JP2008254191A - Carbon fiber composite material manufacturing apparatus, carbon fiber composite material manufacturing method and carbon fiber composite material - Google Patents

Carbon fiber composite material manufacturing apparatus, carbon fiber composite material manufacturing method and carbon fiber composite material Download PDF

Info

Publication number
JP2008254191A
JP2008254191A JP2007095356A JP2007095356A JP2008254191A JP 2008254191 A JP2008254191 A JP 2008254191A JP 2007095356 A JP2007095356 A JP 2007095356A JP 2007095356 A JP2007095356 A JP 2007095356A JP 2008254191 A JP2008254191 A JP 2008254191A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
fiber composite
fiber bundle
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007095356A
Other languages
Japanese (ja)
Inventor
Satoshi Hirawaki
聡志 平脇
Kazumi Ogawa
和美 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007095356A priority Critical patent/JP2008254191A/en
Publication of JP2008254191A publication Critical patent/JP2008254191A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • B29B15/12Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length
    • B29B15/122Coating or impregnating independently of the moulding or shaping step of reinforcements of indefinite length with a matrix in liquid form, e.g. as melt, solution or latex

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber composite material manufacturing apparatus capable of obtaining a carbon fiber composite material excellent in appearance smoothness with high productivity, a carbon fiber composite material manufacturing method using it and the carbon fiber composite material. <P>SOLUTION: The carbon fiber composite material manufacturing apparatus 1 is mainly constituted of a bobbin 10 for sending out a carbon fiber bundle CF, a fibrillation means 20, a positioning means 30, a cutting means 40 and a resin impregnation means 50. The manufacturing method of the carbon fiber composite material includes the fibrillation process S10, the cutting process S20 and the resin impregnation process S30. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、炭素繊維複合材料製造装置、これを用いた炭素繊維複合材料製造方法および炭素繊維複合材料に関する。   The present invention relates to a carbon fiber composite material manufacturing apparatus, a carbon fiber composite material manufacturing method using the same, and a carbon fiber composite material.

従来、自動車のフェンダ、ドアやトランクなどの外板パネルに用いる材料として、ガラス繊維を強化繊維としたガラスClass−A SMCが使用されてきた。ガラスClass−A SMCは、金属材料と同等の比強度および比弾性率を得ることができるが、配合されるガラス繊維の密度が重いため、重量が重くなりがちであった。   Conventionally, glass Class-A SMC using glass fiber as a reinforcing fiber has been used as a material used for an outer panel of an automobile fender, a door or a trunk. Glass Class-A SMC can obtain specific strength and specific elastic modulus equivalent to those of metal materials, but the glass fiber to be blended has a high density, which tends to increase the weight.

一方、近年、自動車の環境負荷低減、具体的には、燃費の向上やエミッションの低減を図り、また、切れの良いハンドリング向上のため、車体軽量化のニーズがますます高まっている。   On the other hand, in recent years, there is an increasing need for lighter vehicle bodies in order to reduce the environmental impact of automobiles, specifically to improve fuel efficiency and emissions, and to improve sharp handling.

このような車体軽量化のニーズに対応し、従来のガラスClass−A SMCに変わる材料として、炭素繊維を強化繊維とした炭素繊維強化複合材料の適用が試みられている。炭素繊維は、(1)ガラス繊維や金属等に比較して比重が小さく、(2)強度が高く(3000〜6000MPa)、(3)弾性率が高く(200〜650GPa)、(4)疲労強度が高い等の特性を有する。このため、このような炭素繊維が配合された炭素繊維複合材料は、軽量であり、かつ、比強度、比弾性率が高いため、外板パネルへの適用が切望されている。   In response to such needs for reducing the weight of the vehicle body, an attempt has been made to apply a carbon fiber reinforced composite material using carbon fiber as a reinforced fiber as a material replacing the conventional glass class-A SMC. Carbon fiber has (1) smaller specific gravity than glass fiber, metal, etc., (2) high strength (3,000-6000 MPa), (3) high elastic modulus (200-650 GPa), (4) fatigue strength It has characteristics such as high. For this reason, since the carbon fiber composite material in which such carbon fibers are blended is lightweight and has high specific strength and specific elastic modulus, application to an outer panel is desired.

しかし、従来の炭素繊維は、収束断面形状が俵状であることから、繊維の凹凸が成形品表面に露出してしまい、外観平滑性が低かった。このため、高い商品性を要求される外板パネルに使用することができなかった。この点を改良すべく、炭素繊維の収束形状を扁平状に開繊化し、繊維の凹凸を均す開繊化技術が種々考案されている。   However, since the conventional carbon fiber has a convergent cross-sectional shape having a bowl shape, the unevenness of the fiber is exposed on the surface of the molded product, and the appearance smoothness is low. For this reason, it could not be used for an outer panel requiring high merchantability. In order to improve this point, various fiber-opening techniques have been devised in which the converging shape of the carbon fiber is opened into a flat shape and the unevenness of the fiber is smoothed.

例えば、特許文献1には、引き揃えた炭素繊維束を超音波により軸方向に振動している丸棒の少なくとも2本以上に順次接触通過させることにより、炭素繊維束をしごいて開繊化する炭素繊維束の開繊化方法について記載されている。   For example, Patent Document 1 discloses that the aligned carbon fiber bundles are sequentially contacted and passed through at least two round bars vibrating in the axial direction by ultrasonic waves, whereby the carbon fiber bundles are squeezed and opened. A method for opening a carbon fiber bundle is described.

また、例えば、特許文献2には、流送中の繊維束を加熱することにより繊維束のサイジング剤を帯熱柔軟化させ、このサイジング剤が帯熱柔軟化状態にある間に当該繊維束を所要のオーバーフィード量に保ちながら交差方向に気流を通過せしめ、弓なりに緊張する気流通過部位において繊維束の構成フィラメントを幅方向に解き分けて当該繊維束をシート状に展舒する一方、その際の強制放熱によりサイジング剤を硬化させて繊維束を展舒された状態のシート状形態にセットすることとし、繊維束に気流を吹き付けて開繊化する開繊化シートの製造方法、および開繊化シート製造装置について記載されている。
特開平01−282362号公報 特開平11−172562号公報
Further, for example, in Patent Document 2, the sizing agent for the fiber bundle is heated and softened by heating the fiber bundle that is being fed, and the fiber bundle is added while the sizing agent is in the heat-softened state. While maintaining the required overfeed amount, the air flow is allowed to pass in the crossing direction, and the constituent filaments of the fiber bundle are separated in the width direction at the air flow passage site that is tensioned like a bow, and the fiber bundle is expanded into a sheet shape. A method for producing a spread sheet, in which the sizing agent is cured by forced heat dissipation of the fiber bundle and the fiber bundle is set in a sheet-like form in which the fiber bundle is spread, and the fiber bundle is sprayed to open the fiber bundle. The chemical sheet manufacturing apparatus is described.
JP-A-01-282362 Japanese Patent Laid-Open No. 11-172562

しかしながら、特許文献1および特許文献2に示すような従来の開繊化装置または開繊化方法によると、炭素繊維束を高速で振動させたり、エアを吹き付けたりして開繊化するため、炭素繊維への負担が大きかった。   However, according to the conventional fiber opening apparatus or the fiber opening method as shown in Patent Document 1 and Patent Document 2, the carbon fiber bundle is vibrated at high speed or air is blown to open the fiber. The burden on the fiber was great.

また、炭素繊維束の製造と、炭素繊維束の開繊化と、炭素繊維への樹脂含浸とに別装置が用いられていた。このため、炭素繊維をボビンに巻きつけた後、ボビンから炭素繊維束を送出して炭素繊維束を開繊化した状態で再度ボビンに巻きつけ、さらに、ボビンから再度、開繊化した炭素繊維を送出して裁断し、樹脂含浸手段へ供給していた。このような工程数の増加により、炭素繊維複合材料の生産性が低くなり、結果として材料が高価となってしまい、自動車のような、廉価かつ汎用用途への適用が困難であった。   Further, separate devices have been used for the production of carbon fiber bundles, the opening of carbon fiber bundles, and the resin impregnation of carbon fibers. For this reason, after winding the carbon fiber around the bobbin, the carbon fiber bundle is sent out from the bobbin and wound around the bobbin in a state where the carbon fiber bundle is opened, and the carbon fiber is opened again from the bobbin. Was cut out and supplied to the resin impregnation means. Due to such an increase in the number of processes, the productivity of the carbon fiber composite material is lowered, resulting in an expensive material, and it has been difficult to apply to inexpensive and general purpose uses such as automobiles.

さらに、複数の工程で、炭素繊維のボビンへの巻取・送出を繰り替えすことで、炭素繊維への負担が大きくなり、その結果、炭素繊維が損傷してしまうことがあり、開繊化された炭素繊維束へ樹脂を含浸する際に、炭素繊維の著しい毛羽立ちや破断が生じることがあった。
このようにして得られた炭素繊維複合材料は、炭素繊維の毛羽立ちや破断のために表面に凹凸ができてしまい、なお外板パネルへの適用が困難であった。
Furthermore, by repeating the winding and sending of the carbon fiber to the bobbin in a plurality of steps, the burden on the carbon fiber increases, and as a result, the carbon fiber may be damaged and opened. When the carbon fiber bundle was impregnated with the resin, the carbon fiber sometimes fuzzed or broken.
The carbon fiber composite material thus obtained had irregularities on the surface due to the fluffing or breaking of the carbon fibers, and was still difficult to apply to the outer panel.

本発明は、前記問題に鑑みてなされたものであり、生産性が高く、外観平滑性に優れた炭素繊維複合材料を得ることができる炭素繊維複合材料製造装置、これを用いた炭素繊維複合材料製造方法および炭素繊維複合材料を提供することを課題とする。   The present invention has been made in view of the above problems, and a carbon fiber composite material manufacturing apparatus capable of obtaining a carbon fiber composite material having high productivity and excellent appearance smoothness, and a carbon fiber composite material using the carbon fiber composite material It is an object to provide a manufacturing method and a carbon fiber composite material.

