JP2008253925A - High-speed fermentation material manufacturing method - Google Patents

High-speed fermentation material manufacturing method Download PDF

Info

Publication number
JP2008253925A
JP2008253925A JP2007099793A JP2007099793A JP2008253925A JP 2008253925 A JP2008253925 A JP 2008253925A JP 2007099793 A JP2007099793 A JP 2007099793A JP 2007099793 A JP2007099793 A JP 2007099793A JP 2008253925 A JP2008253925 A JP 2008253925A
Authority
JP
Japan
Prior art keywords
compost
cavitation
liquid
water
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007099793A
Other languages
Japanese (ja)
Inventor
Itsuki Uchikawa
逸己 内川
Hitoshi Satomi
仁 里見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MOTOKI KK
Original Assignee
MOTOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MOTOKI KK filed Critical MOTOKI KK
Priority to JP2007099793A priority Critical patent/JP2008253925A/en
Publication of JP2008253925A publication Critical patent/JP2008253925A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Debarking, Splitting, And Disintegration Of Timber (AREA)
  • Disintegrating Or Milling (AREA)
  • Fertilizers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compost manufacturing method promoting high speed compost fermentation by decomposing hard fiber contained in vegetable chips like wood chips. <P>SOLUTION: The compost manufacturing method uses a means of forming interspersed hydrothermal reaction regions of supercritical or subcritical state using a wet type bud crusher generating cavitation, and a means of monosaccharizing the hard fiber contained in vegetable chips like wood chips. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

当該発明は、木チップ等植物チップを発酵させ堆肥にする農業林業技術分野、有機資源を活用する資源循環技術分野、キャビテーションを発生させる湿式擂潰機・木材加工機・パルプ加工機等の機械分野、キャビテーションの働きや超臨界流体や亜臨界流体の働きを把握する自然科学分野に属するものである(特許文献1参照)。   The invention relates to the field of agriculture and forestry to ferment and compost plant chips such as wood chips, the field of resource recycling technology to utilize organic resources, and the field of machinery such as wet crushers, wood processing machines and pulp processing machines that generate cavitation It belongs to the field of natural science for grasping the action of cavitation and the action of supercritical fluid and subcritical fluid (see Patent Document 1).

木チップ等植物のチップを発酵させ堆肥を製造する技術はすでに存在するが熟成するのに木チップの場合おおよそ3ヶ月から6ヶ月を要し、特に木本植物の樹皮や樹幹を原料とした場合は完熟に1年超を要している場合もある。
木本植物は硬い維管束をもち、その頑強さは維管束細胞壁として数段に重ねられたセルロースとそれらを接合しているヘミセルロースやリグニンにその硬さは起因していると考えられており、リグニンが分解ないしは流亡するまでの期間とセルロースヘミセルロースが分解するまでの期間の合計が長いのが堆肥を製造する場合の問題点と指摘されてきた。
熟成していないと、堆肥を混ぜた土壌で炭化水素成分が未酸化物質として影響するだけでなく、未酸化物質を微生物が資化し始めると含窒素成分を活発に利用し始めるため、結果的に土壌中で窒素飢餓が生じ良い作物や丈夫な植物が出来ないことはよく知られている。
Technology for producing compost by fermenting plant chips such as wood chips already exists, but in the case of wood chips it takes about 3 to 6 months to mature, especially when using bark and trunk of woody plants as raw materials May take more than a year to complete.
Woody plants have hard vascular bundles, and their robustness is thought to be due to cellulose stacked in several stages as vascular cell walls and hemicellulose and lignin joining them. It has been pointed out that the long period of time until lignin is decomposed or washed out and the period until cellulose hemicellulose is decomposed is a problem in compost production.
If not matured, not only does the hydrocarbon component affect the unoxidized material in the soil mixed with compost, but it also begins to actively utilize the nitrogen-containing component when microorganisms start to assimilate the unoxidized material. It is well known that nitrogen starvation occurs in the soil, making it impossible to produce good crops and strong plants.

特開2007−8755号公報JP 2007-8755 A

当該発明が解決しようとしている課題は、木チップ等植物チップのように頑強な繊維質を含む成分を発酵分解し易くし、完全な熟成を得るのに数ヶ月から1年超を要していた堆肥の熟成に必要な堆積期間を大幅に短縮し約1.5ヶ月以内にすることがこの発明が解決しようとする課題である。   The problem to be solved by the present invention is that it takes several months to more than one year to make it easy to fermentatively decompose components containing robust fibers like plant chips such as wood chips, and to achieve complete aging. The problem to be solved by the present invention is to significantly reduce the deposition period required for maturation of compost to within about 1.5 months.

キャビテーションを発生させることが出来る湿式擂潰機(しっしきらいかいき)を用い、木チップ等植物チップをコロイド状に加工したものが微生物による腐敗が早いことを発見した。脱水機により更に水分調整し乾燥した塊どうしの間隙が作る通気路が確保されると腐敗が早いだけでなく大型の後生動物の出現も早くなることが分った。   Using a wet crusher capable of generating cavitation, we discovered that plant chips, such as wood chips, processed into a colloidal form decayed quickly by microorganisms. It was found that when the air passage made by the gap between the dried lumps was further adjusted by the dehydrator, not only the decay but also the emergence of large metazoans was accelerated.

湿式擂潰機はその構造上現時点では95w%以上の水分を含む材料での投入が必要で、実施例に記す通り種々取り組みを行ったが90w%程の水分にまでさげるのが湿式擂潰機を運転できる濃度限界のようである。擂り潰しだけなら85w%の水分を含む程度の濃度のものを高圧のスラリーポンプで投入し行うことも出来るが、課題を解決するのにキャビテーションの効果を利用しようとの観点からその有効性はまだ確認できていない。
湿式擂潰機にてキャビテーションが発生するように運転するための操作要領はまだ未確定のことが多いが、木チップ等植物チップはキャビテーションによってコロイド化させることができるし、そうすると堆肥発酵が早くなる。
The wet crusher currently needs to be charged with a material containing 95% or more of water due to its structure, and various efforts have been made as described in the examples, but the wet crusher reduces the water to about 90w%. Seems to be the concentration limit that can be operated. If only crushing is used, it is possible to use a high-pressure slurry pump with a concentration that contains 85% by weight of water, but its effectiveness is still in view of using the effect of cavitation to solve the problem. It has not been confirmed.
Although the operation procedure for operating so that cavitation occurs in a wet crusher is still uncertain, plant chips such as wood chips can be colloidized by cavitation, and so compost fermentation will be accelerated. .

当発明の考案の過程でキャビテーションがリグニンを溶解あるいは分解し更にセルロースも分解し、一部物理的に単糖にまで分解していることが糖濃度の上昇の確認により確かめられている。それだけでなく、コロイド化させたものを約一ヶ月間試験堆積したものの浸漬水をとり化学的酸素要求量を計測したところ、0ミリグラム/リットルにまで到達しており、小松菜の発芽試験も良好であった。これらから木チップ等植物チップを、キャビテーションを発生している湿式擂潰機にてコロイド化させたものは、微生物の資化に大きく寄与していることは明らかで、堆肥発酵の高速化の手段として問題解決の手段とした。   It has been confirmed by the confirmation of the increase in the sugar concentration that cavitation dissolves or decomposes lignin in the process of the invention of the present invention and further decomposes cellulose, and partially physically decomposes into monosaccharides. Not only that, the colloidal material was tested and deposited for about one month, and the chemical oxygen demand was measured by taking the immersion water. As a result, it reached 0 milligram / liter, and the germination test of Komatsuna was also good. there were. From these, it is clear that plant chips, such as wood chips, made colloidal with a wet crusher that generates cavitation contributed greatly to the utilization of microorganisms. As a means to solve the problem.

[作用及び原理]
擂潰機とは、微生物研究や乳製品工場で用いるホモジナイザーやパルプ製造業で用いるリファイナー、食品工業などで用いるミルのことで、超音波発生器なども広い意味ではこれに入る。いずれも実験用工業用とも市販され一般的に普及している装置である。
特にパルプ製造業で用いられる湿式リファイナーは機械的な擂り潰し性能だけでなく、図1の1に示す外歯(ステーター)と図1の2に示す内歯(ローター)をすりあわせ、粒状のものを更に細かく出来るよう工夫されている。通常これらの機械では超音波発生は機械装置の耐久性上望ましいものではなくまたキャビテーションに至っては歯の損耗に直接影響を与え危害を加えるため全く望ましいものではかった。その領域に入らないよう操作することが常識になっていた。
[Action and principle]
Crushers are homogenizers used in microbiological research and dairy factories, refiners used in the pulp manufacturing industry, mills used in the food industry, etc., and ultrasonic generators are included in a broad sense. Both are commercially available devices for the experimental industry and are generally popular.
In particular, the wet refiner used in the pulp manufacturing industry is not only a mechanical crushing performance, but also the outer teeth (stator) shown in 1 of FIG. 1 and the inner teeth (rotor) shown in 2 of FIG. It has been devised to make more detailed. In these machines, the generation of ultrasonic waves is usually not desirable in terms of the durability of the machine, and cavitation has not been desirable because it directly affects the tooth wear and causes harm. It was common sense to operate so as not to enter the area.

