JP2008249376A - Outflowing sediment measure and outflowing sediment measuring device - Google Patents

Outflowing sediment measure and outflowing sediment measuring device Download PDF

Info

Publication number
JP2008249376A
JP2008249376A JP2007088216A JP2007088216A JP2008249376A JP 2008249376 A JP2008249376 A JP 2008249376A JP 2007088216 A JP2007088216 A JP 2007088216A JP 2007088216 A JP2007088216 A JP 2007088216A JP 2008249376 A JP2008249376 A JP 2008249376A
Authority
JP
Japan
Prior art keywords
measurement
measurement chamber
water
sediment
flowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007088216A
Other languages
Japanese (ja)
Other versions
JP4891822B2 (en
Inventor
Yukio Shimomura
幸男 下村
Masayoshi Shimada
政好 島田
Mineto Tomisaka
峰人 冨坂
Takashi Katsumi
崇 勝見
Kenjiro Futagami
健次郎 二神
Kazuya Tamaki
和也 玉城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OKINAWA GENERAL BUREAU CABINET OFFICE
Nippon Koei Co Ltd
Original Assignee
OKINAWA GENERAL BUREAU CABINET OFFICE
Nippon Koei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OKINAWA GENERAL BUREAU CABINET OFFICE, Nippon Koei Co Ltd filed Critical OKINAWA GENERAL BUREAU CABINET OFFICE
Priority to JP2007088216A priority Critical patent/JP4891822B2/en
Publication of JP2008249376A publication Critical patent/JP2008249376A/en
Application granted granted Critical
Publication of JP4891822B2 publication Critical patent/JP4891822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an outflowing sediment measure capable of easily and inexpensively measuring the amount of sediment contained in water flowing out from an outdoor field under cultivation or the like. <P>SOLUTION: In the measure constituted by connecting the measuring chambers from a first dividing/obtaining measuring chamber to an nth dividing/obtaining measuring chamber and an n+1th final measuring chamber in ascending order via connecting openings, water containing sediment flowing into the measuring chambers is divided/obtained by predetermined rates into the measuring chambers adjoining mutually, by forming a plurality of windows having the same shape and the same height in a side face of each measuring chamber, and forming connecting openings having the same shape and the same height as the windows, as connecting openings to the adjoining measuring chambers. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、流水中に含まれる土砂量を測定するための計測枡、計測装置及び測定方法に関し、詳しくは、全流水から一定の割合で分取された分取水量及びこれに含まれる土砂量を計測することにより、全流水量に含まれる土砂量を簡易に算出することを可能とする流出土砂計測枡及び流出土砂計測装置に関する。   The present invention relates to a measuring rod, a measuring device, and a measuring method for measuring the amount of earth and sand contained in flowing water, and more specifically, the amount of collected water separated from the entire flowing water at a certain ratio and the amount of earth and sand contained therein. The present invention relates to a runoff sediment measurement dredge and a runoff sediment measurement device that can easily calculate the amount of sediment contained in the total flow of water.

圃場や開発工事現場等から流出する土砂が、河川や海域に流入して堆積することにより、生態系や自然環境、漁業、或いは観光産業等に影響を与えることが問題となっている。開発工事現場では、工事期間中の流出土砂の観測や対策工の実施等が進展している場合もあるが、特に通年に亘り問題となる圃場からの土砂流出問題は、未だ充分な解決策が見出されていないのが現状である。   It has been a problem that sediments flowing out from farm fields, development work sites, etc., flow into and accumulate in rivers and sea areas and affect the ecosystem, natural environment, fishery, tourism industry, and the like. At the development site, observation of sediment runoff during the construction period, implementation of countermeasures, etc. may be progressing, but there is still no sufficient solution for the sediment runoff problem from the field, which is a problem for the whole year. The current situation is not found.

従って上記土砂流出問題の取り組みとして、まず、圃場等から流出する土砂量を把握することが求められている。現在、知られている流出土砂観測方法としては、例えば自記測定機等を用いた観測手段が知られている(例えば、特許文献1)。特許文献1に記載の流出土砂観測システムでは、河川に設けられた砂防ダムの袖部に水深別に複数の取水孔が設けられ、該取水口から自動的且つ連続的に取水し、土砂量や水量を測定し、データ処理装置により土砂濃度を検出可能とするシステムである。また別の流出土砂観測方法としては、降水量に見合う貯水槽を作成し、これに降雨時の流水を貯水し、貯水された流水及びこれに含まれる土砂量を、人力或いは機械的に実測する方法が考えられる。 Therefore, as an approach to the above-mentioned sediment discharge problem, it is first required to grasp the amount of sediment flowing out from a farm or the like. At present, as a known runoff sediment observation method, for example, an observation means using a self-recording measuring device or the like is known (for example, Patent Document 1). In the runoff sediment observation system described in Patent Document 1, a plurality of water intake holes are provided according to the water depth at the sleeve portion of a sabo dam provided in a river, and water is automatically and continuously taken from the water intake. Is a system that makes it possible to detect sediment concentration by a data processing device. Another runoff sediment observation method is to create a reservoir that matches the amount of precipitation, store the running water during rainfall, and measure the stored running water and the amount of sediment contained in it manually or mechanically. A method is conceivable.

特開2002−286534号公報JP 2002-286534 A

しかしながら上述した自記測定機等を用いる流出土砂観測方法は、各農家或いは地元の農業共同組合にとってコストがかかりすぎ、導入が困難であるという問題点を有している。また後述した貯水槽に流水を貯水し実測する方法では、非常に大きい貯水槽が必要になるため該貯水槽を作成するためのスペースを確保することが困難な場合がある上、貯水された流水及びこれに含まれる土砂を人力により実測することは労力が大きすぎ、一方、実測するための機械を導入するにはコストがかかるという問題点を有している。 However, the runoff sediment observation method using the above-mentioned self-recording measuring device has the problem that it is too expensive for each farmer or local agricultural cooperative and is difficult to introduce. In addition, in the method of storing flowing water in a water storage tank described later and actually measuring it, it may be difficult to secure a space for creating the water storage tank because a very large water storage tank is required, and the stored flowing water In addition, it is difficult to actually measure the earth and sand contained in it manually, and on the other hand, there is a problem that it is costly to introduce a machine for actual measurement.

従って、本発明は、上記問題点を解決し、従来の観測方法に比べてコスト及び労力を軽減することができ、簡易に流出土砂量を測定することが可能な流出土砂計測枡及び流出土砂計測装置を提供することを目的とする。 Therefore, the present invention solves the above-mentioned problems, can reduce the cost and labor compared with the conventional observation method, and can easily measure the amount of spilled sediment and spilled sediment measurement. An object is to provide an apparatus.

本発明の流出土砂計測枡は、計測室の側面に、同形状且つ同じ高さに設けられた複数の窓部を形成するとともに、隣り合う計測室との連接口として上記窓部と同形状且つ同じ高さの連接口を形成することによって、該計測室に流入する土砂含有の流水を、一定の割合、即ち、連接口の数/(窓部の数+連接口の数)だけ隣り合う計測室に分取することを可能とするものである。
即ち、
(1)第1番目の分取計測室から第n(但し、nは2以上の整数である)番目の分取計測室及び第n+1番目の最終計測室が、昇順に、連接口を介して連接されて構成されており、上記第1番目の分取計測室から第n番目の分取計測室の其々の側面には複数の窓部を有し、また上記第1番目の分取計測室にはその上面に流入口を有し、上記窓部が、1つの分取計測室においては同形状且つ同じ高さで設けられているとともに、隣り合う分取計測室同士の関係では昇順毎に窓部底部の位置が低くなるよう形成されており、また、隣り合う分取計測室間あるいはn番目の分取計測室と第n+1番目の最終計測室との間において形成される上記連接口が、順序の小さい方の計測室の側面に設けられた窓部と同形状且つ同じ高さ位置で設けられていることを特徴とする流出土砂計測枡、
(2)上記(1)に記載の流出土砂計測枡を用いる流出土砂計測装置であって、測定対象領域から集水された流水を流すための送水路と、上記送水路内を送水される流水を一定の割合で分取することが可能な分取路と、上記(1)に記載の流出土砂計測枡と、を少なくとも備えており、上記分取路によって分取された分取水の全量が、上記流出土砂計測枡における第1番目の分取計測室に導かれることを特徴とする流出土砂計測装置、
(3)上記分取路の少なくとも上流側端部が上記送水路の下流領域に設けられており、且つ、上記分取路の上流側の端部の手前に、側面が網目状であって中空の回転可能なゴミ除去用筒体が該ゴミ除去用筒体の側面が起立する姿勢で設置されていることを特徴とする上記(2)に記載の流出土砂計測装置、及び
(4)上記送水路に流れる流水から上記分取路によってその一部が一定の割合で分取された後の排流水と当接する位置に水車羽が設けられ、一方、上記ゴミ除去用筒体内部には該筒体の一部と少なくとも連結し、上記ゴミ除去用筒体に回転運動用の動力を伝達する駆動芯が設けられ、且つ、上記水車羽の回転動力を伝達可能なトルク伝達部材により、上記水車羽と上記駆動芯とが連結されていることを特徴とする上記(3)に記載の流出土砂計測装置、
を要旨とするものである。
The spillage sediment measuring gutter of the present invention forms a plurality of window portions provided in the same shape and at the same height on the side surface of the measurement chamber, and has the same shape as the window portion as a connection port with an adjacent measurement chamber. By forming connecting ports of the same height, the sediment-containing running water flowing into the measurement chamber is measured adjacently by a certain ratio, that is, the number of connecting ports / (number of windows + number of connecting ports). It can be sorted into a room.
That is,
(1) From the first preparatory measurement chamber, the nth preparative measurement chamber (where n is an integer equal to or greater than 2) and the (n + 1) th final measurement chamber are arranged in ascending order via the connection port. Each of the first to nth preparatory measurement chambers has a plurality of windows on the side surfaces, and the first preparative measurement is configured. The chamber has an inlet on its upper surface, and the window is provided in the same shape and height in one fractionation measurement chamber, and in ascending order according to the relationship between adjacent fractionation measurement chambers. Are formed so that the position of the bottom of the window portion is lowered, and is formed between adjacent fractionation measurement chambers or between the nth fractionation measurement chamber and the (n + 1) th final measurement chamber. Is provided in the same shape and at the same height as the window provided on the side of the measurement chamber of the smaller order Sediment Measurement squares characterized the door,
(2) A runoff sediment measurement apparatus using the runoff sediment measurement dredge as described in (1) above, a water supply channel for flowing the collected water from the measurement target region, and a flow of water fed through the water supply channel At least a sorting channel that can sort out the sediment at a certain rate, and a sedimentation sediment measuring basin as described in (1) above, wherein the total amount of the fractionated water separated by the sorting channel is , The runoff sediment measurement device, which is led to the first preparative measurement chamber in the runoff sediment measurement tank,
(3) At least the upstream end of the sorting channel is provided in the downstream region of the water supply channel, and the side surface is mesh-like and hollow before the upstream end of the sorting channel. The rotatable sediment removing cylinder is installed in a posture in which the side surface of the dust removing cylinder stands upright, and (4) the feed A water wheel is provided at a position where it comes into contact with the drained water after a part of the water from the flowing water flows through the sorting channel at a certain ratio, while the cylinder is disposed inside the dust removing cylinder. The turbine blade is provided by a torque transmission member that is connected to at least a part of the body, and that is provided with a drive core that transmits power for rotational motion to the dust removal cylinder, and that can transmit the rotational power of the turbine blade. And the drive core are connected to each other as described in (3) above Sediment measuring device out,
Is a summary.