前記課題を解決した本発明の炭素繊維複合材料製造装置は、巻き付けられた炭素繊維束を自転により連続的に送出するボビンと、当該ボビンから送出された前記炭素繊維束を幅方向に平坦化して開繊化するための開繊化手段と、開繊化された前記炭素繊維束を裁断する裁断手段と、当該裁断手段に連続して配置され、裁断された前記炭素繊維束に樹脂を含浸させる樹脂含浸手段と、を備えた構成とした。   The carbon fiber composite material manufacturing apparatus of the present invention that has solved the above problems includes a bobbin that continuously feeds a wound carbon fiber bundle by rotation, and the carbon fiber bundle sent from the bobbin is flattened in the width direction. An opening means for opening the fiber, a cutting means for cutting the opened carbon fiber bundle, a continuous arrangement of the cutting means, and impregnating the cut carbon fiber bundle with a resin And a resin impregnation means.

本発明によれば、ボビンにより、炭素繊維束を開繊化手段へ送出し、開繊化手段により、炭素繊維束を幅方向に平坦化させて開繊化し、裁断手段により、開繊化された炭素繊維束を裁断し、樹脂含浸手段により、裁断された炭素繊維束に樹脂を含浸させることにより、炭素繊維複合材料の製造プロセスを合理化することができる。   According to the present invention, the carbon fiber bundle is sent to the fiber opening means by the bobbin, the carbon fiber bundle is flattened in the width direction by the fiber opening means, and the fiber is opened by the cutting means. By cutting the carbon fiber bundle and impregnating the cut carbon fiber bundle with the resin by the resin impregnation means, the manufacturing process of the carbon fiber composite material can be rationalized.

すなわち、炭素繊維束の開繊化から開繊された炭素繊維束への樹脂含浸までを単一の装置により連続して行うことで、炭素繊維束を裁断し、樹脂を含浸する直前に炭素繊維束を開繊化するため、炭素繊維の毛羽立ちや破断の発生を防止することができる。
また、炭素繊維束から直接炭素繊維複合材料を得ることができるので、炭素繊維複合材料の製造工程数を削減することができ、安価な炭素繊維複合材料を得ることができる。
That is, the carbon fiber bundle is cut and the carbon fiber bundle just before impregnation with the resin by continuously performing from the opening of the carbon fiber bundle to the resin impregnation of the opened carbon fiber bundle with a single device. Since the bundle is opened, the occurrence of fluffing and breaking of the carbon fiber can be prevented.
Moreover, since a carbon fiber composite material can be obtained directly from a carbon fiber bundle, the number of manufacturing steps of the carbon fiber composite material can be reduced, and an inexpensive carbon fiber composite material can be obtained.

また、本発明の炭素繊維複合材料製造装置において、前記開繊化手段は、前記炭素繊維束が当接する球体状の開繊化部を有し、当該開繊化部の曲率Rを10.0〜20.0mmとすることが望ましい。   Moreover, in the carbon fiber composite material manufacturing apparatus of the present invention, the fiber opening means has a spherical fiber opening portion with which the carbon fiber bundle contacts, and the curvature R of the fiber opening portion is 10.0. It is desirable to be set to ˜20.0 mm.

これによれば、開繊化手段は、炭素繊維束を球体状の開繊化部で押圧して炭素繊維束を開繊化するため、炭素繊維束を高速で振動させたり、炭素繊維束にエアを吹き付けたりする方法に比較して、炭素繊維束への負担を少なくすることができる。また、曲率Rを10.0〜20.0mmとすることにより、炭素繊維束をより良好に開繊化することができる。   According to this, the fiber opening means presses the carbon fiber bundle with the spherical opening portion to open the carbon fiber bundle, so that the carbon fiber bundle can be vibrated at high speed, Compared with the method of blowing air, the burden on the carbon fiber bundle can be reduced. Moreover, a carbon fiber bundle can be opened more favorably by setting the curvature R to 10.0 to 20.0 mm.

また、前記ボビンと前記開繊化手段の間に、前記炭素繊維束を整列させて前記開繊化手段に送出するための位置決め手段をさらに備えていてもよい。   Further, a positioning means for aligning the carbon fiber bundle and sending it to the opening means may be further provided between the bobbin and the opening means.

これによれば、位置決め手段により、炭素繊維束が整列させられた状態で開繊化手段に送出されるため、炭素繊維束の中心部が開繊化手段の開繊化部を通過するように位置決めすることができる。これにより、炭素繊維束をより好適に開繊化することができる。   According to this, since the positioning means is sent to the fiber opening means in a state where the carbon fiber bundles are aligned, the center portion of the carbon fiber bundle passes through the fiber opening portion of the fiber opening means. Can be positioned. Thereby, the carbon fiber bundle can be more appropriately opened.

また、本発明の炭素繊維複合材料製造方法は、請求項1から請求項3のいずれか一項に記載の炭素繊維複合材料製造装置を用いた炭素繊維複合材料製造方法であって、開繊化工程と、裁断工程と、樹脂含浸工程と、を含んでなる。   Moreover, the carbon fiber composite material manufacturing method of this invention is a carbon fiber composite material manufacturing method using the carbon fiber composite material manufacturing apparatus as described in any one of Claims 1-3, Comprising: A process, a cutting process, and a resin impregnation process.

このような手順によれば、開繊化工程で、前記炭素繊維束を前記ボビンから送出し、前記開繊化手段で前記炭素繊維束を開繊化し、裁断工程で、開繊化された前記炭素繊維束を裁断し、樹脂含浸工程で、裁断された前記炭素繊維束に樹脂を含浸させる。   According to such a procedure, in the fiber opening step, the carbon fiber bundle is sent out from the bobbin, the carbon fiber bundle is opened by the fiber opening means, and the fiber opened in the cutting step. The carbon fiber bundle is cut, and in the resin impregnation step, the cut carbon fiber bundle is impregnated with resin.

つまり、炭素繊維束に樹脂を含浸する直前に開繊化し、裁断することにより、繊維の毛羽立ちや破断を防止することができる。また、炭素繊維束の開繊化から開繊された炭素繊維束への樹脂含浸までを単一の装置で連続して行うことにより、炭素繊維複合材料の製造工程数を削減することができ、炭素繊維複合材料を安価に製造することができる。   That is, fiber fluffing and breakage can be prevented by opening and cutting just before impregnating the carbon fiber bundle with resin. In addition, by continuously performing from the opening of the carbon fiber bundle to the resin impregnation of the opened carbon fiber bundle with a single device, the number of manufacturing steps of the carbon fiber composite material can be reduced, A carbon fiber composite material can be manufactured at low cost.

また、本発明は、請求項5に記載の炭素繊維複合材料製造方法により製造されたことを特徴とする炭素繊維複合材料として構成した。   Moreover, this invention was comprised as a carbon fiber composite material manufactured by the carbon fiber composite material manufacturing method of Claim 5.

本発明の炭素繊維複合材料によれば、炭素繊維束に樹脂を含浸する直前に開繊化し、裁断することにより製造されたため、繊維の毛羽立ちや破断を防止することができたので、外観平滑性に優れる。   According to the carbon fiber composite material of the present invention, since it was produced by opening and cutting just before impregnating the resin into the carbon fiber bundle, it was possible to prevent fluffing and breakage of the fiber, so that the appearance smoothness Excellent.

本発明の炭素繊維複合材料製造装置によれば、炭素繊維束の開繊化から開繊された炭素繊維束への樹脂含浸までを単一の装置により連続して行い、炭素繊維束を裁断し、樹脂を含浸する直前に開繊化することにより、炭素繊維束への負担を減らすことができ、炭素繊維の毛羽立ちや破断を防止することができる。これにより、外観平滑性に優れた炭素繊維複合材料を製造することができる。   According to the carbon fiber composite material manufacturing apparatus of the present invention, the process from the opening of the carbon fiber bundle to the resin impregnation of the opened carbon fiber bundle is continuously performed by a single apparatus, and the carbon fiber bundle is cut. By opening the fiber just before impregnating the resin, the burden on the carbon fiber bundle can be reduced, and the fluffing and breakage of the carbon fiber can be prevented. Thereby, the carbon fiber composite material excellent in appearance smoothness can be manufactured.

また、本発明の炭素繊維複合材料製造方法によれば、炭素繊維束の開繊化から開繊された炭素繊維束への樹脂含浸までを同一工程で連続して行うことにより、製造プロセスを合理化することができる。また、炭素繊維束を裁断し、樹脂を含浸する直前に開繊化することにより、炭素繊維への負担を減らすことができ、炭素繊維の毛羽立ちや破断を防止することができる。これにより、外観平滑性に優れた炭素繊維複合材料を製造することができる。   Further, according to the method for producing a carbon fiber composite material of the present invention, the production process is streamlined by continuously performing from the opening of the carbon fiber bundle to the resin impregnation of the opened carbon fiber bundle in the same process. can do. Further, by cutting the carbon fiber bundle and opening the fiber just before impregnating with the resin, the burden on the carbon fiber can be reduced, and the fluffing and breaking of the carbon fiber can be prevented. Thereby, the carbon fiber composite material excellent in appearance smoothness can be manufactured.

また、本発明の炭素繊維複合材料は、外観平滑性に優れる。   Moreover, the carbon fiber composite material of the present invention is excellent in appearance smoothness.

以下、本発明を実施するための最良の形態について、説明する。参照する図面において、図1は、本発明の炭素繊維複合材料製造装置の全体構成図、図2(a)は、図1に示す開繊化手段部分の拡大図であって、炭素繊維束を開繊化する様子を示す図、(b)は、開繊化手段の他の実施形態であって、炭素繊維束を開繊化する様子を示す図である。   Hereinafter, the best mode for carrying out the present invention will be described. In the drawings to be referred to, FIG. 1 is an overall configuration diagram of a carbon fiber composite material manufacturing apparatus according to the present invention, and FIG. 2A is an enlarged view of a fiber opening means portion shown in FIG. The figure which shows a mode that fiber opening is performed, (b) is a figure which is another embodiment of the fiber opening means, and shows a mode that a carbon fiber bundle is opened.