キャビテーションがどのように生じるかの原理は完全には把握できていなかったが、当該発明の考案過程でキャビテーション効果のメカニズムを説明できるようになった。水中で硬い物体を運動させると、物体を避け遠回りする流れは流速が早くなり圧力は下がるが物体を通り過ぎてしまうと急に流れは遅くなり圧力は元に戻り高くなる。物体の運動が早くなり、水中ではおおよそ20メートル/秒から25メートル/秒ほどになると減圧部分では水温が同じでも当然飽和蒸気温度も下がるため水が蒸発温度に達してしまい沸騰が生じると考えられている。このとき生じる泡のことをキャビティーと呼んでいたことになる。低温蒸留と同じ原理である。   Although the principle of how cavitation occurs was not fully understood, the mechanism of the cavitation effect can be explained in the process of devising the invention. When a hard object is moved in water, the flow around the object avoiding the object will increase in flow velocity and the pressure will decrease, but if it passes through the object, the flow will suddenly slow and the pressure will return to its original value. When the movement of the object becomes faster and the water temperature is about 20 meters / second to 25 meters / second, the water vapor will reach the evaporation temperature because the water temperature is the same at the decompression part even if the water temperature is the same. ing. The bubbles generated at this time were called cavities. The same principle as low-temperature distillation.

物体が通り過ぎてしまったところでは流速が遅くなるので、圧力は急に上昇し回復するので気化した蒸気は水に戻り真空を作ってしまう。真空の泡を小さな球体に砕く。このとき球体を作る面に接する水は球体の中心の一点に向かって加速され瞬間に衝突し高圧と高温を生じる。その中心点で発生した圧力と熱が起因となり中心点から一定の距離にある部分は極めて短時間ではあるが超臨界水熱反応域又は亜臨界水熱反応域の性質を持つことになり、その範囲に位置していた木チップが単糖にまで分解したものと考察した。この後に記述した実施試験においても、湿式擂潰機を長時間運転し液温が高温になったものよりもキャビテーションを発生させながら湿式擂潰機を短時間運転した液温が低温のものの方が糖濃度が高かったことの説明に、この原理は矛盾しない。   Since the flow velocity slows down where the object passes, the pressure suddenly rises and recovers, so the vaporized vapor returns to the water and creates a vacuum. Break the vacuum bubbles into small spheres. At this time, the water in contact with the surface forming the sphere is accelerated toward one point at the center of the sphere and collides instantaneously to generate high pressure and high temperature. Due to the pressure and heat generated at the central point, the part at a certain distance from the central point has the characteristics of a supercritical hydrothermal reaction zone or a subcritical hydrothermal reaction zone for a very short time. It was considered that the wood chip located in the range was decomposed into monosaccharides. Also in the implementation test described below, the wet crusher operated for a short time while generating the cavitation is lower than the one whose liquid temperature is high than that of the wet crusher operating for a long time. This principle is consistent with the explanation for the high sugar concentration.

一つのキャビティーが高温を発生している時間は5μ秒で温度は1000度Cを超えていると推測している。このキャビテーションによる繊維質のほぐし効果は今日まで泡がはじけるときに発生する超音波や衝撃波の働きで説明されていた。
しかしキャビティーが消滅するときに発生する高温高圧の水熱効果でも充分説明できるし空気の微細な気泡を混合しそれがはじけるときに生じる超音波の機能を用いるとした理論よりも確実により合理的に説明できる。
It is estimated that the time during which one cavity generates a high temperature is 5 μsec and the temperature exceeds 1000 ° C. The fiber loosening effect of this cavitation has been explained to date by the action of ultrasonic waves and shock waves generated when bubbles are popping.
However, the high-temperature and high-pressure hydrothermal effect that occurs when the cavity disappears can be well explained, and it is certainly more reasonable than the theory that uses the function of the ultrasonic waves that are generated when air bubbles are mixed and repelled. Can be explained.

セルロースは350度C250気圧の超臨界流体内で単糖に分解され、へミセルロースは230度C150気圧の亜臨界流体内で単糖に分解されることが一般にも知られている。それらと同じ条件になる領域がキャビティーとともに存在しているとしたら、その領域が最大になるための操作条件を湿式擂潰機の運転方法に求めるのは当然であるし、それが当発明の製造法の原理となっている。   It is generally known that cellulose is decomposed into monosaccharides in a supercritical fluid at 350 ° C. and 250 atm, and hemicellulose is decomposed into monosaccharides in a subcritical fluid at 230 ° C. and 150 atm. If there is a region with the same conditions as the cavity, it is natural to determine the operating conditions for maximizing the region in the operation method of the wet crusher. It is the principle of the manufacturing method.

[言葉の説明]
植物を分類するときに木本植物・草本植物との用語が使われる。木本植物は、発達した維管束形成層の分裂活動により肥大成長を行い生活様式により高木類、低木類、つる類に区分される。高木類の木本植物を樹木と呼ぶ。一方、植物はほとんどが維管束形成層を持たないため肥大成長は行わない。ヤシ類、竹類など一部の高木性植物を除けば草花と呼ばれる植物で野菜などはほとんどが草本植物である。当該技術は植物全般を対象とできるが、キャベツやナスビの実のように植物であるには違いないが堆肥にするために要する時間はもともと1程度なので当該技術を用い熟成を早めても相対的に堆肥にするために要する時間の差は大きくない。しかし、本植物の場合や草本植物であってもヤシ類、竹類のように高木の場合には大きな差が生じる。そこで「木等植物」と対象を広く表現した。ただし、硬い繊維質の実をつける草本植物や、もともと柔らかだったものだが乾燥したため硬い性質に変わってしまったものもあるので「木等植物」を対象とした。
[Explanation of words]
When classifying plants, the terms woody plants and herbaceous plants are used. The woody plants grow into hypertrophic growth by the dividing activity of the developed vascular formation layer, and are classified into high trees, shrubs, and vines according to their lifestyles. The woody plant of Takagi is called a tree. On the other hand, since most plants do not have a vascularization layer, they do not undergo hypertrophy. Except for some high-woody plants such as palms and bamboos, plants are called plants, and most vegetables are herbaceous plants. Although this technology can target plants in general, it must be a plant like cabbage and eggplant seeds, but the time required for composting is about 1 from the beginning. The difference in time required for composting is not large. However, even in the case of the present plant and the herbaceous plant, a large difference occurs in the case of a high tree such as palms and bamboos. Therefore, the term “plants such as trees” was widely expressed. However, because there are herbaceous plants with hard fiber fruits and some that were originally soft but have changed to hard properties due to drying, “plants such as trees” were targeted.

チップとは、湿式擂潰機に投入できるような大きさに整えてあるという意味で用いている。湿式擂潰機にも大きさにより種類が分かれているが、小型の30キロワット/時の湿式擂潰機の場合でチップ粒径はおおよそ10ミリメートル以下、大型の150キロワット/時の湿式擂潰機の場合でチップ粒径はおおよそ30ミリメートル以下にするのがよく、円滑に投入するにはその二分の一以下の直径に整えるのがよい。材料の大きさは無制限とはならないので「木チップ等植物チップ」との言葉を選択した。主に実施例の実証試験に用いたのは針葉樹の和杉のチップでチップ粒径はおおよそ10ミリメートル以下のものを用意した。ただし、ピーナッツ等ナッツ類・どんぐり・コーヒー豆・大豆・小豆・りんご・なし・かんきつ類など硬軟いろいろな果実もあり、これはこれで堆肥発酵において熟成に長期間を要するものもあるため、これらは植物チップに含めることとしたことは先に述べた通りである。   The term “chip” is used in the sense that it is arranged in a size that can be put into a wet crusher. There are different types of wet crushers depending on the size, but in the case of a small 30 kw / h wet crusher, the chip particle size is approximately 10 mm or less and a large 150 kw / h wet crusher. In this case, the particle diameter of the chip should be about 30 millimeters or less, and it is better to adjust the diameter to a half or less for smooth insertion. Since the size of the material is not unlimited, the word “plant chips such as wood chips” was selected. Mainly used in the demonstration test of the example was a Japanese cedar chip made of conifers and a chip particle size of about 10 mm or less was prepared. However, there are various hard and soft fruits such as nuts such as peanuts, acorns, coffee beans, soybeans, red beans, apples, none, citrus fruits, etc. As described above, it was included in the chip.

