wire mesh passage is 30 wt% or less, these are used to form a sheet Even if the product is made, the dispersibility of the water-swelled fibrillated fibers is poor, so that a homogeneous sheet cannot be obtained and sufficient strength cannot be obtained.

また、一般的にパルプもしくはフィブリッド等のフィブリル化した繊維を紙用バインダーとして用いる場合、繊維同士の絡合が重要となるため、それらの接触面積、つまりバインダーとして用いるフィブリル化繊維の比表面積が大きい方が紙強力の向上に対する寄与が大きい。したがって、本発明の水膨潤性フィブリル化繊維は繊維同士の接触面積を増大させるために100nm以下の径の超極細フィブリルを有するものとしている。100nm以下の径のフィブリルとは例えば図1に示すようなものを例示することが出来る。   In general, when fibrillated fibers such as pulp or fibril are used as a paper binder, since the entanglement between the fibers becomes important, their contact area, that is, the specific surface area of the fibrillated fibers used as the binder is large. The contribution to the improvement of paper strength is greater. Therefore, the water-swellable fibrillated fiber of the present invention has ultrafine fibrils having a diameter of 100 nm or less in order to increase the contact area between the fibers. Examples of fibrils having a diameter of 100 nm or less include those shown in FIG.

このようなフィブリルを有する水膨潤性フィブリル化繊維は、WO2004/099476号公報、特公昭35−11851号公報、特公昭37−5732号公報等に記載された方法により得られたフィブリッドを更にリファイナーやビーター、ミル、高圧ホモジナイザー、摩砕装置等により叩解、微細化することにより得ることができるし、又前述のフィブリッドから微小サイズのものを公知の分級装置を用いて分級することによっても得ることができる。好ましくは前者の方法で得られたものである。但し本発明の要件を満足するものであれば両者を混合して用いても差し支えない。   The water-swellable fibrillated fiber having such fibrils is obtained by further converting a fibril obtained by the method described in WO2004 / 099476, JP-B-35-11851, JP-B-37-5732, etc. It can be obtained by beating, refining with a beater, mill, high-pressure homogenizer, grinding device, etc., or it can also be obtained by classifying a fine size from the aforementioned fibrids using a known classifier. it can. Preferably it is obtained by the former method. However, both may be used in combination as long as they satisfy the requirements of the present invention.

製造した水膨潤性フィブリル化繊維の42メッシュ金網捕集分が3wt%以上もしくは140メッシュ金網通過分が30wt%以下である場合、または100nm以下のフィブリル径を有していない場合は、再度ディスクリファイナー、ビーター、高圧ホモジナイザー、その他の機械的切断作用を及ぼす抄紙原料処理機器によ離解、叩解処理を施すことができる。   If the 42-mesh wire mesh collected part of the produced water-swellable fibrillated fiber is 3 wt% or more, or the 140-mesh wire mesh passing part is 30 wt% or less, or if it does not have a fibril diameter of 100 nm or less, the disc refiner is used again. Disintegration and beating can be performed by a papermaking raw material processing apparatus that exerts a mechanical cutting action, such as a beater, a high-pressure homogenizer, and the like.

更に本発明の水膨潤性フィブリル化繊維は、含水率は70〜99wt%であることが必要である。含水率が70wt%未満の場合、乾燥収縮に基づくバインダー性能が劣り、紙等に添加した際に十分な機械的強度が得られない。また、含水率が99wt%以上であると、水を多量に含むため取り扱い性が悪い。   Further, the water-swellable fibrillated fiber of the present invention needs to have a water content of 70 to 99 wt%. When the water content is less than 70 wt%, the binder performance based on drying shrinkage is inferior, and sufficient mechanical strength cannot be obtained when added to paper or the like. In addition, when the water content is 99 wt% or more, the handling property is poor because a large amount of water is contained.

一般的なフィブリル化繊維と呼ばれるものは、乾燥した短繊維を再度水に分散させ、リファイナーやビーター、ミル、高圧ホモジナイザー、摩砕装置等を用いてフィブリルを形成させるが、この場合多量の水に浸してもその多くは繊維表面への吸着水であり、水膨潤フィブリル化繊維のように繊維構造内部に水分が入り込んでいる状態でなく、そのため乾燥収縮による抱き込み効果(=バインダー性能)が乏しい。   In general, what is called fibrillated fiber is a dispersion of dried short fibers in water again to form fibrils using a refiner, beater, mill, high-pressure homogenizer, grinding device, etc. Even if soaked, most of the water is adsorbed on the fiber surface, and it does not contain moisture inside the fiber structure like water-swelled fibrillated fibers. Therefore, the embedding effect (= binder performance) due to drying shrinkage is poor. .

一方、本発明の水膨潤性フィブリル化繊維は、湿潤時に繊維同士及び他成分を絡合させた状態で乾燥させると、繊維内部の水が抜けることによる乾燥時の収縮作用で、強固なバインダー性能を発揮する。   On the other hand, when the water-swellable fibrillated fiber of the present invention is dried in a state in which the fibers and other components are entangled with each other when wet, the shrinkage effect at the time of drying due to the release of water inside the fiber, strong binder performance Demonstrate.

ここで含水率としては以下の式で算出される。
{(含水時の繊維重量)−(絶乾時の繊維重量)}/(含水時の繊維重量)*100
Here, the moisture content is calculated by the following equation.
{(Fiber weight when wet)-(Fiber weight when absolutely dry)} / (Fiber weight when wet) * 100

更にバインダー性能に大きく寄与する繊維の乾燥収縮率の測定は次のような手法を用いた。
対象繊維のみを用いて公知の湿式抄造法により100g/mの紙を抄造し、抄造直後の湿紙シート面積と、その湿紙シートを無圧下、乾燥後のシート面積から算出する。
S=[(S1−S2)/S1]×100
ここでS:乾燥収縮率(%)
S1:TAPPI式手漉き抄造マシーンを使用して得られたパラ型アラミドフィブリッド100g/mの湿紙状態でのシート面積
S2:120℃で5時間乾燥後のシート面積
Further, the following method was used to measure the drying shrinkage of the fiber that greatly contributed to the binder performance.
Paper of 100 g / m 2 is made by a known wet papermaking method using only the target fiber, and the wet paper sheet area immediately after paper making and the wet paper sheet are calculated from the sheet area after drying under no pressure.
S = [(S1-S2) / S1] × 100
Where S: drying shrinkage (%)
S1: Sheet area of para-aramid fibrid 100 g / m 2 in wet paper condition obtained using a TAPPI-type handmade paper making machine
S2: Sheet area after drying for 5 hours at 120 ° C

ここでバインダーとして使用するためには、対象繊維の乾燥収縮率は10〜70%であることが好ましく、15〜50%であることがより好ましい。乾燥収縮率が10%を下回る場合はバインダーとしての拘束力が不十分となり、70%を上回る場合は取り扱いが困難となる。   Here, in order to use as a binder, the drying shrinkage of the target fiber is preferably 10 to 70%, and more preferably 15 to 50%. When the drying shrinkage rate is less than 10%, the binding force as a binder is insufficient, and when it exceeds 70%, handling becomes difficult.