尚、本発明あるいは本明細書の記載において、「上流側」とは、流水の流れる方向において、より上流の方向、即ち測定対象領域側を意味し、また 「上流領域」とは、上記上流側の領域を意味し、一方「下流側」とは、上記上流側とは反対の方向、即ち流水の流れる方向において、より下流の方向を意味し、「下流領域」とは、上記下流側の領域を意味する。 In the description of the present invention or the present specification, the “upstream side” means the direction upstream of the flowing water, that is, the measurement target region side, and the “upstream region” means the upstream side. On the other hand, the “downstream side” means the direction opposite to the upstream side, that is, the downstream direction in the flowing water direction, and the “downstream area” means the downstream area. Means.

また本明細書あるいは本明細書の記載において、単に「計測室」という場合には、分取計測室および/または最終計測室を、意味する。 Further, in the present specification or the description of the present specification, the term “measurement chamber” simply means a preparative measurement chamber and / or a final measurement chamber.

本発明の流出土砂計測枡を測定地に設置し、これに測定対象領域から流出する流水を集水して第1番目の分取計測室に流入せしめることにより、所望の割合で、順次、流水を分取することを容易に行うことができる。
即ち、第1番目の分取計測室における貯留水の量が該計測室に設けられた窓部の底面を越えると、自動的に、流水は窓部からあふれ出ると同時に、一部は連接口から第2の計測室へと流入する。第1の分取計測室の最大貯留容量を越えて流れ込んだ流水に対する、第2の計測室へ移行した流水の量の割合(即ち、第2の計測室に分取される割合)は、流水の流れ込んだ分取計測室の連接口の数/(流水の流れ込んだ分取計測室の窓部数+連接口の数)である。したがって、上記流水が第1の分取計測室から第2の分取計測室へと分取された割合を把握することができる。このようにして、最終計測室へと分取された流水の貯留水量が、最終計測室の貯留容量を越える前の適当な時期に、全分取計測室および最終計測室に貯留された流水量及びこれに含まれる土砂量を測定し、各計測室における分取の割合を乗じた値を合計すれば、本発明の計測枡に流れ込んだ全流水量及び、これに含まれていた土砂量を算出することができる。
したがって、流出土砂の計測者は、本発明品を所定の場所に設置し、一定期間経過した後(あるいは降雨のあった後)、各計測室に貯留された土砂量を計測し、これに分取された割合を乗ずる計算を行うだけで、上記一定期間中(或いは降雨中)に、測定対象領域から流出した土砂量を容易に知ることができる。
By installing the runoff sediment measurement dredge of the present invention at the measurement site, collecting the flowing water flowing out from the measurement target area and flowing it into the first preparatory measurement chamber, the flowing water is sequentially supplied at a desired ratio. Can be easily separated.
That is, when the amount of stored water in the first preparative measurement chamber exceeds the bottom of the window provided in the measurement chamber, the flowing water automatically overflows from the window and a part of the connection port Flows into the second measurement chamber. The ratio of the amount of flowing water that has moved to the second measuring chamber to the flowing water that has flowed beyond the maximum storage capacity of the first sorting measuring chamber (that is, the ratio that is separated into the second measuring chamber) is flowing water. The number of connection ports of the preparative measurement chamber into which the water flowed / (number of windows of the preparative measurement chamber into which the flowing water flowed + the number of connection ports). Therefore, it is possible to grasp the proportion of the flowing water that has been fractionated from the first fractionation measurement chamber to the second fractionation measurement chamber. In this way, the amount of flowing water stored in all the preparatory measurement chambers and the final measurement chamber at an appropriate time before the amount of water stored in the final measurement chamber exceeds the storage capacity of the final measurement chamber. And the amount of earth and sand contained in this, and the total amount of water flowing into the measuring rod of the present invention, and the amount of earth and sand contained in this, if the total value multiplied by the fraction of the fractionation in each measurement room Can be calculated.
Therefore, the runoff sediment measurer installs the product of the present invention at a predetermined location, and after a certain period of time (or after rainfall), measures the amount of sediment stored in each measurement room and distributes it. It is possible to easily know the amount of sediment that has flowed out of the measurement target area during the certain period (or during the rain) simply by multiplying the ratio taken.

しかも本発明の流出土砂計測枡は、持ち運び可能な程度の大きさに形成された連続する計測室により構成することができるため取り扱いが容易であり、小さなスペースに設置可能である。 In addition, the outflow sediment measuring rod of the present invention can be constituted by a continuous measuring chamber formed in a size that can be carried, so that it is easy to handle and can be installed in a small space.

また本発明の流出土砂計測用装置は、測定対象領域から流出する流水を集水して、該流水を一定の割合で分取し、この分取水を第1番目の分取計測室に流入せしめることができる。したがって、測定対象領域から流出する流水の量が多い場合などであっても、一度、該流水を分取しているので、流出土砂計測室に流入する流量を小さく抑えることができる。したがって、流出土砂計測室における最終計測室の容量が一杯になるまでの期間を長くすることができるので、流水量の多い地域で計測を実施する場合であっても計測枡を大型化する必要がない。例えば、1haの圃場を観測の対象とした場合には、後述する実施例において形成する実施例1の流出土砂観測装置程度の大きさの装置により、雨量230mmに対応できる。更に多くの雨量が見込まれる場合には、オーバーフローする水を貯留する小型のタンク(ポリエチレン容器など)を接続することにより対応が可能である。 Moreover, the outflow sediment measuring apparatus of the present invention collects the flowing water flowing out from the measurement target region, collects the flowing water at a certain ratio, and allows the collected water to flow into the first sorting measurement chamber. be able to. Therefore, even when the amount of flowing water flowing out from the measurement target area is large, the flowing water is once collected, so that the flow rate flowing into the outflow sediment measurement chamber can be kept small. Therefore, it is possible to lengthen the period until the capacity of the final measurement room in the runoff sediment measurement room is full, so it is necessary to increase the size of the measuring rod even when measuring in areas with a large amount of water flow. Absent. For example, when a field of 1 ha is used as an observation target, it is possible to cope with a rainfall of 230 mm by a device about the size of the outflow sediment observation device of Example 1 formed in an example described later. If more rain is expected, it can be handled by connecting a small tank (such as a polyethylene container) that stores overflowing water.

本発明の流出土砂計測枡及び装置は単純な構造であって、安いコストで簡易に建設することができる上、計測期間中のランニングコストやメンテナンスもほとんど必要なく、且つ、測定方法も簡易であり、専門の知識を有しない者や費用の乏しい者であっても、容易に流出土砂を測定することが可能である。 The runoff sediment measurement dredge and apparatus of the present invention has a simple structure, can be easily constructed at a low cost, has almost no running cost or maintenance during the measurement period, and has a simple measurement method. Even those who do not have specialized knowledge or who are low in cost can easily measure runoff sediment.

以下、本発明の流出土砂計測枡(以下、単に「計測枡」という場合がある)およびこれを用いた流出土砂計測装置(以下、単に「計測装置」という場合がある)の最良の形態について、図面に基づき詳細に説明する。 Hereinafter, the best mode of the outflow sediment measurement dredging of the present invention (hereinafter sometimes simply referred to as “measurement dredging”) and the outflow sediment measurement device using the same (hereinafter also referred to simply as “measurement device”), This will be described in detail with reference to the drawings.

(流出土砂計測枡について)
図1は、本発明の一実施形態を示す流出土砂計測枡1(以下、単に「計測枡1」ともいう)の斜視図である。計測枡1は、第1分取計測室2(以下、単に「計測室2」ともいう)、第2分取計測室3(以下、単に「計測室3」ともいう)、第3分取計測室4(以下、単に「計測室4」ともいう)、最終計測室5(以下、単に「計測室5」ともいう)がこの順で連続して連接されて形成されている。そして計測室2の側面には窓部6が、計測室3の側面には窓部7が、計測室4の側面には窓部8が、それぞれ複数設けられている。また計測室2および計測室3と連接する連接壁9には、窓部6と同形状の連接口10が、窓部6と同じ高さで設けられている。
(About outflow sediment measurement dredging)
FIG. 1 is a perspective view of an outflow sediment measuring rod 1 (hereinafter, also simply referred to as “measuring rod 1”) showing an embodiment of the present invention. The measuring rod 1 includes a first preparatory measurement chamber 2 (hereinafter simply referred to as “measurement chamber 2”), a second preparative measurement chamber 3 (hereinafter also simply referred to as “measurement chamber 3”), and a third preparative measurement. A chamber 4 (hereinafter simply referred to as “measurement chamber 4”) and a final measurement chamber 5 (hereinafter also simply referred to as “measurement chamber 5”) are continuously connected in this order. A plurality of window portions 6 are provided on the side surface of the measurement chamber 2, a window portion 7 is provided on the side surface of the measurement chamber 3, and a plurality of window portions 8 are provided on the side surface of the measurement chamber 4. The connecting wall 9 connected to the measuring chamber 2 and the measuring chamber 3 is provided with a connecting port 10 having the same shape as the window 6 at the same height as the window 6.

計測室3乃至計測室5には、その上面に天板16乃至天板18が其々設けられている。上記天板は、本発明において必須の構成要件ではないが、天板を備えることにより、各分取計測室に雨水などが貯留することを防止することができるので好ましい。 The measurement chamber 3 to the measurement chamber 5 are respectively provided with a top plate 16 to a top plate 18 on the upper surface thereof. Although the said top plate is not an essential structural requirement in this invention, it is preferable by providing a top plate since it can prevent rainwater etc. storing in each fractionation measurement chamber.

上記計測枡1をさらに詳しく説明するために、図1における計測枡1の上部切欠斜視図である図2を示す。   In order to describe the measuring rod 1 in more detail, FIG. 2 which is a perspective view of the upper notch of the measuring rod 1 in FIG. 1 is shown.