湿式擂潰機については市販されているパルプ用コニック(図1の1、2と図2の1、2に示す外歯内面と内歯外面が円錐台形のもの)リファイナーを用いた。回転速度は内歯の周速が35m/秒を超えることが出来且つ外歯と内歯間の間隙を調整できるものを選択した。おおよそこれらの装置はインバーター(周波数変換による出力調整装置)で制御するモーターを用いているが、湿式リファイナーでキャビテーションを発生させるには周速を調整できるほうが便利なのでこの方式を選択した。パルプ用のリファイナーは本来キャビテーションを生じることを目的としたものではない。そのため歯の材質は鋳物製が多いが、鋳物材質の歯は避け超強力鋼の材質の歯を準備した。   For the wet crusher, a commercially available pulp conic (with external tooth inner surface and inner tooth outer surface shown in FIGS. 1 and 2 and 1 and 2 in FIG. 2 having a truncated cone shape) was used. The rotation speed was selected so that the peripheral speed of the inner teeth could exceed 35 m / sec and the gap between the outer teeth and the inner teeth could be adjusted. Most of these devices use a motor controlled by an inverter (output adjustment device by frequency conversion), but this method was chosen because it is more convenient to adjust the peripheral speed to generate cavitation with a wet refiner. Pulp refiners are not primarily intended to produce cavitation. For this reason, the material of the teeth is often made of casting, but the teeth made of super strong steel were prepared avoiding the teeth of the casting material.

堆肥材料についてはまだ明確な区分分類が出来ていないのが業界学会の現状である。落ち葉やワラを積み重ね水をかけ発酵させることも堆肥発酵である。この場合使用する材料全てを発酵材料と呼んでいる。バーク堆肥など刻んだ樹皮にその他栄養素として家畜糞を混ぜ合わせ又は錬り込むようになると樹皮を堆肥発酵基材その他栄養素なる家畜糞を堆肥発酵資材と呼ぶ例も出てきた。木のチップは最も発酵が遅いため堆肥発酵基材とは呼んでも堆肥発酵資材と呼ぶ例は少ない。そこで堆肥に用いる材料全般を堆肥発酵材料又は堆肥材料と呼ぶことと定義し、最後まで形を残し栄養源になるだけでなく通気路や通水路を形成する役目のものを堆肥発酵基材又は発酵基材と、栄養源になるだけで通気路や通水路を形成しないものを堆肥発酵資材又は堆肥資材と定義した。   Regarding the compost materials, the current state of the industry society has not yet been clearly classified. Composting fermenting is also done by stacking fallen leaves and straw and applying fermented water. In this case, all the materials used are called fermentation materials. When bark compost and other chopped bark are mixed or kneaded with livestock feces as other nutrients, there have been examples where bark is referred to as a compost fermentation base material or other livestock feces as nutrients. Wood chips are the slowest fermenting, so there are few examples of compost fermenting materials, even if they are called compost fermenting substrates. Therefore, it is defined that all materials used for compost are called compost fermentation materials or compost materials. A base material and a nutrient source that does not form an air passage or a water passage were defined as compost fermentation material or compost material.

木のチップはキャビテーション発生が出来る湿式擂潰機にて擂潰する前は硬さもあり、形状もしっかりしているので、堆肥発酵基材又は堆肥基材に分類するのが適当だが、キャビテーション発生が出来る湿式擂潰機にて擂潰した後はコロイド状になり、この時点では堆肥発酵基材ではなく堆肥発酵資材に分類するのが適当と考える。   Wood chips are hard before crushing with a wet crusher that can generate cavitation, and they are solid and well shaped, so it is appropriate to classify them into compost fermentation bases or compost bases. After mashing with a wet mashing machine, it becomes colloidal, and at this point it is appropriate to classify it as a compost fermentation material instead of a compost fermentation substrate.

その後脱水を行うが当発明の実施例では掻きだしスクリュー刃付き縦型遠心脱水機といわれる縦型のスクリューデカンター30キロワット/時2000Gの能力のものを使用し約1200Gで用いた。このスクリューデカンターは市販のものである。制振性能の高いものを選択するのがよい。   Thereafter, dehydration is carried out, but in the examples of the present invention, a vertical screw decanter having a capacity of 30 kilowatts / hour 2000 G, which is called a vertical centrifugal dehydrator with a scraped screw blade, was used at about 1200 G. This screw decanter is commercially available. It is better to select one with high damping performance.

木のチップは数十ナノメートルサイズのミクロフィブリルにまで分解されその一部が糖化していると考えられる。少なくともミクロフィブリルは極性があるので凝集しやすいが制振性能が低いとG(重力)がいくら大きくても散乱が生じ上手く遠心分離ができないことがある。市販の縦型のスクリューデカンターの場合おおよそ100ナノメートルほどで分級している。又フィルタープレスやローラープレスでも分離は可能と予測するが、分級の程度は確認していない。   Wood chips are broken down into microfibrils with a size of several tens of nanometers, and some of them are thought to be saccharified. At least microfibrils are polar, so they tend to aggregate, but if the damping performance is low, scattering may occur and centrifugal separation may not be successful no matter how large G (gravity) is. In the case of a commercially available vertical screw decanter, classification is performed at about 100 nanometers. Although it is predicted that separation is possible with a filter press or roller press, the degree of classification has not been confirmed.

乾燥は粉体乾燥機を用いればよい。ろ紙の上に厚み数ミリでコロイドを敷き市販の温風乾燥機で風を当てるだけでも厚紙状に乾燥する。遠心機で脱水を行ったものを更に乾燥すると粒状に乾燥することが出来る。この場合は粒子としての性質が復活しており通気路や通水路が存在するので堆肥発酵基材又は堆肥基材と呼んでもよいように思う。しかし一方極めて堆肥発酵が早いので堆肥発酵資材又は堆肥資材の性質も兼ね備えているともいえる。塊状のものも板状のものも粒子状のものも型にいれ圧縮したり押し出ししたりして整形することが可能で、一定の粒子径に形を整えることにより粒子間空隙を確保し通気路通水路としての働きを持たせることは可能である。これはコロイド化したことにより失った塊としての性質を回復させただけでなく、圧縮により整形した場合他の液状の栄養分を混ぜ合わせるとき吸水性が顕著に増すため液こぼれが少なくなったり混合の能率が上がったり運搬する容積が小さくなったり扱い上のメリットは大きい。以上を踏まえ「塊状に圧縮整形」という言葉を用いた。   A powder dryer may be used for drying. Even if a colloid is spread on the filter paper with a thickness of several millimeters and air is blown with a commercially available hot air dryer, it is dried into a cardboard. When the product that has been dehydrated with a centrifuge is further dried, it can be dried in a granular form. In this case, since the properties as particles are restored and there are air passages and water passages, it may be called a compost fermentation base material or a compost base material. However, it can be said that it also has the properties of compost fermentation material or compost material because compost fermentation is extremely fast. Bulky, plate-like, and particle-like materials can be molded into a mold and compressed or extruded to create a constant particle diameter, ensuring inter-particle voids and vents It is possible to have a function as a water channel. This not only restores the properties of the lost mass due to colloidalization, but also reduces liquid spillage or mixing when other liquid nutrients are combined when reshaped by compression. There are significant benefits in terms of efficiency, reduction in the volume to be transported, and handling. Based on the above, the term “compressed and shaped in a lump” was used.

当該発明は、キャビテーションが作るのは空気の泡ではなく、蒸気の動態の変化による水蒸気の泡でなければ合理的説明がつかないことがこの発明の基となった。この泡がつぶれる瞬間、その中心は高温高圧の小さな圧力容器になり、小さな超臨界水熱反応領域、又は小さな亜臨界水熱反応領域になるのではないかという仮説が想定された。常温でキャビテーションを起こした場合でも予測通り単糖の生成が確認できた。最終的には液温を150度Cぐらいまで上げるとその濃度は更に上昇したが、平均液温平均液圧は超臨界領域には達していなかった。少なくとも超臨界近傍でなければ起こらないセルロースの単糖化分解を説明するために、「瞬間的な高温高圧域の存在」が生じていたとの説明が必要になった。まさに「点在する超臨界領域」の概念とキャビテーションのメカニズムの解析が一致し、しかも液の温度や圧力は産業技術である蒸気配管技術程度のレベルでまかなえることも確認できた。   The invention was based on the fact that cavitation is not created by air bubbles, but can only be explained rationally by steam bubbles caused by changes in steam dynamics. At the moment when the bubbles collapse, the hypothesis was that the center would be a small pressure vessel of high temperature and high pressure, which would be a small supercritical hydrothermal reaction region or a small subcritical hydrothermal reaction region. Even when cavitation occurred at room temperature, the formation of monosaccharides was confirmed as expected. Ultimately, when the liquid temperature was raised to about 150 ° C., the concentration further increased, but the average liquid temperature average liquid pressure did not reach the supercritical region. In order to explain the saccharification / degradation of cellulose that must occur at least near the supercritical level, it was necessary to explain that “the presence of an instantaneous high-temperature and high-pressure region” had occurred. It was confirmed that the concept of “supercritical regions scattered” and the analysis of the mechanism of cavitation coincided, and that the temperature and pressure of the liquid can be covered at the level of the steam piping technology, which is an industrial technology.