本発明の水膨潤性フィブリル化繊維を用いてシート状物とするには、既知の方法を用いて行うことができる。例えば、水膨潤性フィブリル化繊維および他の繊維成分を乾式ブレンドした後、気流を利用してシートを形成する乾式抄造法、水膨潤性フィブリル化繊維と他の繊維成分を液体媒体中で分散混合した後、網またはベルト上に吐出してシート化し、液体を除いて乾燥する湿式抄造法、水膨潤性フィブリル化繊維と他の成分を水系スラリーとして、公知のスプレー装置でメッシュ金網や織編物又は不織布等の布帛上にスプレー塗布し乾燥するスプレーコーティング法などを適用することができる。本発明の水膨潤性フィブリル化繊維の場合140メッシュ以上の非常に細かいフィブリル繊維を多く含むためコーティング法が好ましく適用できる。   In order to make a sheet-like material using the water-swellable fibrillated fiber of the present invention, a known method can be used. For example, after dry blending water-swellable fibrillated fibers and other fiber components, a dry paper making method that uses air current to form a sheet, water-swellable fibrillated fibers and other fiber components are dispersed and mixed in a liquid medium After that, it is discharged onto a net or belt to form a sheet, which is dried by removing the liquid, water-swellable fibrillated fibers and other components as an aqueous slurry, and a mesh wire net or woven or knitted fabric or A spray coating method in which spray coating is performed on a fabric such as a nonwoven fabric and then dried can be applied. In the case of the water-swellable fibrillated fiber of the present invention, a coating method can be preferably applied because it contains a lot of very fine fibril fibers of 140 mesh or more.

例えば本発明の水膨潤性フィブリル化繊維と後述する機能性フィラーを水に分散させて水系スラリーとする。スラリーを適度な濃度に希釈して、公知のスプレー装置により基材上にコーティングし、乾燥してシート状物を形成することが好ましい。基材としては不織布や織編物等の繊維構造物やメッシュ金網等が好ましい。   For example, the water-swellable fibrillated fiber of the present invention and the functional filler described later are dispersed in water to form an aqueous slurry. It is preferable to dilute the slurry to an appropriate concentration, coat the substrate with a known spray device, and dry it to form a sheet. The substrate is preferably a fiber structure such as a nonwoven fabric or a woven or knitted fabric, or a mesh wire mesh.

水系スラリーの調整方法としては、まず機能性フィラーと水膨潤性フィブリル化繊維とを水を分散媒として分散させたスラリーを作製する。離解機などの公知の撹拌装置を用いて十分に離解することにより、各成分が均一に分散したスラリーを得ることができる。又効果を阻害しない範囲で基材との接着性を向上させる目的でスラリーに樹脂バインダー成分を添加することもできる。   As a method for adjusting the aqueous slurry, first, a slurry in which a functional filler and a water-swellable fibrillated fiber are dispersed using water as a dispersion medium is prepared. By sufficiently disaggregating using a known stirrer such as a disaggregator, a slurry in which each component is uniformly dispersed can be obtained. In addition, a resin binder component can be added to the slurry for the purpose of improving the adhesion to the substrate within a range that does not impair the effect.

シート化に際し使用できる他成分としては、天然セルロース繊維、溶剤紡糸セルロース繊維等のセルロース系繊維、アクリル、ポリオレフィン、ポリエステル、全芳香族ポリエステル、全芳香族ポリエステルアミド、ポリアミド、全芳香族ポリアミド、全芳香族ポリエーテル、全芳香族ポリカーボネート、全芳香族ポリアゾメジン、ポリイミド、ポリアミドイミド(PAI)、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンスルフィド(PPS)、ポリ−p−フェニレンベンゾビスオキサゾール(PBO)、ポリベンゾイミダゾール(PBI)、ポリテトラフルオロエチレン(PTFE)、ポリビニルアルコール、エチレン−ビニルアルコール共重合体などの樹脂からなる単繊維や複合繊維、これらをフィブリル化したものやバクテリアセルロースなどの有機繊維、 炭素繊維、セラミックス繊維、スラグウール、グラスウールなどの無機繊維が挙げられる。   Other components that can be used for forming sheets include cellulose fibers such as natural cellulose fibers and solvent-spun cellulose fibers, acrylics, polyolefins, polyesters, wholly aromatic polyesters, wholly aromatic polyester amides, polyamides, wholly aromatic polyamides, wholly aromatics. Group polyether, wholly aromatic polycarbonate, wholly aromatic polyazomedin, polyimide, polyamideimide (PAI), polyetheretherketone (PEEK), polyphenylene sulfide (PPS), poly-p-phenylenebenzobisoxazole (PBO), polybenzo Single fibers and composite fibers made of resins such as imidazole (PBI), polytetrafluoroethylene (PTFE), polyvinyl alcohol, and ethylene-vinyl alcohol copolymers, Organic fibers such as terriers cellulose, inorganic fibers such as carbon fibers, ceramic fibers, slag wool, glass wool.