炭素繊維複合材料製造装置1は、炭素繊維束CFを送出するボビン10と、開繊化手段20Aと、位置決め手段30と、裁断手段40と、樹脂含浸手段50と、を主に有して構成されている。なお、以下の説明では、ボビン10側を上流側とする。   The carbon fiber composite material manufacturing apparatus 1 mainly includes a bobbin 10 that sends out a carbon fiber bundle CF, a fiber opening means 20A, a positioning means 30, a cutting means 40, and a resin impregnation means 50. Has been. In the following description, the bobbin 10 side is the upstream side.

ボビン10は、炭素繊維束CFを連続的に開繊化手段20Aへ送出するためのものであって、予め、炭素繊維束CFが巻きつけられた状態で、炭素繊維複合材料製造装置1の上流側に、着脱自在に取り付けられている。また、ボビン10は、図示しない駆動装置によって回転可能となっている。   The bobbin 10 is for continuously sending the carbon fiber bundle CF to the fiber opening means 20A. The bobbin 10 is upstream of the carbon fiber composite material manufacturing apparatus 1 with the carbon fiber bundle CF wound in advance. It is detachably attached to the side. The bobbin 10 can be rotated by a driving device (not shown).

ここで、炭素繊維束CFに使用される炭素繊維は、一般的な炭素繊維、例えば、PAN(ポリアクリルニトリル)系炭素繊維であって、サイジング剤の塗布量を1%前後とし、エポキシ系、ウレタン系などのサイジング剤を塗布することが望ましい。また、収束本数は、3000〜24000本(3〜24K)の範囲とすることが望ましいがこれに限定されるものではない。   Here, the carbon fiber used for the carbon fiber bundle CF is a general carbon fiber, for example, a PAN (polyacrylonitrile) -based carbon fiber, and the application amount of the sizing agent is about 1%, epoxy-based, It is desirable to apply a sizing agent such as urethane. Further, the number of convergence is preferably in the range of 3000 to 24000 (3 to 24K), but is not limited thereto.

図1および図2(a)に示すように、開繊化手段20Aは、ボビン10から連続的に送出される炭素繊維束CFの幅を広げて開繊化するためのものであって、球体状の開繊化部21を有して形成されており、炭素繊維束CFの通路に隣接して配置されている。開繊化手段20Aとしては、例えば、図2(a)に示すような球体状部材そのものを用いることができる。   As shown in FIG. 1 and FIG. 2 (a), the fiber opening means 20A is for expanding the width of the carbon fiber bundle CF continuously fed from the bobbin 10 to open the fiber. And is formed adjacent to the passage of the carbon fiber bundle CF. As the opening means 20A, for example, a spherical member as shown in FIG. 2A can be used.

開繊化部21は、曲率Rを有し、曲率Rを10.0〜20.0mmとして形成することが望ましい。曲率Rを10.0mmより小さくすると、炭素繊維束CFが幅方向に裂けてしまい開繊化することができないためであり、曲率Rを20.0mmより大きくすると、曲率Rが不足してしまい炭素繊維束CFを開繊化することができないためである。   It is desirable that the opening portion 21 has a curvature R, and the curvature R is 10.0 to 20.0 mm. This is because if the curvature R is smaller than 10.0 mm, the carbon fiber bundle CF is torn in the width direction and cannot be opened, and if the curvature R is larger than 20.0 mm, the curvature R becomes insufficient. This is because the fiber bundle CF cannot be opened.

開繊化部21の表面粗さRa(μm)は、0.3以下であることが望ましく、炭素繊維束CFとの接触抵抗を低減するために、DLC(Diamond Like Carbon)やテフロン(登録商標)などのフッ素樹脂で表面を覆うなどによって表面の平滑性を向上させる処理を行うと、なお望ましい。表面粗さRa(μm)を0.3より大きくすると、接触抵抗が大きくなりすぎるため、炭素繊維束CFの擦過により、毛羽立ちや破断が起こりやすくなるためである。   The surface roughness Ra (μm) of the opening portion 21 is desirably 0.3 or less, and in order to reduce the contact resistance with the carbon fiber bundle CF, DLC (Diamond Like Carbon) or Teflon (registered trademark) It is more desirable to perform a treatment for improving the surface smoothness by covering the surface with a fluororesin such as). This is because if the surface roughness Ra (μm) is larger than 0.3, the contact resistance becomes too large, and the fluffing and breakage are likely to occur due to the abrasion of the carbon fiber bundle CF.

開繊化手段20Aの材質は、特に限定されず、鉄やアルミニウムや樹脂材料などから適宜選択することができる。   The material of the opening means 20A is not particularly limited, and can be appropriately selected from iron, aluminum, a resin material, and the like.

このように構成された開繊化手段20Aは、図2(a)に示すように、開繊化部21で、下流側に向かって流れる炭素繊維束CFの略中心部を押圧し、炭素繊維束CFを幅方向に解きほぐすようにして、例えば、図2(a)の右側に示すように、シート状に開繊化する。なお、以下では、開繊化手段20Aにより開繊化された炭素繊維束CFを炭素繊維シートCFSとして説明する。   As shown in FIG. 2 (a), the fiber opening means 20A configured as described above presses the substantially central portion of the carbon fiber bundle CF flowing toward the downstream side at the fiber opening portion 21, and the carbon fibers As the bundle CF is unwound in the width direction, for example, as shown on the right side of FIG. Hereinafter, the carbon fiber bundle CF opened by the fiber opening means 20A will be described as a carbon fiber sheet CFS.

なお、開繊化手段20Aに限らず、例えば、図2(b)に示す開繊化手段20Bのような球体状の開繊化部21bを有する金属製の長棒状部材としてもよい。開繊化部21bの曲率Rは、送出方向に対して、略直角方向に規定される。   In addition, it is good also as a metal elongate member which has not only the opening means 20A but the spherical opening part 21b like the opening means 20B shown in FIG.2 (b), for example. The curvature R of the opening portion 21b is defined in a direction substantially perpendicular to the delivery direction.

位置決め手段30は、炭素繊維束CFを整列させて開繊化手段20Aに送出するためのものであって、例えば、中空円筒状部材であり、開繊化手段20Aより上流側かつ同軸上に配置されている。
このような位置決め手段30に炭素繊維束CFを挿通させることにより、炭素繊維束CFの幅方向の揺れを防止することができ、炭素繊維束CFを開繊位置に導くことができる。
The positioning means 30 is for aligning the carbon fiber bundles CF and sending them to the fiber opening means 20A. For example, the positioning means 30 is a hollow cylindrical member, and is disposed upstream and coaxially with respect to the fiber opening means 20A. Has been.
By inserting the carbon fiber bundle CF through such positioning means 30, it is possible to prevent the carbon fiber bundle CF from shaking in the width direction, and to guide the carbon fiber bundle CF to the opening position.

裁断手段40は、炭素繊維シートCFSを所定の長さに裁断するためのものであって、裁断手段40と樹脂含浸手段50の間に配置されている。
裁断手段40は、例えば、左右に対向して配置されたロール41、41と、このロール41、41の外周面にそれぞれ所定間隔で取り付けられた複数のカッタ42、42・・・と、を有して構成されている。裁断手段40のロール41、41をそれぞれ内側方向へ回転させて炭素繊維シートCFSを巻き込み通過させながら、カッタ42、42・・・により炭素繊維シートCFSを所定長さに裁断することができる。
The cutting means 40 is for cutting the carbon fiber sheet CFS into a predetermined length, and is disposed between the cutting means 40 and the resin impregnation means 50.
The cutting means 40 includes, for example, rolls 41 and 41 arranged facing left and right, and a plurality of cutters 42, 42... Attached to the outer peripheral surfaces of the rolls 41 and 41 at predetermined intervals, respectively. Configured. The carbon fiber sheet CFS can be cut into a predetermined length by the cutters 42, 42... While the rolls 41, 41 of the cutting means 40 are rotated inward to pass the carbon fiber sheet CFS.

なお、ボビン10と、開繊化手段20Aと、位置決め手段30と、裁断手段40は、図示しないが、例えば、紙面奥側方向に複数配置されており、炭素繊維複合材料製造装置1は、複数本の炭素繊維束CFを同時に開繊化し、炭素繊維シートCFSを裁断することができる。   In addition, although the bobbin 10, the fiber opening means 20A, the positioning means 30, and the cutting means 40 are not illustrated, for example, a plurality of the bobbin 10, the plurality of carbon fiber composite material manufacturing apparatuses 1 are arranged in the back side of the drawing. The carbon fiber bundles CF can be simultaneously opened to cut the carbon fiber sheet CFS.

また、本実施形態の炭素繊維複合材料製造装置1には、各部材間に、走行中の炭素繊維束CFおよび炭素繊維シートCFSの張力を調整するためのガイドリールGRが、適宜設置されている。
このようなガイドリールGRの外周面に炭素繊維束CFを当接させながら通過させることにより、炭素繊維束CFに所定の張力が付与される。なお、張力は、例えば、500N〜2000Nの範囲とすることが望ましい。炭素繊維束CFの張力を500Nより小さくすると、炭素繊維束CFが撓んでしまい、十分に開繊化することができないためであり、炭素繊維束CFの張力を2000Nより大きくすると、炭素繊維束CFと開繊化部21との摩擦力が大きくなりすぎてしまい、炭素繊維束CFに毛羽立ちや破断が起こりやすくなるためである。
In the carbon fiber composite material manufacturing apparatus 1 of the present embodiment, a guide reel GR for adjusting the tension of the running carbon fiber bundle CF and the carbon fiber sheet CFS is appropriately installed between the members. .
A predetermined tension is applied to the carbon fiber bundle CF by passing the carbon fiber bundle CF in contact with the outer peripheral surface of the guide reel GR. The tension is preferably in the range of 500N to 2000N, for example. This is because if the tension of the carbon fiber bundle CF is less than 500 N, the carbon fiber bundle CF is bent and cannot be sufficiently opened, and if the tension of the carbon fiber bundle CF is greater than 2000 N, the carbon fiber bundle CF. This is because the frictional force between the fiber opening portion 21 and the fiber opening portion 21 becomes excessively large, and the carbon fiber bundle CF is likely to fluff or break.

