JP2008249607A - X-ray crystal orientation measuring instrument and x-ray crystal orientation measuring method - Google Patents

X-ray crystal orientation measuring instrument and x-ray crystal orientation measuring method Download PDF

Info

Publication number
JP2008249607A
JP2008249607A JP2007093586A JP2007093586A JP2008249607A JP 2008249607 A JP2008249607 A JP 2008249607A JP 2007093586 A JP2007093586 A JP 2007093586A JP 2007093586 A JP2007093586 A JP 2007093586A JP 2008249607 A JP2008249607 A JP 2008249607A
Authority
JP
Japan
Prior art keywords
crystal
ray
measured
crystal orientation
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007093586A
Other languages
Japanese (ja)
Other versions
JP4823125B2 (en
Inventor
Tetsuo Kikuchi
哲夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP2007093586A priority Critical patent/JP4823125B2/en
Publication of JP2008249607A publication Critical patent/JP2008249607A/en
Application granted granted Critical
Publication of JP4823125B2 publication Critical patent/JP4823125B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray crystal orientation measuring instrument and method for performing high-speed map measurement on a specimen of sub-grain structure or of linage structure by materializing substantial shortening of time required for plane direction measurement. <P>SOLUTION: In this X-ray crystal orientation measuring instrument and method, X rays are applied to a measurement surface of a measured crystal S to detect diffraction spots acquired correspondingly to a lattice plane of the crystal through the application of the X rays, and the center position of the detected diffraction spots is measured to calculate a lattice-plane normal line of the crystal. The diffraction spots from application point on the measurement surface of the measured crystal are detected by means of a two-dimensional detector comprising a CCD (TDI-CCD) 34 operating in a TDI read-out mode. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、X線を用いて結晶の方位を測定するX線結晶方位測定装置及びX線結晶方位測定方法に関する。   The present invention relates to an X-ray crystal orientation measuring apparatus and an X-ray crystal orientation measuring method for measuring crystal orientation using X-rays.

結晶の方位測定は、単結晶材料に適用される。そして、かかる結晶方位の測定は、結晶の外形に対して結晶軸がどのような方向に形成されているかを調べるが、その際、一般に、全3軸方位決定と、特定の格子面の法線方向を調べる面方位測定が知られている。   Crystal orientation measurements are applied to single crystal materials. The measurement of the crystal orientation examines the direction in which the crystal axis is formed with respect to the outer shape of the crystal. In this case, generally, all three axis orientations are determined and the normal of a specific lattice plane is determined. Surface orientation measurement for examining the direction is known.

本発明は、特に、上述した面方位測定に関するが、面方位測定は、晶癖(habit)やへき開(cleave)によって全3軸方位がその外形から判断することが出来、結晶を特定の面で正確に切断したい場合において適用される。この代表例が所謂「カット面検査法」と呼ばれる方法である。   The present invention particularly relates to the above-described plane orientation measurement. In the plane orientation measurement, all three-axis orientations can be determined from the outer shape by habit or cleave, and the crystal can be measured on a specific plane. It is applied when you want to cut accurately. This representative example is a so-called “cut surface inspection method”.

なお、上述した単結晶は、その結晶方位により機械的、光学的、電磁気的な性質が異なっている(即ち、異方性がある)。そのことから、かかる結晶の特性を積極的に利用するためには、予め、結晶方位を調べ、所望の方向に切り出して(所謂、定方位切断)利用され、そのためにも、本発明の関る結晶方位測定が必要となる。   The single crystal described above has different mechanical, optical, and electromagnetic properties (that is, has anisotropy) depending on the crystal orientation. Therefore, in order to positively use the characteristics of such a crystal, the crystal orientation is examined in advance, and the crystal is cut out in a desired direction (so-called constant orientation cutting) and used for that purpose. Crystal orientation measurement is required.

単結晶は、原子または分子が規則正しく周期的に配列したものである。従って、結晶のどの場所をとって調べても、結晶方位は同じである。このような結晶は、シングルドメインであるといわれる。   A single crystal is a regularly and periodically arranged atom or molecule. Therefore, the crystal orientation is the same no matter where the crystal is taken. Such crystals are said to be single domain.

ところで、以下に示す特許文献1によれば、特性X線を利用してブラッグ反射が起きるX線の入射角を測定し、この操作を結晶板の面内で90度毎に4方向で行ない、あるいは、180度毎に2方向で行ない、もって、既知のブラッグ角から求める面方位を測定する方法や装置が既に知られている。なお、かかる測定方法を採用した面方位測定装置も既に製品化されており、例えば、FSASあるいはSAMの名称により商品化されている。   By the way, according to Patent Document 1 shown below, the incident angle of X-rays where Bragg reflection occurs is measured using characteristic X-rays, and this operation is performed in four directions every 90 degrees within the plane of the crystal plate. Alternatively, a method and an apparatus for measuring a plane orientation obtained from a known Bragg angle by performing in two directions every 180 degrees are already known. In addition, the plane orientation measuring apparatus which employ | adopted this measuring method is already commercialized, for example, is commercialized by the name of FSAS or SAM.

また、やはり特性X線を利用してブラッグ反射が起きるX線の入射角を測定し、それと共に、回折X線が検出器のどの位置に入射したかを併せて調べることにより、結晶方位を測定する方法も、下記の特許文献2により、既に知られている。   Also, the crystal orientation is measured by measuring the incident angle of X-rays where Bragg reflection occurs, using characteristic X-rays, and also investigating at which position of the detector the diffracted X-rays are incident. This method is already known from Patent Document 2 below.

