JP2008251276A - Failure detecting device of light emitting diode circuit - Google Patents

Failure detecting device of light emitting diode circuit Download PDF

Info

Publication number
JP2008251276A
JP2008251276A JP2007089279A JP2007089279A JP2008251276A JP 2008251276 A JP2008251276 A JP 2008251276A JP 2007089279 A JP2007089279 A JP 2007089279A JP 2007089279 A JP2007089279 A JP 2007089279A JP 2008251276 A JP2008251276 A JP 2008251276A
Authority
JP
Japan
Prior art keywords
circuit
output
led
voltage
leds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007089279A
Other languages
Japanese (ja)
Inventor
Hisao Hirata
久生 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2007089279A priority Critical patent/JP2008251276A/en
Publication of JP2008251276A publication Critical patent/JP2008251276A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a failure detection device capable of detecting the failure even when only one unit of LEDs is short-circuited or disconnected. <P>SOLUTION: This failure detecting device is to detect the failure of an LED circuit formed by connecting a plurality of LEDs driven by the output voltage of a DC power supply 10 in series, and is equipped with a switching circuit 21 formed by parallel-connecting a plurality of switching elements 21a-e to respective LEDs, a switch control circuit 22 to short-circuit the LED parallel-connected to the switching element by turning on the respective switching elements of the switching circuit 21 in a fixed time (t1) within a prescribed period (T1) while going around the switching elements one by one in accordance with the period (T1), and an output voltage monitoring circuit 20 connected to the output end of the DC power supply to monitor fluctuation of the output voltage and output an abnormal signal when there is no fluctuation of the output voltage within the time (T1) of the period. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発光ダイオード(LED)を点灯させる回路においてLEDの故障を検知するための装置に関する。   The present invention relates to an apparatus for detecting a failure of an LED in a circuit for lighting a light emitting diode (LED).

LEDは略定電圧素子であるから、これを直流の定電流で点灯する方法が一般的に用いられている。   Since the LED is a substantially constant voltage element, a method of lighting the LED with a constant DC current is generally used.

図7及び図8は、複数(n)個のLEDを直列に接続してなる負荷回路(灯具)1に対し、直流の定電流電源10を用いて給電する点灯回路2及び3を示す。灯具1において一部のLEDが点灯しなくなる故障の原因は、一般に断線又は短絡である。
(1)断線による故障を検知する方法としては、電圧を検出する方法と、電流を検出する方法がある。
FIGS. 7 and 8 show lighting circuits 2 and 3 for supplying power to a load circuit (lamp) 1 formed by connecting a plurality of (n) LEDs in series using a DC constant current power supply 10. The cause of failure in which some of the LEDs in the lamp 1 are not lit is generally a disconnection or a short circuit.
(1) As a method for detecting a failure due to disconnection, there are a method for detecting voltage and a method for detecting current.

断線故障を電圧で検出する場合には、一個でもLEDが断線故障すると、電源の出力は無負荷となるので、点灯回路の出力電圧は出力制限電圧(Vlim)まで上昇する。負荷として複数(n)個のLEDが直列に接続されている場合、出力制限電圧(Vlim)を、製造上のバラツキや温度による変化を考慮して、各LEDの順方向電圧(Vf)の合計(Vf×n)の最大値以上に設定し、出力制限電圧(Vlim)と合計電圧(Vf×n)の最大値との間に検出電圧を設定することにより、LED負荷回路の断線故障を検知できる。しかしながら、この方法では、検出電圧に余裕をとるために、出力制限電圧(Vlim)を必要以上に高い値にしなければならず、電源の部品の耐電圧が高くなり、性能の劣化やコスト上昇をもたらす。   When detecting a disconnection failure with a voltage, if even one LED breaks, the output of the power supply becomes no load, so the output voltage of the lighting circuit rises to the output limit voltage (Vlim). When multiple (n) LEDs are connected in series as a load, the output limit voltage (Vlim) is the sum of the forward voltage (Vf) of each LED in consideration of manufacturing variations and temperature variations. By setting the detection voltage between the maximum value of the output limit voltage (Vlim) and the total voltage (Vf × n), the disconnection failure of the LED load circuit is detected. it can. However, with this method, the output limit voltage (Vlim) must be set to a value higher than necessary in order to provide a margin for the detection voltage, which increases the withstand voltage of the power supply components, resulting in performance degradation and cost increase. Bring.

一方、断線故障を電流で検知する場合は、図7の点灯回路2において、負荷回路と直列に電流検出用の抵抗11を接続し、この抵抗の端子間電圧の変化を断線検知回路12で検出する。一個でもLEDが断線故障すると、直流定電流電源10の出力端は無負荷となり、負荷回路の電流は0になるので、電流検出用抵抗11の端子間電圧が0Vとなる。これを利用して断線故障を検知する。   On the other hand, when a disconnection failure is detected by current, a current detection resistor 11 is connected in series with the load circuit in the lighting circuit 2 of FIG. 7, and a change in the voltage between terminals of this resistor is detected by the disconnection detection circuit 12. To do. If even one LED breaks, the output terminal of the DC constant current power supply 10 is unloaded, and the load circuit current becomes 0. Therefore, the voltage between the terminals of the current detection resistor 11 becomes 0V. This is used to detect a disconnection failure.

この方法では、電流検出用抵抗11が必要であり、この電流検出用抵抗の損失によって効率が低下するという問題がある。
(2)短絡による故障を検知する方法としては、n個のLEDの順方向電圧の合計(Vf×n)の電圧降下を検出する方法と、出力電流の上昇を検出する方法がある。
In this method, the current detection resistor 11 is required, and there is a problem that the efficiency is lowered due to the loss of the current detection resistor.
(2) As a method of detecting a failure due to a short circuit, there are a method of detecting a voltage drop of the total forward voltage (Vf × n) of n LEDs and a method of detecting an increase in output current.

まず、電圧降下で短絡を検知する場合は、出力電圧の降下を検出する。そのため、図7の点灯回路2は、直流定電流電源10の出力電圧Voutから短絡を検知する短絡検知回路13を備えている。出力電圧Voutは、各LEDの順方向電圧(Vf)の合計(Vf×n)となる。一個のLEDが短絡故障すると、出力電圧はVf×(n-1)となるので、一個のLEDの短絡故障を検知するためには、検出電圧をVf×nとVf×(n-1)との間の電圧に設定することが必要である。一般的には、順方向電圧の製造上のバラツキや温度による変化を考慮して、十分に低い電圧を検出電圧として設定する。そのため、複数個のLEDが短絡故障しないと故障を検知できないという問題がある。   First, when a short circuit is detected by a voltage drop, a drop in output voltage is detected. Therefore, the lighting circuit 2 of FIG. 7 includes a short circuit detection circuit 13 that detects a short circuit from the output voltage Vout of the DC constant current power supply 10. The output voltage Vout is the total (Vf × n) of the forward voltage (Vf) of each LED. When one LED is short-circuited, the output voltage is Vf × (n−1). Therefore, in order to detect a short-circuit failure of one LED, the detection voltages are Vf × n and Vf × (n−1). It is necessary to set the voltage between. In general, a sufficiently low voltage is set as the detection voltage in consideration of manufacturing variations in the forward voltage and changes due to temperature. Therefore, there is a problem that a failure cannot be detected unless a plurality of LEDs are short-circuited.

なお、図7の点灯回路2では、断線検知回路12と短絡検知回路13のどちらが出力しても異常信号を出力するために、断線検知回路12から出力される断線故障信号と短絡検知回路13から出力される短絡故障信号を入力するOR回路14を備えている。   In the lighting circuit 2 of FIG. 7, since either the disconnection detection circuit 12 or the short circuit detection circuit 13 outputs an abnormal signal, the disconnection fault signal output from the disconnection detection circuit 12 and the short circuit detection circuit 13 are output. An OR circuit 14 for inputting the output short-circuit fault signal is provided.