樹脂含浸手段50は、裁断手段40により裁断された炭素繊維シートCFSに樹脂を含浸させるためのものであって、基材51と、この基材51に対向する位置に配置される基材52と、基材51、52を送出する送出リール53a、53bと、押圧手段54と、巻取リール55と、を主に有して構成されている。   The resin impregnation means 50 is for impregnating the carbon fiber sheet CFS cut by the cutting means 40 with resin, and includes a base material 51 and a base material 52 disposed at a position facing the base material 51. The feeding reels 53a and 53b for feeding the base materials 51 and 52, the pressing means 54, and the take-up reel 55 are mainly included.

基材51は、裁断手段40の下方に略水平に配置されており、送出リール53aから送出されて略水平に走行している。基材51は、走行中に、裁断された炭素繊維シートCFSを順次載置する。   The base material 51 is disposed substantially horizontally below the cutting means 40 and is fed from the feed reel 53a and travels substantially horizontally. The substrate 51 sequentially places the cut carbon fiber sheets CFS during traveling.

また、基材51の送出リール53aの近傍には、樹脂ペーストP1とこれに隣接するブレード56が配置されており、基材51を走行させると、ブレード56により、樹脂ペーストP1が基材51の表面に薄く敷延されることで、基材51の表面に樹脂が塗布されるようになっている。   A resin paste P1 and a blade 56 adjacent to the resin paste P1 are disposed in the vicinity of the delivery reel 53a of the base 51. When the base 51 is run, the blade 56 causes the resin paste P1 to adhere to the base 51. The resin is applied to the surface of the substrate 51 by being thinly spread on the surface.

基材52は、基材51の下流側の上方に配置され、送出リール53bにより送出されて基材51と逆流する方向に走行し、折り返し用リール53cで折り返して向きを変え、基材51に沿って同方向に走行する。   The base material 52 is disposed above the downstream side of the base material 51, travels in a direction in which it is fed back by the feed reel 53 b and flows backward with the base material 51, and is turned back by the folding reel 53 c to change the direction. Along the same direction.

基材52の送出リール53bの近傍には、樹脂ペーストP2とこれに隣接する、ブレード56が配置されており、基材52を走行させると、ブレード56により、樹脂ペーストP2が基材52の表面に薄く敷延されることで、基材52の表面に樹脂が塗布されるようになっている。   A resin paste P2 and a blade 56 adjacent to the resin paste P2 are disposed in the vicinity of the delivery reel 53b of the base material 52. When the base material 52 is run, the blade 56 causes the resin paste P2 to be transferred to the surface of the base material 52. As a result, the resin is applied to the surface of the substrate 52.

これによれば、基材51、52の表面に樹脂を塗布して走行させ、走行中、裁断手段40で裁断されて降下した炭素繊維シートCFSを基材51の表面に載置し、この状態でさらに走行させると、基材51と、基材51に沿うようにして走行する基材52とにより炭素繊維シートCFSが挟まれる。
このような基材51、52としては、オレフィン系樹脂系素材のフィルムを用いることができる。
According to this, the resin is applied to the surfaces of the base materials 51 and 52, and the carbon fiber sheet CFS that has been cut and lowered by the cutting means 40 during the travel is placed on the surface of the base material 51. Further, the carbon fiber sheet CFS is sandwiched between the base material 51 and the base material 52 that travels along the base material 51.
As such base materials 51 and 52, a film of an olefin resin material can be used.

押圧手段53は、炭素繊維シートCFSに樹脂を含浸させるためのものであって、例えば、基材51、22を挟むように上下に配置された、例えば、図示しない駆動手段により上下動可能に構成されたロール状部材である。   The pressing means 53 is for impregnating the carbon fiber sheet CFS with a resin, and is arranged up and down so as to sandwich the base materials 51 and 22, for example, and can be moved up and down by a driving means (not shown), for example. Is a rolled member.

押圧手段53は、例えば、炭素繊維シートCFSを挟んだ状態の基材51と基材52とを互いに近接させる方向に押圧して、炭素繊維シートCFSに基材51、52の表面に塗布された樹脂を含浸させる。   For example, the pressing unit 53 presses the base material 51 and the base material 52 in a state of sandwiching the carbon fiber sheet CFS in a direction close to each other, and is applied to the surfaces of the base materials 51 and 52 on the carbon fiber sheet CFS. Impregnate with resin.

なお、炭素繊維シートCFSに含浸する樹脂ペーストP1、P2としては、例えば、不飽和ポリエステル樹脂、エポキシ樹脂、ビニルエステル樹脂およびそれらの変性物等が好適に用いられる。   As the resin pastes P1 and P2 impregnated in the carbon fiber sheet CFS, for example, unsaturated polyester resins, epoxy resins, vinyl ester resins, and modified products thereof are preferably used.

また、炭素繊維シートCFSへの樹脂の含浸性を向上させるため、樹脂ペーストP1、P2の含浸時粘度を、1000〜40000mPa・sの範囲とすることが望ましい。さらに、炭素繊維複合材料60の外観平滑性の向上のために、フィラー(例えば、炭酸カルシウム)や、低収縮化成分(例えば、スチレンブタジエン系エラストマー、酢酸ビニル系エラストマーなど)を適宜添加することが望ましい。   Further, in order to improve the impregnation property of the resin into the carbon fiber sheet CFS, it is desirable that the viscosity at the time of impregnation of the resin pastes P1 and P2 is in a range of 1000 to 40000 mPa · s. Further, in order to improve the appearance smoothness of the carbon fiber composite material 60, a filler (for example, calcium carbonate) and a low shrinkage component (for example, a styrene butadiene elastomer, a vinyl acetate elastomer, etc.) may be appropriately added. desirable.

巻取リール55は、押圧手段54で得られた炭素繊維複合材料60を巻取・回収するためのものであって、押圧手段54の下流側であって、合流した基材51、52の延長線上に配置されている。   The take-up reel 55 is for winding and collecting the carbon fiber composite material 60 obtained by the pressing means 54, and is an extension of the joined base materials 51 and 52 on the downstream side of the pressing means 54. It is arranged on the line.

このように構成された炭素繊維複合材料製造装置1による炭素繊維複合材料製造方法について、以下に説明する。参照する図面において、図3は、本発明の炭素繊維複合材料製造方法による炭素繊維複合材料製造手順を示すフローチャートである。図3に示すように、炭素繊維複合材料製造方法は、開繊化工程S10と、裁断工程S20と、樹脂含浸工程S30と、を含んでなる。   A carbon fiber composite material manufacturing method by the carbon fiber composite material manufacturing apparatus 1 configured as described above will be described below. In the drawings to be referred to, FIG. 3 is a flowchart showing a carbon fiber composite material manufacturing procedure according to the carbon fiber composite material manufacturing method of the present invention. As shown in FIG. 3, the carbon fiber composite material manufacturing method includes a fiber opening step S10, a cutting step S20, and a resin impregnation step S30.

[開繊化工程]
開繊化工程S10は、図示しない駆動手段によりボビン10を回転させ、ボビン10に巻かれた炭素繊維束CFを開繊化手段20Aに送出し、開繊化手段20Aの、球体状の開繊化部21により炭素繊維束CFの表面を押圧し、炭素繊維束CFを幅方向に平坦化していくことで開繊化して炭素繊維シートCFSとし、裁断手段40に送出する。
[裁断工程]
裁断工程S20は、開繊化工程S10により製造された炭素繊維シートCFSを裁断手段40によって、所定の長さに裁断し、樹脂含浸手段50に送出する。
[樹脂含浸工程]
樹脂含浸工程S30は、裁断工程S20により裁断された炭素繊維シートCFSに、樹脂含浸手段50によって樹脂を含浸させる。例えば、まず、樹脂含浸手段50の基材51、52を走行させて、その表面に樹脂ペーストP1、P2を敷延する。そしてその上に、裁断工程S20で裁断手段40により裁断された炭素繊維シートCFSが、走行する基材51上に順次載置される。次いで、基材51、52で炭素繊維シートCFSを挟み、この状態で、基材51、52を、押圧手段54により互いに近接させる方向に押圧し、裁断された炭素繊維シートCFSに基材51、52の表面に塗布された樹脂を含浸させて炭素繊維複合材料60を製造する。製造された炭素繊維複合材料60は、巻取リール55に巻取・回収される。
[Opening process]
In the fiber opening step S10, the bobbin 10 is rotated by a driving means (not shown), the carbon fiber bundle CF wound around the bobbin 10 is sent to the fiber opening means 20A, and the spherical opening of the fiber opening means 20A is performed. The surface of the carbon fiber bundle CF is pressed by the forming unit 21 and the carbon fiber bundle CF is flattened in the width direction to be opened to form a carbon fiber sheet CFS, which is sent to the cutting means 40.
[Cutting process]
In the cutting step S <b> 20, the carbon fiber sheet CFS produced in the fiber opening step S <b> 10 is cut into a predetermined length by the cutting means 40 and sent to the resin impregnation means 50.
[Resin impregnation process]
In the resin impregnation step S30, the resin impregnating means 50 impregnates the carbon fiber sheet CFS cut in the cutting step S20. For example, first, the base materials 51 and 52 of the resin impregnation means 50 are run, and the resin pastes P1 and P2 are spread on the surface thereof. Then, the carbon fiber sheet CFS cut by the cutting means 40 in the cutting step S20 is sequentially placed on the traveling base material 51. Next, the carbon fiber sheet CFS is sandwiched between the base materials 51 and 52, and in this state, the base materials 51 and 52 are pressed in a direction to approach each other by the pressing means 54, and the base material 51, The carbon fiber composite material 60 is manufactured by impregnating the resin applied to the surface of 52. The produced carbon fiber composite material 60 is taken up and collected on the take-up reel 55.