特公平4−59581号公報(特開昭57−136151号公報);第3図Japanese Examined Patent Publication No. 4-59581 (Japanese Patent Laid-Open No. 57-136151); FIG. 特公平3−58058号公報(特開昭57−136150号公報);第3図Japanese Patent Publication No. 3-58058 (Japanese Patent Laid-Open No. 57-136150); FIG.

しかしながら、上述した従来技術の方法(上記特許文献1の方法)では、X線の入射角(ω角)を一定の範囲でスキャンするという動作を、試料面内の回転で90°毎に4方向(回)で、又は、180°毎に2方向(回)で行い、回折線の上下位置を判定する必要があることから、計測のための時間がかかってしまうという問題点があった。また、上記の特許文献2により知られた方法でも、ωスキャンの後、このω角をピーク位置に戻して固定したまま、φスキャンにより検出器のどの位置にX線が入射したかを調べる必要があるため、やはり、計測に時間がかかってしまうという問題点があった。   However, in the above-described conventional method (the method disclosed in Patent Document 1), the operation of scanning the incident angle (ω angle) of X-rays within a certain range is performed in four directions every 90 ° by rotation within the sample surface. (Times) or in two directions (times) every 180 °, and it is necessary to determine the upper and lower positions of the diffraction lines, and there is a problem that it takes time for measurement. Further, in the method known from Patent Document 2 described above, after the ω scan, it is necessary to investigate the position of the X-ray incident on the detector by the φ scan while fixing the ω angle back to the peak position. After all, there was a problem that it took time to measure.

また、上記特許文献1の方法では、測定対象としてシングルドメイン<原子又は分子が規則正しく周期的に配列されており、従って、結晶のどの場所をとって調べても、その結晶方向が同じである結晶>を仮定しており、それ以外のサブグレイン構造<上記シングルドメインの結晶を得ることが困難で、多くの結晶粒から構成された結晶、例えば、蛍石結晶(CaF,Fluorite)、マグネシア(MgO)結晶、フェライト結晶等。>やリネージ(lineage)構造<一種の欠陥構造であり、そのため、場所により、結晶の方位が連続的に変化していくふるまいを見せることもある。例えば、酸化物結晶のサファイヤ、LN(ニオブ酸リチウム:LiNbO)、LT(タンタル酸リチウム:LiTaO)等にこの構造が見られる。>を持った結晶に適用した場合、4回又は2回のω角スキャンでX線が結晶の同じ場所に照射されないことがあり、そのため間違った結果を与えてしまうという問題点もあった。 Further, in the method of Patent Document 1, a single domain <atom or molecule is regularly and periodically arranged as a measurement target. Therefore, a crystal whose crystal direction is the same no matter where the crystal is taken. > Other than the subgrain structure <it is difficult to obtain the above single domain crystal, and crystals composed of many crystal grains such as fluorite crystal (CaF 2 , Fluorite), magnesia ( MgO) crystal, ferrite crystal and the like. > Or lineage structure <a kind of defect structure, and therefore, the crystal orientation may change continuously depending on the location. For example, this structure can be seen in oxide crystal sapphire, LN (lithium niobate: LiNbO 3 ), LT (lithium tantalate: LiTaO 3 ), and the like. When applied to a crystal having>, X-rays may not be irradiated to the same place of the crystal by four or two ω angle scans, and therefore, there is a problem that an incorrect result is given.

そして、特に、シングルドメイン以外のサブグレイン構造やリネージ構造を持った結晶で方位分布を測定する場合には、測定表面上の複数の測定点において方位を測定する、所謂、マップ測定が必要となる。そのため、上記特許文献1や特許文献2により知られる方法では、上記した方法からも明らかなように、一回の測定(1点の測定)自体に相当の時間を必要とするため、特に、マップ測定により多数の測定点で方位を測定しようとした場合には、膨大な時間がかかってしまうという問題点があった。   In particular, when measuring the orientation distribution with a crystal having a subgrain structure or lineage structure other than a single domain, so-called map measurement is required in which the orientation is measured at a plurality of measurement points on the measurement surface. . For this reason, the methods known from Patent Document 1 and Patent Document 2 require a considerable amount of time for one measurement (measurement of one point) itself, as is apparent from the above-described methods. When attempting to measure the orientation at a large number of measurement points by measurement, there is a problem that it takes an enormous amount of time.

そこで、本発明では、上述した従来技術における問題点を解消し、すなわち、サブグレイン構造やリネージ構造を持った試料に対し、高速のマップ測定を可能とし、面方位測定の大幅な時間短縮が実現するX線結晶方位測定装置及びその方法を提供することを目的とする。   Therefore, in the present invention, the above-mentioned problems in the prior art are solved, that is, high-speed map measurement is possible for a sample having a subgrain structure or a lineage structure, and the time for surface orientation measurement is greatly reduced. An object of the present invention is to provide an X-ray crystal orientation measuring apparatus and method thereof.