更にシート化に際し使用できる他成分として、活性炭、黒鉛、カーボンブラック、カーボンナノチューブ、顔料、チタン、シリカ、鉄、フェライト、ガリウム、砒素、砂、土、すす、チタン酸バリウム、光酸化触媒チタン、トルマリン、モザナイト、さんご礁粉体、多孔質シリカ、キシリトール、蛍光染料樹脂粉末、お茶殻の粉体、キト酸粉体、シルクパウダー、各種抗菌剤、金、銀、銅、白金、コバルト、水素貯蔵合金など機能性フィラーが挙げられる。フィラーの粒子径としては、サブミクロン〜数10μmのものを捕捉しやすいが、これに限定されるものでは無い。   Other components that can be used for sheeting include activated carbon, graphite, carbon black, carbon nanotubes, pigments, titanium, silica, iron, ferrite, gallium, arsenic, sand, earth, soot, barium titanate, titanium photocatalyst, tourmaline. , Mozzanite, coral reef powder, porous silica, xylitol, fluorescent dye resin powder, tea cake powder, chito acid powder, silk powder, various antibacterial agents, gold, silver, copper, platinum, cobalt, hydrogen storage alloys, etc. A functional filler is mentioned. As the particle diameter of the filler, particles of submicron to several tens of μm are easily captured, but are not limited thereto.

以下に本発明を実施例に基づき具体的に説明する。なお本発明はこれらに限定されるものではない。
水膨潤性フィブリル化繊維の物性評価は下記の通り行った。
含水率:
{(含水時の繊維重量)−(絶乾時の繊維重量)}/(含水時の繊維重量)*100
にしたがって算出した。
篩い分け試験:
JIS P−8207に準拠して下記の通り行った。
対象とする繊維材料を絶乾重量で2.0g採取し、水2.0Lとともに離解機(熊谷理機製;標準パルプ離解機)を使用して3000rpmで3分間離解し、固形分濃度約0.2wt%のスラリーを作成した。
その後、第1槽を22メッシュ金網、第2槽を42メッシュ金網、第3槽を100メッシュ金網、第4槽を140メッシュ金網としたJIS8207に規定された篩い分け度試験機(熊谷理機製; )を用いて15分間サイズ分離処理を実施した。
さらに、各メッシュ金網で捕集した固形分をそれぞれ採取し、オーブンを使用して120℃で12時間乾燥処理をし、各メッシュ金網毎に捕集分の重量をそれぞれ秤量し、また、投入繊維重量と各メッシュ金網で捕集した繊維重量の差を140メッシュ金網通過分とした。
繊維径の測長:
繊維径の測長は0.05wt%濃度の希薄スラリーを試料台にドロップし乾燥後、導電処理したものを走査型電子顕微鏡(日本電子製;JSM6330F)で3万倍に拡大してランダムに5視野を観察し、3視野以上に100nm以下の繊維が含まれることで対象繊維が径100nm以下のフィブリルを有することとした。
尚、5視野における100nm以下の繊維の平均含有量を次の通り分別した。
×・・・全く観察されない
△・・・1視野平均10本未満
○・・・1視野平均10〜30本
◎・・・1視野平均30本以上
乾燥収縮率:
上述した方法に従って行った。
The present invention will be specifically described below based on examples. The present invention is not limited to these.
The physical properties of the water-swellable fibrillated fiber were evaluated as follows.
Moisture content:
{(Fiber weight when wet)-(Fiber weight when absolutely dry)} / (Fiber weight when wet) * 100
Calculated according to
Sieving test:
According to JIS P-8207, it carried out as follows.
2.0 g of the target fiber material was collected at an absolute dry weight, and disaggregated at 3000 rpm for 3 minutes using a disaggregator (manufactured by Rikuma Kumagai; standard pulp disintegrator) together with 2.0 L of water, and the solid content concentration was about 0.00. A 2 wt% slurry was made.
Thereafter, a sieving degree tester defined in JIS 8207 (22 product made by Kumagai Riki; the first tank is a 22 mesh wire mesh, the second tank is a 42 mesh wire mesh, the third tank is a 100 mesh wire mesh, and the fourth tank is a 140 mesh wire mesh; ) For 15 minutes.
Further, the solid content collected by each mesh wire net is collected, dried using an oven at 120 ° C. for 12 hours, the weight of the collected content is weighed for each mesh wire mesh, and the input fiber The difference between the weight and the weight of the fiber collected by each mesh wire mesh was taken as the amount of passage through the 140 mesh wire mesh.
Measurement of fiber diameter:
The fiber diameter is measured by dropping a 0.05 wt% dilute slurry onto a sample stage, drying it, conducting the conductive treatment, and expanding it to 30,000 times with a scanning electron microscope (manufactured by JEOL; JSM6330F). By observing the visual field and including fibers of 100 nm or less in three or more fields of view, the target fiber has fibrils with a diameter of 100 nm or less.
In addition, the average content of fibers of 100 nm or less in five fields of view was fractionated as follows.
X: not observed at all Δ: average of less than 10 per field of view ○: average of 10-30 per field of view ◎: average of 30 or more per field of view drying shrinkage:
The procedure was as described above.

[実施例1]
芳香族ポリアミドフィブリッド(帝人トワロン製、WO2004/099476の手法に準じて作製)の固形分濃度0.2wt%の水分散体を作成後、既存のディスクリファイナー(熊谷理機製;KRK高濃度ディスクリファイナー)を用いてクリアランス=0.02mm、パス回数=10の処理条件で処理した後、脱水して含水率が94.3wt%の水膨潤性フィブリル化繊維を得た。篩い分け試験結果は表1の通りである。
[Example 1]
After creating an aqueous dispersion with a solid content concentration of 0.2 wt% of aromatic polyamide fibrid (manufactured by Teijin Twaron, manufactured in accordance with the method of WO2004 / 099476), an existing disc refiner (manufactured by Riki Kumagai; KRK high concentration disc refiner) ) Was used under the treatment conditions of clearance = 0.02 mm and the number of passes = 10, followed by dehydration to obtain water-swellable fibrillated fibers having a water content of 94.3 wt%. The sieving test results are as shown in Table 1.

[実施例2]
実施例1で使用した芳香族ポリアミドフィブリッドを100gに水10Lを加えて、公知の離解機を用いて十分に攪拌し固形分濃度約3.0wt%のスラリーを得た。得られた分散液を特開2003−193387に記載の高圧ホモジナイザーを用いて500kg/cmの圧力でホモジナイザー処理を3回行った後、脱水して含水率が88.6wt%の水膨潤性フィブリル化繊維を得た。篩い分け試験結果は表1の通りである。
[Example 2]
10 L of water was added to 100 g of the aromatic polyamide fibrid used in Example 1, and the mixture was sufficiently stirred using a known disintegrator to obtain a slurry having a solid content concentration of about 3.0 wt%. The obtained dispersion was subjected to a homogenizer treatment three times at a pressure of 500 kg / cm 2 using a high-pressure homogenizer described in JP-A No. 2003-193387, then dehydrated and a water-swellable fibril having a water content of 88.6 wt%. A modified fiber was obtained. The sieving test results are as shown in Table 1.