窓部について:
図2によれば、計測室2の3つの側面には10ヶの長方体形状の窓部6が設けられており、計測室3の2つの側面には10ヶのスリット状の窓部7が設けられており、計測室4の側面には10ヶのスリット状の窓部8が設けられていることがわかる。これらの各窓部は、計測室に貯留される流水の量が、窓部の底面を越えたときに、該流水を溢れ出させるためのものである。したがって、各計測室の側面に設けられる窓部の形状及び数は任意であり、以下に説明する測定実施期間、測定対象領域における測定期間中の降雨量、及び該領域の面積等を勘案して適宜設計することができ、また各計測室の窓部の数は、同じであってもよいし、異なっていてもよい。
About windows:
According to FIG. 2, ten rectangular windows 6 are provided on the three side surfaces of the measurement chamber 2, and ten slit-like window portions 7 are provided on the two side surfaces of the measurement chamber 3. It can be seen that 10 slit-shaped windows 8 are provided on the side surface of the measurement chamber 4. Each of these window portions is for causing the flowing water to overflow when the amount of flowing water stored in the measurement chamber exceeds the bottom surface of the window portion. Therefore, the shape and number of windows provided on the side surfaces of each measurement chamber are arbitrary, taking into consideration the measurement implementation period, the rainfall during the measurement period in the measurement target area, the area of the area, etc. It can design suitably and the number of the window parts of each measurement room may be the same, and may differ.

但し、後述する流水の分取の割合を把握するために、一つの計測室に設けられる複数の窓部は、同形状、且つ同じ高さに形成される必要がある。また第1番目の計測室から第n番目の計測室へと分取される流水の逆流を防ぐために、計測室における窓部の高さは、第1番目から第n番目の計測室まで、昇順で数の大きい計測室の窓部ほど底面の位置を低く設ける必要がある。尚、最終計測室5における窓部の形成は任意である。最終計測室5に窓部が形成されている場合には、該計測室5に流れ込んだ流水の量が窓部の底面以上になるとそれ以上に流水の流入があった場合には窓部よりあふれ出ることになり、計測枡1に流入する流水の全量が把握できなくなるため、この点に留意し、計測室5の窓部より流水があふれ出る前に測定期間を終了するか、あるいはあふれ出た流水を一時貯留するためのさらなる枡を別途設置することが望ましい。
以下の明細書の記載においては、各分取計測室における下面から窓部の底面までの容量、あるいは最終計測室における連接口の底面までの容量を、流水を実質的に貯留できる容量として、計測室の「最大貯留容量」という場合がある。
However, in order to grasp the proportion of flowing water to be described later, a plurality of windows provided in one measurement chamber need to be formed in the same shape and the same height. In addition, in order to prevent the backflow of flowing water from the first measurement chamber to the nth measurement chamber, the height of the window in the measurement chamber is ascending from the first to the nth measurement chamber. Therefore, it is necessary to provide a lower position for the bottom of the measurement chamber windows. In addition, formation of the window part in the final measurement chamber 5 is arbitrary. When a window is formed in the final measurement chamber 5, if the amount of water flowing into the measurement chamber 5 exceeds the bottom of the window, if there is more inflow of water, it overflows from the window. Because it will not be able to grasp the total amount of the flowing water flowing into the measuring rod 1, paying attention to this point, the measuring period ends before the flowing water overflows from the window of the measuring chamber 5 or overflows. It is desirable to install additional dredging for temporarily storing running water.
In the description of the following specification, the capacity from the bottom surface of each preparative measurement chamber to the bottom surface of the window or the capacity from the bottom surface of the connection port in the final measurement chamber is measured as a capacity that can substantially store running water. Sometimes called “maximum storage capacity” of a room.

連接壁及び連接口について:
計測室2と計測室3との境界には、2つの部屋を連接している連接壁9が形成されており、また連接壁9には、窓部6と同形状であって同じ高さ位置に形成された連接口10が形成されている。同様に、計測室3と計測室4との間には連接壁11が形成され、この連接壁11には窓部7と同形状であって同じ高さ位置に連接口12が形成されており、また、計測室4と計測室5との間には連接壁13が形成され、この連接壁13には窓部8と同形状であって同じ高さ位置に連接口14が形成されている(図2参照)。そして上記連接壁9、11及び13は、いずれも2つの計測室を仕切る境界として一枚の板状の壁から構成されている。
About connecting wall and connecting port:
A connecting wall 9 connecting the two rooms is formed at the boundary between the measuring chamber 2 and the measuring chamber 3, and the connecting wall 9 has the same shape as the window portion 6 and the same height position. The connection port 10 formed in the above is formed. Similarly, a connecting wall 11 is formed between the measuring chamber 3 and the measuring chamber 4, and a connecting port 12 is formed in the connecting wall 11 in the same shape as the window portion 7 and at the same height position. Further, a connecting wall 13 is formed between the measuring chamber 4 and the measuring chamber 5, and a connecting port 14 is formed in the connecting wall 13 in the same shape as the window portion 8 and at the same height position. (See FIG. 2). The connecting walls 9, 11 and 13 are each composed of a single plate-like wall as a boundary for partitioning the two measurement chambers.

上記連接壁は、本発明における互いに隣接する計測室を連接させるための態様を限定するものではない。本発明における計測室は、いずれも独立し、隣接する計測室同士が、連接口によって連接されており、その結果、一の計測室に設けられた連接口から分取される流水の全量が隣り合う次の計測室に流れ込むことが可能であればよい。したがって、例えば、独立した第1の計測室の壁に設けられた連接口から伸びる流水路を、隣り合う第2の計測室の壁に通じせしめ、これによって第1の計測室から分取された流水を第2の計測室へと流し込む態様等を採用することができる。かかる態様の場合には、上記第2の計測室の壁に設けられる分取された流水を受け入れる受け入れ口を設ける必要がある。上記受け入れ口は、流水の受け入れを阻害しない程度の形状及び大きさであればよいが、その高さ位置は、分取された流水が第1の計測室から第2の計測室へと流れ込むことを阻害しないよう上記第1の計測室に設けられた連接口と同じ高さ以下に設ける必要があり、また、第2計測室の最大貯留容量を実質的に小さくしないために第2計測室における窓部の底面の高さよりも高い位置に設けられる必要がある。 The connecting wall does not limit the mode for connecting the measurement chambers adjacent to each other in the present invention. The measurement chambers in the present invention are all independent, and adjacent measurement chambers are connected to each other by a connection port. As a result, the total amount of running water separated from the connection port provided in one measurement chamber is adjacent. It suffices if it can flow into the next measuring chamber. Therefore, for example, the flowing water channel extending from the connection port provided in the wall of the independent first measurement chamber is led to the wall of the adjacent second measurement chamber, and thus separated from the first measurement chamber. For example, a mode in which running water is poured into the second measurement chamber can be employed. In the case of this aspect, it is necessary to provide a receiving port for receiving the separated running water provided on the wall of the second measurement chamber. The receiving port may have any shape and size that does not hinder the reception of flowing water, but the height position is such that the separated flowing water flows from the first measuring chamber to the second measuring chamber. In order to prevent the maximum storage capacity of the second measurement chamber from being substantially reduced, it is necessary to provide it at the same height as the connection port provided in the first measurement chamber. It is necessary to be provided at a position higher than the height of the bottom surface of the window portion.

本発明における連接口は、隣り合う分取計測室間あるいはn番目の分取計測室と第n+1番目の最終計測室との間において、順序の小さい方の計測室の側面に設けられた窓部と同形状且つ同じ高さ位置で設けられている。したがって、第1番目の分取計測室と最終計測室との間に設けられる分取計測室では、隣り合う順序の小さい方の計測室との間に形成される連接口(以下、「流入連接口」ともいう)と、隣り合う順序の大きい方の計測室との間に形成される連接口(以下、「流出連接口」ともいう)の2種の連接口を有することとなる。このとき、上記流入連接口は、隣り合う順序の小さい計測室に設けられた窓部と同形状且つ同じ高さ位置に設けられたものであり、一方、上記流出連接口は、当該分取計測室に設けられる窓部と同形状且つ同じ高さ位置に設けられたものである。ここで本発明における窓部は、隣り合う分取計測室同士の関係では昇順毎に窓部底部の位置が低くなるよう形成されるため、結果として、上記流入連接口と流出連接口との関係では、流出連接口の底部の高さ位置の方が低く形成されることとなる。したがって、流水は、第1分取計測室から最終計測室に向けて、昇順に流れながら分取される結果となり、逆流が防止されている。 In the present invention, the connecting port is a window provided on the side surface of the measurement chamber having a smaller order between the adjacent measurement chambers or between the nth measurement chamber and the (n + 1) th final measurement chamber. Are provided in the same shape and at the same height. Therefore, in the preparative measurement chamber provided between the first preparatory measurement chamber and the final measurement chamber, a connection port (hereinafter referred to as “inflow connection”) formed between the measurement chambers in the smaller order of the adjacent order. And a connection port (hereinafter also referred to as “outflow connection port”) formed between the adjacent measurement chambers in the larger order. At this time, the inflow connection port is provided in the same shape and at the same height as the windows provided in the measurement chambers in the adjacent order, while the outflow connection port is the preparative measurement. It is provided in the same shape and at the same height as the window provided in the chamber. Here, the window portion in the present invention is formed so that the position of the bottom portion of the window portion becomes lower for each ascending order in the relationship between the preparative measurement chambers, and as a result, the relationship between the inflow connection port and the outflow connection port. Then, the height position of the bottom part of the outflow connection port is formed lower. Therefore, the flowing water is collected while flowing in ascending order from the first preparatory measurement chamber to the final measurement chamber, and backflow is prevented.

そして、分取計測室に流れ込んだ流水が該分取計測室における最大貯留容量を超えたときに、流水が当該分取計測室における窓部から溢れ出すと同時に、その一部を連接口(流出連接口)を介して隣り合う順序の大きい分取計測室に一定の割合で流し込ませることができる。換言すると、窓部から溢れ出す量に対し、一定の割合で隣り合う分取計測室に流水を分取することができるのである。一の計測室において、当該計測室の最大貯留量を超えて流れ込む流水の量に対し、隣り合う計測室に分取される流水の割合X(%)は、一の計測室における流出連接口の数をA、窓部の数をBとしたときに、下記式(1)により算出される。したがって連接口の数及び窓部の数を調整することにより分取比率を決定することができる。
(式1) X=A/(A+B)×100 (1)
When the flowing water flowing into the preparative measurement chamber exceeds the maximum storage capacity in the preparative measurement chamber, the flowing water overflows from the window in the preparative measurement chamber, and at the same time, a part of it is connected to the connecting port (outflow). It can be made to flow at a fixed rate into the preparative measurement chambers adjacent to each other through the connection port). In other words, it is possible to sort the flowing water into the fractionation measurement chambers adjacent to each other at a certain ratio with respect to the amount overflowing from the window. In one measurement chamber, the ratio X (%) of flowing water that is separated into adjacent measurement chambers with respect to the amount of flowing water that flows in excess of the maximum storage volume of the measurement chamber is the outflow connection port in one measurement chamber. When the number is A and the number of windows is B, it is calculated by the following equation (1). Therefore, the fractionation ratio can be determined by adjusting the number of connecting ports and the number of window portions.
(Formula 1) X = A / (A + B) × 100 (1)

第1分取計測室2について:
第1分取計測室2は、図1に示されるとおり、その上面が全面開口して形成されており、この開口部分によって流入口15が構成されている。第1分取計測室2は、本発明の第1番目の分取計測室に相当し、本発明の計測枡に流れ込む流水を受け入れ、かかる流水を一定の割合で隣り合う第2分取計測室3に分取する役割を果たすものである。第1分取計測室2に流れ込む流水は、測定対象領域より集水された土砂含有の流水をそのまま流し込むこともできるし、事前に上記流水を一定の割合で分取したものを流し込んでもよい。
About the first preparative measurement room 2:
As shown in FIG. 1, the first preparative measurement chamber 2 is formed so that the entire upper surface thereof is open, and the inflow port 15 is configured by this opening. The first preparative measurement chamber 2 corresponds to the first preparative measurement chamber of the present invention, receives the flowing water flowing into the measuring rod of the present invention, and the second preparative measurement chamber adjacent to the flowing water at a certain rate. It plays the role of sorting into three. The flowing water that flows into the first fractionation measurement chamber 2 can flow as it is the sediment-containing flowing water collected from the region to be measured, or it may flow in water that has been collected in advance at a certain rate.