また、電源10が安定化されていない直流電源の場合には、電源電圧の変動でLEDの電流が変化するので、Vfの変動が大きくなる。そのため、電源の変動を加味して、余裕のある検出電圧の設定が必要となるので、この場合も、より多くのLEDが短絡故障しないと異常を検知できない。   Further, when the power supply 10 is a non-stabilized DC power supply, the LED current changes due to the fluctuation of the power supply voltage, so that the fluctuation of Vf becomes large. For this reason, since it is necessary to set a detection voltage with a margin in consideration of fluctuations in the power supply, an abnormality cannot be detected unless more LEDs are short-circuited.

例えば、白色のパワーLEDの順方向電圧は約3.5Vである。製造上のバラツキや温度による変化は±20%程度あるので、順方向電圧は2.8Vから4.2Vまで変動する。このLEDを20個直列接続した場合、順方向電圧の合計は56Vから84Vまで変動する。このため、検出電圧を56V以下に設定しないと正常動作状態を異常と判定してしまうので、設定電圧を56V以下とする。この電圧値は、順方向電圧が最大の4.2Vである場合、LED約13個分の電圧となる。よって、7個のLEDが短絡故障しないと短絡故障を検知できない。   For example, the forward voltage of a white power LED is about 3.5V. The forward voltage varies from 2.8V to 4.2V because there are about ± 20% variation due to manufacturing variations and temperature. When 20 LEDs are connected in series, the total forward voltage varies from 56V to 84V. For this reason, if the detection voltage is not set to 56 V or less, the normal operation state is determined to be abnormal, so the set voltage is set to 56 V or less. This voltage value is a voltage for about 13 LEDs when the forward voltage is a maximum of 4.2V. Therefore, a short circuit failure cannot be detected unless the seven LEDs have a short circuit failure.

従って、この方法では、一個のLEDの短絡故障を検知できず、複数個のLEDが短絡故障しないと短絡故障を検知できない。LEDの数が増加すると、順方向電圧(Vf)の製造上のバラツキや温度による変化の下限はVf×(n-1)を下回り、検出電圧を設定できなくなる。   Therefore, in this method, a short circuit failure of one LED cannot be detected, and a short circuit failure cannot be detected unless a plurality of LEDs have a short circuit failure. When the number of LEDs increases, the lower limit of variation due to manufacturing variations and temperature of the forward voltage (Vf) falls below Vf × (n−1), and the detection voltage cannot be set.

車両のヘッドランプなど車載の灯具は、配光規格があるので、これを満足しなければならないが、上記の20個中7個のLEDが不灯の場合には、配光規格を満足できない。また、光度が三分の一程低下すると、車両は前方が暗い状態で走行することとなり、危険になる。   An in-vehicle lamp such as a vehicle headlamp has a light distribution standard, which must be satisfied. However, when seven of the 20 LEDs are not lit, the light distribution standard cannot be satisfied. Moreover, if the light intensity decreases by one third, the vehicle will run in a dark state in front of the vehicle, which is dangerous.

一方、出力電流の上昇で一個のLEDの短絡故障を検知する場合は、電流制限用の抵抗又は新たに電流検出用の抵抗をLEDと直列に挿入し、その電圧変化を検出する。この方法も、一個のLED短絡による電流変化は微小で、順方向電圧の製造上のバラツキや温度による電流変化の方が大きく、検出電圧を設定できない。また、複数個のLEDが短絡故障しないと短絡故障を検知できない。更に、安定化されていない直流電源の場合には、より多くのLEDが短絡故障しないと短絡故障を検知できない。また、電流検出用抵抗を使用すると、電流検出用抵抗の損失により効率が低下するという問題がある。   On the other hand, when a short circuit failure of one LED is detected due to an increase in output current, a current limiting resistor or a new current detecting resistor is inserted in series with the LED, and the voltage change is detected. Also in this method, the current change due to one LED short-circuit is very small, the variation in forward voltage manufacturing and the current change due to temperature are larger, and the detection voltage cannot be set. Moreover, a short circuit failure cannot be detected unless a plurality of LEDs have a short circuit failure. Furthermore, in the case of a DC power supply that is not stabilized, a short-circuit failure cannot be detected unless more LEDs are short-circuited. Further, when the current detection resistor is used, there is a problem that the efficiency is lowered due to the loss of the current detection resistor.

これに対し、図8の点灯回路3では、電源と負荷回路との間に電流制限(限流)回路15を直列接続している。電流制限回路としては、一般に抵抗素子又は定電流回路が使用され、負荷回路の電流をほぼ一定に保持する。抵抗素子の値は、直流電源10の電圧とLEDの順方向電圧の合計(Vf×n)との差分、及びLEDに流す電流値で決められる。   On the other hand, in the lighting circuit 3 of FIG. 8, a current limiting (current limiting) circuit 15 is connected in series between the power supply and the load circuit. As the current limiting circuit, a resistance element or a constant current circuit is generally used, and the current of the load circuit is held almost constant. The value of the resistance element is determined by the difference between the voltage of the DC power supply 10 and the total forward voltage (Vf × n) of the LED and the value of the current flowing through the LED.

なお、図8の点灯回路3では、断線故障を電圧変化で検出するために直流定電流電源10の出力端に断線検知回路12の入力端を接続し、短絡故障を電流変化で検出するために電流検出用抵抗11の両端に短絡検知回路13の入力端を接続している。そして、図7の点灯回路2と同様に、断線検知回路12から出力される断線故障信号と短絡検知回路13から出力される短絡故障信号を入力するOR回路14を備えている。   In the lighting circuit 3 of FIG. 8, in order to detect a disconnection failure by a voltage change, the input end of the disconnection detection circuit 12 is connected to the output end of the DC constant current power supply 10, and a short-circuit failure is detected by a current change. The input terminals of the short circuit detection circuit 13 are connected to both ends of the current detection resistor 11. As with the lighting circuit 2 of FIG. 7, an OR circuit 14 is provided for inputting a disconnection fault signal output from the disconnection detection circuit 12 and a short-circuit fault signal output from the short-circuit detection circuit 13.

上記の断線による不灯を検知する方法は、電流制限抵抗又は定電流源と負荷との接続点を電源の出力電圧(Vout)と見れば、直流定電流電源の場合と同様である。   The method for detecting the non-lighting due to the disconnection is the same as that in the case of the DC constant current power source when the connection point between the current limiting resistor or the constant current source and the load is regarded as the output voltage (Vout) of the power source.

上記の従来技術において、一個でもLEDが断線すると、全消灯となってしまうのを回避するための技術が、特許文献1,2に提案されている。   In the above-described conventional techniques, Patent Documents 1 and 2 have proposed techniques for avoiding the case where even one LED is disconnected when the LEDs are disconnected.

特許文献1では、各LEDと並列に接続された断線監視回路と、LEDが断線したとき断線監視回路の出力により断線したLEDを短絡保持し、他のLED の点灯を維持する回路が提案されている。   Patent Document 1 proposes a disconnection monitoring circuit connected in parallel with each LED, and a circuit that maintains a short circuit of the disconnected LED by the output of the disconnection monitoring circuit when the LED is disconnected, and maintains the lighting of the other LEDs. Yes.

特許文献2では、上述の機能に加えて、一個でもLEDが断線した時に断線検出信号を出力する回路が提案されている。   Patent Document 2 proposes a circuit that outputs a disconnection detection signal when at least one LED is disconnected in addition to the above-described function.