本実施形態に係る炭素繊維複合材料製造装置1によれば、炭素繊維束CFの開繊化と、開繊化された炭素繊維束CF(炭素繊維シートCFS)の裁断と、炭素繊維シートCFSへの樹脂含浸と、が一連の動作で行われるため、炭素繊維シートCFSを裁断し、樹脂を含浸させる直前に、すなわち、炭素繊維束CFの巻取・送出を繰り返さずに、開繊化手段20Aにより炭素繊維束CFを開繊化することができる。このため、炭素繊維束CFへの負担を少なくすることができ、炭素繊維束CFの損傷を防止することができる。これにより、開繊化された炭素繊維シートCFSの毛羽立ちや破断を防止することができ、外観平滑性に優れた炭素繊維複合材料60を製造することができる。
さらに、開繊化手段20Aは、球体状の開繊化部21で炭素繊維束CFに当接して、炭素繊維束CFを開繊化するものであるため、炭素繊維束CFと開繊化部21との摩擦が小さくすることができ、炭素繊維束CFへの負担をさらに低減させることができる。
According to the carbon fiber composite material manufacturing apparatus 1 according to the present embodiment, the opening of the carbon fiber bundle CF, the cutting of the opened carbon fiber bundle CF (carbon fiber sheet CFS), and the carbon fiber sheet CFS. Since the resin impregnation is performed in a series of operations, the fiber opening sheet 20A is cut immediately before the carbon fiber sheet CFS is cut and impregnated with the resin, that is, without repeatedly winding and feeding the carbon fiber bundle CF. Thus, the carbon fiber bundle CF can be opened. For this reason, the burden on the carbon fiber bundle CF can be reduced, and damage to the carbon fiber bundle CF can be prevented. Thereby, fluffing and breakage of the opened carbon fiber sheet CFS can be prevented, and the carbon fiber composite material 60 excellent in appearance smoothness can be manufactured.
Further, since the fiber opening means 20A is for opening the carbon fiber bundle CF by contacting the carbon fiber bundle CF with the spherical fiber opening section 21, the carbon fiber bundle CF and the fiber opening section are opened. The friction with 21 can be reduced, and the burden on the carbon fiber bundle CF can be further reduced.

また、本実施形態に係る炭素繊維複合材料製造方法によれば、開繊化工程S10と裁断工程S20と樹脂含浸工程S30と、を含んでなるため、炭素繊維束CFを、開繊化工程S10で開繊化した直後に、裁断工程S20で裁断し、樹脂含浸工程S30で樹脂を含浸させることができる。このため、炭素繊維束CFへの負担を少なくすることができ、炭素繊維束CFの損傷を防止することができる。これにより、開繊された炭素繊維シートCFSの毛羽立ちや破断を防止することができ、外観平滑性に優れた炭素繊維複合材料60を得ることができる。   Moreover, according to the carbon fiber composite material manufacturing method which concerns on this embodiment, since it comprises fiber opening process S10, cutting process S20, and resin impregnation process S30, carbon fiber bundle CF is made into fiber opening process S10. Immediately after the fiber is opened, the cutting can be performed in the cutting step S20, and the resin can be impregnated in the resin impregnation step S30. For this reason, the burden on the carbon fiber bundle CF can be reduced, and damage to the carbon fiber bundle CF can be prevented. Thereby, fluffing and breakage of the opened carbon fiber sheet CFS can be prevented, and the carbon fiber composite material 60 excellent in appearance smoothness can be obtained.

(1)開繊化状態の評価
以下、本発明に係る炭素繊維複合材料製造装置1の開繊化手段20Aによる開繊化状態の評価実験結果について説明する。
本実験では、開繊化手段の開繊化部21の曲率Rを、5mmから25mmまで5mm単位で増加させ、それぞれについて、炭素繊維束の開繊化状態を評価した。
具体的には、条件No.1は、開繊化部の曲率を25mmとし、条件No.2は、開繊化部の曲率を20mmとし、条件No.3は、開繊化部の曲率を15mmとし、条件No.4は、開繊化部の曲率を10mmとし、条件No.5は、開繊化部の曲率を5mmとし、開繊化した。
また、炭素繊維束CFとしては、(1)東邦テナックス製のHTA−3K−E30、(2)同HTA−12K−E30、(3)同STS−24K−F301を用いた。条件No.1〜No.5の一覧を下記表1に示す。
(1) Evaluation of the fiber opening state Hereinafter, the evaluation experiment result of the fiber opening state by the fiber opening means 20A of the carbon fiber composite material manufacturing apparatus 1 according to the present invention will be described.
In this experiment, the curvature R of the opening portion 21 of the opening means was increased from 5 mm to 25 mm in units of 5 mm, and the opening state of the carbon fiber bundle was evaluated for each.
Specifically, condition no. No. 1 has a curvature of the opening portion of 25 mm, and condition No. 1 No. 2 has a curvature of 20 mm for the opening portion, and condition No. No. 3 has a curvature of the fiber opening portion of 15 mm, and condition No. No. 4 has a curvature of the opening portion of 10 mm, and condition No. No. 5 was opened at a curvature of 5 mm.
As the carbon fiber bundle CF, (1) HTA-3K-E30 manufactured by Toho Tenax, (2) HTA-12K-E30, and (3) STS-24K-F301 were used. Condition No. 1-No. The list of 5 is shown in Table 1 below.

また、本実験では、アスペクト比を開繊化状態の評価指標とした。ここで、アスペクト比とは、炭素繊維束CFの長さの直径に対する比を示すものである。アスペクト比が0.01以下であれば、良好な開繊化状態であると評価することができる。   In this experiment, the aspect ratio was used as an evaluation index for the opened state. Here, the aspect ratio indicates the ratio of the length of the carbon fiber bundle CF to the diameter. If the aspect ratio is 0.01 or less, it can be evaluated that the fiber is in a good open state.

Figure 2008254191
Figure 2008254191

表1に示す通り、条件No.1では、炭素繊維束(1)〜(3)のそれぞれにおいて、アスペクト比が0.01以上となり、不適切な開繊化状態となった。条件No.2〜条件No.4では、炭素繊維束(1)〜(3)のそれぞれにおいて、アスペクト比が0.01以下となり、良好な開繊化状態であった。条件No.5では、炭素繊維束CFが幅方向に裂けてしまい(裂けNG)、開繊化に失敗した。
以上のように、条件No.2〜条件No.4で良好な結果が得られた。
As shown in Table 1, condition no. 1, in each of the carbon fiber bundles (1) to (3), the aspect ratio was 0.01 or more, and an inappropriate fiber opening state was obtained. Condition No. 2 to Condition No. In No. 4, in each of the carbon fiber bundles (1) to (3), the aspect ratio was 0.01 or less, and the fiber was in a favorable open state. Condition No. In No. 5, the carbon fiber bundle CF was torn in the width direction (rip NG), and the fiber opening failed.
As described above, condition no. 2 to Condition No. 4 gave good results.

(2)成形品とした場合における表面状態の確認
本実施形態の炭素繊維複合材料製造装置1により製造された炭素繊維複合材料60を用いて炭素繊維複合材料成形品を試作し成形品の状態を評価した。また、本発明の要件を満たさないその他の方法で製造された炭素繊維複合材料を用いて試作した炭素繊維複合材料成形品と比較評価した。
(2) Confirmation of surface state in the case of forming a molded product Using the carbon fiber composite material 60 manufactured by the carbon fiber composite material manufacturing apparatus 1 of the present embodiment, a prototype of the carbon fiber composite material is manufactured and the state of the molded product is checked. evaluated. Moreover, it compared with the carbon fiber composite material molded article made as an experiment using the carbon fiber composite material manufactured by the other method which does not satisfy the requirements of the present invention.

実施例1は、本発明の炭素繊維複合材料製造装置1を用いて、前記した条件No.3で開繊化した炭素繊維シートを用い、炭素繊維複合材料を製造した。含浸させる樹脂は、一般的な高反応性ポリエステルに炭酸カルシウム90phr(per hundred resin)を使用し、低収縮化材として、スチレンブタジエン系エラストマー6phrを添加したものを使用した。
成形条件は、川崎油工製200tプレスを用い、金型キャビティ寸法300mmに対して炭素繊維複合材料を160mmに裁断したものを金型中央部に乗せ、金型温度を140℃とし、型締め圧力として10MPaを加えた状態で180秒間維持し、硬化させた。
Example 1 uses the carbon fiber composite material manufacturing apparatus 1 of the present invention, and the above-mentioned conditions No. Using the carbon fiber sheet opened in 3, a carbon fiber composite material was produced. As the resin to be impregnated, 90 phr (per hundred resin) of calcium carbonate was used for general highly reactive polyester, and 6 phr of a styrene butadiene elastomer was added as a low shrinkage material.
The molding conditions were a Kawasaki Oil Works 200t press, a carbon fiber composite material cut to 160mm for a mold cavity dimension of 300mm, placed on the center of the mold, the mold temperature was 140 ° C, and the mold clamping pressure As a result, it was maintained for 180 seconds with 10 MPa applied and cured.