かかる上記の目的を達成するため、本発明によれば、まず、被測定結晶の測定面にX線を照射し、当該X線の照射により結晶の格子面に対応して得られる回折スポットを二次元検出器で検出し、当該検出した回折スポットの中心位置を測定して結晶の格子面法線を算出するX線結晶方位測定方法において、前記被測定結晶の測定面の照射点に対して所定の回折条件を満足する入射角度になるように照射すると共に、当該被測定結晶の測定面の照射点からの回折スポットを、TDI読み出しモードで動作するCCDにより構成した二次元検出器で検出するX線結晶方位測定方法が提供される。   In order to achieve the above object, according to the present invention, first, X-rays are irradiated onto the measurement surface of the crystal to be measured, and two diffraction spots obtained corresponding to the lattice plane of the crystal by the X-ray irradiation are obtained. In an X-ray crystal orientation measuring method for detecting a dimension detector and measuring a center position of the detected diffraction spot to calculate a lattice normal of the crystal, a predetermined value is applied to an irradiation point on the measurement surface of the crystal to be measured. X is detected with a two-dimensional detector composed of a CCD operating in the TDI readout mode. A method for measuring crystal orientation is provided.

また、本発明によれば、やはり上記の目的を達成するため、被測定結晶の測定面における結晶方位をX線を用いて測定するための装置であって:被測定結晶の測定面に照射する特性X線を発生する手段と;前記特性X線発生手段からの特性X線を前記被測定結晶の測定面に対して所定の回折条件を満足する入射角度になるように照射する手段と;上記X線照射手段から被測定結晶の測定面上に照射された前記所定の回折条件を満足する入射角度になるように照射された前記特性X線による回折像を検出する手段と;上記検出手段により検出された回折像より、前記被測定結晶の測定面における結晶方位を算出する手段とを備えたX線結晶方位測定装置であって、前記回折像検出手段を、TDI読み出しモードで動作するCCDにより構成したX線結晶方位測定装置が提供される。   According to the present invention, there is also provided an apparatus for measuring the crystal orientation on the measurement surface of the crystal to be measured using X-rays in order to achieve the above object: irradiating the measurement surface of the crystal to be measured Means for generating characteristic X-rays; means for irradiating the characteristic X-rays from the characteristic X-ray generation means so as to have an incident angle satisfying a predetermined diffraction condition with respect to the measurement surface of the crystal to be measured; Means for detecting a diffraction image of the characteristic X-rays which are irradiated from the X-ray irradiation means onto the measurement surface of the crystal to be measured so that the incident angle satisfies the predetermined diffraction condition; and by the detection means An X-ray crystal orientation measuring device comprising means for calculating a crystal orientation on a measurement surface of the crystal to be measured from a detected diffraction image, wherein the diffraction image detection means is operated by a CCD operating in a TDI readout mode. Configured Ray crystal orientation measuring device is provided.

以上からも明らかなように、本発明によれば、X線結晶方位測定装置において、TDI読み出しモードで動作するCCDを利用することにより、面方位測定の大幅な時間短縮が実現し、もって、サブグレイン構造やリネージ構造を持った試料に対し、高速のマップ測定が可能となった。   As is clear from the above, according to the present invention, in the X-ray crystal orientation measuring apparatus, by using the CCD operating in the TDI readout mode, the time for the surface orientation measurement can be significantly reduced, and the sub-direction can be reduced. High-speed map measurement is possible for samples with grain structure and lineage structure.

以下、本発明の実施の形態について、添付の図面を参照しながら詳細に説明する。なお、本発明では、特性X線による回折を利用する、いわゆる「カット面検査法」を基本としている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The present invention is based on a so-called “cut surface inspection method” that utilizes diffraction by characteristic X-rays.

まず、添付の図1に、TDI-CCDを用いた方位測定装置の構成を示す。X線源であるX線管10の点状のX線源より発生したX線を、φ0.2〜0.5mm程度のピンホールコリメータ20で細く絞って試料片に照射する。X線源10としては、Cuターゲットなどが用いられる。また、図示はしていないが、Kβカットフィルタを配置して擬似的にKα線に単色しておく。結晶である試料Sは、X線の照射点を中心に紙面に垂直な回転軸の周りに回転でき、X線の入射角(ω)を変えることができる(ω回転)。回折角(2θ)の方向にはX線検出器30が固定され、回折X線を待ち受ける。ここまでは、従来法と同じであるが、上記の構成において、X線検出器として、TDI-CCDをベースにした2次元検出器を採用したことが新しい。即ち、上記のX線検出器として、TDI読み出しモードで動作するCCDをベースにした2次元検出器を採用したことである。このTDI- CCD検出器によれば、後にも説明するが、帯状の画像が得られる。その中に記録された回折スポットの位置より格子面法線方向を算出する(面方位が決定される)。   First, FIG. 1 attached shows a configuration of an orientation measuring apparatus using TDI-CCD. X-rays generated from a point-shaped X-ray source of the X-ray tube 10 as an X-ray source are finely focused by a pinhole collimator 20 having a diameter of about 0.2 to 0.5 mm and irradiated to a sample piece. As the X-ray source 10, a Cu target or the like is used. Although not shown in the figure, a Kβ cut filter is arranged to pseudo-color the Kα line. The sample S, which is a crystal, can be rotated around the rotation axis perpendicular to the paper surface around the X-ray irradiation point, and the X-ray incident angle (ω) can be changed (ω rotation). An X-ray detector 30 is fixed in the direction of the diffraction angle (2θ) and waits for diffracted X-rays. Up to this point, the method is the same as the conventional method, but in the above configuration, a two-dimensional detector based on TDI-CCD is adopted as the X-ray detector. That is, a two-dimensional detector based on a CCD operating in the TDI readout mode is employed as the X-ray detector. According to this TDI-CCD detector, a band-like image can be obtained as will be described later. The normal direction of the lattice plane is calculated from the position of the diffraction spot recorded therein (the plane orientation is determined).