第1番目の分取計測室に設けられる流入口は、図1に示すとおり、計測室の上面を略全面開口してこれを流入口としてもよいし、あるいは、第1番目の分取計測室に天板を設け、この一部を開口させて、流入口としてもよい。 As shown in FIG. 1, the inflow port provided in the first preparatory measurement chamber may be formed by opening substantially the entire upper surface of the measurement chamber as an inflow port, or the first preparative measurement chamber. It is possible to provide a top plate and open a part of the top plate as an inlet.

第2分取計測室3および第3分取計測室4について:
図1に示される本発明の流出土砂計測枡1は、計測室の順番を表す係数nが2の場合における一実施態様である。したがって、分取計測室は第3番目まで形成されている。第2番目以降の分取計測室は、第1番目の分取計測室より分取された流水をさらに一定の割合で分取するために設けられるものであるので、対象となる流水量が多いことが予想される場合、あるいは、測定期間を長期間に設定したい場合には、第2番目以降の分取計測室を多く形成することが望ましい。
Regarding the second preparative measurement chamber 3 and the third preparative measurement chamber 4:
1 is an embodiment in the case where the coefficient n representing the order of the measurement chambers is 2. As shown in FIG. Therefore, the preparative measurement chamber is formed up to the third. Since the second and subsequent fractionation measurement chambers are provided for further fractionating the flowing water separated from the first fractionation measurement chamber at a certain rate, the amount of target flowing water is large. If this is expected, or if it is desired to set the measurement period to a long period, it is desirable to form a large number of second and subsequent preparative measurement chambers.

最終計測室5について:
最終計測室5は、n=4の本発明における態様において、n+1番目の計測室に相当し、本発明の計測枡の最後に設けられる計測室である。最終計測室5には、特に窓部は設けられておらず、連接口14を経て、第3分取計測室4から分取された流水を貯留するに留まる。
About the final measurement room 5:
The final measurement chamber 5 corresponds to the (n + 1) th measurement chamber in the aspect of the present invention where n = 4, and is a measurement chamber provided at the end of the measurement basket of the present invention. The final measurement chamber 5 is not particularly provided with a window portion, and only stores running water collected from the third preparative measurement chamber 4 via the connection port 14.

排出口について:
図1に示す計測枡のX−X断面図を図3に示す。計測室2〜5の底面にはそれぞれ排出口19a〜19dが形成されている。これら排出口は、測定期間終了の後、各計測室に沈殿し貯留した土砂を測定するために各計測室から該土砂を取り出すために設けられたものである。したがって、かかる趣旨を逸脱しない限りにおいて、排出口の形状、大きさあるいは設ける位置などについては適宜変更することができる。
About the outlet:
XX sectional drawing of the measuring rod shown in FIG. 1 is shown in FIG. Discharge ports 19a to 19d are formed on the bottom surfaces of the measurement chambers 2 to 5, respectively. These discharge ports are provided to take out the sediment from each measurement chamber in order to measure the sediment deposited and stored in each measurement chamber after the end of the measurement period. Accordingly, the shape, size, or position of the discharge port can be changed as appropriate without departing from the spirit of the invention.

界面活性剤の使用について:
上述したとおり本発明の計測枡は、計測室に流入する流水を窓部より溢れ出させると同時に隣接する計測室に一定の割合で流水を移行させて分取する機構が採用されている。従って、第1分取計測室に流入した流水が、連接口を介して最終計測室へと流れる流れ、及び各窓部からのオーバーフローがスムーズであるほど、より正確な流出土砂量を得ることができる。上記流水のスムーズな流れを補助するための例として、流水に界面活性剤を添加する方法が挙げられる。流水へ界面活性剤を添加する方法は特に限定するものではないが、例えば、固形の界面活性剤を予め各計測室に設置しておき、貯留した流水によって除々に界面活性剤を溶出させ、これによって貯留した流水に界面活性剤を懸濁させることができる。また第1分取計測室に隣接して、界面活性剤滴下装置を設置してもよい。
上記界面活性剤の添加によれば、計測室への流入量が少ない場合(即ち、窓部からのオーバーフローする量及び隣り合う計測室へ移行する流水量が少ない場合)であっても、各窓部及び連接口を形成するために計測室の側面あるいは連接壁を切削した切削面の微妙な違い等によるメニスカス(液面の凹凸)に起因する流動の不均一を良好に緩和することができ好ましい。
About the use of surfactants:
As described above, the measuring rod according to the present invention employs a mechanism that causes the flowing water flowing into the measurement chamber to overflow from the window portion and at the same time, transfers the flowing water to the adjacent measurement chamber at a certain rate and separates it. Therefore, the more smoothly the flowing water that has flowed into the first preparatory measurement chamber flows into the final measurement chamber through the connection port and the overflow from each window portion, the more accurate the amount of discharged sediment can be obtained. it can. As an example for assisting the smooth flow of the flowing water, there is a method of adding a surfactant to the flowing water. The method of adding the surfactant to the running water is not particularly limited. For example, a solid surfactant is previously installed in each measurement chamber, and the surfactant is gradually eluted with the stored running water. The surfactant can be suspended in the running water stored by the above. Further, a surfactant dropping device may be installed adjacent to the first preparative measurement chamber.
According to the addition of the surfactant, each window can be used even when the amount of inflow into the measurement chamber is small (that is, when the amount of overflow from the window and the amount of water flowing to the adjacent measurement chamber is small). It is preferable that uneven flow due to meniscus (liquid level unevenness) due to subtle differences in the cutting surface obtained by cutting the side surface of the measuring chamber or the connecting wall to form the connection part and the connecting port can be preferably mitigated. .

(計測枡1に流れ込む流水の動きについて)
以下に、上記構成を有する本発明の計測枡1に流水が流れ込んできた際の流水の動きを説明する。まず、測定対象領域から集水された土砂含有の流水が、流入口15を介して第1分取計測室2に流れ込み、該計測室2に上記流水が貯留され始める。連続して、あるいは断続的に計測室2に流れ込み貯留される流水の水嵩が、窓部6の底面を越えて、計測室2の最大貯留容量を超えると、11ヶの窓部6の其々から流水のオーバーフローが始まる。それと同時に、連接口10からも流水のオーバーフローが始まる。上記連接口10からオーバーフローした流水は、第2分取計測室3に流れ込む。第2分取計測室3に流れ込んだ流水は、第2分取計測室3に貯留され、その水嵩が窓部7の底面を越えて計測室3の最大貯留容量を超えると、窓部7から流水のオーバーフローが始まる。それと同時に、連接口12からも流水のオーバーフローが始まる。このオーバーフローした流水は、第3分取計測室4に流れ込む。続いて第3分取計測室4から最終計測室5に流水が流れ込む作用も上述と同様である。
(Regarding the movement of running water flowing into measuring rod 1)
Below, the movement of flowing water when flowing water flows into the measuring rod 1 of the present invention having the above-described configuration will be described. First, the sediment-containing running water collected from the measurement target region flows into the first preparatory measurement chamber 2 through the inlet 15, and the running water starts to be stored in the measurement chamber 2. If the volume of running water that flows continuously and intermittently into the measurement chamber 2 exceeds the bottom of the window portion 6 and exceeds the maximum storage capacity of the measurement chamber 2, each of the 11 window portions 6 From the beginning of the overflow of running water. At the same time, overflow of running water also starts from the connection port 10. The flowing water overflowed from the connection port 10 flows into the second preparative measurement chamber 3. The flowing water that has flowed into the second preparative measurement chamber 3 is stored in the second preparative measurement chamber 3, and when the volume of water exceeds the bottom of the window portion 7 and exceeds the maximum storage capacity of the measurement chamber 3, The overflow of running water begins. At the same time, overflow of running water starts from the connection port 12. This overflowed flowing water flows into the third preparative measurement chamber 4. Subsequently, the action of flowing water from the third preparative measurement chamber 4 to the final measurement chamber 5 is the same as described above.

このように本発明の計測枡1では、各計測室に流れ込んだ流水の量が、計測室の最大貯留容量を超えると窓部及び連接口から流水のオーバーフローが始まり、特に連接口からオーバーフローする流水が隣り合う次の計測室へと流れる仕組みとなっている。ことのき、1つの計測室において、窓部と連接口とが、同形状且つ同一に形成されることによって、オーバーフローする流水のうち一定比率の流水が隣り合う計測室へと流出したことを確認することができる。従って、窓部及び連接口は、計測室毎に形状及び形成される高さが等しく揃えられていることが重要である。また、その形状自体は、特にスリット型に限定されるものではなく、例えば、円形や、正方形等の他の形状に形成されていてもよい。 As described above, in the measuring rod 1 of the present invention, when the amount of flowing water flowing into each measuring chamber exceeds the maximum storage capacity of the measuring chamber, the flowing water starts to overflow from the window and the connecting port, and in particular, the flowing water that overflows from the connecting port. Has a mechanism that flows to the next measurement room next to it. At that time, in one measurement room, it is confirmed that a certain proportion of the flowing water has flowed out into the adjacent measurement room by forming the windows and connecting ports in the same shape and shape. can do. Therefore, it is important that the windows and the connecting ports have the same shape and height to be formed for each measurement chamber. Further, the shape itself is not particularly limited to the slit type, and may be formed in other shapes such as a circle and a square, for example.