[比較例1]
芳香族ポリアミドフィブリッド(帝人トワロン製、WO2004/099476の手法に準じて作製)そのものを用いた。含水率は92.7wt%であった。篩い分け試験結果は表1の通りである。
[Comparative Example 1]
Aromatic polyamide fibrid (manufactured according to the method of WO2004 / 099476, manufactured by Teijin Toilong) itself was used. The water content was 92.7 wt%. The sieving test results are as shown in Table 1.

[比較例2]
実施例1で得られた水膨潤性フィブリル化繊維をオーブンで105℃、10分間熱処理を施し、含水率が63.0wt%の水膨潤性フィブリル化繊維を得た。篩い分け試験結果は表1の通りである。
[Comparative Example 2]
The water-swellable fibrillated fiber obtained in Example 1 was heat-treated in an oven at 105 ° C. for 10 minutes to obtain a water-swellable fibrillated fiber having a water content of 63.0 wt%. The sieving test results are as shown in Table 1.

[比較例3]
芳香族ポリアミド短繊維(帝人テクノプロダクツ製)を叩解処理してフィブリル化した芳香族ポリアミドフィブリル化繊維パルプ(帝人テクノプロダクツ製、トワロン1097)を用いて実施例2と同様の処理を行い含水率85.9wt%のフィブリル化繊維を得た。篩い分け試験結果は表1の通りである。
[Comparative Example 3]
The same treatment as in Example 2 was performed using an aromatic polyamide fibrillated fiber pulp (Teijin Techno Products, Twaron 1097), which was fibrillated by beating the aromatic polyamide short fibers (manufactured by Teijin Techno Products). 9 wt% of fibrillated fiber was obtained. The sieving test results are as shown in Table 1.

[比較例4]
市販の微細繊維状アラミド(ダイセル化学工業製、ティアラ)を比較例4とした。篩い分け試験結果は表1の通りである。
[Comparative Example 4]
A commercially available fine fibrous aramid (manufactured by Daicel Chemical Industries, Tiara) was used as Comparative Example 4. The sieving test results are as shown in Table 1.

[評価結果]
実施例1の水膨潤性フィブリル化繊維は比較例1のフィブリッドを更にディスクリファイナー処理して微細化したものであるが、篩い分け試験で分かる通りこの処理によって微細化が進行している。又、バインダーとして重要である径100nm以下のフィブリルの大幅な増大が見られた。
[Evaluation results]
The water-swellable fibrillated fiber of Example 1 is obtained by further refinement of the fibril of Comparative Example 1 by further treatment with a disc refiner. As can be seen from the sieving test, the refinement proceeds. In addition, a significant increase in fibrils having a diameter of 100 nm or less, which is important as a binder, was observed.

実施例2のフィブリル化繊維は比較例1を高圧ホモジナイザー処理したものであるが、この処理によっても更に微細化が進行し、バインダーとして重要である径100nm以下のフィブリルの増大が見られるのがわかる。得られた繊維のSEM代表図を図1に示す。この図からも明らかなように、100nm以下の非常にフィブリル径の小さい繊維が多数確認された。   The fibrillated fiber of Example 2 is obtained by subjecting Comparative Example 1 to a high-pressure homogenizer treatment, and further refinement is promoted by this treatment, and it can be seen that an increase in fibrils having a diameter of 100 nm or less, which is important as a binder, is observed. . A representative SEM diagram of the obtained fiber is shown in FIG. As is clear from this figure, many fibers having a very small fibril diameter of 100 nm or less were confirmed.

一方比較例1は含水率及び径100nm以下のフィブリルの点では条件を満たすものの、篩い分け試験の結果が不適当であり分散性で問題であった。繊維のSEM写真の一例を図2に示す。100nm以下のフィブリル径の小さい繊維は見られるものの実施例1に比べ量的に少なく、又繊維粒径が大きいものが見られるのが分かる。   On the other hand, Comparative Example 1 satisfied the water content and the fibrils with a diameter of 100 nm or less, but the result of the sieving test was inappropriate and there was a problem in dispersibility. An example of the SEM photograph of the fiber is shown in FIG. It can be seen that fibers having a small fibril diameter of 100 nm or less are seen, but those having a small quantity compared to Example 1 and having a large fiber particle diameter are seen.

比較例2は比較例1の水膨潤性フィブリル化繊維に熱処理を加え含水率を低下させたものであるが、この熱処理によりサイズの増大及び乾燥収縮率の低下が確認されたが、この原因は熱処理により繊維内部の水分が低下し、又フィブリル化繊維同士が結着することにより凝集塊を形成したことが考えられる。   In Comparative Example 2, the water-swellable fibrillated fiber of Comparative Example 1 was subjected to a heat treatment to reduce the water content. This heat treatment confirmed an increase in size and a decrease in drying shrinkage, but this was caused by It is conceivable that the moisture inside the fibers is reduced by the heat treatment, and the fibrillated fibers are bound together to form aggregates.

比較例3は強固な結晶構造を有する短繊維から作成された芳香族ポリアミドフィブリル化繊維に高圧ホモジナイザー処理をしたものであり、繊維のSEM代表図を図3に示す。確かに高圧ホモジナイザー処理による繊維の微細化が確認されたが、バインダーとして重要である乾燥収縮率が小さく、図1と比較してもそのフィブリル径は明らかに大きく、バインダーとしての性能は実施例1,2と比べて劣ることが分かる。   In Comparative Example 3, high-pressure homogenizer treatment was performed on an aromatic polyamide fibrillated fiber prepared from short fibers having a strong crystal structure, and a representative SEM diagram of the fiber is shown in FIG. Although it was confirmed that the fibers were refined by the high-pressure homogenizer treatment, the drying shrinkage rate, which is important as a binder, was small, and the fibril diameter was clearly large as compared with FIG. , 2 is inferior to 2.