上記図1の構成において、TDI読み出しの方向は、赤道面内矢印の方向(又は、その逆)に設定する。赤道面とは、入射X線を含みω回転軸に垂直な平面であり、図の紙面である。そして、ω回転を一定の範囲で一定の速度で回転すると、回折条件を満足した瞬間回折線が生じ、TDI-CCDに入射する。ω回転の開始と終了に同期させてTDI読み出しを実行すると、添付の図2のような、帯状の画像の中に回折スポットが記録される。そして、本発明は、この回折スポットの位置から面方位を求めるものである。   In the configuration of FIG. 1, the TDI readout direction is set in the direction of the equator in-plane arrow (or vice versa). The equatorial plane is a plane that includes incident X-rays and is perpendicular to the ω rotation axis, and is the plane of the drawing. When the ω rotation is rotated at a constant speed within a certain range, an instantaneous diffraction line satisfying the diffraction condition is generated and incident on the TDI-CCD. When TDI readout is executed in synchronization with the start and end of ω rotation, a diffraction spot is recorded in a band-like image as shown in FIG. In the present invention, the plane orientation is obtained from the position of the diffraction spot.

なお、上記図に示す画像の長手方向は、ω角の情報を持っているのは図から明らかであろう。画像の長手方向の画素数=ω角のスキャン幅であるから、1画素あたりのω角が求まる。ω角の基準を決めるには、格子面と結晶表面が平行な標準試料による校正が簡便である。このような標準試料では、ω角がブラッグ角θのときに赤道面に回折スポットを生じるからである。標準試料を使用しない校正の仕方も可能である。即ち、検出器の中心を機械的に正確に配置する、2θ角を正確に設定する、読み出し開始から画像中心まで何ライン分の遅延があるか予め調べておくことで、校正が可能である。   It will be apparent from the figure that the longitudinal direction of the image shown in the figure has information on the ω angle. Since the number of pixels in the longitudinal direction of the image = the scan width of the ω angle, the ω angle per pixel can be obtained. To determine the standard of the ω angle, calibration with a standard sample in which the lattice plane and the crystal surface are parallel is simple. This is because such a standard sample produces a diffraction spot on the equator plane when the ω angle is the Bragg angle θ. A calibration method without using a standard sample is also possible. In other words, the center of the detector is mechanically accurately arranged, the 2θ angle is accurately set, and the number of lines corresponding to the delay from the start of reading to the center of the image is examined in advance, thereby enabling calibration.

また、得られる回折スポットの位置は、格子面のあおり角方向のずれを反映し、赤道面(線)の上下方向にもずれて記録される。本発明による面方位測定は、この回折スポットの基準位置からのずれ量により、格子面法線を求める方法である。   Further, the position of the obtained diffraction spot reflects the shift in the tilt angle direction of the grating surface, and is also recorded shifted in the vertical direction of the equator plane (line). The plane orientation measurement according to the present invention is a method for obtaining the lattice plane normal by the deviation amount of the diffraction spot from the reference position.

ここで、CCDのTDI読み出しについての説明を行う。CCDの読み取りの仕方に、TDI(Time Delay Integration)と呼ばれる読み出しモードがある。この方式は、被写体とカメラの相対速度が比較的速いマシーンビジョンの分野で採用されている方式である。例えば、半導体ウエーハの検査やベルトコンベイヤー上の自動組立てラインの品質検査などに応用されている。   Here, the TDI reading of the CCD will be described. There is a readout mode called TDI (Time Delay Integration) as a way to read CCDs. This method is used in the field of machine vision in which the relative speed between the subject and the camera is relatively fast. For example, it is applied to inspection of semiconductor wafers and quality inspection of automatic assembly lines on belt conveyors.

なお、上記のTDI読み出しに使われるCCDの種類は、主にFFT(Full Frame Transfer)型のCCDであり、FFT-CCDと呼ばれている。通常のFFT読み出しでは、先ず、一定時間露出し、被写体像をCCD上の画素に電荷像として蓄積する。次に、露光を遮断し、その間に読み出しを行う。読み取りは、全画素を一画面分一気に読み出す方式である。得られる画像の大きさも画素サイズである。例えば、512×512pixelsである。通常のFFT読み出しでは、被写体の移動速度に比べて露出時間が長い場合、被写体像は、移動方向に複数の画素に分散するので、画像のボケを生じる。これに対し、TDI読み出しはこの不都合はない。   Note that the type of CCD used for the above-mentioned TDI reading is mainly an FFT (Full Frame Transfer) type CCD, which is called FFT-CCD. In normal FFT readout, first, a subject image is exposed for a certain period of time, and a subject image is accumulated as a charge image in a pixel on the CCD. Next, the exposure is interrupted, and readout is performed during that time. Reading is a method of reading all pixels at once for one screen. The size of the obtained image is also the pixel size. For example, it is 512 × 512 pixels. In normal FFT readout, if the exposure time is longer than the moving speed of the subject, the subject image is dispersed in a plurality of pixels in the moving direction, resulting in image blurring. On the other hand, TDI reading does not have this inconvenience.