次に、本発明の計測枡1において各計測室に流れ込む流水量に対して、隣接する計測室に移行することによって分取される流水の割合について、さらに詳しく説明する。
まず、計測室2の最大貯留容量を越えて流れ込んだ流水に対する、計測室3へ移行した流水の量の割合X(即ち、計測室3に分取される割合)は、上記式(1)により、1/(10+1)×100=約9.1%である。従って、流入口15から計測室2に流入する流水のうち、第1分取計測室2の最大貯留容量を越えて流入する流水の約9.1%が常に計測室3に流入することになる。同様にして、計測室3からオーバーフローする流水のうち計測室4へと分取される流水の比率は、約9.1%である。従って、連接口10から計測室3に流入する流水のうち、計測室3の最大貯留容量を越えて流入する流水の約9.1%が常に計測室4に流入することになる。計測室4から計測室5にも、上述と同様に流水が分取される。
Next, the ratio of flowing water separated by moving to an adjacent measuring chamber with respect to the amount of flowing water flowing into each measuring chamber in the measuring rod 1 of the present invention will be described in more detail.
First, the ratio X of the amount of flowing water that has flowed to the measuring chamber 3 with respect to the flowing water that has flowed in excess of the maximum storage capacity of the measuring chamber 2 (that is, the ratio that is separated into the measuring chamber 3) is expressed by the above equation (1). 1 / (10 + 1) × 100 = about 9.1%. Therefore, about 9.1% of the flowing water flowing into the measurement chamber 2 from the inlet 15 exceeding the maximum storage capacity of the first preparatory measurement chamber 2 always flows into the measurement chamber 3. . Similarly, the ratio of the flowing water that flows into the measuring chamber 4 out of the flowing water that overflows from the measuring chamber 3 is about 9.1%. Therefore, about 9.1% of the flowing water that flows into the measurement chamber 3 from the connection port 10 and that flows beyond the maximum storage capacity of the measurement chamber 3 always flows into the measurement chamber 4. Flowing water is also collected from the measurement chamber 4 to the measurement chamber 5 in the same manner as described above.

一方、計測室5は、計測枡1における最終の計測室なので、窓部は設けられていない。従って、一旦、計測室5に分取され貯留された流水が、連接口14から計測室4に逆流しないためにも、最終計測室5に貯留される流水は、計測室5の最大貯留容量以下であることが望ましい。換言すると、流水の測定実施期間は、流入量が最終計測室5の最大貯留容量を越える前に終了するよう設定されることが望ましい。 On the other hand, since the measurement chamber 5 is the final measurement chamber in the measurement rod 1, no window portion is provided. Therefore, the flowing water once collected and stored in the measurement chamber 5 does not flow backward from the connection port 14 to the measurement chamber 4, so that the flowing water stored in the final measurement chamber 5 is less than the maximum storage capacity of the measurement chamber 5. It is desirable that In other words, it is desirable to set the measurement period for flowing water to end before the inflow amount exceeds the maximum storage capacity of the final measurement chamber 5.

(流出土砂量の測定方法について)
以下に、本発明における流水の分取の過程を一般的な概念でさらに説明するとともに、あわせて、分取された流水量及び該流水に含まれる流出土砂量から、計測装置に流入した全流水量及び全流水量に含まれる全流出土砂量を算出する方法を説明する。
(About the measurement method of the amount of runoff sediment)
In the following, the process of separating flowing water according to the present invention will be further described with a general concept. In addition, the total flowing water that has flowed into the measuring device based on the amount of flowing water and the amount of sediment contained in the flowing water will be described. The method for calculating the total amount of sediment runoff included in the amount and total amount of water flow will be described.

以下の説明には、4つの連続する分取計測室及びこれに続く最終計測室を有する計測枡Rを想定し、第1番目の分取計測室(以下、第1計測室という)の最大貯留容量をAリットル、第2番目の分取計測室(以下、第2計測室という)の最大貯留容量をBリットル、第3番目の分取計測室(以下、第3計測室という)の最大貯留容量をCリットル、第4番目の分取計測室(以下、第4計測室という)の最大貯留容量をDリットル、上記第4計測室に続く最終計測室の最大貯留容量をEリットルであるものとし、流水の分取は、最終計測室に分取された流水の貯留量がちょうど最大貯留容量になるまで行うものとする。
また上記式(1)より得られる各計測室間における分取の割合として、第1計測室から第2計測室へと分取され流水の割合Xをa%、第2計測室から第3計測室へと分取され流水の割合Xをb%、第3計測室から第4計測室へと分取され流水の割合Xをc%、第4計測室から最終計測室へと分取され流水の割合Xをd%とする。尚、第1計測室は、測定対象領域から集水された流水が直接流入するものとし、分取比率は1(即ち分取される割合100%)とした。
尚、各計測室の底面にはそれぞれ、貯留された流水を排出させるための排出口を備えるものとする。
In the following description, the maximum storage of the first preparative measurement chamber (hereinafter referred to as the first measurement chamber) is assumed, assuming a measuring rod R having four consecutive preparative measurement chambers and the subsequent final measurement chamber. The capacity is A liter, the maximum storage capacity of the second preparative measurement chamber (hereinafter referred to as the second measurement chamber) is B liter, and the maximum storage of the third preparative measurement chamber (hereinafter referred to as the third measurement chamber). The capacity is C liters, the maximum storage capacity of the fourth preparatory measurement chamber (hereinafter referred to as the fourth measurement chamber) is D liters, and the maximum storage capacity of the final measurement chamber following the fourth measurement chamber is E liters. In addition, the running water is separated until the storage amount of the flowing water collected in the final measurement chamber reaches the maximum storage capacity.
Further, as a ratio of separation between the measurement chambers obtained from the above formula (1), the ratio X of the flowing water separated from the first measurement chamber to the second measurement chamber is a%, and the third measurement is performed from the second measurement chamber. The proportion X of flowing water separated into the chamber is b%, the proportion X of flowing water is separated from the third measuring chamber to the fourth measuring chamber c%, and the flowing water is separated from the fourth measuring chamber to the final measuring chamber. The ratio X is d%. In the first measurement chamber, the water collected from the measurement target area directly flows in, and the fractionation ratio is 1 (that is, the fractionation ratio is 100%).
In addition, the bottom of each measurement chamber shall be equipped with the discharge port for discharging the stored flowing water, respectively.

上記計測枡Rでは、第1計測室に流入した流水量がAリットルを越えると、第1計測室に設けられた窓部からオーバーフローが始まるとともに、流入する流水のa%が第1計測室及び第2計測室間に設けられた連接口を介して、第2計測室に流入する。次いで、第2計測室に流入した流水量がBリットルを越えると、第2計測室に設けられた窓部からオーバーフローが始まるとともに、流入する流水のb%が第2計測室及び第3計測室間に設けられた連接口を介して、第3計測室に流入する。同様に、第3計測室に流入する流水がCリットルを越えると流入する流水のうちc%が第4計測室に流入し、第4計測室に流入する流水がDリットルを越えると流入する流水のうちd%が第五計測室に流入する。第五計測室に流入する流水がEリットルになった時点で、測定の実施を終了する。
尚、以上の計測枡Rにおける種々の設定及び、後述する計算結果を、表1に示す。
In the measuring rod R, when the amount of flowing water flowing into the first measuring chamber exceeds A liter, overflow starts from the window provided in the first measuring chamber, and a% of the flowing water flows into the first measuring chamber and It flows into the second measurement chamber through a connection port provided between the second measurement chambers. Next, when the amount of water flowing into the second measurement chamber exceeds B liters, overflow starts from the window provided in the second measurement chamber, and b% of the flowing water flows into the second measurement chamber and the third measurement chamber. It flows into the third measurement chamber through a connecting port provided between them. Similarly, if the flowing water flowing into the third measurement chamber exceeds C liters, c% of the flowing water flows into the fourth measuring chamber, and flowing water flowing into the fourth measurement chamber exceeds D liters. D% of them flows into the fifth measurement chamber. When the flowing water flowing into the fifth measurement chamber becomes E liter, the measurement is finished.
Table 1 shows various settings in the measuring rod R and calculation results described later.

次に、各計測室に分取した流水を計測室の底面に設けられている排出口から排出させ、貯留された流水量及びこれに含まれる土砂量を各計測室毎に計測する。ここで、第1計測室乃至第4計測室、及び最終計測室に貯留された流水量は、順にAリットル、Bリットル、Cリットル、Dリットル、Eリットル(即ち各計測室の最大貯留容量)であり、これに含まれる土砂の量を計測したところ、表1に示すとおり、第1計測室から順に、M1グラム、M2グラム、M3グラム、M4グラム、M5グラムであったものとする。
続いて上記数値に、全流水量に対する分取の比率を乗じると、各計測室に流れ込んだ全流水量及び上記全流水量に含まれていた全土砂量を算出することができる。具体的には、各計測室に流れ込んだ全流水量は、下記のとおり算出される。
第1計測室:A×1=A(リットル)
第2計測室:B×100/a=G(リットル)
第3計測室:C×100/a×100/b=H(リットル)
第4計測室:D×100/a×100/b×100/c=I(リットル)
最終計測室:E×100/a×100/b×100/c×100/d=J(リットル)
また同様に、各計測室に流れ込んだ全流水量に含まれる全土砂量は、下記のとおり算出される。
第1計測室:M1×1=K(グラム)
第2計測室:M2×100/a=L(グラム)
第3計測室:M3×100/a×100/b=N(グラム)
第4計測室:M4×100/a×100/b×100/c=O(グラム)
最終計測室:M5×100/a×100/b×100/c×100/d=P(グラム)
Next, the flowing water collected in each measurement chamber is discharged from a discharge port provided on the bottom surface of the measurement chamber, and the amount of stored flowing water and the amount of sediment contained therein are measured for each measurement chamber. Here, the amounts of flowing water stored in the first measurement chamber to the fourth measurement chamber and the final measurement chamber are A liter, B liter, C liter, D liter, and E liter in order (that is, the maximum storage capacity of each measurement chamber). When the amount of earth and sand contained therein was measured, as shown in Table 1, it was assumed that they were M1 gram, M2 gram, M3 gram, M4 gram, and M5 gram in order from the first measurement chamber.
Subsequently, by multiplying the above numerical value by the ratio of fractionation with respect to the total amount of water flow, the total amount of water flowing into each measurement chamber and the total amount of earth and sand contained in the total amount of water flow can be calculated. Specifically, the total amount of water flowing into each measurement room is calculated as follows.
First measurement room: A x 1 = A (liter)
Second measurement chamber: B × 100 / a = G (liter)
Third measurement chamber: C × 100 / a × 100 / b = H (liter)
Fourth measurement chamber: D × 100 / a × 100 / b × 100 / c = I (liter)
Final measurement room: E × 100 / a × 100 / b × 100 / c × 100 / d = J (liter)
Similarly, the total amount of earth and sand contained in the total amount of water flowing into each measurement room is calculated as follows.
First measurement chamber: M1 × 1 = K (grams)
Second measurement chamber: M2 × 100 / a = L (grams)
Third measurement chamber: M3 × 100 / a × 100 / b = N (grams)
Fourth measurement chamber: M4 × 100 / a × 100 / b × 100 / c = O (gram)
Final measurement room: M5 × 100 / a × 100 / b × 100 / c × 100 / d = P (grams)

そして最後に、計測装置に流入した全流水量S(リットル)及び全流水量Sに含まれる全土砂量T(グラム)を、以下の式にて算出することができる。
全流水量S=A+G+H+I+J
全土砂量T=K+L+N+O+P
Finally, the total flow amount S (liter) flowing into the measuring device and the total sediment amount T (grams) contained in the total flow amount S can be calculated by the following equations.
Total water flow S = A + G + H + I + J
Total amount of sand T = K + L + N + O + P

上述のとおり、本発明の計測枡を用いれば、測定対象領域から集水される流水をそのまま、あるいは、事前に一定の割合で分取した後、第1計測室に流し込むだけで、連続する計測室に一定の割合で分取することができる。そして各計測室に分取されて貯留された流水を排出せしめ、計測室毎にその貯留された流水の量及びこれに含まれる土砂量を測定し、測定量に分取された比率を乗じて得られた数値の総和を求めることにより、計測枡に流れ込んだ流水の全量及びこれに含まれる土砂量を求めることができる。 As described above, if the measuring rod of the present invention is used, continuous measurement can be performed simply by flowing the water collected from the measurement target region as it is or after pre-sorting at a certain ratio and then flowing into the first measurement chamber. It can be sorted into a room at a certain rate. Then, the running water separated and stored in each measurement room is discharged, and the amount of the stored flowing water and the amount of earth and sand contained in each measurement room are measured, and the measured amount is multiplied by the fraction taken. By obtaining the sum total of the obtained numerical values, the total amount of running water that has flowed into the measuring trough and the amount of earth and sand contained therein can be obtained.