比較例1は、炭素繊維として、東邦テナックス製のHTA−12K−E30を使用し、月島機械製SMC(シートモールディングコンパウンド)含浸機を用いて樹脂を含浸させ、炭素繊維複合材料を製造した。含浸させる樹脂は、一般的な高反応性ポリエステルに炭酸カルシウム90phr(per hundred resin)を使用し、低収縮化材として、スチレンブタジエン系エラストマー6phrを添加したものを使用した。なお、比較例1では、炭素繊維束の開繊は行っていない。
成形条件は、実施例1と同様である。
In Comparative Example 1, HTA-12K-E30 manufactured by Toho Tenax was used as the carbon fiber, and the resin was impregnated using a SMC (sheet molding compound) impregnator manufactured by Tsukishima Kikai to produce a carbon fiber composite material. As the resin to be impregnated, 90 phr (per hundred resin) of calcium carbonate was used for general highly reactive polyester, and 6 phr of a styrene butadiene elastomer was added as a low shrinkage material. In Comparative Example 1, the carbon fiber bundle was not opened.
The molding conditions are the same as in Example 1.

比較例2は、炭素繊維として、東邦テナックス製のHTA−12K−E30を使用し、特開平11−172562号公報に開示された開繊シート製造装置を用いてエア圧0.5MPa、送風スパン50mm、繊維送出速度1m/minで開繊化した。このようにして開繊された炭素繊維シートは、収束幅が15mm、収束厚さが0.06mmであった。
次に、月島機械製SMC(シートモールディングコンパウンド)含浸機を用いて樹脂を含浸させ、炭素繊維複合材料を製造した。含浸樹脂は、一般的な高反応性ポリエステルに炭酸カルシウム90phr(per hundred resin)を使用し、低収縮化材として、スチレンブタジエン系エラストマー6phrを添加したものを使用した。
成形条件は、実施例1と同様である。
Comparative Example 2 uses HTA-12K-E30 manufactured by Toho Tenax as carbon fiber, using an opening sheet manufacturing apparatus disclosed in JP-A-11-172562, air pressure 0.5 MPa, blow span 50 mm The fiber was opened at a fiber delivery speed of 1 m / min. The carbon fiber sheet thus opened had a convergence width of 15 mm and a convergence thickness of 0.06 mm.
Next, the resin was impregnated using an SMC (sheet molding compound) impregnation machine manufactured by Tsukishima Kikai Co., Ltd. to produce a carbon fiber composite material. As the impregnating resin, 90 phr (per hundred resin) of calcium carbonate was used for general highly reactive polyester, and 6 phr of styrene butadiene elastomer was added as a low shrinkage material.
The molding conditions are the same as in Example 1.

比較例3は、ガラス繊維として、ガラスClass−A SMCを使用し、日東紡製RS480PK650を使用して開繊化した。次に、月島機械製SMC(シートモールディングコンパウンド)含浸機を用いて樹脂を含浸させ、炭素繊維複合材料を製造した。含浸させる樹脂は、一般的な高反応性ポリエステルに炭酸カルシウム90phr(per hundred resin)を使用し、低収縮化材として、スチレンブタジエン系エラストマー6phrを添加したものを使用した。
成形条件は、実施例1と同様である。
In Comparative Example 3, glass Class-A SMC was used as the glass fiber, and the fiber was opened using Nittobo RS480PK650. Next, the resin was impregnated using an SMC (sheet molding compound) impregnation machine manufactured by Tsukishima Kikai Co., Ltd. to produce a carbon fiber composite material. As the resin to be impregnated, 90 phr (per hundred resin) of calcium carbonate was used for general highly reactive polyester, and 6 phr of a styrene butadiene elastomer was added as a low shrinkage material.
The molding conditions are the same as in Example 1.

評価項目は、炭素繊維シートCFSを樹脂含浸手段50に供給した際の、炭素繊維シートCFSの状態、成形品のVf(%)と、成形品の密度(g/cm)と、成形品の表面粗さRa(μm)と、成形品の表面うねり(μm)と、成形品の外観平滑性についての外観目視判定である。炭素繊維シートCFSは、目視観察し、破断の有無により合否を決定した。成形品のVf(%)の評価方法は、JISで定められた、硫酸による溶解法に準拠している。成形品の密度(g/cm)は、MIRAGE製SD−120Lを用いて測定した。成形品の表面粗さRa(μm)は、ミツトヨ製SV3000CNCを用いて算出した。なお、成形品表面うねりは、成形品表面の任意の位置で50mm測定し、波形の最大値(凸部)と最小値(凹部)の差の絶対値を算出し、7.0μm以下を合格とした。 The evaluation items are the state of the carbon fiber sheet CFS when the carbon fiber sheet CFS is supplied to the resin impregnation means 50, the Vf (%) of the molded product, the density (g / cm 3 ) of the molded product, and the It is visual appearance determination about surface roughness Ra (micrometer), surface waviness (micrometer) of a molded article, and the external appearance smoothness of a molded article. The carbon fiber sheet CFS was visually observed, and pass / fail was determined by the presence or absence of breakage. The evaluation method of Vf (%) of a molded product is based on the dissolution method using sulfuric acid defined by JIS. The density (g / cm 3 ) of the molded product was measured using SD-120L manufactured by MIRAGE. The surface roughness Ra (μm) of the molded product was calculated using Mitutoyo SV3000 CNC. The surface waviness of the molded product is measured 50 mm at an arbitrary position on the surface of the molded product, and the absolute value of the difference between the maximum value (convex part) and the minimum value (concave part) of the waveform is calculated. did.

前記のようにして製造された実施例1と比較例1〜3について、各評価項目について評価を行った。評価項目及び評価結果の一覧を下記表2に示す。   About Example 1 and Comparative Examples 1-3 which were manufactured as mentioned above, it evaluated about each evaluation item. Table 2 below shows a list of evaluation items and evaluation results.

Figure 2008254191
Figure 2008254191

実施例1は、本発明の要件を満たすので、各評価項目について合格基準を満たし、良好な結果が得られた。
比較例1〜3は、本発明の要件を満たさないので、各評価項目のいずれかについて合格基準を満たさなかった。
具体的には、比較例1では、炭素繊維束を開繊していないため、成形品の外観目視判定で、表面に凹凸が見られ不合格となった。比較例2では、炭素繊維束をエア開繊したため、含浸機に炭素繊維シートを供給する際に炭素繊維が破断してしまった。また、このため、表面に若干の凹凸が見られ不合格となった。比較例3では、強化繊維としてガラス繊維を用いたため、成形品の密度(g/cm)が合格基準値を超えてしまい不合格となった。
Since Example 1 satisfies the requirements of the present invention, the acceptance criteria were satisfied for each evaluation item, and good results were obtained.
Since Comparative Examples 1-3 did not satisfy the requirements of the present invention, the acceptance criteria were not satisfied for any of the evaluation items.
Specifically, in Comparative Example 1, since the carbon fiber bundle was not opened, the appearance of the molded product was visually judged to be uneven and the surface was rejected. In Comparative Example 2, since the carbon fiber bundle was air-opened, the carbon fiber was broken when the carbon fiber sheet was supplied to the impregnation machine. Moreover, for this reason, some unevenness | corrugations were seen on the surface and it failed. In Comparative Example 3, since glass fiber was used as the reinforcing fiber, the density (g / cm 3 ) of the molded product exceeded the acceptance standard value and was rejected.

以上のように、本実施形態に係る炭素繊維複合材料製造装置1によれば、良好な炭素繊維複合材料60を得ることができる。このため、自動車の外板パネルなどに広く利用することができる。   As described above, according to the carbon fiber composite material manufacturing apparatus 1 according to the present embodiment, a good carbon fiber composite material 60 can be obtained. For this reason, it can be widely used for an outer panel of an automobile.

以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されるものではない。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment.

本発明の炭素繊維複合材料製造装置の全体構成図である。It is a whole block diagram of the carbon fiber composite material manufacturing apparatus of this invention. 図2(a)は、図1に示す開繊化手段部分の拡大図であって、炭素繊維束を開繊化する様子を示す図、(b)は、開繊化手段の他の実施形態であって、炭素繊維束を開繊化する様子を示す図である。FIG. 2 (a) is an enlarged view of the fiber opening means part shown in FIG. 1, and shows a state of opening the carbon fiber bundle, and FIG. 2 (b) is another embodiment of the fiber opening means. And it is a figure which shows a mode that a carbon fiber bundle is opened. 本発明の炭素繊維複合材料製造方法による炭素繊維複合材料製造手順を示すフローチャートである。It is a flowchart which shows the carbon fiber composite material manufacturing procedure by the carbon fiber composite material manufacturing method of this invention.

符号の説明Explanation of symbols

1 炭素繊維複合材料製造装置
10 ボビン
20 開繊化手段
30 位置決め手段
40 裁断手段
50 樹脂含浸手段
60 炭素繊維複合材料
CF 炭素繊維束
CFS 炭素繊維シート
S10 開繊化工程
S20 裁断工程
S30 樹脂含浸工程
DESCRIPTION OF SYMBOLS 1 Carbon fiber composite material manufacturing apparatus 10 Bobbin 20 Fiber opening means 30 Positioning means 40 Cutting means 50 Resin impregnation means 60 Carbon fiber composite material CF Carbon fiber bundle CFS Carbon fiber sheet S10 Fiber opening process S20 Cutting process S30 Resin impregnation process

Claims (5)