また、TDI読み出しは、CCD上で画像の蓄積(露光=電荷蓄積)と、一番底の一行分の画素の読み取りとを、連続的に行う方式である。各一行の読み取りデータをメモリに収納するとともに、残ったCCDの画素中の信号は、すべて一行分だけシフトダウンさせる。この動作を続けて繰り返すと、蓄積された画像(電荷)は読み出しの度に移動(電荷転送)を繰り返すことになる。電荷転送速度とベルトコンベイヤーに乗せられ移動する被写体の速度を一致させて行えば、画像のボケは生じないし、同じ画像が加算されるので信号強度が増強される。得られる画像は、画素サイズを越えて、一定幅で、例えば512pixels幅で、TDI動作を行っている時間分だけ帯状に長く取れる。いわば、「流し撮り」ができるのである。   In addition, TDI readout is a method in which image accumulation (exposure = charge accumulation) on the CCD and pixel reading for the bottom row are continuously performed. Each row of read data is stored in the memory, and all the signals in the remaining CCD pixels are shifted down by one row. If this operation is repeated continuously, the stored image (charge) repeats moving (charge transfer) every time it is read out. If the charge transfer speed and the speed of the moving subject placed on the belt conveyor are matched, image blurring does not occur and the same image is added, so that the signal intensity is enhanced. The obtained image has a certain width, for example, 512 pixels width, exceeding the pixel size, and can be taken in a long band shape for the duration of the TDI operation. In other words, you can do “panning”.

添付の図3は、浜松ホトニクスの技術資料に出ているTDIの簡単な動作原理図である。この図からも分かるように、画素のシフトダウンとステージの移動とをあわせることにより、像のボケもなく画質が向上する。   Attached Fig. 3 is a simple operation principle diagram of TDI which is in the technical data of Hamamatsu Photonics. As can be seen from this figure, by combining the pixel downshift and the stage movement, the image quality is improved without blurring of the image.

なお、本発明によるTDI読み出しCCDの使い方は、TDI-CCDの本来の使い方ではない。即ち、ωスキャンと同期させてTDI読み出し動作をする。すでに上記図2でも説明したように、帯状に伸びる画像の長手方向に角度情報(ω角)を持たせたのが特徴である。   Note that the use of the TDI read CCD according to the present invention is not the original use of the TDI-CCD. That is, the TDI reading operation is performed in synchronization with the ω scan. As already described with reference to FIG. 2 above, the feature is that angle information (ω angle) is provided in the longitudinal direction of the image extending in a strip shape.

上述したX線検出器の具体的な構造の一例を、添付の図4に示す。本発明の目的は、上述したように、測定時間の短縮である。そこで、当該X線検出器としては、まず、高感度であることが期待される。X線は蛍光板31で可視光像に変換され、イメージインテンシファイヤ(I.I)32で数万倍に増倍され、リレーレンズ33でカップリングされたTDI-CCD34で撮像する。なお、レンズ33を用いず、代わりに、テーパーファイバーでカップリングする方法もある。イメージング可能な高さ方向の幅は25〜100mm程度のものが製作できる。CPU40との接続は、画像取り込みボード50を介して行なう。また、図中の符号60は、上記イメージインテンシファイヤ(I.I)32の電源を示す。   An example of a specific structure of the X-ray detector described above is shown in FIG. The object of the present invention is to shorten the measurement time as described above. Therefore, the X-ray detector is first expected to have high sensitivity. The X-ray is converted into a visible light image by the fluorescent screen 31, multiplied by several tens of thousands of times by an image intensifier (I.I) 32, and imaged by a TDI-CCD 34 coupled by a relay lens 33. There is also a method of coupling with a tapered fiber instead of using the lens 33. An image having a width in the height direction of about 25 to 100 mm can be manufactured. Connection to the CPU 40 is made via the image capturing board 50. Further, reference numeral 60 in the figure indicates a power source of the image intensifier (I.I) 32.

ここで、試料結晶によるX線回折条件についての詳細について述べる。添付の図5の上図は、X線検出面の配置と回折スポット位置を示す見取り図である。所定の格子面で回折条件が満たされ、赤道反射の2θ方向(Y軸)に垂直に配置されたX線検出面で回折スポットを捉えた状態を示している。回折線スポットは、格子面の傾きに応じ、必ず2θコーンに沿って出射し検出器面に回折スポットを生じる。ここで、2θコーンとはoを頂点とし、y軸を回転軸とした、半頂角が2θの円錐面のことである。出器面における回折スポットの位置は、2θコーンをX線検出面で切った切り口の曲線(円錐曲線または2次曲線)の上に必ずくる。   Here, the details of the X-ray diffraction conditions by the sample crystal will be described. The upper figure of the attached FIG. 5 is a sketch showing the arrangement of the X-ray detection surface and the diffraction spot position. The diffraction condition is satisfied by a predetermined grating surface, and a diffraction spot is captured by an X-ray detection surface arranged perpendicular to the 2θ direction (Y axis) of equator reflection. The diffraction line spot is always emitted along the 2θ cone according to the inclination of the grating surface, and a diffraction spot is generated on the detector surface. Here, the 2θ cone is a conical surface having a half apex angle of 2θ with o as the apex and the y axis as the rotation axis. The position of the diffraction spot on the exit surface always comes on the curve (conic curve or quadratic curve) obtained by cutting the 2θ cone with the X-ray detection surface.

そこで、この曲線の式を求めることにする。2θコーンの式は、図5の下図に示す(xyz)座標を用いて次の数1の式で与えられる。   Therefore, the equation of this curve is determined. The formula of 2θ cone is given by the following formula 1 using the (xyz) coordinates shown in the lower diagram of FIG.

Figure 2008249607
Figure 2008249607

また、2θコーンをX線検出面で切った切り口の曲線は、上記数1の式を平行移動により(pqr)座標に変換した後、座標の回転により(XYZ)座標に変換し、Y=0と置くことにより得られる。計算の結果を、以下の数2の式に示す。   In addition, the curve of the cut surface obtained by cutting the 2θ cone on the X-ray detection surface is converted to (pqr) coordinates by translation and then converted to (XYZ) coordinates by rotating the coordinates, and Y = 0 Is obtained by placing The calculation result is shown in the following equation (2).