尚、本発明の計測枡において測定される流水量の限界(以下、「測定限界量」ともいう)は、上述した全流水量Sに相当する。即ち、各計測室の最大貯留容量に全流水量に対する分取比率を乗じ、これを加算した量である。 In addition, the limit (hereinafter also referred to as “measurement limit amount”) of the flowing water amount measured in the measuring rod of the present invention corresponds to the total flowing water amount S described above. That is, it is an amount obtained by multiplying the maximum storage capacity of each measurement room by the fractionation ratio with respect to the total water flow amount and adding this.

本発明の計測枡を用い、上述する算出方法によれば、一定期間内に降った雨の影響により圃場から流出する土砂量を測定することができる。この場合、計測枡の基本的構造(及び寸法)は、計測対象領域の降雨規模等を解析し、これを基に任意に決定することができる。例えば、一ヶ月に一度、計測枡に貯留された流水量及びこれに含まれる土砂量を計測し目的の圃場より流出した土砂量を算出する場合には、まず計測の対象とする圃場の面積を求め、該面積に一ヶ月間の平均月雨量を乗じ、さらにこれに流出率を乗じることにより、計測対象となる圃場から一ヶ月間に流出する流水量の総量の予想量(降雨規模)を計算する。そして計測枡の測定限界量が、上記一ヶ月間に流出する流水量の総量を上回るように、計測室の数、窓数、各計測室の最大貯留容量などを適宜決定して、用いる計測枡を作成する必要がある。あるいは、既に形成された計測枡の測定限界量及び上記降雨規模を勘案し、計測期間を決定してもよい。
但し、持ち運びを容易にし、また設置スペースについて広い面積を確保しなくてもよいという観点からは、本発明の計測枡の寸法は、例えば矩形状の横断面の一辺が40cm〜200cm、他辺が20cm〜180cm、高さが30cm〜100m程度であることが好ましい。
According to the calculation method described above using the measuring rod of the present invention, it is possible to measure the amount of sediment flowing out from the field due to the influence of rain that falls within a certain period. In this case, the basic structure (and dimensions) of the measuring rod can be arbitrarily determined based on the analysis of the rainfall scale of the measurement target region. For example, when measuring the amount of flowing water stored in a measuring basin and the amount of sediment contained in this once a month and calculating the amount of sediment flowing out of the target field, first determine the area of the field to be measured. Calculate the expected amount of rainfall (scale of rainfall) of the amount of water flowing out from the field to be measured in one month by multiplying the area by the monthly average monthly rainfall and then multiplying this by the runoff rate. To do. Then, the number of measurement chambers, the number of windows, the maximum storage capacity of each measurement chamber, etc. are appropriately determined and used so that the measurement limit amount of the measurement rod exceeds the total amount of flowing water flowing out in the above month. Need to create. Alternatively, the measurement period may be determined in consideration of the measurement limit amount of the measurement rod already formed and the above-described rainfall scale.
However, from the viewpoint of facilitating carrying and not having to secure a large installation space, the dimensions of the measuring rod of the present invention are, for example, 40 cm to 200 cm on one side of a rectangular cross section, It is preferable that the height is about 20 cm to 180 cm and the height is about 30 cm to 100 m.

上述によれば、目的の圃場より流出した流水を集水し第1計測室に流れ込むよう本発明を設置し、所定の期間放置し、該期間経過後に各計測室に貯留された流水及びこれに含まれる土砂量を計測し、上述の説明に従って全流水量及び全土砂量を算出するだけで、目的の圃場より所定の期間中に流出した土砂量を得ることができる。尚、本発明において流出率とは、降雨量に対し地盤に染み込まず地盤表面を流出する水量の比を意味する。 According to the above, the present invention is installed so as to collect the flowing water flowing out from the target field and flow into the first measurement chamber, leave it for a predetermined period, and the flowing water stored in each measurement chamber after the period has passed. It is possible to obtain the amount of sediment that has flowed out from the target field during a predetermined period only by measuring the amount of contained sediment and calculating the total amount of water flow and the total amount of sediment according to the above description. In the present invention, the runoff rate means the ratio of the amount of water that does not soak into the ground and flows out of the ground surface with respect to the rainfall.

(流出土砂計測装置について)
次に、本発明の流出土砂計測装置(以下、単に「計測装置」という場合がある)について図4を用いて説明する。本発明の流出土砂計測装置101は、測定対象領域から流れる流水を送水するための送水路であるU字溝103と、U字溝103に流れる流水の一部を一定の割合で分取するための分取路であるスリット板104と、スリット板104により分取された分取水を導く流水導入路105と、流水導入路105から流れる分取水106を受ける流出土砂計測枡1とから構成されている。尚、U字溝103に流れる水は、測定対象領域から集水パイプ102を経て流れてきたものである。またU字溝103は、これを支えるために組まれた支持台111の上に積置されている。
(About runoff sediment measurement equipment)
Next, the outflow sediment measuring apparatus of the present invention (hereinafter sometimes simply referred to as “measuring apparatus”) will be described with reference to FIG. The outflow sediment measuring apparatus 101 of the present invention separates the U-shaped groove 103 which is a water supply channel for supplying the flowing water flowing from the measurement target region and a part of the flowing water flowing in the U-shaped groove 103 at a certain ratio. A slit plate 104, a flowing water introduction path 105 that guides the collected water separated by the slit plate 104, and an outflow sediment measuring rod 1 that receives the collected water 106 flowing from the flowing water introduction path 105. Yes. The water flowing in the U-shaped groove 103 flows from the measurement target region through the water collecting pipe 102. The U-shaped groove 103 is stacked on a support base 111 assembled to support the U-shaped groove 103.

本計測装置101の構成によれば、測定対象領域から流れ出る流水が計測枡1に流れ込む前に、スリット板104により一定の割合で分取されている。このように第1番目の 分取計測室の手前で、一定の割合で分取することができるため、測定対象領域から流れ出る全流水量に対し第一計測室に流れ込む流水の量を少なくさせることができる。従って、計測枡の寸法をコンパクトにすることを可能とし、あるいは測定期間を長期に設定でき好ましい。尚、U字溝103を流れる流水のうち、スリット板104に分取されなかった流水は排流水107として、U字溝の下流方向端部より下方に落水させている。排流水107は、そのまま地盤に放水してもよいし、或いは排水用の水路を別に設け河川や、貯水池などに導いてもよい。 According to the configuration of the measurement device 101, the flowing water flowing out from the measurement target region is sorted by the slit plate 104 at a certain ratio before flowing into the measurement tank 1. In this way, since the sample can be collected at a fixed rate before the first measurement room, the amount of water flowing into the first measurement chamber should be reduced relative to the total amount of water flowing out from the measurement target area. Can do. Accordingly, it is preferable that the size of the measuring rod can be made compact or that the measurement period can be set long. Of the flowing water flowing through the U-shaped groove 103, the flowing water not separated by the slit plate 104 is drained as drained water 107 from the downstream end of the U-shaped groove. The drainage water 107 may be discharged to the ground as it is, or a drainage water channel may be provided separately and led to a river or a reservoir.

U字溝103とスリット板104についてより詳しく説明するために図5を示す。U字溝103は、略平面状の底面と、略垂直に起立する側面とからなる断面がU字状の溝構造をしている。したがって、U字溝103に流れる流水の水量は、U字状の断面で観察したときに、上記側面間に亘って略等しい水位であることが理解される。一方、スリット板104は、2枚の側面板とその上部を繋ぐ天板とより構成されており、断面が略均一な長方形となるように形成されている。図6において、スリット板104の斜視図及び該斜視図におけるY−Y断面図を示す。そして、スリット板104の上流側端部が、U字溝103の下流領域に設置されており、U字溝103に流れる流水の一部がスリット板104内を通って流水導入路105へと流れるよう構成されている。 FIG. 5 is shown in order to explain the U-shaped groove 103 and the slit plate 104 in more detail. The U-shaped groove 103 has a groove structure having a U-shaped cross section including a substantially flat bottom surface and a side surface standing substantially vertically. Therefore, it is understood that the amount of flowing water flowing in the U-shaped groove 103 is substantially equal to the level between the side surfaces when observed with a U-shaped cross section. On the other hand, the slit plate 104 is composed of two side plates and a top plate connecting the upper portions thereof, and is formed to have a substantially uniform rectangular cross section. FIG. 6 shows a perspective view of the slit plate 104 and a YY sectional view in the perspective view. And the upstream edge part of the slit board 104 is installed in the downstream area | region of the U-shaped groove 103, and a part of flowing water which flows into the U-shaped groove 103 flows into the flowing water introduction path 105 through the inside of the slit board 104. It is configured as follows.

上記U字溝103とスリット板104との構成によれば、スリット板104を構成する側面の内側間を計った内径幅寸法と、U字溝103の側面の内側間を計った内径幅寸法とにより、U字溝103を流れる流水に対する分取の割合が決定される。 According to the configuration of the U-shaped groove 103 and the slit plate 104, the inner diameter width dimension measured between the inner sides of the side surfaces constituting the slit plate 104, and the inner diameter width dimension measured between the inner sides of the side surfaces of the U-shaped groove 103; Thus, the fraction of the flowing water flowing through the U-shaped groove 103 is determined.