比較例4は比較例3と同様、有機高分子重合体溶液を水系凝固液中に導入し、攪拌等のせん断をかけた状態で凝固させることによって得られた本発明の水膨潤性フィブリル化繊維とは異なるため、乾燥収縮が小さくバインダーとしての性能が実施例1、2と比べて劣ることが分かる。   Comparative Example 4 is the same as Comparative Example 3, and the water-swellable fibrillated fiber of the present invention obtained by introducing an organic polymer solution into an aqueous coagulating solution and coagulating it in a state where shearing such as stirring is applied. Therefore, it can be seen that the drying shrinkage is small and the performance as a binder is inferior to that of Examples 1 and 2.

[フィブリル化繊維を含有するシートの作成]
本発明の水膨潤性フィブリル化繊維を含有するシートの物性評価は次の通りに行った。
シート厚み:JIS P8118に準拠
シート目付:JIS P8124に準拠
シート引張強度:JIS P8113に準拠
[Creation of sheet containing fibrillated fiber]
The physical properties of the sheet containing the water-swellable fibrillated fiber of the present invention were evaluated as follows.
Sheet thickness: compliant with JIS P8118 Sheet weight: compliant with JIS P8124 Sheet tensile strength: compliant with JIS P8113

[実施例3]
実施例1で得られた水膨潤性フィブリル化繊維15重量部とポリ(パラフェニレン)−コポリ(3,4−ジフェニルエーテル)テレフタルアミド繊維(帝人テクノプロダクツ製 テクノーラ 0.55dtex)を6mmに切断したアラミド短繊維85重量部を水5000重量部とともにJIS標準離解機を用いて3000rpmで3分間離解し、抄紙用スラリーを得た。つぎにこのスラリーをTAPPI式角型手漉きシートマシーンにて抄造し、プレス脱水後、120℃の乾燥機にて5時間乾燥させることでシート状物を得た。
[Example 3]
Aramid obtained by cutting 15 parts by weight of the water-swellable fibrillated fiber obtained in Example 1 and poly (paraphenylene) -copoly (3,4-diphenyl ether) terephthalamide fiber (Technola 0.55 dtex manufactured by Teijin Techno Products) into 6 mm. 85 parts by weight of short fibers and 5000 parts by weight of water were disaggregated at 3000 rpm for 3 minutes using a JIS standard disaggregator to obtain a papermaking slurry. Next, this slurry was made with a TAPPI-type square handsheet machine, press dehydrated, and then dried with a dryer at 120 ° C. for 5 hours to obtain a sheet.

[実施例4]
実施例3において実施例1で得られた水膨潤性フィブリル化繊維の代わりに実施例2で得られた水膨潤性フィブリル化繊維としたこと以外は同様の方法でシート状物を得た。
[Example 4]
A sheet-like material was obtained in the same manner as in Example 3, except that the water-swellable fibrillated fiber obtained in Example 2 was used instead of the water-swellable fibrillated fiber obtained in Example 1.

[比較例5]
実施例3において水膨潤性フィブリル化繊維の代わりに比較例1の水膨潤フィブリル化繊維を用いた以外は同様の方法でシート状物を得た。
[Comparative Example 5]
A sheet-like material was obtained in the same manner as in Example 3, except that the water-swellable fibrillated fiber of Comparative Example 1 was used instead of the water-swellable fibrillated fiber.

[比較例6]
実施例3において水膨潤性フィブリル化繊維の代わりに比較例2で得られた一旦乾燥して含水率を低下させた水膨潤性フィブリル化繊維としたこと以外は同様の方法でシート状物を得た。
[Comparative Example 6]
A sheet-like material was obtained in the same manner as in Example 3, except that the water-swellable fibrillated fibers obtained in Comparative Example 2 were once dried to reduce the water content instead of the water-swellable fibrillated fibers. It was.

[比較例7]
実施例3において使用した水膨潤性フィブリル化繊維の代わりに比較例3で得られたフィブリル化繊維としたこと以外は同様の方法でシート状物を得た。
[Comparative Example 7]
A sheet-like material was obtained by the same method except that the fibrillated fiber obtained in Comparative Example 3 was used instead of the water-swellable fibrillated fiber used in Example 3.

[評価結果]
実施例3、4では実施例1、2の水膨潤性フィブリル化繊維を使用してシート化したものであるが、比較例1と比べてシートの引っ張り強度が大きく向上している。これは、水膨潤フィブリル化繊維の微細化が進行して水膨潤性フィブリル化繊維の接触面積が増え、バインダーとして他成分繊維との絡合、収縮及び接着性の向上、及びシート内での水膨潤性フィブリル化繊維の分散性が向上したためと考えられる。
[Evaluation results]
In Examples 3 and 4, sheets were formed using the water-swellable fibrillated fibers of Examples 1 and 2, but the tensile strength of the sheet was greatly improved as compared with Comparative Example 1. This is because the contact area of the water-swellable fibrillated fiber is increased as the water-swelled fibrillated fiber is refined, entangled with other component fibers as a binder, shrinkage and adhesion are improved, and the water in the sheet is increased. This is thought to be because the dispersibility of the swellable fibrillated fibers was improved.

また、比較例5では比較例4と比べてさらにシートの引張強度が低下している。これは熱処理により繊維内部に存在する水分量が低下したため乾燥収縮性が低下したことと、水膨潤性フィブリル化繊維が凝集し、シート内で分散性が悪化したためと考えられる。   In Comparative Example 5, the tensile strength of the sheet is further reduced as compared with Comparative Example 4. This is thought to be due to the fact that the amount of water present inside the fiber was reduced by heat treatment, resulting in a decrease in drying shrinkage and the aggregation of water-swellable fibrillated fibers, resulting in a deterioration in dispersibility within the sheet.

また、比較例6では実施例1の水膨潤性フィブリル化繊維を一旦乾燥して含水率が70%以下に低下させた水膨潤フィブリル化繊維を使用したため乾燥収縮率が十分でなくシートの引張強度が低下したものと考えられる。比較例7では短繊維製造工程で一旦乾燥工程を経ており、繊維内部の水分は存在せず、よって乾燥収縮が小さくバインダー性能が不十分であるため、シートの引張強度が低いと考えられる。   In Comparative Example 6, the water-swellable fibrillated fiber of Example 1 was dried once and the water-swelled fibrillated fiber having a water content reduced to 70% or less was used. Is thought to have been reduced. In Comparative Example 7, the short fiber manufacturing process once passes through the drying process, and there is no moisture inside the fiber. Therefore, the drying shrinkage is small and the binder performance is insufficient, so the tensile strength of the sheet is considered to be low.