Figure 2008249607
Figure 2008249607

なお、上記の数2の式を用いて計算した曲線の形状を、図6に実線Aで示す。回折角2θが30°、カメラ長Lが100mmの場合で、Z方向±30mmの範囲で計算しプロットした図である。回折スポットは必ずこの曲線上に乗ることになる。   Note that the shape of the curve calculated using Equation 2 above is shown by a solid line A in FIG. FIG. 6 is a graph calculated and plotted in a range of ± 30 mm in the Z direction when the diffraction angle 2θ is 30 ° and the camera length L is 100 mm. The diffraction spot always lies on this curve.

続いて、図6を用いて、回折スポットが生じたω角を決定する手順を説明する。帯状に記録された画像を処理することによりスポットの位置は、画素のアドレスで知ることができる。これに有効画素サイズを掛けることX方向及びZ方向の距離に変換できるであろう。また、標準試料による基準位置を参照することによりZsとX0が分かる。Zsを(2)式に代入することによりXsが計算される。X方向については、距離のほかにω角にも変換可能である。X0+|Xs|を角度に変換してΔωを得る。回折スポットが生じたω角、ωsは、以下の数3の式で与えられる。 Next, a procedure for determining the ω angle at which the diffraction spot is generated will be described with reference to FIG. By processing an image recorded in a band shape, the position of the spot can be known from the pixel address. Multiplying this by the effective pixel size could convert to distances in the X and Z directions. Also, Zs and X0 can be found by referring to the reference position of the standard sample. Xs is calculated by substituting Zs into equation (2). The X direction can be converted to the ω angle in addition to the distance. X0 + | Xs | is converted into an angle to obtain Δω. The ω angle and ω s at which the diffraction spot is generated are given by the following equation (3).

Figure 2008249607
Figure 2008249607

上記図5で、回折X線を示すベクトルkは、oを原点とし(XYZ)と平行な(X'Y'Z')座標系で表現し、kX'Y'Z'とすると、kX'Y'Z'は、単位ベクトルとして、以下の数4の式で与えられる。 In FIG. 5, the vector k having a diffraction X-rays, 'expressed in a coordinate system, k X'Y'Z o it was the origin (XYZ) and parallel (X'Y'Z)' When, k X 'Y'Z' is given by the following equation 4 as a unit vector.

Figure 2008249607
Figure 2008249607

これを座標変換により(xyz)座標系で表現し、「kxyz」とすると、「kxyz」は、以下の数5の式で与えられる。 This was expressed by the coordinate conversion (xyz) coordinate system, if the "k xyz", "k xyz" is given by the following formula having 5.

Figure 2008249607
Figure 2008249607

一方、k0は、同じ(xyz)座標で、以下の数6の式で与えられる。 On the other hand, k 0 is the same (xyz) coordinate and is given by the following equation (6).

Figure 2008249607
Figure 2008249607

上記のkxyzとk0より、図7に示す格子面法線ベクトルVを表すことができる。この格子面法線ベクトルVが決定されれば、図中に示す格子面の傾き角δおよび傾きの方向ψ、直交する2方向における格子面の傾きδ1,δ2が計算でき、面方位が決定されるであろう。 From the above k xyz and k 0 , the lattice plane normal vector V shown in FIG. 7 can be expressed. When the lattice plane normal vector V is determined, the lattice plane inclination angle δ and the inclination direction ψ shown in the figure, and the lattice plane inclinations δ1 and δ2 in two orthogonal directions can be calculated, and the plane orientation is determined. It will be.

そこで、格子面法線ベクトルVを (xyz)座標で表した単位ベクトルで扱い、Vxyzとすると、この格子面法線ベクトルVxyzは、以下の数7の式で与えられる。 Therefore, when the lattice plane normal vector V is handled as a unit vector represented by (xyz) coordinates and is represented as V xyz , the lattice plane normal vector V xyz is given by the following equation (7).

Figure 2008249607
Figure 2008249607

次に、面方位を示す角度情報である、格子面の傾き角δおよび傾きの方向ψ、直交する2方向における格子面の傾き角δ1,δ2を求めたい。そのためには、(xyz)座標で表したVxyzを、結晶の外形を代表する座標系(abc)表現したVabcに変換したい。結晶の外形を代表する座標系(abc)表現したVabcは、上記数3の式のωsを用いて、以下の数8の式で与えられる。 Next, it is desired to obtain lattice plane inclination angle δ and inclination direction ψ, and lattice plane inclination angles δ1 and δ2 in two orthogonal directions, which are angle information indicating the plane orientation. For this purpose, V xyz expressed in (xyz) coordinates is to be converted to V abc expressed in a coordinate system (abc) representing the outer shape of the crystal. V abc expressed in the coordinate system (abc) representing the external shape of the crystal is given by the following equation (8) using ω s of the above equation (3).

Figure 2008249607
Figure 2008249607

更に、面方位を示す角度パラメータδ,ψ,δ1,δ2は、Vabcの成分Va,Vb,Vcを用いて、以下の数9の式で与えられる。 Furthermore, angle parameters δ, ψ, δ 1 and δ 2 indicating the plane orientation are given by the following equation (9) using components V a , V b , and V c of V abc .