これらのことから実際には「平均液温が低い超臨界亜臨界水熱反応の利用方法」の発見に繋がるとの確信を持っている。この出願は今まで取り組んできた堆肥技術を更に高度にしようとの考えから考案したものであるが、当然堆肥ではなくセルロースの糖化分解法としても完成させたく試験実施を重ねている。   From these facts, we are convinced that it will actually lead to the discovery of “how to use supercritical subcritical hydrothermal reaction with low average liquid temperature”. This application was devised based on the idea of further improving the composting technology that has been tackled so far, but of course it has been repeatedly tested to complete the saccharification and decomposition method of cellulose instead of compost.

実験に使った湿式擂潰機は、歯をこすり合わせることが可能なほど調整機能が整っており、かつ大型のためキャビテーションを起こす周速を確保できたが、パルプ製造技術分野にはフィブリル化という言葉があり、ミクロフィブリルにまですりつぶすと水切れが悪くなるので避けなければならないとの意味で使われてきた。最近では紙の表面を円滑にするためフィブリル化したものの利用が進み始めたようではあるが、機械装置の耐久性を守るためにもキャビテーションの発生を避けるようにしており、キャビテーションの利用経験の積み重ねはない。このキャビテーションの高温高圧領域の利用方法の発見によってキャビテーションの利用は大きく進むと思われるし、木材の「液体燃料化」には「平均液温が低い超臨界亜臨界水熱反応の利用方法」が欠かせない技術になると確信する。「点在する超臨界領域」の概念は、今まで小さな高温高圧の反応容器の中でしか実現しなかった超臨界流体の利用をより低圧より低温で可能にするので広く普及するに違いない。   The wet crusher used in the experiment has an adjustment function that allows teeth to be rubbed together, and because of its large size, it was able to secure a peripheral speed to cause cavitation, but in the pulp manufacturing technology field it is called fibrillation There is a word, and it has been used in the sense that it must be avoided because the water drainage worsens when crushed into microfibrils. Recently, it seems that the use of fibrillated paper to make the paper surface smooth has begun to progress, but in order to protect the durability of the machinery, we try to avoid the occurrence of cavitation. There is no. The discovery of the use of cavitation in the high-temperature and high-pressure region is expected to make a significant advance in the use of cavitation, and “use of supercritical subcritical hydrothermal reaction with low average liquid temperature” is one of the ways to make wood into “liquid fuel”. I am convinced that it will be an indispensable technology. The concept of “spattered supercritical regions” must be widespread because it enables the use of supercritical fluids that have been realized only in small high-temperature and high-pressure reactors at lower temperatures than lower pressures.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

《原料準備》材料は樹皮を取り除いた和杉材をチップにしたもので見かけ比重約0.2含水率は50%のものを使用した。粒子径を10ミリ以下に篩ったもので100リットル準備した。上蓋開閉式のドラム缶に100リットルの水をいれ更に和杉のチップを投入し蓋を密閉し蓋に取り付けたスリーブに吸引ポンプを接続しマイナス0.6気圧に減圧し6時間その状態を保った。蓋を開けて和杉チップを確認すると全量沈殿していた。和杉チップを浸した液は120リットルに容積が増えていた。このほかにもうひとつのドラム缶に80リットルの水を用意し図1の4に示す原料タンクに和杉チップを浸した120リットルと別に用意した80リットルの水を図1の4原料タンクに投入した。以上により200リットルでおおよそ200kgの原料液が準備できた。主成分である木の正味重量は100リットル×比重0.2×蒸発残分率0.5(1−含水率50%)=10kg、 主成分濃度は主成分重量10kg÷総重量200kg=5.0%になった。   << Preparation of raw material >> The material used was Japanese cedar wood from which the bark had been removed, and chips with an apparent specific gravity of about 0.2 and a water content of 50%. 100 liters were prepared with a particle size of 10 mm or less. Put 100 liters of water into a drum with an open / close top lid, insert a Japanese cedar chip, seal the lid, connect a suction pump to the sleeve attached to the lid, and reduce the pressure to minus 0.6 atm. . When the lid was opened and the Japanese cedar chips were confirmed, the entire amount was precipitated. The volume of the soaked Japanese cedar chips increased to 120 liters. In addition, 80 liters of water was prepared in another drum, and 120 liters of water cedar chips immersed in the raw material tank shown in 4 of FIG. . As a result, 200 liters of raw material liquid of about 200 kg was prepared. The net weight of the main wood is 100 liters x specific gravity 0.2 x evaporation residue ratio 0.5 (1-water content 50%) = 10 kg, the main ingredient concentration is 10 kg of the main ingredient ÷ total weight 200 kg = 5. It became 0%.

《起動》図1の7の入口弁並びに図1の8の出口弁を開き図1の1ステーター(固定歯)に密閉収納されている図1の2ローター(回転歯)を始動させるため図1の11インバーター(周波数変換による出力)変換装置を起動させ5Hzの低速回転をはじめた。その後、図1の5供給ポンプを運転するための図1の6の供給ポンプモーターを起動させ送液を開始した。ローターがポンプの代わりをするので図1の5供給ポンプ図1の6の供給ポンプモーターは必ずしも必要はない。ローターの力が不足する場合は取り付けるべきであるが図1の5供給ポンプのハウジングと中に収められたプロペラの間隙は大きいのがよく、運転途中で木チップによる詰りが生じないよう対策する必要がある。プロペラの先端を軸からの距離にして20ミリメートル以上の間隙があくよう切り落とすとうまくいく。   << Startup >> In order to start the two rotors (rotating teeth) in FIG. 1 which are hermetically housed in one stator (fixed tooth) in FIG. 1 by opening the inlet valve 7 in FIG. 1 and the outlet valve 8 in FIG. 11 inverter (output by frequency conversion) converter was started, and 5 Hz low-speed rotation was started. Thereafter, the supply pump motor 6 in FIG. 1 for operating the 5 supply pump in FIG. 1 was activated to start liquid feeding. Since the rotor takes the place of the pump, the five feed pump of FIG. 1 is not necessarily required. If the rotor power is insufficient, it should be installed, but the gap between the housing of the 5-feed pump in Fig. 1 and the propeller housed in it should be large, and measures should be taken to prevent clogging with wood chips during operation. There is. It will work well if the tip of the propeller is cut away so that there is a gap of 20 mm or more with the distance from the shaft.

《周速調整》ゆっくりインバーターの周波数を上げ、前もって計算しておいた周速になるまで上昇させる。基本的にはキャビテーションが生じる周速理論値は20メートル/秒といわれているが、キャビテーションが生じる条件は一定ではないので余裕を持たせ40メートル/秒の周速が出るような能力がよい。コニカル(コニック:台形 歯が円錐台の側面に並んでいるためこのような商品名が付けられている)リファイナーの場合ローターの最も外側の周速では40メートル/秒に調整できるのがよいようだ。   << Peripheral speed adjustment >> Slowly increase the frequency of the inverter until it reaches the previously calculated peripheral speed. Basically, the theoretical value of the peripheral speed at which cavitation occurs is said to be 20 meters / second. However, since the condition for the occurrence of cavitation is not constant, the ability to provide a marginal speed of 40 meters / second is good. In the case of a conical refiner (conic: trapezoidal teeth are lined up on the side of the truncated cone), the outermost peripheral speed of the rotor should be adjustable to 40 meters / second. .

《キャビテーションの確認》実際にはインバーターに流れる電流が、周速では20メートル/秒から30メートル/秒の間で急にジャンプアップし循環させていた。水が突然白濁し、金属音がし始めるので見逃すことはまずないが、これらがキャビテーションを発生し始めたシグナルである。   <Confirmation of cavitation> Actually, the current flowing through the inverter suddenly jumped up and circulated between 20 meters / second and 30 meters / second at the peripheral speed. The water suddenly becomes cloudy and begins to make a metallic sound, so you can't miss it, but these are the signals that started to cause cavitation.