巻き付けられた炭素繊維束を自転により連続的に送出するボビンと、
当該ボビンから送出された前記炭素繊維束を幅方向に平坦化して開繊化するための開繊化手段と、
開繊化された前記炭素繊維束を裁断する裁断手段と、
当該裁断手段に連続して配置され、裁断された前記炭素繊維束に樹脂を含浸させる樹脂含浸手段と、を備えた
ことを特徴とする炭素繊維複合材料製造装置。
A bobbin that continuously feeds the wound carbon fiber bundle by rotation;
A fiber opening means for flattening the carbon fiber bundle delivered from the bobbin in the width direction for opening;
A cutting means for cutting the opened carbon fiber bundle;
A carbon fiber composite material manufacturing apparatus, comprising: a resin impregnation unit that is disposed continuously with the cutting unit and impregnates the cut carbon fiber bundle with a resin.
前記開繊化手段は、前記炭素繊維束が当接する球体状の開繊化部を有し、当該開繊化部の曲率Rを10.0〜20.0mmとしたことを特徴とする請求項1に記載の炭素繊維複合材料製造装置。   The fiber opening means has a spherical fiber opening portion with which the carbon fiber bundle abuts, and a curvature R of the fiber opening portion is set to 10.0 to 20.0 mm. The carbon fiber composite material manufacturing apparatus according to 1. 前記ボビンと前記開繊化手段の間に、前記炭素繊維束を整列させて前記開繊化手段に送出するための位置決め手段をさらに備えた
ことを特徴とする請求項1または請求項2に記載の炭素繊維複合材料製造装置。
The positioning apparatus for aligning the carbon fiber bundle between the bobbin and the fiber opening means and feeding the fiber bundle to the fiber opening means is further provided. Carbon fiber composite material manufacturing equipment.
請求項1から請求項3のいずれか一項に記載の炭素繊維複合材料製造装置を用いた炭素繊維複合材料製造方法であって、
前記炭素繊維束を前記ボビンから前記開繊化手段へ送出し、当該開繊化手段で前記炭素繊維束を開繊化する開繊化工程と、
開繊化された前記炭素繊維束を裁断する裁断工程と、
裁断された前記炭素繊維束に樹脂を含浸させる樹脂含浸工程と、
を備えることを特徴とする炭素繊維複合材料製造方法。
A carbon fiber composite material manufacturing method using the carbon fiber composite material manufacturing apparatus according to any one of claims 1 to 3,
The carbon fiber bundle is sent from the bobbin to the fiber opening means, and the fiber opening step is performed to open the carbon fiber bundle with the fiber opening means.
A cutting step of cutting the opened carbon fiber bundle;
A resin impregnation step of impregnating the cut carbon fiber bundle with resin;
A method for producing a carbon fiber composite material, comprising:
請求項4に記載の炭素繊維複合材料製造方法により製造されたことを特徴とする炭素繊維複合材料。   A carbon fiber composite material manufactured by the carbon fiber composite material manufacturing method according to claim 4.
JP2007095356A 2007-03-30 2007-03-30 Carbon fiber composite material manufacturing apparatus, carbon fiber composite material manufacturing method and carbon fiber composite material Pending JP2008254191A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007095356A JP2008254191A (en) 2007-03-30 2007-03-30 Carbon fiber composite material manufacturing apparatus, carbon fiber composite material manufacturing method and carbon fiber composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095356A JP2008254191A (en) 2007-03-30 2007-03-30 Carbon fiber composite material manufacturing apparatus, carbon fiber composite material manufacturing method and carbon fiber composite material

Publications (1)

Publication Number Publication Date
JP2008254191A true JP2008254191A (en) 2008-10-23

Family

ID=39978285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095356A Pending JP2008254191A (en) 2007-03-30 2007-03-30 Carbon fiber composite material manufacturing apparatus, carbon fiber composite material manufacturing method and carbon fiber composite material

Country Status (1)

Country Link
JP (1) JP2008254191A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012105080A1 (en) * 2011-02-01 2012-08-09 帝人株式会社 Random mat and fiber reinforced composite material
WO2012117593A1 (en) * 2011-02-28 2012-09-07 帝人株式会社 Molded body comprising fiber-reinforcing composite material
WO2012140793A1 (en) * 2011-04-14 2012-10-18 帝人株式会社 Reinforcing fiber composite material
WO2014021316A1 (en) * 2012-07-31 2014-02-06 帝人株式会社 Random mat, and compact of fibre-reinforced composite material
EP2727694A1 (en) * 2012-11-05 2014-05-07 Toho Tenax Europe GmbH Lowering device for controlled lowering of reinforcement fibre bundles
EP2727693A1 (en) * 2012-11-05 2014-05-07 Toho Tenax Europe GmbH Method for manufacturing fibre preforms
EP2740578A4 (en) * 2011-08-03 2014-06-11 Teijin Ltd Method for manufacturing molded article by low-pressure molding
EP2844790A4 (en) * 2012-05-01 2016-04-06 Continental Structural Plastics Inc Process of debundling carbon fiber tow and molding compositions containing such fibers
KR20170063703A (en) 2014-09-25 2017-06-08 도레이 카부시키가이샤 Reinforcing fiber composite material
WO2017111056A1 (en) * 2015-12-25 2017-06-29 三菱ケミカル株式会社 Method for manufacturing fiber-reinforced resin molding material, and device for manufacturing fiber-reinforced resin molding material
KR20170107483A (en) 2015-01-30 2017-09-25 도레이 카부시키가이샤 Reinforced fiber composite material
WO2017221688A1 (en) * 2016-06-22 2017-12-28 東レ株式会社 Production method for separated fiber bundle, separated fiber bundle, fiber-reinforced resin molding material using separated fiber bundle, and production method for fiber-reinforced resin molding material using separated fiber bundle
JPWO2017110912A1 (en) * 2015-12-24 2017-12-28 三菱ケミカル株式会社 Fiber-reinforced resin material molded body, method for manufacturing fiber-reinforced resin material molded body, and method for manufacturing fiber-reinforced resin material
WO2018212016A1 (en) * 2017-05-17 2018-11-22 株式会社新菱 Methods for producing regenerated carbon fiber bundles, regenerated carbon fibers and regenerated milled carbon fibers, apparatus for producing regenerated carbon fiber bundles, method for producing carbon fiber-reinforced resin, and regenerated carbon fiber bundles
CN108883548A (en) * 2016-03-24 2018-11-23 三菱化学株式会社 Fibre reinforced resin material and its manufacturing method
CN109070389A (en) * 2016-04-11 2018-12-21 三菱化学株式会社 The manufacturing method of fibre reinforced resin material and the manufacturing device of fibre reinforced resin material
FR3075689A1 (en) * 2017-12-26 2019-06-28 Compagnie Plastic Omnium METHOD FOR MANUFACTURING A SEMI-PRODUCT FOR A PARTS OF A MOTOR VEHICLE
WO2019212127A1 (en) * 2018-04-30 2019-11-07 재단법인 한국탄소융합기술원 Carbon fiber mat and production method of carbon fiber mat impregnated with thermosetting resin
CN111936281A (en) * 2018-04-04 2020-11-13 三菱化学株式会社 Method for producing fiber-reinforced resin molding material and apparatus for producing fiber-reinforced resin molding material
US11518116B2 (en) 2015-07-07 2022-12-06 Mitsubishi Chemical Corporation Method and apparatus for producing fiber-reinforced resin molding material