例えば、U字溝103の内径幅寸法に対し、スリット板104の内径幅寸法が10分の1であれば、U字溝103に流れる流水のうち、その約10%がスリット板104を通り、分取水として計測枡1に流れ込むことになる。したがってスリット板104に測定対象領域から流れ出る流水を予め分取した後、その分取水を計測枡1に流し込む本発明の計測装置1で、流出土砂量を算出するためには、第1の分取計測室1に貯留する流水量及びこれに含まれる土砂量の実測値に、上記U字溝103の内径幅に対するスリット板104の幅の割合を乗じる必要がある。次いで第2の分取計測室3に貯留された流水量及びこれに含まれる土砂量の実測値には、U字溝103の内径幅に対するスリット板104の幅の割合及び第1の分取計測室2から第2の分取計測室3へと分取される割合を乗じる必要がある。第3の分取計測室4及び最終計測室5についても同様の考え方により算出される。 For example, if the inner diameter width dimension of the slit plate 104 is one tenth of the inner diameter width dimension of the U-shaped groove 103, about 10% of the flowing water flowing in the U-shaped groove 103 passes through the slit plate 104. It flows into the measuring bowl 1 as preparative water. Therefore, in order to calculate the amount of sediment flowing out with the measuring device 1 of the present invention in which the flowing water flowing out from the measurement target area is preliminarily separated into the slit plate 104 and then the collected water is poured into the measuring rod 1, the first fractionation is performed. It is necessary to multiply the ratio of the width of the slit plate 104 to the inner diameter width of the U-shaped groove 103 to the measured value of the amount of flowing water stored in the measurement chamber 1 and the amount of sediment contained therein. Next, in the measured value of the amount of water stored in the second sorting measurement chamber 3 and the amount of earth and sand contained therein, the ratio of the width of the slit plate 104 to the inner diameter width of the U-shaped groove 103 and the first sorting measurement It is necessary to multiply the ratio of the separation from the chamber 2 to the second fractionation measurement chamber 3. The third preparatory measurement chamber 4 and the final measurement chamber 5 are calculated based on the same concept.

上述するU字溝103及び上述するスリット板104は、それぞれ本発明における計測装置における送水路及び分取路の例示であって、これに限定することを意図するものではない。本発明の計測装置における送水路とは、測定対象領域から流れ出た土砂含有の流水を流すための水路であって、また分取路は、この送水路を流れる流水を一定の割合で分取するための水路であって、上記送水路を流れる流水のうち上記分取路で、一定の割合の流水を分取できる関係にあればよい。 The U-shaped groove 103 and the slit plate 104 described above are examples of the water supply channel and the sorting channel in the measuring device according to the present invention, respectively, and are not intended to be limited thereto. The water supply channel in the measuring device of the present invention is a water channel for flowing sediment-containing water flowing out from the measurement target region, and the sorting channel separates the water flowing through this water supply channel at a constant rate. It is only necessary to have a relationship in which a certain proportion of flowing water can be separated from the flowing water flowing through the water supply channel.

(ゴミ除去用筒体について)
ところで、計測対象領域から集水された流水には、土砂だけでなく、落ち葉等の種々のゴミが含まれていることがある。流水量及びこれに含まれる土砂量を測定する場合に、これらのゴミが計測装置に入り込むことは測定値の誤差を生じる原因となるため好ましくない。また上述のようにスリット板104を用いた場合には、スリット板104に上記ゴミが入り込むことによってスリットが目詰まりし、U字溝103に流れる流水から一定の割合で流水を分取することが出来なくなる虞がある。
(About the dust removal cylinder)
By the way, the flowing water collected from the measurement target region may include not only earth and sand but also various kinds of garbage such as fallen leaves. When measuring the amount of flowing water and the amount of earth and sand contained therein, it is not preferable that these dusts enter the measuring device because it causes an error in the measured value. In addition, when the slit plate 104 is used as described above, the dust enters the slit plate 104 and the slit is clogged, and the flowing water can be separated from the flowing water flowing in the U-shaped groove 103 at a certain rate. There is a risk that it will not be possible.

従って、上述のような流水中のゴミの問題を回避するための手段として、図7に示すようにU字溝103内であって、スリット板104の上流側手前に、ゴミ除去用筒体121を設置することができる。ゴミ除去用筒体121は、上面方向から観察した際に時計周りあるいは反時計回りに回転可能な筒体であって、側面が網目状の中空体である。 Therefore, as a means for avoiding the problem of dust in the flowing water as described above, the dust removing cylinder 121 is disposed in the U-shaped groove 103 and upstream of the slit plate 104 as shown in FIG. Can be installed. The dust removing cylinder 121 is a cylindrical body that can rotate clockwise or counterclockwise when observed from the upper surface direction, and is a hollow body having a mesh-like side surface.

U字溝に流水が流れているときに、ゴミ除去用筒体121を回転させた状態を図8に示す。U字溝の上流側からは上述のとおり流水とともに落ち葉などのゴミ131が流れている。これらのゴミ131のうち、特にU字溝103の中央領域を流れるものは、ゴミ除去用筒体121の側面に接し、流水の力を受けて該側面に一時付着する。そしてゴミ除去用筒体131の回転にあわせてその位置が移動し、U字溝103の側面に近い位置にきたときに、今度は、流水の力によりゴミ除去用筒体121の側面から剥離される。剥離されたゴミ131は、U字溝側面寄りの領域において流水と流されて移動し、U字溝103の下流方向端部より、排流水とともに落下する。即ち、U字溝103の中央領域であって、スリット板104の手前に流れていたゴミ131は、ゴミ除去用筒体121の側面に付着してU字体側面方向に寄せられるので、結果として、スリット板104の手前に流れてくるゴミを除去することができるのである。かかる作用を得るためには、ゴミ除去用筒体121の回転速度は、緩やかなものでよく、水流を大きく変化させるほどのスピードで回転させることを好まない。 FIG. 8 shows a state where the dust removal cylinder 121 is rotated when running water is flowing through the U-shaped groove. From the upstream side of the U-shaped groove, dust 131 such as fallen leaves flows along with running water as described above. Among these dusts 131, particularly those that flow in the central region of the U-shaped groove 103 are in contact with the side surface of the dust removing cylinder 121 and are temporarily attached to the side surface under the force of flowing water. Then, when the position of the dust removal cylinder 131 moves in accordance with the rotation of the dust removal cylinder 131 and comes to a position close to the side surface of the U-shaped groove 103, it is peeled off from the side surface of the dust removal cylinder 121 by the flowing water. The The separated debris 131 is moved with running water in the region near the side surface of the U-shaped groove and moves with the discharged water from the downstream end of the U-shaped groove 103. That is, the dust 131 that flows in the central region of the U-shaped groove 103 and before the slit plate 104 adheres to the side surface of the dust removing cylinder 121 and is moved toward the side surface of the U-shaped body. The dust flowing in front of the slit plate 104 can be removed. In order to obtain such an effect, the rotation speed of the dust removing cylinder 121 may be moderate, and it is not preferable to rotate the dust removal cylinder 121 at such a speed as to greatly change the water flow.

図7及び図8に示すゴミ除去用筒体121は、断面が円形の円筒形状の筒体を用いた態様を示したが、本発明におけるゴミ除去用筒体の形状としては、これに限定されるものではない。筒体の断面形状は、上流方向から流れてきて筒体の側面に接したゴミを該側面に付着させた状態で回転し該ゴミの位置を移動させ、次いで、スリット板の手前にくる前に、流水の力によって該ゴミを剥離させ、U字溝の側面に沿って流すことによって、ゴミがスリット板に流れ込むことを防止することができる形状であれば、いずれの形状を採用してもよい。例えば、断面が三角形、あるいは四角形以上の多角形である筒体であってよい。 The dust removing cylinder 121 shown in FIG. 7 and FIG. 8 shows an aspect using a cylindrical cylinder having a circular cross section, but the shape of the dust removing cylinder in the present invention is not limited to this. It is not something. The cross-sectional shape of the cylindrical body is such that the dust flowing from the upstream direction and contacting the side surface of the cylindrical body is rotated with the dust attached to the side surface to move the position of the dust, and then before it comes to the front of the slit plate Any shape may be adopted as long as it can prevent the dust from flowing into the slit plate by peeling the dust by the force of flowing water and flowing along the side surface of the U-shaped groove. . For example, it may be a cylinder whose cross section is a triangle or a quadrilateral or more polygon.

上記ゴミ除去用筒体121の側面は網目状の中空体で形成する理由は、U字溝103における流水の流れを大きく変化させないためである。即ち、流水の流れの中に何等かの障害物を置くと、障害物を境に流水の流れる方向が左右に分割され、さらにその外側であってまっすぐに流れてくる流水とぶつかり渦を形成する。すると、障害物を設置した付近におけるU字溝の縦断面において水の流れを観察したときに、U字溝の側面間を亘って水の流れが均一ではなくなり、その結果、スリット板で分取される流水は、U字溝の内径幅寸法に対するスリット板の内径幅寸法より得られる割合で正確に分取することができなくなってしまうのである。
これに対し、本発明におけるゴミ除去用筒体は側面が網目状であって、且つ、中空体のため、流水の大半は、ゴミ除去用筒体の網目を通過し、筒体内部を通って流れることができるため、その流れる方向を、該ゴミ除去用筒体の存在により大きく変えることがない。
The reason why the side surface of the dust removing cylinder 121 is formed of a mesh-like hollow body is that the flow of running water in the U-shaped groove 103 is not greatly changed. In other words, when any obstacle is placed in the flow of flowing water, the flowing direction of the flowing water is divided into right and left with the obstacle as the boundary, and further, it forms a swirl with the flowing water that flows straight outside. . Then, when the water flow is observed in the longitudinal section of the U-shaped groove in the vicinity of the obstacle, the water flow is not uniform across the side surface of the U-shaped groove. The flowing water to be obtained cannot be accurately collected at a ratio obtained from the inner diameter width dimension of the slit plate with respect to the inner diameter width dimension of the U-shaped groove.
In contrast, the dust removal cylinder in the present invention has a mesh-like side surface and is hollow, so that most of the running water passes through the mesh of the dust removal cylinder and passes through the inside of the cylinder. Since it can flow, the flow direction is not greatly changed by the presence of the dust removing cylinder.

ゴミ除去用筒体の側面を網目状に形成するための具体的な部材としては、金網、メッシュシート、パンチングメタルシート等が挙げられるが、これに限定されるものではない。ゴミ除去用筒体に当接する水流を大きく変えることなく、流水中のゴミを付着させて回転し、再度、該ゴミを剥離させて、ゴミの流れる方向を変えるという趣旨を逸脱しない限り、公知の部材を適宜選択して使用してよい。網目の目の寸法は、1mm以上10mm以下が好ましく、3mm以上8mm以下がより好ましく、4mm以上6mm以下であることがさらに好ましい。網目の目の寸法が1mm未満であると、水の抵抗を受け易くなり、流水がスムーズに網目をとおって流れ難くなる虞がある。一方、網目の目の寸法が10mmを超えると、スリット板の目詰まりの原因となるサイズのゴミが網目を通過してゴミ除去用筒体121を通り過ぎ、スリット板に流れ込む虞がある。 Specific members for forming the side surface of the dust removal cylinder in a mesh shape include, but are not limited to, a wire mesh, a mesh sheet, a punching metal sheet, and the like. Unless it deviates from the gist of changing the direction in which the dust flows by changing the direction in which the dust flows by re-adhering the dust in the running water without rotating the water flow contacting the dust removal cylinder You may select and use a member suitably. The size of the mesh is preferably 1 mm or more and 10 mm or less, more preferably 3 mm or more and 8 mm or less, and further preferably 4 mm or more and 6 mm or less. If the size of the mesh is less than 1 mm, it tends to be subject to water resistance, and there is a risk that flowing water will not flow smoothly through the mesh. On the other hand, if the size of the mesh exceeds 10 mm, dust having a size that causes clogging of the slit plate may pass through the mesh, pass through the dust removing cylinder 121, and flow into the slit plate.