《基本構造の説明》図2にステーター(固定歯)ローター(回転歯)を繋いでいたフランジを取り外しローターをステーターから抜き出した図を示した。又図3には抜き出したときのA−A` 断面図を掲載した。ステーター(固定歯)はハウジング内面が円錐台側面の形状をしており軸を通る平面と円錐台側面の交線に沿って内向きに正方形断面のレールが突出するよう特殊鋼のバーが埋め込まれており円錐台底面方向に側面がひろがるにつれレール数を増やしており、ローター(回転歯)はボス外面が円錐台側面の形状をしており軸を通る平面と円錐台側面の交線に沿って外向きに正方形断面のレールが突出するよう特殊鋼のバーが埋め込まれており円錐台底面方向に側面がひろがるにつれレール数を増やしている。このレールを増やしていく点が傘歯歯車の歯の形状と異なっている。いずれにしても市販品でありメーカーの工夫によるものであろう。図4に突出する歯の高さa並びに歯幅b歯の間隙cを図示した。装置規模にもよるがa,b,cとも各規模においてはおおよそ等しくなるように作ってあり30キロワット/時のものでおおよそ3ミリメートル、100キロワット/時の規模のものでおおよそ9ミリメートルのようである。   << Description of Basic Structure >> FIG. 2 shows a view in which the rotor connected to the stator (fixed teeth) rotor (rotating teeth) is removed and the rotor is extracted from the stator. Further, FIG. 3 shows a cross-sectional view taken along the line AA ′. The stator (fixed teeth) has a housing with a frusto-conical shape, and a special steel bar is embedded so that a square section rail protrudes inward along the intersection of the plane passing through the axis and the frusto-conical side. The number of rails increases as the sides expand toward the bottom of the truncated cone, and the rotor (rotating teeth) has a boss outer surface shaped like the side of the truncated cone, along the intersection of the plane passing through the axis and the side of the truncated cone A special steel bar is embedded so that the rails with a square cross section project outward, and the number of rails increases as the side surfaces expand toward the bottom of the truncated cone. The point of increasing this rail is different from the tooth shape of the bevel gear. In any case, it is a commercial product and is probably due to the manufacturer's ingenuity. FIG. 4 shows the protruding tooth height a and the tooth width b and the tooth gap c. Although it depends on the size of the equipment, it is made so that each of the scales a, b, and c is approximately the same. is there.

《実施に使用した機械》この実施例の場合、100キロワット/時の規模の湿式擂潰機(商品名:コニックリファイナー)を使用した。ローターの最外直径は400ミリメートルΦで60Hzのときのモーターの回転数は1800回転/分である。60Hzの場合の周速を求めると0.4メートル×3.14×1800回転÷60秒=37.7メートル/秒になる。おおよそ48Hzで周速は30メートル/秒を超えることになる。この当りを目安にインバーターの操作をおこなう。おおよそ35Hzで白濁が始まっている。   << Machine Used for Implementation >> In this example, a wet crusher (trade name: Conic Refiner) with a scale of 100 kilowatts / hour was used. When the outermost diameter of the rotor is 400 mmΦ and 60 Hz, the rotational speed of the motor is 1800 revolutions / minute. When the peripheral speed in the case of 60 Hz is obtained, it becomes 0.4 meter × 3.14 × 1800 rotation ÷ 60 seconds = 37.7 meters / second. At about 48 Hz, the peripheral speed will exceed 30 meters / second. Operate the inverter using this hit as a guide. Cloudiness begins at approximately 35 Hz.

《実施試験の内容》計算通り48Hzに合わせるまで約5分を要した。その後30分間運転し停止させた。開始前の液温は約10度C終了時点では75度Cになっていた。運転開始前の液の糖度と24Hz240分運転した場合の液の糖度と48Hzで30分運転した場合の液の糖度を比較した。これらの運転時間は30分/(指定したHz/48Hz)3の計算で算出したものである。運転時間を回転速度の3乗に反比例し延長させるとおおよそ使用電力量を同じにすることができた。図5に示したとおり運転開始前の液は温度約10度C、24Hzで240分運転させた場合ほぼ原料水は沸騰し測定時点で90度Cであったが糖度はどちらも200ミリグラム/リットル以下(検査機械性能上未検出)であった。48Hzで30分運転した場合の液の温度は75度Cであったが糖度は1800ミリグラム/リットルとなった。これは最初の固形成分濃度5.0%のうちの0.18%が変化したものと読み取れるので固形成分のうち3.6%が単糖になったと読み取れる。光学式糖度計では48Hzのものは1%を超えた値を示したが、正しい計測法を選択しなかった可能性もあり結果としては考察の対象とはしなかった。   << Contents of the implementation test >> It took about 5 minutes to adjust to 48 Hz as calculated. Thereafter, it was operated for 30 minutes and stopped. The liquid temperature before the start was 75 degrees C at the end of about 10 degrees C. The sugar content of the liquid before the start of operation, the sugar content of the liquid when operated at 24 Hz for 240 minutes, and the sugar content of the liquid when operated at 48 Hz for 30 minutes were compared. These operating times are calculated by calculation of 30 minutes / (designated Hz / 48 Hz) 3. When the operation time was extended in inverse proportion to the third power of the rotation speed, the power consumption could be made approximately the same. As shown in FIG. 5, when the liquid before starting operation was operated at a temperature of about 10 ° C. and 24 Hz for 240 minutes, the raw material water almost boiled and was 90 ° C. at the time of measurement, but the sugar content was both 200 mg / liter. It was as follows (not detected due to inspection machine performance). When operated at 48 Hz for 30 minutes, the temperature of the liquid was 75 ° C., but the sugar content was 1800 mg / liter. Since it can be read that 0.18% of the initial solid component concentration of 5.0% has changed, it can be read that 3.6% of the solid components have become monosaccharides. In the optical saccharimeter, the value at 48 Hz exceeded 1%, but the correct measurement method may not be selected, and as a result, it was not considered.

《堆肥試験》運転開始前のものと48Hzで運転したものを10リットルずつプラスチックペール缶に取り出し容器を横むきに倒し水切りを1昼夜行い、横向きのまま市販の堆肥用微生物剤を噴霧し放置した。48Hzで運転したもののサンプルは含水率が60%以上あったが翌日からは糖蜜などの炭素源を混合しなくても発熱が始まり、窒素と燐の栄養成分を調整すると発酵温度は65度Cにまで上昇し更に2日目には乾燥が生じたため打ち水をおこなった。運転開始前のもののサンプルは含水率が50%ほどになっていたが窒素と燐の栄養成分を行い市販の堆肥用微生物剤を噴霧したが35度Cに到達しただけで、その後打ち水をしてもそれ以上の温度になるような発熱は生じなかった。結果30日で48Hzのものは完熟したことが堆肥試験の浸漬水COD試験で確認された。複数個のサンプルとも30日後には堆肥試験の浸漬水COD試験で完熟が確認された。現在土壌に50%混合し小松菜の発芽試験を行っているが全てのサンプルとも支障が出なかった。   <Compost test> Before start of operation and the one operated at 48 Hz, 10 liters were taken out into plastic pail cans, the containers were laid down, drained for one day and night, and the commercially available microbial agent for compost was sprayed and left standing. . Although the sample operated at 48 Hz had a moisture content of 60% or more, the next day the fever started without mixing with a carbon source such as molasses, and the fermentation temperature reached 65 ° C when the nutrient components of nitrogen and phosphorus were adjusted. Then, on the second day, drying occurred and water was sprayed. The sample before the start of operation had a moisture content of about 50%, but it was sprayed with a commercially available microbial agent for compost using nitrogen and phosphorus nutrients. However, there was no exotherm that would raise the temperature beyond that. Results It was confirmed by the immersion water COD test in the compost test that the one with 48 Hz was fully ripe in 30 days. A plurality of samples were confirmed to be fully ripe in the immersion water COD test of the compost test after 30 days. The germination test of Komatsuna mixed with 50% of soil is currently underway, but all the samples did not hinder.