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448596B (en) * 2011-02-01 2014-08-11 Teijin Ltd Random felt and reinforced fiber composites
WO2012105080A1 (en) * 2011-02-01 2012-08-09 帝人株式会社 Random mat and fiber reinforced composite material
US8946342B2 (en) 2011-02-01 2015-02-03 Teijin Limited Random mat and fiber-reinforced composite material
KR101444631B1 (en) 2011-02-01 2014-11-04 데이진 가부시키가이샤 Random mat and fiber reinforced composite material
WO2012117593A1 (en) * 2011-02-28 2012-09-07 帝人株式会社 Molded body comprising fiber-reinforcing composite material
RU2551501C2 (en) * 2011-02-28 2015-05-27 Тейдзин Лимитед Moulded product made of composite with reinforcing fibres
WO2012140793A1 (en) * 2011-04-14 2012-10-18 帝人株式会社 Reinforcing fiber composite material
US9580568B2 (en) 2011-04-14 2017-02-28 Teijin Limited Fiber-reinforced composite material
JP5702854B2 (en) * 2011-04-14 2015-04-15 帝人株式会社 Reinforced fiber composite material
JPWO2012140793A1 (en) * 2011-04-14 2014-07-28 帝人株式会社 Reinforced fiber composite material
KR101516132B1 (en) 2011-08-03 2015-04-29 데이진 가부시키가이샤 Method for manufacturing shaped product by low-pressure molding
EP2740578A4 (en) * 2011-08-03 2014-06-11 Teijin Ltd Method for manufacturing molded article by low-pressure molding
US8992811B2 (en) 2011-08-03 2015-03-31 Teijin Limited Method for manufacturing shaped product by low-pressure molding
EP3199677A1 (en) * 2012-05-01 2017-08-02 Continental Structural Plastics, Inc. Article comprising chopped carbon fibers
US11214894B2 (en) 2012-05-01 2022-01-04 Continental Structural Plastics, Inc. Process of debundling carbon fiber tow and molding compositions containing such fibers
US10337129B2 (en) 2012-05-01 2019-07-02 Continental Structural Plastics, Inc. Process of debundling carbon fiber tow and molding compositions containing such fibers
EP2844790A4 (en) * 2012-05-01 2016-04-06 Continental Structural Plastics Inc Process of debundling carbon fiber tow and molding compositions containing such fibers
US10208174B2 (en) 2012-07-31 2019-02-19 Teijin Limited Random mat and fiber-reinforced composite material shaped product
WO2014021316A1 (en) * 2012-07-31 2014-02-06 帝人株式会社 Random mat, and compact of fibre-reinforced composite material
RU2558516C1 (en) * 2012-07-31 2015-08-10 Тейдзин Лимитед Mat with optional orientation of fibres, and formed product out of fibre reinforced composite material
KR20150082255A (en) * 2012-11-05 2015-07-15 토호 테낙스 오이로페 게엠베하 Depositing device for the controlled deposition of reinforcing fibre bundles
AU2013339697B2 (en) * 2012-11-05 2017-07-06 Toho Tenax Europe Gmbh Method for producing fibre preforms
CN104768724A (en) * 2012-11-05 2015-07-08 东邦泰纳克丝欧洲有限公司 Depositing device for the controlled deposition of reinforcing fibre bundles
CN104768725A (en) * 2012-11-05 2015-07-08 东邦泰纳克丝欧洲有限公司 Method for producing fibre preforms
AU2013339696B2 (en) * 2012-11-05 2017-06-01 Toho Tenax Europe Gmbh Depositing device for the controlled deposition of reinforcing fibre bundles
KR20150081277A (en) * 2012-11-05 2015-07-13 토호 테낙스 오이로페 게엠베하 Method for producing fibre preforms
EP2727694A1 (en) * 2012-11-05 2014-05-07 Toho Tenax Europe GmbH Lowering device for controlled lowering of reinforcement fibre bundles
US10059042B2 (en) 2012-11-05 2018-08-28 Teijin Carbon Europe Gmbh Method for producing fiber preforms
WO2014067762A1 (en) * 2012-11-05 2014-05-08 Toho Tenax Europe Gmbh Depositing device for the controlled deposition of reinforcing fibre bundles
KR102091993B1 (en) 2012-11-05 2020-03-23 테이진 카르본 오이로페 게엠베하 Method for producing fibre preforms
RU2632298C2 (en) * 2012-11-05 2017-10-03 Тохо Тенакс Ойропе Гмбх Method for fibrous blank manufacturing
RU2632300C2 (en) * 2012-11-05 2017-10-03 Тохо Тенакс Ойропе Гмбх Loading device for controlled stacking of beams of fitting fibers
KR102082632B1 (en) 2012-11-05 2020-04-14 테이진 카르본 오이로페 게엠베하 Depositing device for the controlled deposition of reinforcing fibre bundles
WO2014067763A1 (en) * 2012-11-05 2014-05-08 Toho Tenax Europe Gmbh Method for producing fibre preforms
EP2727693A1 (en) * 2012-11-05 2014-05-07 Toho Tenax Europe GmbH Method for manufacturing fibre preforms
US10052654B2 (en) 2012-11-05 2018-08-21 Teijin Carbon Europe Gmbh Deposition device for controlled deposition of reinforcing fiber bundles
KR20170063703A (en) 2014-09-25 2017-06-08 도레이 카부시키가이샤 Reinforcing fiber composite material
KR20170107483A (en) 2015-01-30 2017-09-25 도레이 카부시키가이샤 Reinforced fiber composite material
US11518116B2 (en) 2015-07-07 2022-12-06 Mitsubishi Chemical Corporation Method and apparatus for producing fiber-reinforced resin molding material
US11919255B2 (en) 2015-07-07 2024-03-05 Mitsubishi Chemical Corporation Method and apparatus for producing fiber-reinforced resin molding material
JPWO2017110912A1 (en) * 2015-12-24 2017-12-28 三菱ケミカル株式会社 Fiber-reinforced resin material molded body, method for manufacturing fiber-reinforced resin material molded body, and method for manufacturing fiber-reinforced resin material
US11660783B2 (en) 2015-12-24 2023-05-30 Mitsubishi Chemical Corporation Fiber-reinforced resin material molding, method for manufacturing fiber-reinforced resin material molding, and method for manufacturing fiber-reinforced resin material
US10933563B2 (en) 2015-12-24 2021-03-02 Mitsubishi Chemical Corporation Fiber-reinforced resin material molding, method for manufacturing fiber-reinforced resin material molding, and method for manufacturing fiber-reinforced resin material
CN108367461A (en) * 2015-12-25 2018-08-03 三菱化学株式会社 The manufacturing method of fiber-reinforced resin moulding material and the manufacturing device of fiber-reinforced resin moulding material
EP3395526A4 (en) * 2015-12-25 2019-01-02 Mitsubishi Chemical Corporation Method for manufacturing fiber-reinforced resin molding material, and device for manufacturing fiber-reinforced resin molding material
WO2017111056A1 (en) * 2015-12-25 2017-06-29 三菱ケミカル株式会社 Method for manufacturing fiber-reinforced resin molding material, and device for manufacturing fiber-reinforced resin molding material
JP7310985B2 (en) 2015-12-25 2023-07-19 三菱ケミカル株式会社 METHOD FOR MANUFACTURING FIBER REINFORCED RESIN MOLDING MATERIAL
US10889025B2 (en) 2015-12-25 2021-01-12 Mitsubishi Chemical Corporation Method for manufacturing fiber-reinforced resin molding material, and device for manufacturing fiber-reinforced resin molding material
JP2022118151A (en) * 2015-12-25 2022-08-12 三菱ケミカル株式会社 Production method of fiber reinforced resin molding material
EP3434435A4 (en) * 2016-03-24 2019-03-27 Mitsubishi Chemical Corporation Fiber-reinforced resin material and manufacturing method therefor
CN108883548A (en) * 2016-03-24 2018-11-23 三菱化学株式会社 Fibre reinforced resin material and its manufacturing method
EP3444090A4 (en) * 2016-04-11 2019-07-24 Mitsubishi Chemical Corporation Method for manufacturing fiber reinforced resin material and apparatus for manufacturing fiber reinforced resin material
CN113442334A (en) * 2016-04-11 2021-09-28 三菱化学株式会社 Method for producing fiber-reinforced resin material and apparatus for producing fiber-reinforced resin material
CN109070389A (en) * 2016-04-11 2018-12-21 三菱化学株式会社 The manufacturing method of fibre reinforced resin material and the manufacturing device of fibre reinforced resin material
CN109070389B (en) * 2016-04-11 2021-06-15 三菱化学株式会社 Method for producing fiber-reinforced resin material and apparatus for producing fiber-reinforced resin material
US11371171B2 (en) 2016-06-22 2022-06-28 Toray Industries, Inc. Production method for separated fiber bundle, separated fiber bundle, fiber-reinforced resin molding material using separated fiber bundle, and production method for fiber-reinforced resin molding material using separated fiber bundle
WO2017221688A1 (en) * 2016-06-22 2017-12-28 東レ株式会社 Production method for separated fiber bundle, separated fiber bundle, fiber-reinforced resin molding material using separated fiber bundle, and production method for fiber-reinforced resin molding material using separated fiber bundle
US11359060B2 (en) 2017-05-17 2022-06-14 Shinryo Corporation Method of producing reclaimed carbon fiber bundles, reclaimed carbon fibers, or reclaimed milled carbon fibers, device for producing reclaimed carbon fiber bundles, method of producing carbon fiber reinforced resin, and reclaimed carbon fiber bundles
WO2018212016A1 (en) * 2017-05-17 2018-11-22 株式会社新菱 Methods for producing regenerated carbon fiber bundles, regenerated carbon fibers and regenerated milled carbon fibers, apparatus for producing regenerated carbon fiber bundles, method for producing carbon fiber-reinforced resin, and regenerated carbon fiber bundles
JPWO2018212016A1 (en) * 2017-05-17 2019-06-27 株式会社新菱 Recycled carbon fiber bundle, recycled carbon fiber, method of producing recycled carbon fiber milled and device for producing recycled carbon fiber bundle, method of producing carbon fiber reinforced resin, and recycled carbon fiber bundle
WO2019129795A1 (en) * 2017-12-26 2019-07-04 Compagnie Plastic Omnium Method for manufacturing a semi-finished product for a motor vehicle part
FR3075689A1 (en) * 2017-12-26 2019-06-28 Compagnie Plastic Omnium METHOD FOR MANUFACTURING A SEMI-PRODUCT FOR A PARTS OF A MOTOR VEHICLE
CN111936281A (en) * 2018-04-04 2020-11-13 三菱化学株式会社 Method for producing fiber-reinforced resin molding material and apparatus for producing fiber-reinforced resin molding material
KR102192213B1 (en) * 2018-04-30 2020-12-16 재단법인 한국탄소융합기술원 Method for manufacturing carbon fiber mats and intermediate material impregnated with thermosetting resin using the same
KR20190125757A (en) * 2018-04-30 2019-11-07 재단법인 한국탄소융합기술원 Method for manufacturing carbon fiber mats and intermediate material impregnated with thermosetting resin using the same
WO2019212127A1 (en) * 2018-04-30 2019-11-07 재단법인 한국탄소융합기술원 Carbon fiber mat and production method of carbon fiber mat impregnated with thermosetting resin

Similar Documents

Publication Publication Date Title
JP2008254191A (en) Carbon fiber composite material manufacturing apparatus, carbon fiber composite material manufacturing method and carbon fiber composite material
CN107735433B (en) Method for producing fiber-reinforced resin sheet
JP5722732B2 (en) Method for producing isotropic random mat for forming thermoplastic composite material
JP2009114612A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
US11597168B2 (en) Thin-layer tape automated lamination method and device
KR20130141658A (en) Random mat and fiber reinforced composite material
JP2009062474A (en) Molding material, fiber-reinforced plastic, and manufacturing method for them
JP5774465B2 (en) Manufacturing method of fiber-reinforced plastic tape and manufacturing apparatus used therefor
JP2009062648A (en) Method for producing chopped fiber bundle, molded material, and fiber reinforced plastic
US20140080961A1 (en) Carbon Fiber Composite Material
EP3392012A1 (en) Method for manufacturing press-molded body
US11794419B2 (en) Fiber-reinforced resin molding material molded product and method of producing same
KR102405008B1 (en) Random mat, manufacturing method thereof, and fiber-reinforced resin molding material using same
JP2008038297A (en) Glass chopped strand mat, method for producing the same and automotive molded ceiling material using the same
KR101913494B1 (en) Manufacturing method and device of carbon fiber sheet molding compound
US20150258762A1 (en) Method of Producing Isotropic Random Mat for Forming Thermoplastic Composite Material
JP2005307407A (en) Chopped glass strand mat and forming material
US11911980B2 (en) Unidirectionally fiber-reinforced endless winding ply
JP2007113142A (en) Glass chopped strand mat, method for producing the same and automotive molded ceiling material using the same
CN112243449B (en) Ultrathin prepreg sheet and composite material thereof
JP2015166417A (en) Method for producing thermoplastic prepreg
CN112955294B (en) Fiber-reinforced resin molding material and molded article thereof
JP7196006B2 (en) Metal foil-CFRP laminated sheet
JP2020023069A (en) Shaping device
JPH1016103A (en) Manufacture of composite material and mat-like composite material