しかしながら、いずれの技術も、LEDの短絡故障の検知ができない。また、各LED間の配線や電源とLEDを繋ぐ配線が断線して不灯になった場合、断線検出信号を出力できない。断線検出信号を出力する場合は、灯具から少なくとも1本の配線を出すことが必要となる。
特開2002−025784号公報 特開2003−208993号公報
However, neither technique can detect a short circuit failure of the LED. Further, when the wiring between the LEDs or the wiring connecting the power source and the LED is disconnected and becomes unlit, the disconnection detection signal cannot be output. When outputting a disconnection detection signal, it is necessary to provide at least one wiring from the lamp.
JP 2002-025784 A JP 2003-20993 A

本発明は、以上の状況に鑑み、従来の問題点を解決して、一個でもLEDが短絡又は断線した場合でも、その故障を検知できる故障検知装置を提供することを目的とする。   In view of the above situation, an object of the present invention is to solve the conventional problems and to provide a failure detection device that can detect a failure even when one LED is short-circuited or disconnected.

本発明は、直流電源の出力電圧で駆動される複数個のLEDを直列に接続してなる負荷の故障を検知するための故障検知装置であって、
前記LEDの各々又は任意の個数に対してスイッチ素子を並列に接続してなるスイッチ回路と、
所定の周期(T1)に従って順次巡回しながら該周期(T1)内の一定時間(t1)、前記スイッチ回路の各スイッチ素子をオンし、当該スイッチ素子と並列接続したLEDを短絡するスイッチ制御回路と、
前記直流電源の出力端に接続され、出力電圧の変化を監視し、前記周期(T1)の時間内に出力電圧の変化がない場合に異常信号を出力する出力電圧監視回路と
を備えたことを特徴とする。
The present invention is a failure detection device for detecting a load failure formed by connecting a plurality of LEDs driven by an output voltage of a DC power supply in series,
A switch circuit in which switch elements are connected in parallel to each or any number of the LEDs;
A switch control circuit that turns on each switch element of the switch circuit and short-circuits the LEDs connected in parallel with the switch element while sequentially cycling according to a predetermined period (T1) for a fixed time (t1) within the period (T1). ,
An output voltage monitoring circuit that is connected to the output terminal of the DC power supply, monitors the change in the output voltage, and outputs an abnormal signal when there is no change in the output voltage within the period (T1). Features.

本発明の故障検知装置において、前記スイッチ制御回路は、基準周波数のクロック信号を発生するクロック回路と、そのクロック信号が入力され、前記LEDの個数に対応した信号を順次出力するリングカウンタ回路と、該リングカウンタ回路から順次出力される複数の信号が入力される微分回路と、各微分回路の出力を各スイッチ素子に加える出力回路とで構成することができる。   In the failure detection apparatus of the present invention, the switch control circuit includes a clock circuit that generates a clock signal of a reference frequency, a ring counter circuit that receives the clock signal and sequentially outputs signals corresponding to the number of LEDs, A differentiation circuit to which a plurality of signals sequentially output from the ring counter circuit are input, and an output circuit for adding the output of each differentiation circuit to each switch element can be formed.

また、スイッチ制御回路の電源を、前記負荷の両端、又は任意のLED接続点と零電位端の間からとることができる。   In addition, the power source of the switch control circuit can be taken from both ends of the load or between any LED connection point and the zero potential end.

本発明によれば、スイッチ制御回路により各スイッチ素子がオンして、対応するLEDを短絡したときの電圧変化は、LEDが正常動作状態のときには、LEDの順方向電圧からスイッチ素子がオンしたときの電圧を差し引いた電圧値となる。ここで、LEDが短絡故障している場合は、そのLEDをスイッチ素子で短絡しても出力電圧は変化しない。従って、出力電圧監視回路は、前記周期の時間内に直流電源の出力電圧の変化がない場合は、LEDが短絡故障と判定し、異常信号を出力する。また、LEDが断線故障した場合には、断線していない正常なLEDをスイッチ素子が短絡しても出力電圧が変化しないので、出力電圧監視回路は異常と判定する。従って、LEDの断線故障も異常として検知される。   According to the present invention, when each switch element is turned on by the switch control circuit and the corresponding LED is short-circuited, when the LED is in a normal operation state, the switch element is turned on from the forward voltage of the LED. The voltage value is obtained by subtracting the voltage of. Here, when the LED is short-circuited, the output voltage does not change even if the LED is short-circuited by the switch element. Accordingly, when there is no change in the output voltage of the DC power supply within the period, the output voltage monitoring circuit determines that the LED is a short circuit failure and outputs an abnormal signal. When the LED breaks down, the output voltage does not change even if the switch element short-circuits a normal LED that is not broken, so the output voltage monitoring circuit determines that it is abnormal. Therefore, the disconnection failure of the LED is also detected as an abnormality.

上記のように、一個のLEDが短絡した故障でも検知できるので、故障を速やかに利用者に知らせることができる。また、LEDの断線故障も検知すると共に、電源と灯具との間の配線が断線した場合も検知できる。このような断線故障の検出のために必要以上に高い値の出力制限電圧を設定する必要がなく、性能の劣化やコスト増大を防止できる。   As described above, since it is possible to detect even a failure in which one LED is short-circuited, it is possible to promptly notify the user of the failure. Moreover, while detecting the disconnection failure of LED, the case where the wiring between a power supply and a lamp is disconnected can also be detected. It is not necessary to set an output limit voltage having a value higher than necessary for detecting such a disconnection failure, and performance degradation and cost increase can be prevented.

また、直流電源からの出力電圧の変化でLEDの故障を検知するので、従来の電流検出用抵抗が不要であり、その分、抵抗による効率の低下がなくなる。   Further, since the failure of the LED is detected by a change in the output voltage from the DC power supply, a conventional current detection resistor is unnecessary, and the efficiency is not reduced by that amount.

従来の方式では、電源から灯具までの配線の電圧降下が大きい場合、電圧降下の電圧値に応じて検出電圧を変更する必要があったが、本発明では、電圧変化の絶対値を検出してLEDの故障を検知するので、電源と灯具がどんなに離れていても、配線の電圧降下に影響されず、LEDの故障を検知できる。   In the conventional method, when the voltage drop of the wiring from the power source to the lamp is large, it is necessary to change the detection voltage according to the voltage value of the voltage drop, but in the present invention, the absolute value of the voltage change is detected. Since the failure of the LED is detected, the failure of the LED can be detected without being affected by the voltage drop of the wiring, no matter how far the power supply and the lamp are separated.

直流電源が、バッテリや直流定電圧電源に抵抗素子を接続した電源の場合には、出力電圧の変動やバラツキがあるが、上記の周期で発生するスイッチオンの時間の電圧変化を検出してLEDの故障を検知するので、出力電圧の変動やバラツキに影響されず、安定してLEDの故障を検知できる。   When the DC power supply is a power supply in which a resistance element is connected to a battery or a DC constant voltage power supply, the output voltage fluctuates and varies, but the LED changes by detecting the voltage change during the switch-on time that occurs in the above cycle. Therefore, the failure of the LED can be detected stably without being affected by fluctuations or variations in the output voltage.

また、複数個のLEDに対し一つのスイッチ素子を設けることも可能である。その場合は、個々のLEDの短絡故障は検知できないが、断線故障は検知できる。スイッチ素子の個数が削減され、スイッチ制御回路も簡素化されるので、コストも抑えられる。従って、灯具として光度低下が致命的な問題にはならず、灯具を構成する複数個のLEDの組がそれぞれ単一機能として使用されている場合などには、有効に使用できる。   It is also possible to provide one switch element for a plurality of LEDs. In that case, short-circuit faults of individual LEDs cannot be detected, but disconnection faults can be detected. Since the number of switch elements is reduced and the switch control circuit is simplified, the cost can be reduced. Therefore, a decrease in luminous intensity is not a fatal problem as a lamp, and it can be effectively used when a plurality of LED sets constituting the lamp are used as a single function.