《余剰水の対策》この試験ではペール缶を横向きに流れ出た水の処理の問題があると思われたが、流出した水は打ち水(堆肥が熟成中に乾燥するのを防ぐために与える水)に用いたので問題は生じなかった。制振性の高い縦型遠心脱水機にて脱水を行うと蒸発残留成分が25%を超える固形物が得られるが、このときに分離された液分内に保持されている固形分の大きさは数10ナノメートル以下の粒子径に整えられていることも分った。液分を繰返し用いることにより最大粒子径が数10ナノメートル以下に整えられた単糖濃度の高い液が出来ると予測している。連続運転中に周期的にある濃度に達した液を取り出しアルコール発酵の原料にすることが出来るものと考えている。固形成分は同じ固体でありながらも元の木チップに比べてはるかに堆肥発酵に適していることは試験結果からも明らかであり、適当な水分を与えると機械脱水していないコロイド液と同等の発酵熟成が行える。脱水後の固形物はおおむね75%の水分を含むが、乾燥により40%以下にするとおおよそ腐敗は行われなくなり長期的な保管も可能になる。ただし粉体の性質が強くなるため空気中に舞い上がる欠点が生じた。この解決方法として請求項3の工夫が行われた。   <Measures against excess water> In this test, it seemed that there was a problem with the treatment of the water that flowed sideways out of the pail can, but the spilled water was used as struck water (water given to prevent the compost from drying out during aging). Since it was used, no problem occurred. When dehydration is performed using a vertical centrifugal dehydrator with high vibration damping properties, solids with an evaporation residual component exceeding 25% can be obtained. The size of the solids retained in the separated liquid at this time It was also found that the particle size was adjusted to a particle size of several tens of nanometers or less. It is predicted that a liquid having a high monosaccharide concentration in which the maximum particle size is adjusted to several tens of nanometers or less can be obtained by repeatedly using the liquid component. It is considered that a liquid that periodically reaches a certain concentration during continuous operation can be taken out and used as a raw material for alcohol fermentation. It is clear from the test results that the solid component is the same solid but much more suitable for compost fermentation than the original wood chip. Can be fermented and matured. The solid after dehydration generally contains 75% of moisture, but if it is reduced to 40% or less by drying, it will not rot and can be stored for a long time. However, due to the strong nature of the powder, there was a drawback that it soared into the air. As a solution to this problem, the device of claim 3 was devised.

《まとめ》いずれにしても、コロイド状の液、コロイド状液を循環して用いたときに得られる高濃度のコロイド状液、脱水後の固形物。乾燥後の粉体物。脱水乾燥後の固形粉体混合物、圧縮整形後の固形物いずれもハンドリング上特色に差はあるが、堆肥発酵資材として発酵しやすさの点では木チップ等植物チップを原料とする従来のものに比べて画期的に優れている。 湿式擂潰機でキャビテーションを発生させ、硬い植物の繊維質の平均水温を上げずに超臨界亜臨界レベルで高温変質させたことにより微生物に資化させやすくした堆肥材料を製造する技術は他にない。   << Summary >> In any case, a colloidal liquid, a highly concentrated colloidal liquid obtained by circulating the colloidal liquid, and a solid after dehydration. Powder after drying. Both the solid powder mixture after dehydration and drying and the solid after compression shaping are different in handling characteristics, but in terms of ease of fermentation as a compost fermentation material, it is a conventional one that uses plant chips such as wood chips as a raw material. Compared to the breakthrough. There are other technologies for producing compost materials that are easy to assimilate to microorganisms by generating cavitation with a wet crusher and changing the temperature of the fiber of hard plants at a supercritical subcritical level without raising the average water temperature. Absent.

《原料準備》《起動》については実施例1と同様である。基本的に接液部が10気圧の耐圧構造で150度Cの耐熱構造仕様が必要になるが安全を見て180度Cの耐熱構造使用で整えておくとよい。図6の4原料タンクも基本的には密閉構造で同様の耐圧耐熱構造になる。バッチ式であれば図6の4原料タンクの蓋は耐圧10気圧のフランジ仕様になる。原料を投入した後蓋フランジをボルトナットにて締めこむことになる。市販の湿式擂潰機の場合その配管も含め耐圧使用10気圧耐熱仕様180度Cは難しくはなく通常のステンレス材を用いれば既製品でも容易に耐えることが分っている。その他構造的には図6の12圧力検知自動開閉バルブ、13安全弁、14原料タンク自動重量計、原料の自動供給を行う場合に使用する15原料自動供給圧送ポンプ、そのポンプを停止させたときに逆流を防ぐ16逆流防止自動弁、17加熱用蒸気の供給口、18蒸気逆流防止弁、19脱水機として市販の掻きだしスクリュー刃付き縦型遠心脱水機(バーチカル・シャープレス・デカンター)を付け加えた。   “Raw material preparation” and “Startup” are the same as those in the first embodiment. Basically, the wetted part has a pressure resistance structure of 10 atm and a heat resistant structure specification of 150 ° C is required. The four raw material tanks in FIG. 6 are basically sealed and have a similar pressure and heat resistant structure. If it is a batch type, the lid of the four raw material tanks in FIG. After the raw materials are charged, the lid flange is tightened with bolts and nuts. In the case of a commercially available wet crusher, it is known that the pressure resistance use 10 atm heat resistance specification 180 degrees C including the piping is not difficult, and it is easy to withstand ready-made products if a normal stainless steel material is used. Other structurally, 12 pressure detection automatic opening / closing valve, 13 safety valve, 14 raw material tank automatic weight meter, 15 raw material automatic supply pumping pump used for automatic supply of raw material, when the pump is stopped 16 automatic backflow prevention valve for preventing backflow, 17 steam supply port for heating, 18 steam backflow prevention valve, 19 commercial vertical centrifugal dehydrator with scraped screw blade (vertical sharpened decanter) .

《周速調整》周速調整は実施例1とは大きく異なる。圧力が加わるとキャビテーションは発生しにくくなるが、粘度が増すとキャビテーションは発生しやすくなるという2つの相反する条件が加わってくるためと考えている。密閉したため白濁化を見つけることが困難なことからキャビテーションの発生の有無はインバーターの周波数の増加具合に対し電流値が急激に上昇する時点を観察し推測することで確認した。液温が150度Cに上昇すると、ステーターの入口圧力が3.2気圧、出口圧力が4.2気圧を圧力計が示した。実施に用いた湿式擂潰機(コニックリファイナー)の入口出口の差は約1気圧であった。原料タンク内はおおよそ3.3気圧を圧力ゲージが示していた。大気圧表示が0気圧なので、大気圧分を加算して平均圧力は約4.3気圧、最大圧力は5.2気圧と計測した。   << Peripheral Speed Adjustment >> The peripheral speed adjustment is greatly different from that of the first embodiment. It is thought that cavitation is less likely to occur when pressure is applied, but two conflicting conditions are added: cavitation is likely to occur when the viscosity increases. Since it was difficult to find white turbidity because it was sealed, the presence or absence of cavitation was confirmed by observing and inferring when the current value suddenly increased as the frequency of the inverter increased. When the liquid temperature rose to 150 ° C., the pressure gauge indicated that the stator inlet pressure was 3.2 atmospheres and the outlet pressure was 4.2 atmospheres. The difference in the inlet and outlet of the wet crusher (conic refiner) used for the implementation was about 1 atmosphere. The pressure gauge indicated approximately 3.3 atmospheres in the raw material tank. Since the atmospheric pressure display is 0 atm, the atmospheric pressure was added and the average pressure was measured at about 4.3 atm, and the maximum pressure was measured at 5.2 atm.

《キャビテーションの確認》この場合キャビテーションを起こす周速は電流計のジャンプアップ地点から推定すると35メートル/秒ほどになったが原料を自動供給し自動排出も行う連続運転の場合は液粘度の上昇が考えられるので小さくなるものと予測する。今後の実施試験結果により正確に予測できるものになる。   <Confirmation of cavitation> In this case, the peripheral speed at which cavitation occurs was estimated to be about 35 meters / second from the jump-up point of the ammeter, but in the case of continuous operation in which raw materials are automatically supplied and discharged automatically, the liquid viscosity increases. Expected to be smaller because it is considered. It will be able to be predicted accurately based on the results of future tests.

《基本構造の説明》ステーターやローターの基本構造は、実施例1と同様である。長時間の耐久性を確保するには区同軸のシールの工夫が必要と危惧したが、現在の市販の製品(メカニカルシール)で蒸気漏れはほとんどないので実用性は確保できたものと思う。   << Description of Basic Structure >> The basic structure of the stator and rotor is the same as that of the first embodiment. I was worried that it would be necessary to devise a concentric coaxial seal to ensure long-term durability, but the current commercial product (mechanical seal) has almost no vapor leakage, so I think it has been practical.