次に本発明のフィブリル化繊維を含む水系スラリーのスプレーコーティング性能評価を実施した。   Next, spray coating performance evaluation of the aqueous slurry containing the fibrillated fiber of the present invention was performed.

[スプレーコーティング方法]
本発明のフィブリル化繊維とフィラーを水に分散させ水系スラリーを得た後、これを公知のスプレー装置に投入し、基材上へ塗布後、乾燥させてコーティング層を形成する。
評価は下記内容を実施した。
・目視によるコーティングムラ
・ 断面のSEM観察によるコーティング層の厚み
・ スコッチテープ法によるコーティング層の密着性
幅15mm、長さ120mmの接着面を有する粘着テープ(住友スリーM株式会社製、商品名「スコッチテープ」)をコーティング層表面に押し当てた後、粘着テープを引き剥がして、粘着面へのコーティング物の付着を目視で判定。
[Spray coating method]
The fibrillated fiber and filler of the present invention are dispersed in water to obtain an aqueous slurry, which is then put into a known spray device, applied onto a substrate and dried to form a coating layer.
The following contents were evaluated.
・ Coating unevenness by visual inspection ・ Thickness of coating layer by SEM observation of cross section ・ Adhesiveness of coating layer by Scotch tape method Adhesive tape with adhesive surface of 15mm width and 120mm length (manufactured by Sumitomo 3M Ltd., trade name "Scotch") After pressing the tape “) against the surface of the coating layer, the adhesive tape is peeled off and the adhesion of the coating material to the adhesive surface is visually determined.

[実施例5]
実施例1で得られた水膨潤性フィブリル化繊維を絶乾重量換算で50量部と粉末状活性炭(クラレケミカル製、RP−15(比表面積1250m/g))50重量部と水1000重量部を公知のミキサーを用いて湿式混練し、コーティング用組成物を得た。
得られたコーティング用組成物をスプレー装置(アネスト岩田 W101)に投入し、スプレー圧;5kgf/cm、吐出量10cc/minで、被コーティング基材(帝人テクノプロダクツ製、メタアラミド不織布、寸法;20×20cm、坪量;480g/m)上に均一に塗布した。このとき均一にコーティングできるように、被コーティング基材を白色の濾紙上に配置することで基材表面に液溜りが発生するのを抑制した。これを乾燥機にて120℃×2hrで十分に乾燥処理を施し、シート状物を得た。
[Example 5]
50 parts by weight of the water-swellable fibrillated fiber obtained in Example 1 and 50 parts by weight of powdered activated carbon (manufactured by Kuraray Chemical Co., Ltd., RP-15 (specific surface area 1250 m 2 / g)) and 1000 parts by weight of water The part was wet kneaded using a known mixer to obtain a coating composition.
The obtained coating composition was put into a spray apparatus (Anest Iwata W101), and the substrate to be coated (manufactured by Teijin Techno Products, meta-aramid nonwoven fabric, dimensions: 20) with a spray pressure of 5 kgf / cm 2 and a discharge rate of 10 cc / min. × 20 cm, basis weight; 480 g / m 2 ). At this time, the formation of a liquid pool on the surface of the substrate was suppressed by arranging the substrate to be coated on white filter paper so that the coating could be performed uniformly. This was sufficiently dried at 120 ° C. × 2 hr with a dryer to obtain a sheet.

[実施例6]
実施例5において、被コーティング基材として厚さ32μm(気孔率57%)の銅製エキスパンドメタル(日本金属工業株式会社製)を用いた他は同様に行ってシート状物を得た。
[Example 6]
In Example 5, a sheet-like material was obtained in the same manner except that a copper expanded metal (manufactured by Nippon Metal Industry Co., Ltd.) having a thickness of 32 μm (porosity of 57%) was used as the substrate to be coated.

[比較例8]
実施例3において使用した水膨潤性フィブリル化繊維の代わりに比較例4の微細繊維状アラミドを用いたこと以外は同様の方法でシート状物を得た。
[Comparative Example 8]
A sheet-like material was obtained in the same manner except that the fine fibrous aramid of Comparative Example 4 was used instead of the water-swellable fibrillated fiber used in Example 3.

[比較例9]
実施例5において、実施例1で得られた水膨潤性フィブリル化繊維を使用する代わりに比較例1で使用したものを用いた。その結果スプレーノズルが詰まりコーティングができなかった。
[Comparative Example 9]
In Example 5, instead of using the water-swellable fibrillated fiber obtained in Example 1, the one used in Comparative Example 1 was used. As a result, the spray nozzle was clogged and could not be coated.

[評価結果]
実施例5、6、比較例8から本発明の水膨潤性フィブリル化繊維は目つまりもなく均一でバインダー性能が強くコーティング層の密着性に大きく寄与することがわかる。さらに、比較例9では繊維サイズが大きすぎるため、良好なコーティング層が得られなかった。
[Evaluation results]
From Examples 5 and 6 and Comparative Example 8, it can be seen that the water-swellable fibrillated fiber of the present invention is uniform, has a strong binder performance and greatly contributes to the adhesion of the coating layer. Furthermore, since the fiber size was too large in Comparative Example 9, a good coating layer could not be obtained.

本発明によれば、耐熱性、化学的安定性、及びバインダー機能に優れた繊維状バインダーを提供できるため、電池・キャパシタセパレータ、電気絶縁紙、フィルターペーパー、プリント配線基板用基材、湿式摩擦材紙などに代表される高機能紙の機械的、熱的、化学的物性を向上させることに有効である。
また、コーティング性も良好であるため、電池・キャパシタ電極層の形成にも有効である。
According to the present invention, since a fibrous binder excellent in heat resistance, chemical stability, and binder function can be provided, a battery / capacitor separator, electrical insulating paper, filter paper, a printed wiring board substrate, a wet friction material It is effective in improving the mechanical, thermal, and chemical properties of high-performance paper represented by paper.
Further, since the coating property is good, it is also effective for forming a battery / capacitor electrode layer.