Figure 2008249607
Figure 2008249607

上述したように、本発明のX線結晶方位測定装置及びX線結晶方位測定方法によれば、上記にも詳細に説明したTDI読み出しモードで動作するCCDの特性を利用することにより、面方位測定の大幅な時間短縮が実現した。サブグレイン構造やリネージ構造を持った試料に対し、高速のマップ測定が可能となった。   As described above, according to the X-ray crystal orientation measuring apparatus and the X-ray crystal orientation measuring method of the present invention, the plane orientation measurement is performed by utilizing the characteristics of the CCD operating in the TDI readout mode described in detail above. Realized a significant time reduction. High-speed map measurement is possible for samples with subgrain and lineage structures.

本発明の一実施の形態になる、X線結晶方位測定装置の概略構造を示す図である。It is a figure which shows schematic structure of the X-ray crystal orientation measuring apparatus which becomes one embodiment of this invention. 上記本発明のX線結晶方位測定装置におけるTDI-CCDの出力画像(帯状の画像)の一例を示す図である。It is a figure which shows an example of the output image (strip | belt-shaped image) of TDI-CCD in the X-ray crystal orientation measuring apparatus of the said invention. 上記TDI-CCDのTDI読み出し動作の原理を説明する図である。It is a figure explaining the principle of the TDI read-out operation | movement of the said TDI-CCD. 上記TDI-CCDを備えたX線検出器の構成の一例を示す図である。It is a figure which shows an example of a structure of the X-ray detector provided with the said TDI-CCD. 上記の装置におけるX線検出面の配置と2θコーンとの関係を説明する説明図である。It is explanatory drawing explaining the relationship between arrangement | positioning of the X-ray detection surface in said apparatus, and 2theta cone. 上記の装置における円錐の切り口曲線と回折スポットとの関係を説明する説明図である。It is explanatory drawing explaining the relationship between the conical cut curve and diffraction spot in said apparatus. 上記の装置における構成面法線ベクトルVの表現を説明する説明図である。It is explanatory drawing explaining the expression of the component surface normal vector V in said apparatus. 面方位を示す角度パラメータδ、ψ、δ1,δ2を説明する説明図である。It is explanatory drawing explaining angle parameters (delta), (psi), (delta) 1 , (delta) 2 which show a surface orientation.

符号の説明Explanation of symbols

10…X線管、20…ピンホールコリメータ、S…試料、30…X線検出器、31…蛍光板、32…イメージインテンシファイヤ(I.I)、33…リレーレンズ、34…TDI-CCD、40…CPU、50…画像取り込みボード   DESCRIPTION OF SYMBOLS 10 ... X-ray tube, 20 ... Pinhole collimator, S ... Sample, 30 ... X-ray detector, 31 ... Fluorescent plate, 32 ... Image intensifier (II), 33 ... Relay lens, 34 ... TDI-CCD, 40 ... CPU, 50 ... Image capture board

Claims (2)

被測定結晶の測定面にX線を照射し、当該X線の照射により結晶の格子面に対応して得られる回折スポットを二次元検出器で検出し、当該検出した回折スポットの中心位置を測定して結晶の格子面法線を算出するX線結晶方位測定方法において、前記被測定結晶の測定面の照射点に対して所定の回折条件を満足する入射角度になるように照射すると共に、当該被測定結晶の測定面の照射点からの回折スポットを、TDI読み出しモードで動作するCCDにより構成した二次元検出器で検出することを特徴とするX線結晶方位測定方法。   Irradiate the measurement surface of the crystal to be measured with X-rays, detect the diffraction spot corresponding to the lattice plane of the crystal by irradiation with the X-ray with a two-dimensional detector, and measure the center position of the detected diffraction spot Then, in the X-ray crystal orientation measurement method for calculating the lattice normal of the crystal, the irradiation point on the measurement surface of the crystal to be measured is irradiated so as to have an incident angle satisfying a predetermined diffraction condition, and A method for measuring an X-ray crystal orientation, comprising: detecting a diffraction spot from an irradiation point on a measurement surface of a crystal to be measured by a two-dimensional detector configured by a CCD operating in a TDI readout mode. 被測定結晶の測定面における結晶方位をX線を用いて測定するための装置であって:
被測定結晶の測定面に照射する特性X線を発生する手段と;
前記特性X線発生手段からの特性X線を前記被測定結晶の測定面に対して所定の回折条件を満足する入射角度になるように照射する手段と;
上記X線照射手段から被測定結晶の測定面上に照射された前記所定の回折条件を満足する入射角度になるように照射された前記特性X線による回折像を検出する手段と;
上記検出手段により検出された回折像より、前記被測定結晶の測定面における結晶方位を算出する手段とを備えたX線結晶方位測定装置であって、
前記回折像検出手段を、TDI読み出しモードで動作するCCDにより構成したことを特徴とするX線結晶方位測定装置。
An apparatus for measuring the crystal orientation on the measurement surface of a crystal to be measured using X-rays:
Means for generating characteristic X-rays for irradiating the measurement surface of the crystal to be measured;
Means for irradiating the characteristic X-ray from the characteristic X-ray generation means so as to have an incident angle satisfying a predetermined diffraction condition with respect to the measurement surface of the crystal to be measured;
Means for detecting a diffraction image by the characteristic X-rays irradiated from the X-ray irradiation means so as to have an incident angle satisfying the predetermined diffraction condition irradiated onto the measurement surface of the crystal to be measured;
An X-ray crystal orientation measuring apparatus comprising means for calculating a crystal orientation in a measurement plane of the crystal to be measured from a diffraction image detected by the detection means,
An X-ray crystal orientation measuring apparatus characterized in that the diffraction image detecting means comprises a CCD operating in a TDI readout mode.
JP2007093586A 2007-03-30 2007-03-30 X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method Expired - Fee Related JP4823125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007093586A JP4823125B2 (en) 2007-03-30 2007-03-30 X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007093586A JP4823125B2 (en) 2007-03-30 2007-03-30 X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method