更に、スイッチ回路とスイッチ制御回路の電源を灯具内で供給できるので、電源と灯具間の故障検知装置用の配線がいらない。また、直列に接続されたLEDの中間の接続点からスイッチ制御回路の電源を供給できるので、スイッチ制御回路の電源に必要最低限の電源電圧を供給することができ、電力損失を最小限に抑えられる。   Furthermore, since the power of the switch circuit and the switch control circuit can be supplied within the lamp, no wiring for a failure detection device between the power and the lamp is required. In addition, since the power of the switch control circuit can be supplied from the intermediate connection point of the LEDs connected in series, the minimum power supply voltage can be supplied to the power supply of the switch control circuit, minimizing power loss. It is done.

本発明は、LEDを使用した自動車用灯具、一般照明器具、表示装置、表示装置のバックライトなどに好適に用いられる。   INDUSTRIAL APPLICABILITY The present invention is suitably used for automobile lamps using LEDs, general lighting equipment, display devices, backlights for display devices, and the like.

図1は、本発明の一実施形態のLED故障検知装置を構成する点灯回路4とその出力電圧が供給される灯具1の回路構成を示す。ここで、点灯回路4は、直流定電流電源10と、その出力電圧Voutを監視して異常を検出したとき異常信号を出力する出力電圧監視回路20とを備えている。その構成については、後で説明する。   FIG. 1 shows a circuit configuration of a lighting circuit 4 that constitutes an LED failure detection apparatus according to an embodiment of the present invention and a lamp 1 that is supplied with an output voltage thereof. Here, the lighting circuit 4 includes a DC constant current power supply 10 and an output voltage monitoring circuit 20 that outputs an abnormal signal when the output voltage Vout is monitored and an abnormality is detected. The configuration will be described later.

灯具1は、直列に接続された5個のLEDを負荷とし、各LEDに対してそれぞれ並列接続された5個のスイッチ素子21a〜21eから成るスイッチ回路21と、各スイッチ素子のオン・オフを制御するスイッチ制御回路22とを備えている。   The lamp 1 has five LEDs connected in series as a load, and a switch circuit 21 including five switch elements 21a to 21e connected in parallel to each LED, and on / off of each switch element. And a switch control circuit 22 for controlling.

スイッチ制御回路22は、図2に示されるように、基準周波数のクロック信号を発生するクロック回路30と、そのクロック信号が入力されるリングカウンタ回路31と、このカウンタ回路31から順次出力される5つのリングカウンタ出力R1〜R5が入力される5つの微分回路32a〜eと、各微分回路の出力D1〜D5を各スイッチ素子21a〜eに加えるためのインタフェース回路からなる5つの出力回路33a〜eとで構成される。   As shown in FIG. 2, the switch control circuit 22 includes a clock circuit 30 that generates a clock signal having a reference frequency, a ring counter circuit 31 to which the clock signal is input, and 5 that are sequentially output from the counter circuit 31. Five output circuits 33a to 33e including five differentiating circuits 32a to 32e to which one ring counter output R1 to R5 is inputted and an interface circuit for adding the outputs D1 to D5 of the differentiating circuits to the respective switch elements 21a to 21e. It consists of.

クロック回路30は、周期T1のクロック信号を発生してリングカウンタ回路31に供給する。リングカウンタ回路31は、LEDの個数分(図示の例では、5個)の出力R1〜R5を有し、各出力は順次、5周期毎に1周期(T1)ずつオン(H)となる信号を出力する。微分回路32a〜eは、リングカウンタ回路31の出力波形を微分し、オン時間t1のパルス出力D1〜D5を生成する。各出力回路33a〜eは、各微分回路の出力D1〜D5を、各スイッチ素子21a〜eを駆動する信号として出力する。   The clock circuit 30 generates a clock signal having a period T 1 and supplies it to the ring counter circuit 31. The ring counter circuit 31 has outputs R1 to R5 corresponding to the number of LEDs (5 in the illustrated example), and each output is a signal that is turned on (H) by one cycle (T1) every five cycles. Is output. Differentiating circuits 32a to 32e differentiate the output waveform of the ring counter circuit 31, and generate pulse outputs D1 to D5 of the on-time t1. Each output circuit 33a-e outputs the output D1-D5 of each differentiation circuit as a signal which drives each switch element 21a-e.

上記の回路において、クロック回路30とリングカウンタ31は、ロジックICを使用して構成する。各微分回路32a〜eは、オペアンプやロジックICを用いて構成されるが、プログラマブルロジックアレーやマイコンなどを使用して、同様の機能を構成しても良い。   In the above circuit, the clock circuit 30 and the ring counter 31 are configured using a logic IC. Each of the differentiating circuits 32a to 32e is configured using an operational amplifier or a logic IC. However, a similar function may be configured using a programmable logic array or a microcomputer.

スイッチ制御回路22の電源は、点灯回路4の直流電源を構成する補助電源又は入力電源から供給する場合と、灯具1で供給する場合とがある。後者の場合は、LEDの両端、又は直列に接続されたLEDの任意の接続点と、零電位端から供給することができる。LEDの順方向電圧が3Vの場合、スイッチ制御回路22の電源電圧を5Vとすれば、LED2個又は3個で電源を供給できる。或いは、三端子レギュレータなどを介して適切な電圧を供給することもできる。   The switch control circuit 22 may be supplied from an auxiliary power source or an input power source constituting the DC power source of the lighting circuit 4 or from the lamp 1. In the latter case, the light can be supplied from both ends of the LED or from any connection point of the LEDs connected in series and the zero potential end. When the forward voltage of the LED is 3V, if the power supply voltage of the switch control circuit 22 is 5V, the power can be supplied by two or three LEDs. Alternatively, an appropriate voltage can be supplied via a three-terminal regulator or the like.

図3は、スイッチ制御回路22を構成する上記の各回路部から出力される信号の波形を示すタイミングチャートである。   FIG. 3 is a timing chart showing the waveforms of signals output from the respective circuit units constituting the switch control circuit 22.

クロック回路30から出力されるクロック信号CKは、T1の周期でオン(H)・オフ(L)を繰り返す信号であり、リングカウンタ回路31は、クロック信号CKの5周期毎に1周期(T1)ずつオン(H)となる信号R1〜R5を順次出力する。各出力は、対応する各微分回路32a〜eで微分され、オン時間t1のパルス信号D1〜D5となって、各出力回路33a〜eから出力される。これらのパルス信号D1〜D5により、スイッチ回路21の各スイッチ素子21a〜eが順次オンとなって、各LEDを順次短絡していく。   The clock signal CK output from the clock circuit 30 is a signal that repeats on (H) and off (L) in a cycle of T1, and the ring counter circuit 31 has one cycle (T1) every five cycles of the clock signal CK. The signals R1 to R5 that are turned on (H) one by one are sequentially output. The outputs are differentiated by the corresponding differentiating circuits 32a to 32e to become pulse signals D1 to D5 of the on-time t1, and are output from the output circuits 33a to 33e. With these pulse signals D1 to D5, the switch elements 21a to 21e of the switch circuit 21 are sequentially turned on, and the LEDs are sequentially short-circuited.