本発明の水膨潤性フィブリル化繊維の一例。An example of the water-swellable fibrillated fiber of the present invention. 比較例1の水膨潤性フィブリル化繊維。The water-swellable fibrillated fiber of Comparative Example 1. 一般的なフィブリル化繊維。General fibrillated fiber.

Claims (11)

有機高分子重合体からなる水膨潤性フィブリル化繊維であって、該水膨潤性フィブリル化繊維が、有機高分子重合体溶液を水系凝固液中に導入し、攪拌等のせん断をかけた状態で凝固させることによって得られた有機高分子重合体含水成形物及び/又は該有機高分子重合体含水成形物を原料として叩解処理して得られたもので、下記要件を満足することを特徴とする水膨潤性フィブリル化繊維。
a)篩い分け試験において線間隔37μm、42メッシュ金網の捕集割合が3wt%以下、且つ線間隔10μm、140メッシュ金網通過分が30wt%以上であること。
b)含水率が70〜99%であること。
c)繊維径100nm以下のフィブリルを有すること。
A water-swellable fibrillated fiber comprising an organic polymer, wherein the water-swellable fibrillated fiber is introduced into an aqueous coagulation liquid and subjected to shearing such as stirring. The organic polymer water-containing molded product obtained by coagulation and / or obtained by beating the organic polymer polymer water-containing molded material as a raw material, and satisfying the following requirements Water-swellable fibrillated fiber.
a) In the sieving test, the line spacing is 37 μm, the collection rate of 42 mesh wire mesh is 3 wt% or less, and the line interval is 10 μm and the 140 mesh wire mesh passage is 30 wt% or more.
b) The water content is 70 to 99%.
c) Having fibrils with a fiber diameter of 100 nm or less.
水膨潤性フィブリル化繊維が、凝固工程以降に加熱乾燥することなく得られたものである請求項1に記載の水膨潤性フィブリル化繊維。   The water-swellable fibrillated fiber according to claim 1, wherein the water-swellable fibrillated fiber is obtained without heating and drying after the coagulation step. 水膨潤性フィブリル化繊維の乾燥収縮率が10%以上である請求項1〜2いずれかに記載の水膨潤性フィブリル化繊維。   The water-swellable fibrillated fiber according to claim 1, wherein the water-swellable fibrillated fiber has a drying shrinkage of 10% or more. 有機高分子重合体が炭化又は溶融温度が300℃以上である有機高分子重合体である請求項1〜3いずれか1項記載の水膨潤性フィブリル化繊維。   The water-swellable fibrillated fiber according to any one of claims 1 to 3, wherein the organic polymer is an organic polymer having a carbonization or melting temperature of 300 ° C or higher. 有機高分子重合体が芳香族ポリアミドである請求項1〜4にいずれか1項記載の水膨潤性フィブリル化繊維。   The water-swellable fibrillated fiber according to any one of claims 1 to 4, wherein the organic polymer is an aromatic polyamide. 叩解処理が、リファイナー、ビーター、ミル、高圧ホモジナイザー、摩砕装置の群から選ばれる1種以上の方法である請求項1〜5記載の水膨潤性フィブリル化繊維。   The water-swellable fibrillated fiber according to claim 1, wherein the beating treatment is at least one method selected from the group consisting of a refiner, a beater, a mill, a high-pressure homogenizer, and a grinding device. 該フィブリル化繊維が篩い分け試験において線間隔10μm、140メッシュ金網通過分が50wt%以上である請求項1〜6いずれか1項記載の水膨潤性フィブリル化繊維。   The water-swellable fibrillated fiber according to any one of claims 1 to 6, wherein the fibrillated fiber has a line interval of 10 µm and a 140-mesh wire mesh passage amount of 50 wt% or more in a sieving test. 該フィブリル化繊維が篩い分け試験における線間隔10μm、140メッシュ金網通過分が80wt%以上である請求項1〜7いずれか1項記載の水膨潤性フィブリル化繊維。   The water-swellable fibrillated fiber according to any one of claims 1 to 7, wherein the fibrillated fiber has a line interval of 10 µm in a sieving test and a 140 mesh wire mesh passage is 80 wt% or more. 請求項1〜8いずれか記載の水膨潤性フィブリル化繊維を含むシート状物。   A sheet-like product comprising the water-swellable fibrillated fiber according to claim 1. 下記要件を満足する水膨潤性フィブリル化繊維を水系スラリーとし、基材上にスプレー塗布後乾燥させることを特徴とするシート状物の製造方法。
a)篩い分け試験において線間隔37μm、42メッシュ金網の捕集割合が3wt%以下、且つ線間隔10μm、140メッシュ金網通過分が30wt%以上であること。
b)含水率が70〜99%であること。
c)繊維径100nm以下のフィブリルを有すること。
A water-swellable fibrillated fiber that satisfies the following requirements is made into an aqueous slurry, and spray-coated on a substrate and then dried.
a) In the sieving test, the line spacing is 37 μm, the collection rate of 42 mesh wire mesh is 3 wt% or less, and the line interval is 10 μm and the 140 mesh wire mesh passage is 30 wt% or more.
b) The water content is 70 to 99%.
c) Having fibrils with a fiber diameter of 100 nm or less.
水系スラリーが機能性フィラーを含む請求項10記載のシート状物の製造方法。   The manufacturing method of the sheet-like material of Claim 10 in which an aqueous slurry contains a functional filler.
JP2007292149A 2007-03-13 2007-11-09 Water-swellable fibrillated fiber and sheet-like material using the same Active JP4866332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292149A JP4866332B2 (en) 2007-03-13 2007-11-09 Water-swellable fibrillated fiber and sheet-like material using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007063538 2007-03-13
JP2007063538 2007-03-13
JP2007292149A JP4866332B2 (en) 2007-03-13 2007-11-09 Water-swellable fibrillated fiber and sheet-like material using the same

Publications (2)

Publication Number Publication Date
JP2008255550A true JP2008255550A (en) 2008-10-23
JP4866332B2 JP4866332B2 (en) 2012-02-01

Family

ID=39979411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292149A Active JP4866332B2 (en) 2007-03-13 2007-11-09 Water-swellable fibrillated fiber and sheet-like material using the same

Country Status (1)