Publications (2)

Publication Number Publication Date
JP2008249607A true JP2008249607A (en) 2008-10-16
JP4823125B2 JP4823125B2 (en) 2011-11-24

Family

ID=39974719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007093586A Expired - Fee Related JP4823125B2 (en) 2007-03-30 2007-03-30 X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method

Country Status (1)

Country Link
JP (1) JP4823125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249605A (en) * 2007-03-30 2008-10-16 Rigaku Corp Crystal grain pole figure measuring method and device therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3058058B2 (en) * 1995-08-04 2000-07-04 トヨタ自動車株式会社 Vehicle front object detection device
JP2005091142A (en) * 2003-09-17 2005-04-07 Rigaku Corp X-ray analyzer
JP2005121511A (en) * 2003-10-17 2005-05-12 Rigaku Corp X-ray analyzer
JP2005241513A (en) * 2004-02-27 2005-09-08 Rigaku Corp Method and apparatus for controlling ccd sensor and x-ray diffraction device
JP2005241578A (en) * 2004-02-27 2005-09-08 Rigaku Corp X-ray apparatus for measuring crystal orientation, system for holding crystal sample using the same, and method for cutting crystal along constant orientation used therefor
JP2005265502A (en) * 2004-03-17 2005-09-29 Rigaku Corp X-ray crystal orientation measuring instrument, and x-ray crystal orientation measuring method
WO2007052688A1 (en) * 2005-11-02 2007-05-10 Rigaku Corporation Method and device for measuring microcrystal grain orientation distribution
JP4059581B2 (en) * 1998-11-30 2008-03-12 株式会社河合楽器製作所 Fluctuation adding apparatus and fluctuation adding method for electronic acoustic apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3058058B2 (en) * 1995-08-04 2000-07-04 トヨタ自動車株式会社 Vehicle front object detection device
JP4059581B2 (en) * 1998-11-30 2008-03-12 株式会社河合楽器製作所 Fluctuation adding apparatus and fluctuation adding method for electronic acoustic apparatus
JP2005091142A (en) * 2003-09-17 2005-04-07 Rigaku Corp X-ray analyzer
JP2005121511A (en) * 2003-10-17 2005-05-12 Rigaku Corp X-ray analyzer
JP2005241513A (en) * 2004-02-27 2005-09-08 Rigaku Corp Method and apparatus for controlling ccd sensor and x-ray diffraction device
JP2005241578A (en) * 2004-02-27 2005-09-08 Rigaku Corp X-ray apparatus for measuring crystal orientation, system for holding crystal sample using the same, and method for cutting crystal along constant orientation used therefor
JP2005265502A (en) * 2004-03-17 2005-09-29 Rigaku Corp X-ray crystal orientation measuring instrument, and x-ray crystal orientation measuring method
WO2007052688A1 (en) * 2005-11-02 2007-05-10 Rigaku Corporation Method and device for measuring microcrystal grain orientation distribution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249605A (en) * 2007-03-30 2008-10-16 Rigaku Corp Crystal grain pole figure measuring method and device therefor

Also Published As

Publication number Publication date
JP4823125B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP3904543B2 (en) X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method
JP4875936B2 (en) Foreign object / defect detection method and foreign object / defect inspection device
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
KR101594794B1 (en) X-ray diffraction apparatus and x-ray diffraction measurement method
KR102107559B1 (en) Using multiple sources/detectors for high-throughput x-ray topography measurement
JP5024973B2 (en) X-ray topography equipment
JP3834652B2 (en) X-ray diffraction microscope apparatus and X-ray diffraction measurement method using X-ray diffraction microscope apparatus
JP2007178144A (en) Pattern inspection system, pattern inspection method, sample to be inspected, and method for managing sample to be inspected
JP5464665B2 (en) X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method
JP4908303B2 (en) X-ray single crystal orientation measuring apparatus and measuring method thereof
KR100936746B1 (en) Characterization of three-dimensional distribution of defects by x-ray topography
KR102279169B1 (en) Detection apparatus and detection method
JP4823125B2 (en) X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method
JP5145854B2 (en) Sample analyzer, sample analysis method, and sample analysis program
JP4313322B2 (en) Defective particle measuring apparatus and defective particle measuring method
JP4906602B2 (en) Defect inspection apparatus and defect inspection method for polycrystalline silicon substrate
JP4563701B2 (en) X-ray crystal orientation measuring apparatus and X-ray crystal orientation measuring method
JP4909154B2 (en) Method and apparatus for measuring pole figure of crystal grains
JP2001056303A (en) X-ray stress measuring apparatus
JP4977068B2 (en) Image acquisition device and sample inspection device
JP2545209B2 (en) Crystal defect inspection method and inspection apparatus therefor
JP2006112921A (en) Reflected electron beam detector
US20230251213A1 (en) LABORATORY-BASED 3D SCANNING X-RAY LAUE MICRO-DIFFRACTION SYSTEM AND METHOD (LAB3DuXRD)
JPS61256243A (en) Monochromatic x-ray tomographic apparatus
Troitskiy Perspective of development of radiation testing of welded joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110906

R150 Certificate of patent or registration of utility model

Ref document number: 4823125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350