各スイッチ素子21a〜eがオンして、対応するLEDを短絡したときの電圧変化は、LEDが正常動作状態のときには、LEDの順方向電圧からスイッチ素子がオンしたときの電圧を差し引いた電圧値となる。例えば、各LEDの順方向電圧(Vf)を3Vとすれば、全てのスイッチ素子21a〜eがオフのとき、直流定電流電源10の出力電圧はVout =3V×5=15Vである。各スイッチ素子21a〜eがオンになると、対応する一個のLEDが短絡されるので、出力電圧はVout ≒15V−3V=12Vとなり、約3V変化する。LEDが短絡故障している場合は、そのLEDをスイッチ素子で短絡しても出力電圧は変化しない。   The voltage change when each switch element 21a-e is turned on and the corresponding LED is short-circuited is a voltage value obtained by subtracting the voltage when the switch element is turned on from the forward voltage of the LED when the LED is in a normal operation state. It becomes. For example, if the forward voltage (Vf) of each LED is 3V, the output voltage of the DC constant current power supply 10 is Vout = 3V × 5 = 15V when all the switch elements 21a to 21e are off. When each switch element 21a-e is turned on, one corresponding LED is short-circuited, so that the output voltage becomes Vout≈15V-3V = 12V and changes by about 3V. When an LED is short-circuited, the output voltage does not change even if the LED is short-circuited by a switch element.

直流電源10の出力に接続された出力電圧監視回路20は、出力電圧が変化しないことからLEDが短絡故障と判定したときには、異常信号を外部に出力する。このため、周期がT1以上で(T1×2)時間未満のタイマ(時間T2:T1≦T2<2T1)を起動して、出力電圧の変化を監視する。LEDが正常に動作している場合は、T1時間毎にt1時間の出力電圧の変化が起こり、この変化分の電圧値が予め設定された基準電圧値以上の場合、T2時間のタイマをリセットして出力電圧の変化の監視を継続する。このため、T2時間のタイマはタイムアップせず、異常信号は出力されない。一方、T1時間内に出力電圧の変化がない場合は、T2時間のタイマがタイムアップして、異常信号を外部に出力する。   Since the output voltage does not change, the output voltage monitoring circuit 20 connected to the output of the DC power supply 10 outputs an abnormal signal to the outside when it is determined that the LED is short-circuited. For this reason, a timer (time T2: T1.ltoreq.T2 <2T1) having a cycle of T1 or more and less than (T1.times.2) time is started to monitor the change in the output voltage. When the LED is operating normally, the output voltage changes for t1 time every T1 time. If the voltage value for this change is equal to or higher than the preset reference voltage value, the timer for T2 time is reset. Continue monitoring the change in output voltage. For this reason, the timer of time T2 does not time up and an abnormal signal is not output. On the other hand, if there is no change in the output voltage within the time T1, the timer for the time T2 times out and outputs an abnormal signal to the outside.

ここで、LEDの順方向電圧は、電流一定でLEDを駆動する場合でも、バラツキも含めて温度変化や経時変化により±20%程度の変動が見込まれる。また、スイッチ素子がオンしたときの電圧にもバラツキや変動も見込まれる。従って、上記基準電圧は、これらの変化分に対して充分に余裕をもった電圧値に設定する。   Here, the forward voltage of the LED is expected to fluctuate by about ± 20% due to a temperature change and a change with time even when the LED is driven with a constant current. Also, variations and fluctuations are expected in the voltage when the switch element is turned on. Therefore, the reference voltage is set to a voltage value having a sufficient margin for these changes.

例えば、LEDの順方向電圧を3Vとすれば、順方向電圧の最低電圧は約2.6Vとなる。スイッチ素子のオン時の電圧を1Vとすれば、LEDを短絡したときの電圧変化は1.6Vである。この場合、基準電圧は中間値の0.8V前後とすることが望ましい。   For example, if the forward voltage of the LED is 3V, the minimum forward voltage is about 2.6V. If the voltage when the switch element is on is 1V, the voltage change when the LED is short-circuited is 1.6V. In this case, it is desirable that the reference voltage be an intermediate value around 0.8V.

図4は、スイッチ素子21の構成例を示す。
(A)の回路構成では、スイッチ素子は、コレクタ・エミッタ間にLEDを接続したトランジスタTr1、そのベース電圧を変化させる直列接続の抵抗R1及びR2とトランジスタTr2、このトランジスタのベース・エミッタ間に接続された抵抗R3、及びトランジスタTr2のベースに接続した抵抗R4で構成され、この抵抗R4を介してトランジスタTr2のベースに上記スイッチ制御回路22の出力が加えられる。
FIG. 4 shows a configuration example of the switch element 21.
In the circuit configuration of (A), the switch element includes a transistor Tr1 in which an LED is connected between the collector and the emitter, series-connected resistors R1 and R2 that change the base voltage of the transistor Tr2, and a transistor Tr2, which is connected between the base and emitter of the transistor. The resistor R3 and the resistor R4 connected to the base of the transistor Tr2, and the output of the switch control circuit 22 is applied to the base of the transistor Tr2 through the resistor R4.

従って、スイッチ制御回路22がHレベル信号を出力すると、この信号によってトランジスタTr2がオンし、トランジスタTr1のベース電圧がLレベルになってトランジスタTr1がオンすることにより、これに並列接続したLEDを短絡する。一方、スイッチ制御回路22の出力がLレベル信号であるときは、トランジスタTr2がオフで、トランジスタTr1もオフとなり、LEDは正常に点灯する。
(B)は、同様の機能をフォトカプラPCを用いて実現する回路である。これは、上記(A)の回路において抵抗R1とR2を切り離し、抵抗R1にはフォトカプラPCの受光部を接続する一方、抵抗R2とトランジスタTr2の間にフォトカプラPCの発光部を接続したものである。この場合、電源が必要になるが、スイッチ制御回路22の電源を共通の電源として使用できる。
(C)は、フローティングにする必要がない零電位側のLEDに対するスイッチ素子であり、コレクタ・エミッタ間にLEDを接続したトランジスタTr1のエミッタを零電位に接続すると共に、このトランジスタTr1のベース・エミッタ間に抵抗R1を接続し、トランジスタTr2のベースに抵抗R2を接続したものである。
Accordingly, when the switch control circuit 22 outputs an H level signal, the transistor Tr2 is turned on by this signal, and the base voltage of the transistor Tr1 becomes L level and the transistor Tr1 is turned on, so that the LEDs connected in parallel to this are short-circuited. To do. On the other hand, when the output of the switch control circuit 22 is an L level signal, the transistor Tr2 is turned off, the transistor Tr1 is also turned off, and the LED is normally lit.
(B) is a circuit that implements a similar function using a photocoupler PC. This is because the resistors R1 and R2 are disconnected in the circuit (A), and the light receiving portion of the photocoupler PC is connected to the resistor R1, while the light emitting portion of the photocoupler PC is connected between the resistor R2 and the transistor Tr2. It is. In this case, a power source is required, but the power source of the switch control circuit 22 can be used as a common power source.
(C) is a switch element for the LED on the zero potential side that does not need to be floated. The emitter of the transistor Tr1 connected between the collector and the emitter is connected to the zero potential, and the base emitter of the transistor Tr1 is connected. A resistor R1 is connected between them, and a resistor R2 is connected to the base of the transistor Tr2.

従って、スイッチ制御回路22がHレベル信号を出力すると、この信号によってトランジスタTr1がオンすることにより、これに並列接続したLEDを短絡する。   Accordingly, when the switch control circuit 22 outputs an H level signal, the transistor Tr1 is turned on by this signal, thereby short-circuiting the LEDs connected in parallel thereto.