Country Link
JP (1) JP4866332B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173031A1 (en) * 2011-06-13 2012-12-20 独立行政法人物質・材料研究機構 Solution of nanoparticulate fibers, process for producing same, and filter constituted of nanoparticulate fibers
CN103551095A (en) * 2013-10-11 2014-02-05 常州大学 Method for preparing microporous material by particle entanglement molding
JP2015110854A (en) * 2013-10-29 2015-06-18 国立大学法人 岡山大学 Poly(p-phenylene benzobisoxazole)fiber, manufacturing method thereof and mat therewith
JPWO2014021366A1 (en) * 2012-07-31 2016-07-21 阿波製紙株式会社 Heat-resistant paper and method for producing the same, fiber-reinforced heat-resistant resin molding and precursor thereof, and methods for producing the same
JPWO2016103966A1 (en) * 2014-12-26 2017-11-02 特種東海製紙株式会社 Insulating paper
JP2020076174A (en) * 2018-11-08 2020-05-21 三菱製紙株式会社 Wet type nonwoven fabric containing polyphenylene sulfide fiber
CN113152132A (en) * 2021-05-26 2021-07-23 涟水永丰纸业有限公司 Corrugated medium paper cleaning production device and process based on waste paper recycling technology
CN114703699A (en) * 2022-04-13 2022-07-05 广东轻工职业技术学院 Preparation method and application of fibrillated fibers
JP7538055B2 (en) 2021-01-26 2024-08-21 帝人株式会社 Composite paper structure containing aramid nanofibers and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160500A (en) * 1984-10-19 1986-07-21 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− High density aramid paper
JPS61160413A (en) * 1985-01-08 1986-07-21 Teijin Ltd Synthetic fibril
JPH02118118A (en) * 1988-10-27 1990-05-02 Teijin Ltd Aromatic polyamide pulp particle for mica blended sheet
JPH073693A (en) * 1993-01-19 1995-01-06 Sumitomo Chem Co Ltd Production of para-aromatic polyamide paper
JPH07184774A (en) * 1993-07-06 1995-07-25 Teijin Ltd Aramid tray and its manufacture
JPH08337920A (en) * 1995-06-09 1996-12-24 Sumitomo Chem Co Ltd P-aramid pulp and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61160500A (en) * 1984-10-19 1986-07-21 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− High density aramid paper
JPS61160413A (en) * 1985-01-08 1986-07-21 Teijin Ltd Synthetic fibril
JPH02118118A (en) * 1988-10-27 1990-05-02 Teijin Ltd Aromatic polyamide pulp particle for mica blended sheet
JPH073693A (en) * 1993-01-19 1995-01-06 Sumitomo Chem Co Ltd Production of para-aromatic polyamide paper
JPH07184774A (en) * 1993-07-06 1995-07-25 Teijin Ltd Aramid tray and its manufacture
JPH08337920A (en) * 1995-06-09 1996-12-24 Sumitomo Chem Co Ltd P-aramid pulp and its production

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173031A1 (en) * 2011-06-13 2012-12-20 独立行政法人物質・材料研究機構 Solution of nanoparticulate fibers, process for producing same, and filter constituted of nanoparticulate fibers
JPWO2012173031A1 (en) * 2011-06-13 2015-02-23 独立行政法人物質・材料研究機構 Nanoparticulate fiber solution, method for producing the same, and filtration filter made of nanoparticulate fiber
JPWO2014021366A1 (en) * 2012-07-31 2016-07-21 阿波製紙株式会社 Heat-resistant paper and method for producing the same, fiber-reinforced heat-resistant resin molding and precursor thereof, and methods for producing the same
CN103551095A (en) * 2013-10-11 2014-02-05 常州大学 Method for preparing microporous material by particle entanglement molding
JP2015110854A (en) * 2013-10-29 2015-06-18 国立大学法人 岡山大学 Poly(p-phenylene benzobisoxazole)fiber, manufacturing method thereof and mat therewith
JPWO2016103966A1 (en) * 2014-12-26 2017-11-02 特種東海製紙株式会社 Insulating paper
JP2020076174A (en) * 2018-11-08 2020-05-21 三菱製紙株式会社 Wet type nonwoven fabric containing polyphenylene sulfide fiber
JP7538055B2 (en) 2021-01-26 2024-08-21 帝人株式会社 Composite paper structure containing aramid nanofibers and method for producing same
CN113152132A (en) * 2021-05-26 2021-07-23 涟水永丰纸业有限公司 Corrugated medium paper cleaning production device and process based on waste paper recycling technology
CN113152132B (en) * 2021-05-26 2023-07-07 涟水永丰纸业有限公司 Corrugated medium clean production device and process based on waste paper recycling technology
CN114703699A (en) * 2022-04-13 2022-07-05 广东轻工职业技术学院 Preparation method and application of fibrillated fibers

Also Published As

Publication number Publication date
JP4866332B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4866332B2 (en) Water-swellable fibrillated fiber and sheet-like material using the same
JP5082192B2 (en) Method for producing nanofiber synthetic paper
JP2008542557A (en) Conductive aramid paper
CA2984690C (en) Filter media comprising cellulose filaments
JP5886319B2 (en) Paper containing microfilament
US20180030623A1 (en) Powder of fragments of at least one polymeric nanofiber
EP3305982B1 (en) Aramid paper, manufacturing method therefor, and use thereof
WO2016103966A1 (en) Insulating paper
JP5526969B2 (en) Porous electrode substrate and method for producing the same
CN111373570B (en) Separator and separator for alkaline manganese dry battery formed by same
Bastida et al. Impact of cellulose nanofibers on cellulose acetate membrane performance
WO2019093305A1 (en) Insulating sheet
JP2017174928A (en) Separator for solid electrolytic capacitor
JP6405583B2 (en) Insulating paper
JP2009133033A (en) Synthetic fiber paper, electrical insulating paper and method for producing synthetic fiber paper
JP3777711B2 (en) Thin leaf perforated paper
JPH09173429A (en) Sheet container activated carbon particle
JPH1080612A (en) Filter material and air filter
JP4137600B2 (en) Aromatic polyamide fiber paper
JP6914106B2 (en) Carbon short fiber non-woven fabric
JP3460389B2 (en) Method for producing para-aromatic polyamide paper
JPH073693A (en) Production of para-aromatic polyamide paper
JP2009174064A (en) Crimped fiber and wet friction material using the same
JP2006037276A (en) Synthetic paper and method for producing the same
JP2023058329A (en) Separator for solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100915

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4866332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350