《実施に使用した機械》実施に使用する機械も実施例1と同様である。ただし当実施例は運転終了後密閉容器が冷却したのを確認した後サンプル採取を行ったが、原料の自動供給方式自動排出方式を採用する場合は開放空間に湿り蒸気を排出するため19掻きだしスクリュー刃付き縦型遠心脱水機(バーチカル・シャープレス・デカンター)の原料投入口に配置するよう設計している。スクラバー(蒸気回収装置)に直結する方法や常温水中に排出し蒸気の冷却回収することも可能なことは容易に予測できる。   << Machine Used for Implementation >> The machine used for the implementation is the same as that of the first embodiment. However, in this example, after the operation was completed, it was confirmed that the sealed container had cooled, and then a sample was collected. However, in the case of adopting the automatic supply method and the automatic discharge method of raw materials, 19 scrapes were made to discharge wet steam into the open space. It is designed to be placed at the raw material inlet of a vertical centrifugal dehydrator with a screw blade (vertical shear press decanter). It can be easily predicted that it is possible to directly connect to a scrubber (steam recovery device) or to cool and recover steam by discharging it into room temperature water.

《実施試験の内容》原料タンクに図6の20に示す10気圧のボイラー蒸気配管を接続し原料タンク内を130℃にすると圧力計は2.0気圧を表示した。これは実質3.0気圧の圧力に相当する。図6の7並びに8のバルブを開くと圧力計は1.0気圧実質2.0気圧に降下したが蒸気による過熱を継続し湿式リファイナーをインバーター5Hz運転すると約5分後には130度C圧力計表示2.0気圧、実質3.0気圧に到達する。インバーターを60Hzに上げると更に15分後には150度C3.0気圧実質4.0気圧に到達した。蒸気の供給を止め約45分間図6の4原料タンクの蓋を閉めたまま水道水を散水し冷却し水温が80度Cに降下した時点で蓋を開け更に自然冷却を行った。常温に戻し糖度計にて測定した結果5300mg/リットルの値を示した。   << Contents of Implementation Test >> When a 10 atm boiler steam pipe shown in 20 of FIG. 6 was connected to the raw material tank and the inside of the raw material tank was brought to 130 ° C., the pressure gauge displayed 2.0 atm. This corresponds to a pressure of substantially 3.0 atm. When the valves 7 and 8 in FIG. 6 are opened, the pressure gauge drops to 1.0 atm and 2.0 atm. However, when the wet refiner is operated at 5 Hz by continuing the overheating with steam, the 130 degree C pressure gauge after about 5 minutes. The display reaches 2.0 atmospheres and substantially reaches 3.0 atmospheres. When the inverter was raised to 60 Hz, 150 degrees C3.0 atmospheres substantially 4.0 atmospheres was reached after another 15 minutes. The supply of steam was stopped and water was sprayed and cooled for about 45 minutes with the lid of the four raw material tanks in FIG. 6 closed, and when the water temperature dropped to 80 ° C., the lid was opened and further natural cooling was performed. As a result of returning to room temperature and measuring with a saccharimeter, a value of 5300 mg / liter was shown.

《堆肥試験》掻きだしスクリュー刃付き縦型遠心脱水機(バーチカル・シャープレス・デカンター)に手動ポンプを用い原料タンク内の液を投入し実施例1と全く同じ条件で分離した固形分を堆肥試験した。実施例1と同様複数個のサンプルを採取し試験したが同様に熟成が早く全て30日以内に発酵が終了した。   <Compost test> Combustion test of solid content separated in the same conditions as in Example 1 by introducing the liquid in the raw material tank into a vertical centrifugal dehydrator with vertical screw blade (vertical shear press decanter) using a manual pump did. A plurality of samples were collected and tested in the same manner as in Example 1, but in the same manner, the aging was fast and the fermentation was completed within 30 days.

《余剰水の対策》掻きだしスクリュー刃付き縦型遠心脱水機(バーチカル・シャープレス・デカンター)で分離された液分は次の原料水として用いることもできる。   << Measures for excess water> The liquid separated by a vertical centrifugal dehydrator with a scraping screw blade (vertical, sharp press, decanter) can be used as the next raw water.

《まとめ》加圧加温した場合、しなかった場合に比べ短時間にコロイド化が進む。同時に和杉チップを物理的に分解して得られる糖濃度も高くなっていることが分った。これらは加圧加温が単独で直接コロイド化を促進して糖濃度を高めたわけではなく、キャビティーがつぶれたときに生じる極めて小さい領域に集中する高温高圧状態が回りに広がり温度と圧力は低下していくが、超臨界または亜臨界の状態が確保される領域は周囲の温度圧力が高い分だけ冷却減圧が遅れ広がるためである。冷却減圧がさらに進むと超臨界または亜臨界の領域は順次消える。それゆえこのセルロースの分解能力に当る糖化能力は湿式擂潰機の中で単位時間当たりに生じるキャビティーの数とその運転時間とひとつのキャビティーが作る超臨界または亜臨界の水熱反応領域とその存在時間に正の相関を持つものと理論つけた。液温度と液圧力が高くなればなるほど冷却水温度も高くなるわけであるので冷却しにくく減圧も起こりにくいので、超臨界または亜臨界の水熱反応領域は大きくなりしかもその存在は時間的にも長くなったものと理論付けた。   << Summary >> Colloidalization proceeds in a shorter time when heated under pressure than when not heated. At the same time, it was found that the sugar concentration obtained by physically degrading Japanese cedar chips was also high. These pressures alone did not directly promote colloidalization and increased the sugar concentration, but the high temperature and high pressure state concentrated in a very small area generated when the cavity collapsed spread and the temperature and pressure decreased. However, the region where the supercritical or subcritical state is ensured is because the cooling pressure reduction is delayed by the amount of the high ambient temperature and pressure. As the cooling and depressurization further proceeds, the supercritical or subcritical region disappears sequentially. Therefore, the saccharification capacity corresponding to the decomposition capacity of cellulose is the number of cavities generated per unit time in a wet crusher, the operation time, the supercritical or subcritical hydrothermal reaction zone formed by one cavity, and Theorized that it has a positive correlation with its existence time. The higher the liquid temperature and pressure, the higher the cooling water temperature, so it is difficult to cool and depressurize, so the supercritical or subcritical hydrothermal reaction area becomes larger and its existence also in time. Theorized that it became longer.

用いた機械は市販のブリッケットマシン(練炭製造機)である。この機械は含水率が40%以下の粉体の圧縮凝固に用いるものである。前にも記述したとおり堆肥発酵基材としての機能には通気路通水路の確保がありまた他の特に液体の堆肥発酵資材との混合が手際よく出来る性状が望まれるため、圧縮整形を試みた。比重は1.0以上になり圧縮整形体は液に触れるだけで吸水を始め5倍以上に見かけ容積を増やす為堆肥材料としては最良質の通気路通水路を備えたものといえる。木を原材料としたこのような堆肥発酵基材はほかになくその特色故に請求項とした。   The machine used is a commercially available briquette machine. This machine is used for compression solidification of powder having a moisture content of 40% or less. As described before, the function as a compost fermentation base material is to secure a ventilation channel and to be able to mix with other compost fermented materials, especially liquid, so compression shaping was attempted. . The specific gravity becomes 1.0 or more, and it can be said that the compression molded body has the best quality aeration passage water passage as a compost material because it starts water absorption and increases the apparent volume more than 5 times just by touching the liquid. There is no other such compost-fermenting substrate made of wood as raw material.

本発明の製造方法を説明するための湿式擂潰機を中心とした機械装置の配置図を示す。The layout of the mechanical device centering on the wet crusher for demonstrating the manufacturing method of this invention is shown. 図1の湿式擂潰機を拡大した図と符合1固定歯(ステーター)から符号2回転歯(ローター)を引き出した分解図を示す。The enlarged view of the wet crusher of FIG. 1 and the exploded view which pulled the code | symbol 2 rotation tooth | gear (rotor) from the code | symbol 1 fixed tooth | gear (stator) are shown. 図2のA−A` 断面図を示す。AA 'sectional drawing of FIG. 2 is shown. 図3の固定歯(ステーター)B−B` 断面図、図3の回転歯(ローター)C−C` 断面図、歯の固定の仕方を示す。The fixed tooth (stator) BB 'sectional view of FIG. 3, the rotating tooth (rotor) CC' sectional view of FIG. 3, and how to fix the teeth are shown. 実施例1の試験結果比較表を示す。The test result comparison table of Example 1 is shown. 請求項2の発明の製造方法を説明するための湿式擂潰機を中心とした機械装置の配置図を示す。The layout of the mechanical apparatus centering on the wet crusher for demonstrating the manufacturing method of invention of Claim 2 is shown. 実施例2の試験結果比較表を示す。The test result comparison table of Example 2 is shown.