次に、図1の点灯回路4では、直流の定電圧電源10を用いているが、これ以外の直流電源を用いてもよい。図5にその例を示す。(A)は直流定電圧電源10に電流制限回路15を接続した場合、(B)はバッテリに電流制限回路15を接続した場合である。電流制限回路15は、LEDに流れる電流を一定又は略一定にする機能を有する定電流回路や抵抗素子などで構成される。   Next, although the DC constant voltage power supply 10 is used in the lighting circuit 4 of FIG. 1, other DC power supplies may be used. An example is shown in FIG. (A) shows the case where the current limiting circuit 15 is connected to the DC constant voltage power supply 10, and (B) shows the case where the current limiting circuit 15 is connected to the battery. The current limiting circuit 15 is configured by a constant current circuit, a resistance element, or the like having a function of making the current flowing through the LED constant or substantially constant.

図6は、図1の実施形態における出力電圧監視回路20の構成を示す。この出力電圧監視回路20は、直流電源10の出力電圧が入力される端子間に接続したキャパシタC1及び抵抗R1の直列回路と、これらの接続点に接続された抵抗R2を介して(−)端子に入力が加えられる演算増幅器41と、その出力端と(−)端子との間に接続された抵抗R3と、演算増幅器41の出力電圧を基準電圧Vと比較する比較器42と、その出力端に接続されたキャパシタC2及び抵抗R4の直列回路と、これと共通の電源に接続されたキャパシタC3及び抵抗R5の直列回路と、比較器42の出力とキャパシタC3及び抵抗R5の接続点電圧とのANDをとって出力するANDゲート43とで構成されている。   FIG. 6 shows the configuration of the output voltage monitoring circuit 20 in the embodiment of FIG. This output voltage monitoring circuit 20 has a (−) terminal via a series circuit of a capacitor C1 and a resistor R1 connected between terminals to which the output voltage of the DC power supply 10 is input, and a resistor R2 connected to these connection points. The operational amplifier 41 to which the input is applied, the resistor R3 connected between the output terminal and the (−) terminal, the comparator 42 for comparing the output voltage of the operational amplifier 41 with the reference voltage V, and the output terminal A series circuit of a capacitor C2 and a resistor R4 connected to each other, a series circuit of a capacitor C3 and a resistor R5 connected to a common power source, and an output of the comparator 42 and a junction voltage of the capacitor C3 and the resistor R5. An AND gate 43 that outputs an AND is output.

ここで、抵抗R4とキャパシタC2とアンドゲート43とでT2時間のタイマを構成し、抵抗R5とキャパシタC3とアンドゲート43とで、直流電源の立ち上がり時の不安定動作を回避するための不感時間T3(抵抗R5とキャパシタC3による時定数で決定される)を設定するタイマを構成している。   Here, the resistor R4, the capacitor C2, and the AND gate 43 constitute a timer for T2, and the resistor R5, the capacitor C3, and the AND gate 43 constitute a dead time for avoiding unstable operation at the time of rising of the DC power supply. It constitutes a timer for setting T3 (determined by the time constant of the resistor R5 and the capacitor C3).

この出力電圧監視回路20によれば、直流電圧出力の+側に接続されたキャパシタC1により直流成分を除去して、出力電圧の変化分を抽出する。前述の周期T1に対してオン時間t1を十分短く取ることにより、LED短絡時の電圧変化を示す零電位を基準としたマイナスのパルスが得られる。   According to the output voltage monitoring circuit 20, the DC component is removed by the capacitor C1 connected to the positive side of the DC voltage output, and the change in the output voltage is extracted. By taking the on-time t1 sufficiently short with respect to the above-described period T1, a negative pulse based on the zero potential indicating the voltage change when the LED is short-circuited can be obtained.

この変化電圧は、演算増幅器41により極性を反転して、比較器42に入力される。比較器42は、変化電圧が基準電圧以上(正常状態)の場合、周期T1でオン時間t1の間、Lレベルの信号を出力する。   The change voltage is inverted in polarity by the operational amplifier 41 and input to the comparator 42. When the change voltage is equal to or higher than the reference voltage (normal state), the comparator 42 outputs an L level signal during the on-time t1 in the cycle T1.

電源投入後、上記不感時間T3中はアンドゲート43の入力がLレベルであるため、他方の入力にH、Lどちらのレベルが入力されても、アンドゲート43の出力はLレベルで、正常動作状態を示す。電源投入後の不感時間が過ぎると、アンドゲート43の入力の不感時間を構成するタイマ側はHレベルとなり、抵抗R4とキャパシタC2側のアンドゲート43の入力がHレベルとなったとき、アンドゲート43がHレベルの信号を異常信号として出力する。   Since the input of the AND gate 43 is at the L level during the dead time T3 after the power is turned on, the output of the AND gate 43 is at the L level regardless of which level is input to the other input. Indicates the state. When the dead time after the power is turned on, the timer side constituting the dead time of the input of the AND gate 43 becomes H level, and when the input of the AND gate 43 on the side of the resistor R4 and the capacitor C2 becomes H level, the AND gate 43 outputs an H level signal as an abnormal signal.

正常な動作状態では、T1時間内にオン時間t1の間、比較器42内部でオープンコレクタ出力のトランジスタがオンすることによりキャパシタC2が短絡され放電されるので、抵抗R4とキャパシタC2側のアンドゲート43の入力は、Hレベルとはならず、アンドゲート43は異常信号を出力しない。LEDが短絡し又は他のLEDが断線している場合には、T1時間ごとに発生するキャパシタC2の短絡動作は起こらず、T2時間経過後、抵抗R4とキャパシタC2側のアンドゲート43の入力がHレベルとなり、アンドゲート43がHレベルの信号を異常信号として出力する。   In a normal operation state, the transistor C2 is short-circuited and discharged by turning on the open collector output transistor in the comparator 42 for the on time t1 within the time T1, so that the resistor R4 and the AND gate on the capacitor C2 side are discharged. The input of 43 does not become H level, and the AND gate 43 does not output an abnormal signal. When the LED is short-circuited or another LED is disconnected, the short-circuit operation of the capacitor C2 that occurs every T1 time does not occur, and after the time T2 elapses, the input of the resistor R4 and the AND gate 43 on the capacitor C2 side is It becomes H level, and the AND gate 43 outputs a signal of H level as an abnormal signal.

異常信号出力は、異常状態を表示するため又は外部のコンピュータ等で処理するための入力として、外部に出力してもよい。電源内部で直流電源を停止、又は入力電源から直流電源を遮断して電源供給を停止するための信号として使用してもよい。   The abnormal signal output may be output to the outside as an input for displaying an abnormal state or for processing by an external computer or the like. It may be used as a signal for stopping the power supply by stopping the DC power supply inside the power supply or cutting off the DC power supply from the input power supply.

好ましくは、上記出力電圧監視回路20の出力側にラッチ回路(図示省略)を付加することにより、出力電圧監視回路20が異常信号を出力した後、次のLEDで正常動作状態を検知してキャパシタC2が短絡されアンドゲート43の入力がLレベルとなっても、異常信号の出力を継続することができる。   Preferably, a latch circuit (not shown) is added to the output side of the output voltage monitoring circuit 20 so that after the output voltage monitoring circuit 20 outputs an abnormal signal, a normal operation state is detected by the next LED and the capacitor is detected. Even if C2 is short-circuited and the input of the AND gate 43 becomes L level, the output of the abnormal signal can be continued.

上記出力電圧監視回路20の電源は、LEDを駆動する直流電源の補助電源を共用してもよいし、入力電源から直接供給してもよい。また、上記のラッチ回路を付加した場合は、入力電源から直接供給する。   The power supply of the output voltage monitoring circuit 20 may share an auxiliary power source of a DC power source that drives the LED, or may be directly supplied from an input power source. Further, when the above latch circuit is added, it is directly supplied from the input power supply.

以上のとおり実施形態について説明したが、本発明はこれに限定されない。例えば、上記実施形態では、LED一個に対して一つのスイッチ素子設けているが、任意の複数個のLEDに対して一つのスイッチ素子を設ける構成も可能である。この場合、基準電圧は、一個のLEDの場合と同様に設定しても良いし、LEDの個数に対し従来技術の問題点で説明した検出電圧を設定する方法で設定しても良い。   Although the embodiment has been described as described above, the present invention is not limited to this. For example, in the above-described embodiment, one switch element is provided for one LED, but a configuration in which one switch element is provided for an arbitrary plurality of LEDs is also possible. In this case, the reference voltage may be set similarly to the case of one LED, or may be set by the method of setting the detection voltage described in the problem of the prior art with respect to the number of LEDs.

本発明の実施形態の回路構成を示す図。The figure which shows the circuit structure of embodiment of this invention. 灯具に含まれるスイッチ制御回路の構成を示す図。The figure which shows the structure of the switch control circuit contained in a lamp. スイッチ制御回路の各回路部から出力される信号波形を示すタイミングチャート。The timing chart which shows the signal waveform output from each circuit part of a switch control circuit. スイッチ素子の構成例を示す図。The figure which shows the structural example of a switch element. 直流電源の例を示す図。The figure which shows the example of DC power supply. 図1の点灯回路に含まれる出力電圧監視回路の構成を示す図。The figure which shows the structure of the output voltage monitoring circuit contained in the lighting circuit of FIG. 直流の定電流電源を用いた従来例のLED点灯回路の構成を示す図。The figure which shows the structure of the LED lighting circuit of the prior art example using a direct-current constant current power supply. 従来のLED点灯回路の別構成を示す図。The figure which shows another structure of the conventional LED lighting circuit.

符号の説明Explanation of symbols

1…灯具、2,3,4…点灯回路、10…直流電源、20…出力電圧監視回路、21…スイッチ回路、22…スイッチ制御回路。
DESCRIPTION OF SYMBOLS 1 ... Lamp, 2, 3, 4 ... Lighting circuit, 10 ... DC power supply, 20 ... Output voltage monitoring circuit, 21 ... Switch circuit, 22 ... Switch control circuit

Claims (3)

直流電源の出力電圧で駆動される複数個のLEDを直列に接続してなる負荷の故障を検知するための故障検知装置にであって、
前記複数のLEDの各々又は任意の個数に対してスイッチ素子を並列に接続してなるスイッチ回路と、
所定の周期(T1)に従って順次巡回しながら該周期(T1)内の一定時間(t1)、前記スイッチ素子をオンすることで、該スイッチ素子と並列接続したLEDを短絡するスイッチ制御回路と、
前記直流電源の出力端に接続され、出力電圧の変化を監視し、前記周期(T1)内に出力電圧の変化がない場合に異常信号を出力する出力電圧監視回路と
を備えたことを特徴とする故障検知装置。
A failure detection device for detecting a load failure by connecting a plurality of LEDs driven by an output voltage of a DC power supply in series,
A switch circuit in which a switch element is connected in parallel to each of the plurality of LEDs or an arbitrary number;
A switch control circuit that short-circuits the LEDs connected in parallel with the switch element by turning on the switch element for a certain time (t1) within the period (T1) while sequentially circulating according to a predetermined period (T1);
An output voltage monitoring circuit connected to the output terminal of the DC power supply, monitoring an output voltage change, and outputting an abnormal signal when there is no change in the output voltage within the period (T1). Failure detection device.
請求項1記載のLED故障検知装置において、前記スイッチ制御回路は、基準周波数のクロック信号を発生するクロック回路と、そのクロック信号が入力され、前記LEDの個数に対応した信号を順次出力するリングカウンタ回路と、該リングカウンタ回路から順次出力される複数の信号が入力される微分回路と、各微分回路の出力を各スイッチ素子に加える出力回路とで構成されることを特徴とする故障検知装置。   2. The LED failure detection apparatus according to claim 1, wherein the switch control circuit includes a clock circuit that generates a clock signal having a reference frequency, and a ring counter that receives the clock signal and sequentially outputs signals corresponding to the number of LEDs. A failure detection apparatus comprising: a circuit; a differentiation circuit to which a plurality of signals sequentially output from the ring counter circuit are input; and an output circuit for adding an output of each differentiation circuit to each switch element. 請求項1又は2記載の故障検知装置において、
前記スイッチ制御回路の電源を、前記負荷の両端、又は任意のLED接続点と零電位端の間からとることを特徴とするLED故障検知装置。
In the failure detection device according to claim 1 or 2,
An LED failure detection apparatus characterized in that the power source of the switch control circuit is taken from both ends of the load or between an arbitrary LED connection point and a zero potential end.
JP2007089279A 2007-03-29 2007-03-29 Failure detecting device of light emitting diode circuit Withdrawn JP2008251276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007089279A JP2008251276A (en) 2007-03-29 2007-03-29 Failure detecting device of light emitting diode circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007089279A JP2008251276A (en) 2007-03-29 2007-03-29 Failure detecting device of light emitting diode circuit

Publications (1)

Publication Number Publication Date
JP2008251276A true JP2008251276A (en) 2008-10-16

Family

ID=39975995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007089279A Withdrawn JP2008251276A (en) 2007-03-29 2007-03-29 Failure detecting device of light emitting diode circuit

Country Status (1)

Country Link
JP (1) JP2008251276A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118245A (en) * 2008-11-12 2010-05-27 Toshiba Lighting & Technology Corp Lighting device and lighting fixture
JP2010118270A (en) * 2008-11-13 2010-05-27 Toshiba Lighting & Technology Corp Led illumination lamp lighting device and lighting fixture
JP2011090968A (en) * 2009-10-23 2011-05-06 Tooen:Kk Led lighting device
JP2011146329A (en) * 2010-01-18 2011-07-28 Mitsubishi Electric Corp Lighting device and illuminating device
JP2011162008A (en) * 2010-02-08 2011-08-25 Mitsubishi Electric Corp Led lighting device for head lamp
JP2011204628A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Failure discrimination device and illumination apparatus using the same
JP2012049178A (en) * 2010-08-24 2012-03-08 Casio Comput Co Ltd Semiconductor light source device, method of controlling semiconductor light source and projection device
JP2012053387A (en) * 2010-09-03 2012-03-15 Mitsumi Electric Co Ltd Backlight device, display device equipped with the backlight device, and illuminating device
JP2012509556A (en) * 2008-11-18 2012-04-19 ゼネラル・エレクトリック・カンパニイ LED driver with single inverter circuit with isolated multi-channel output
JP2013235848A (en) * 2013-07-23 2013-11-21 Mitsubishi Electric Corp Lighting device and illumination device
CN103427395A (en) * 2012-05-21 2013-12-04 台达电子工业股份有限公司 Open circuit protection circuit, open circuit protection method and lighting device
KR101360326B1 (en) 2012-01-20 2014-02-12 한국과학기술원 Ditect Connection Type LED Apparatus for Even Life by Switching Linearly and LED Lighting Apparatus Using The Same
JP2014130834A (en) * 2014-02-25 2014-07-10 Mitsubishi Electric Corp Lighting device and illumination device
JP2014170880A (en) * 2013-03-05 2014-09-18 Stanley Electric Co Ltd Light-emitting element switch-on device and light source device
JP2015110357A (en) * 2013-12-06 2015-06-18 株式会社小糸製作所 Vehicular lighting fixture
JP2015164141A (en) * 2015-05-15 2015-09-10 三菱電機株式会社 Lighting device and illumination device
WO2016152272A1 (en) * 2015-03-20 2016-09-29 ローム株式会社 Switch driving device, light-emitting device, and vehicle
US9713224B2 (en) 2014-01-28 2017-07-18 Koninklijke Philips N.V. Electroluminescent device with short detection circuit
CN108983453A (en) * 2018-07-26 2018-12-11 武汉天马微电子有限公司 Backlight module detection device, detection jig and display module
WO2019123860A1 (en) * 2017-12-22 2019-06-27 株式会社デンソー Vehicle front lighting device and cable break detection method
WO2019130821A1 (en) * 2017-12-27 2019-07-04 株式会社デンソー Vehicle headlamp device and disconnection detection method
US11502608B2 (en) 2018-01-29 2022-11-15 Rohm Co., Ltd. Light-emitting element driving control device and light-emitting element driving circuit device