符号の説明Explanation of symbols

1・・湿式擂潰機固定歯(ステーター)、1−01・・湿式擂潰機固定歯(ステーター)ハウジング、1−02・・湿式擂潰機固定歯(ステーター)の歯取り付け面、1−03・・湿式擂潰機固定歯(ステーター)側フランジ、1−04・・湿式擂潰機原料液入口、1−05・・湿式擂潰機原料液出口、1−06・・湿式擂潰機固定歯(ステーター)側フランジボルト孔、1−11・・湿式擂潰機固定歯(ステーター)ハウジングうめ込み歯、2・・湿式擂潰機回転歯(ローター)、2−01・・湿式擂潰機回転歯(ローター)の歯取り付け面、2−02・・湿式擂潰機回転歯(ローター)側フランジ、2−03・・湿式擂潰機回転歯(ローター)側フランジボルト孔、2−04・・メカニカルシール、2−05・・駆動軸受ベアリング、2−06・・キー、2−07・・駆動軸、2−11・・湿式擂潰機回転歯(ローター)ボスうめ込み歯、a・・歯高、b・・歯幅、c・・歯の間隙、3・・湿式擂潰機回転歯(ローター)駆動インバーターモーター、4・・原料タンク、5・・原料送液ポンプ、6・・原料送液ポンプ用モーター、7・・湿式擂潰機入口開閉弁、8・・湿式擂潰機出口開閉弁、9・・湿式擂潰機入口圧力計、10・・湿式擂潰機出口圧力計、11・・インバーター、12・・圧力検知自動開閉バルブ、13・・安全弁、14・・原料タンク自動重量計、15・・原料自動供給圧送ポンプ、16・・逆流防止自動弁、17・・加熱用蒸気の供給口、18・・蒸気逆流防止弁、19・・掻きだしスクリュー刃付き縦型遠心脱水機(バーチカル・シャープレス・デカンター)。   1 ·· wet crusher fixed teeth (stator), 1-01 ·· wet crusher fixed teeth (stator) housing, 1-02 ·· wet crusher fixed teeth (stator) tooth mounting surface, 1- 03 ··· wet crusher fixed tooth (stator) side flange, 1 · 04 · · wet crusher raw material liquid inlet, 1 · 05 · · wet crusher raw material liquid outlet, 1-06 · · wet crusher Fixed tooth (stator) side flange bolt hole, 1-11 ... wet crusher fixed tooth (stator) housing indentation tooth, 2 .... wet crusher rotating tooth (rotor), 2-01 ... wet crush Tooth mounting surface of machine rotary tooth (rotor), 2-02 ... wet crusher rotary tooth (rotor) side flange, 2-03 ... wet crusher rotary tooth (rotor) side flange bolt hole, 2-4 ..Mechanical seals, 2-05 06 ・ ・ Key, 2-07 ・ ・ Drive shaft, 2-11 ・ ・ Wet crusher rotating tooth (rotor) boss indentation tooth, a ・ ・ Tooth height, b ・ ・ Tooth width, c ・ ・ Gap between teeth 3 .... Wet crusher rotating tooth (rotor) drive inverter motor, 4 .... Raw material tank, 5 .... Raw material feed pump, 6 .... Raw material feed pump motor, 7 .... Wet crusher inlet opening / closing Valve, 8 .... wet crusher outlet opening / closing valve, 9 .... wet crusher inlet pressure gauge, 10 .... wet crusher outlet pressure gauge, 11 .... inverter, ...... pressure detection automatic opening / closing valve, 13.・ ・ Safety valve, 14 ・ ・ Raw material automatic weighing scale, 15 ・ ・ Automatic feed pump, 16 ・ ・ Automatic backflow prevention valve, 17 ・ ・ Steam supply port for heating, 18 ・ ・ Steam backflow prevention valve, 19 ・・ Vertical centrifugal dehydrator with vertical screw blade (vertical shear press decanter ).

Claims (3)

木チップ等の植物チップを、キャビテーションを発生する湿式擂潰機にて擂潰することにより、液状の、又は固形状の発酵材料を製造することを特徴とする高速発酵材料製造方法。   A method for producing a high-speed fermentation material, characterized in that a liquid or solid fermentation material is produced by pulverizing a plant chip such as a wood chip with a wet crusher that generates cavitation. 木チップ等の植物チップを加圧加温した状態のまま、キャビテーションを発生する湿式擂潰機にて擂潰することにより、液状の、又は固形状の発酵材料を製造することを特徴とする高速発酵材料製造方法。   A high-speed production method that produces a liquid or solid fermentation material by pulverizing with a wet pulverizer that generates cavitation in a state in which plant chips such as wood chips are pressurized and heated. Fermentation material manufacturing method. 上記請求項1又は請求項2の方法で製造した固形の発酵材料を、塊状に圧縮成形し吸水性を向上させることを特徴とする高速発酵材料製造方法。   A method for producing a high-speed fermentation material, wherein the solid fermentation material produced by the method according to claim 1 or 2 is compressed into a lump shape to improve water absorption.
JP2007099793A 2007-04-05 2007-04-05 High-speed fermentation material manufacturing method Pending JP2008253925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007099793A JP2008253925A (en) 2007-04-05 2007-04-05 High-speed fermentation material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007099793A JP2008253925A (en) 2007-04-05 2007-04-05 High-speed fermentation material manufacturing method

Publications (1)

Publication Number Publication Date
JP2008253925A true JP2008253925A (en) 2008-10-23

Family

ID=39978067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007099793A Pending JP2008253925A (en) 2007-04-05 2007-04-05 High-speed fermentation material manufacturing method

Country Status (1)

Country Link
JP (1) JP2008253925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2173014A2 (en) 2008-09-30 2010-04-07 Fujitsu Limited Substrate fixing member and electronic device
CN104297321A (en) * 2014-09-28 2015-01-21 郑州轻工业学院 Intelligent detection device of hydrogen sulfide generated by sludge aerobic fermentation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2173014A2 (en) 2008-09-30 2010-04-07 Fujitsu Limited Substrate fixing member and electronic device
CN104297321A (en) * 2014-09-28 2015-01-21 郑州轻工业学院 Intelligent detection device of hydrogen sulfide generated by sludge aerobic fermentation

Similar Documents

Publication Publication Date Title
DK2276795T3 (en) BIOMASS PREPARATION
RU2557429C2 (en) Method and system for processing aquatic organisms
CN100467491C (en) Disruption of plant material to readily hydrolyzable cellulosic particles
Hartmann et al. Increase of anaerobic degradation of particulate organic matter in full-scale biogas plants by mechanical maceration
US9714299B2 (en) Method for processing a biomass containing lignocellulose
US20130081302A1 (en) Processing apparatus and methods
EA025362B1 (en) Processing biomass
US20130316428A1 (en) Process for the production of fuel gas from municipal solid waste
JP6063661B2 (en) Method for producing pulverized material
WO2015173806A1 (en) Method of sorting and/or processing waste material and processed material produced thereby
EA021993B1 (en) Cellulosic and lignocellulosic materials and methods and systems for producing such materials by irradiation
BR122014013416B1 (en) METHOD FOR CONVERSION OF A RAW MATERIAL OF A CELLULOSIS MATERIAL, THE CELLULOSIS MATERIAL UNDERSTANDING AT LEAST CELLULOSE, HEMICELLULOSIS AND ASH, IN WHICH THE CELLULOSTIC MATERIAL IS SUBMITTED TO THE PRE-CULTURE OF THE CURSION CHEMICALS, WHICH MUST BE RECOVERED, AND IN WHICH A NET FRACTION AND A SOLID FIBER FRACTION ARE PRODUCED, THE SOLID FIBER FRACTION SUBMITTED TO ENZYMATIC LIQUIDATION
JPH0459277B2 (en)
CN112517597A (en) Kitchen waste fermentation pretreatment process and system
CA2884252A1 (en) Methods for conditioning pretreated biomass
AU2016378939B2 (en) Biomass, thermal pressure hydrolysis and anaerobic digestion
JP2008253925A (en) High-speed fermentation material manufacturing method
CN101113429A (en) Plant spore extrusion wall-breaking method
JP2008113574A (en) Mixed feed for stock farming, and method for producing the same
KR101513992B1 (en) Apparatus and method of feed and compost using food waste
KR101699610B1 (en) Method for biomass treatment
JP2002142686A (en) Method for recycling animal and vegetable wastes
EP2785187B1 (en) Method for multiplying phytobenefical microorganisms
JP3382928B2 (en) Method and apparatus for manufacturing an organic processed product
CN101135119B (en) Method for manufacturing pulp raw material by biofermentation and culture method for the bacterial