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118245A (en) * 2008-11-12 2010-05-27 Toshiba Lighting & Technology Corp Lighting device and lighting fixture
JP2010118270A (en) * 2008-11-13 2010-05-27 Toshiba Lighting & Technology Corp Led illumination lamp lighting device and lighting fixture
JP2012509556A (en) * 2008-11-18 2012-04-19 ゼネラル・エレクトリック・カンパニイ LED driver with single inverter circuit with isolated multi-channel output
JP2011090968A (en) * 2009-10-23 2011-05-06 Tooen:Kk Led lighting device
JP2011146329A (en) * 2010-01-18 2011-07-28 Mitsubishi Electric Corp Lighting device and illuminating device
JP2011162008A (en) * 2010-02-08 2011-08-25 Mitsubishi Electric Corp Led lighting device for head lamp
JP2011204628A (en) * 2010-03-26 2011-10-13 Panasonic Electric Works Co Ltd Failure discrimination device and illumination apparatus using the same
JP2012049178A (en) * 2010-08-24 2012-03-08 Casio Comput Co Ltd Semiconductor light source device, method of controlling semiconductor light source and projection device
CN102548119A (en) * 2010-08-24 2012-07-04 卡西欧计算机株式会社 Semiconductor light source device, semiconductor light source control method, and projection apparatus
JP2012053387A (en) * 2010-09-03 2012-03-15 Mitsumi Electric Co Ltd Backlight device, display device equipped with the backlight device, and illuminating device
KR101360326B1 (en) 2012-01-20 2014-02-12 한국과학기술원 Ditect Connection Type LED Apparatus for Even Life by Switching Linearly and LED Lighting Apparatus Using The Same
TWI457039B (en) * 2012-05-21 2014-10-11 Delta Electronics Inc Open-protection circuit, method of opening protection and illuminating apparatus
CN103427395A (en) * 2012-05-21 2013-12-04 台达电子工业股份有限公司 Open circuit protection circuit, open circuit protection method and lighting device
JP2013243103A (en) * 2012-05-21 2013-12-05 Taida Electronic Ind Co Ltd Open circuit protecting circuit, open circuit protecting method, and illuminating apparatus
JP2014170880A (en) * 2013-03-05 2014-09-18 Stanley Electric Co Ltd Light-emitting element switch-on device and light source device
JP2013235848A (en) * 2013-07-23 2013-11-21 Mitsubishi Electric Corp Lighting device and illumination device
JP2015110357A (en) * 2013-12-06 2015-06-18 株式会社小糸製作所 Vehicular lighting fixture
US9713224B2 (en) 2014-01-28 2017-07-18 Koninklijke Philips N.V. Electroluminescent device with short detection circuit
RU2668946C2 (en) * 2014-01-28 2018-10-05 Конинклейке Филипс Н.В. Electroluminescent device with short detection circuit
JP2014130834A (en) * 2014-02-25 2014-07-10 Mitsubishi Electric Corp Lighting device and illumination device
US10728980B2 (en) 2015-03-20 2020-07-28 Rohm Co., Ltd. Switch driving device, light-emitting device, and vehicle
WO2016152272A1 (en) * 2015-03-20 2016-09-29 ローム株式会社 Switch driving device, light-emitting device, and vehicle
JP2016175582A (en) * 2015-03-20 2016-10-06 ローム株式会社 Switch drive device, luminescent device, and vehicle
CN107406033A (en) * 2015-03-20 2017-11-28 罗姆股份有限公司 Switch drive equipment, luminaire and vehicle
CN107406033B (en) * 2015-03-20 2021-02-23 罗姆股份有限公司 Switch drive device, light emitting device, and vehicle
KR101932873B1 (en) * 2015-03-20 2018-12-27 로무 가부시키가이샤 Switch driving device, light emitting device, vehicle
JP2015164141A (en) * 2015-05-15 2015-09-10 三菱電機株式会社 Lighting device and illumination device
JP2019114424A (en) * 2017-12-22 2019-07-11 株式会社デンソー Front lighting system for vehicle, breaking of wire detection method
WO2019123860A1 (en) * 2017-12-22 2019-06-27 株式会社デンソー Vehicle front lighting device and cable break detection method
JP7024388B2 (en) 2017-12-22 2022-02-24 株式会社デンソー Front lighting device for vehicles, disconnection detection method
WO2019130821A1 (en) * 2017-12-27 2019-07-04 株式会社デンソー Vehicle headlamp device and disconnection detection method
JP2019117752A (en) * 2017-12-27 2019-07-18 株式会社デンソー Vehicle front lighting device and disconnection detection method
US11502608B2 (en) 2018-01-29 2022-11-15 Rohm Co., Ltd. Light-emitting element driving control device and light-emitting element driving circuit device
US11764683B2 (en) 2018-01-29 2023-09-19 Rohm Co., Ltd. Light-emitting element driving control device
US12047004B2 (en) 2018-01-29 2024-07-23 Rohm Co., Ltd. Light-emitting element driving control device and light-emitting element driving circuit device
CN108983453A (en) * 2018-07-26 2018-12-11 武汉天马微电子有限公司 Backlight module detection device, detection jig and display module

Similar Documents

Publication Publication Date Title
JP2008251276A (en) Failure detecting device of light emitting diode circuit
JP5760171B2 (en) LED lighting device and lighting apparatus using the same
US9125268B2 (en) Power supply for LED illumination
JP2006210219A (en) Lighting control circuit of vehicular lighting fixture
US9408276B2 (en) Short circuit detection circuit and control method thereof
JP2016162598A (en) Lighting device, headlight device and vehicle
JP2009252344A (en) White led driving circuit for lighting, and lighting fixture and electronic device provided with the same
JP6153024B2 (en) LIGHT EMITTING ELEMENT LIGHTING DEVICE, LIGHT EMITTING MODULE, LIGHTING DEVICE, AND LIGHT EMITTING ELEMENT LIGHTING METHOD
JP2008258428A (en) Driving circuit of white led for illumination, illuminator with the same, and electronic device
JP2007157423A (en) Power supply device
US8896319B2 (en) Light emitting device control circuit and short detection circuit thereof
JP5109946B2 (en) LED drive device
US20120194076A1 (en) Lighting control device
JP5576891B2 (en) LED lighting and disconnection detection control device
EP3030051B1 (en) Signal converter circuit for dimming of a light source
KR102006966B1 (en) Apparatus and method for driving light emitting diode
JPWO2020045271A1 (en) Lighting circuit and vehicle lighting equipment
JP5666173B2 (en) LIGHT EMITTING DIODE DRIVING CIRCUIT, DRIVE METHOD, LIGHT EMITTING DEVICE USING THE SAME, ELECTRONIC DEVICE, AND LIGHTING DEVICE
JP6135366B2 (en) Low current protection circuit
JP2011225043A (en) Failure sensing device of vehicular lighting fixture
JP2009284576A (en) Failure determination device
JP5645250B2 (en) LED lighting device and lighting apparatus using the same
JP6358526B2 (en) Lighting device and lighting apparatus using the same
JP2011181616A (en) Led drive circuit
CN111903193B (en) Lighting circuit and vehicle lamp

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601