ゴミ除去用筒体を回転させる手段は、特に制限されるものではなく、従来公知の手段を選択して適宜設計し実施することができる。特に、本発明の計測装置は、屋外で実施されるため、電池などを用いてモーターにより回転させてもよい。
本発明の一実施形態として示す図7の装置101におけるゴミ除去用筒体121は、長さ方向の中心に駆動芯124を備えており、駆動芯124とゴミ除去用筒体121の側面とは天板122を介して連結している。またゴミ除去用筒体121は、駆動芯124と略垂直な向きに伸長し、少なくともU字溝103の側面間以上の長さを備える支持具123を備えている。支持具123の中央付近において駆動芯124が回転可能に軸通されており、支持具123の両端をU字溝103の側面上面に掛け渡すことによって、ゴミ除去用筒体121を吊り下げる状態で支持することができる。このため、ゴミ除去用筒体121をスムーズに回転させることができる。
一方、U字溝103の下流方向端部より、分取後の排流水107を下方向に落水させており、この排流水107に当接する位置に水車羽126が設けられている。水車羽126は、トルク伝達部材125により駆動芯124と連結されている。
The means for rotating the dust removing cylinder is not particularly limited, and any conventionally known means can be selected and appropriately designed and implemented. In particular, since the measuring device of the present invention is implemented outdoors, it may be rotated by a motor using a battery or the like.
The dust removal cylinder 121 in the apparatus 101 of FIG. 7 shown as an embodiment of the present invention includes a drive core 124 at the center in the length direction, and the drive core 124 and the side surface of the dust removal cylinder 121 are the same. The top plate 122 is connected. Further, the dust removal cylinder 121 includes a support 123 that extends in a direction substantially perpendicular to the drive core 124 and has a length that is at least as long as between the side surfaces of the U-shaped groove 103. In the vicinity of the center of the support 123, the drive core 124 is rotatably pivoted, and both ends of the support 123 are hung on the upper side surface of the U-shaped groove 103 so that the dust removal cylinder 121 is suspended. Can be supported. For this reason, the dust removal cylinder 121 can be smoothly rotated.
On the other hand, the drained drainage water 107 is dropped downward from the downstream end of the U-shaped groove 103, and a water wheel 126 is provided at a position in contact with the drainage drainage 107. The water wheel 126 is connected to the drive core 124 by a torque transmission member 125.

トルク伝達部材125としては、水車羽126の回転を駆動芯124に伝達し、該駆動芯124を回転させることができるものであれば、従来公知のいずれの部材を用いてもよい。例えば、代表的な例としてはフレキシブルシャフトを挙げることができる。他にも、かさ歯車や自在継手を複数、直列的に連結して、全体にフレキシブルなトルク伝達部材を構成することもできる。 As the torque transmission member 125, any conventionally known member may be used as long as the rotation of the water wheel 126 can be transmitted to the drive core 124 and the drive core 124 can be rotated. For example, a flexible shaft can be given as a typical example. In addition, a plurality of bevel gears and universal joints can be connected in series to form a flexible torque transmission member as a whole.

上記態様によれば、排流水107が水車羽126の羽部分に当接することにより、図面中矢印方向に水車羽126が回転する。この回転力は、トルク伝達手段によって駆動芯124に伝達され、この結果、駆動芯124が回転し、該駆動芯124と天板122を介して連結するゴミ除去用筒体121も回転する。したがって、電力などのエネルギーを何ら利用することなくゴミ除去用筒体121を回転させることができる。しかも、ゴミ除去用筒体121は、測定実施期間中、降雨などにより測定対象領域より流水が流れ出て、U字溝103に流水が流れているときだけ回転すればよいところ、電力などのエネルギーを用いて上記回転をさせるためには、その都度、スイッチを入れるなどの人的な管理と作業とが必要とされるが、上述のとおり、排流水107が水車羽126に当接すると自動的にゴミ除去用筒体121が回転する本態様であれば、回転の必要なときにだけ何等の管理も必要とせずにゴミ除去用筒体121を回転させることができる。 According to the said aspect, when the drainage water 107 contact | abuts to the wing | blade part of the watermill blade 126, the waterwheel blade 126 rotates in the arrow direction in drawing. This rotational force is transmitted to the drive core 124 by the torque transmission means. As a result, the drive core 124 rotates, and the dust removing cylinder 121 connected to the drive core 124 via the top plate 122 also rotates. Therefore, the dust removal cylinder 121 can be rotated without using any energy such as electric power. In addition, the dust removal cylinder 121 needs to rotate only when flowing water flows out of the measurement target area due to rain or the like during the measurement period, and the flowing water flows into the U-shaped groove 103. In order to perform the above rotation, human management and work such as turning on the switch are required each time. However, as described above, when the drainage water 107 comes into contact with the water wheel 126, it is automatically With this mode in which the dust removal cylinder 121 rotates, the dust removal cylinder 121 can be rotated without requiring any management only when rotation is necessary.

以下、本発明にかかる実施例について説明するが、本発明は以下に示す実施例により何ら制限されるものではなく、計測装置の基本的構造、例えば各計測室の数、寸法、窓部等の形状及び数は、計測対象領域の面積や計測期間、月間降雨量等により適宜決定してよい。また上記実施例と併せて、界面活性剤の添加効果、スリット板の分取比率の確認実験及び、ゴミ除去装置のゴミ除去効果についても説明する。尚、界面活性剤の添加、スリット板及びゴミ除去装置は、必ずしも用いる必要はないが、いずれか1つ或いは2種の組み合わせ、或いは全部を本発明の計測装置に採用することにより、上述した効果が得られるものである。 Hereinafter, examples according to the present invention will be described, but the present invention is not limited to the examples shown below, and the basic structure of the measurement device, for example, the number of measurement chambers, dimensions, window portions, etc. The shape and number may be appropriately determined depending on the area of the measurement target region, the measurement period, the monthly rainfall amount, and the like. Further, in conjunction with the above embodiment, the effect of adding the surfactant, the experiment for confirming the separation ratio of the slit plate, and the dust removal effect of the dust removal apparatus will be described. The addition of the surfactant, the slit plate, and the dust removing device are not necessarily used, but the effects described above can be obtained by adopting any one or two types of combinations or all of them in the measuring device of the present invention. Is obtained.

実施例1
厚み1.5mmのステンレス板で構成される横断面が長方形で上面全面が開口する箱体であって、高さ44cm、該長方形の長辺が70cm、短辺が30cmの横長の箱体を用い、長さ方向における一方の側面から25cmの位置、35cmの位置、60cmの位置にそれぞれ側面と略平行の仕切り板を設けて該側面から第1分取計測室、第2分取計測室、第3分取計測室、最終計測室を構成した。そして、第1計測室に面する箱体の側面において、高さ10cm、幅1.5cmの細長状の窓部1を上記箱体の側面を切削して、計29ヶ形成した。同様に、第2分取計測室の側面には、高さが12cm、幅1cmの細長状の窓部2を計10ヶ形成し、第3分取計測室の側面には、高さが13cm、幅1cmの細長状の窓部3を計4ヶ形成し、最終計測室の側面には、高さが14cm、幅1cmの細長状の窓部4を計1ヶ逆流防止のため形成した。また窓部1乃至窓部4は、その上面の高さ位置を揃えて形成し、窓部1の底面が、箱体の底面から30cmの位置、窓部2の底面が、箱体の底面から28cm、窓部3の底面が箱体の底面から27cmの位置、窓部4の底面が箱体の底面から26cmの位置にくるよう設計した。
Example 1
A box made of a stainless steel plate having a thickness of 1.5 mm and having a rectangular cross section and an entire upper surface opened. The box has a height of 44 cm, the rectangle has a long side of 70 cm, and a short side of 30 cm. A partition plate substantially parallel to the side surface is provided at a position of 25 cm, 35 cm, and 60 cm from one side surface in the length direction, and the first preparative measurement chamber, the second preparative measurement chamber, A 3 preparatory measurement room and a final measurement room were constructed. Then, on the side of the box facing the first measurement chamber, a total of 29 elongated windows 1 having a height of 10 cm and a width of 1.5 cm were cut by cutting the side of the box. Similarly, a total of 10 elongated windows 2 having a height of 12 cm and a width of 1 cm are formed on the side surface of the second preparatory measurement chamber, and the height is 13 cm on the side surface of the third preparative measurement chamber. A total of four elongated window portions 3 having a width of 1 cm were formed, and one elongated window portion 4 having a height of 14 cm and a width of 1 cm was formed on the side surface of the final measurement chamber in order to prevent backflow. Moreover, the window part 1 thru | or the window part 4 are formed, aligning the height position of the upper surface, the bottom face of the window part 1 is a position 30 cm from the bottom face of the box, and the bottom face of the window part 2 is from the bottom face of the box. The design was such that 28 cm, the bottom of the window 3 was 27 cm from the bottom of the box, and the bottom of the window 4 was 26 cm from the bottom of the box.

次に、各分取計測室をしきる仕切り板に、それぞれ連接口を形成した。第1分取計測室と第2分取計測室との間における仕切り板には、窓部1と同じ形状であって同じ高さ位置の連接口1を仕切り板の幅方向略中央部に1ヶ形成した。同様に、第2分取計測室と第3分取計測室との間における仕切り板には、窓部2と同じ形状であって同じ高さ位置の連接口2を1ヶ形成し、第3分取計測室と第4分取計測室との間における仕切り板には、窓部3と同じ形状であって同じ高さ位置の連接口3を1ヶ形成し、最終計測室の流出口として側面に、窓部3と同じ形状であって連接口3より高さ位置を1cm下げた窓部4を1ヶ形成した。最後に、第2分取計測室乃至第3分取計測室及び最終計測室の上面を覆って板を設置し、各計測室の天板として、本発明の流出土砂計測枡を形成した。   Next, a connecting port was formed in each partition plate that cut through each preparative measurement chamber. In the partition plate between the first preparative measurement chamber and the second preparative measurement chamber, the connection port 1 having the same shape as the window portion 1 and the same height position is arranged at the center of the partition plate in the width direction. Formed. Similarly, one connecting port 2 having the same shape as the window portion 2 and the same height position is formed on the partition plate between the second preparative measurement chamber and the third preparative measurement chamber. The partition plate between the preparative measurement chamber and the fourth preparative measurement chamber is formed with one connecting port 3 having the same shape as the window 3 and the same height as the outlet of the final measurement chamber. One window portion 4 having the same shape as the window portion 3 and having a height position lowered by 1 cm from the connection port 3 was formed on the side surface. Finally, a plate was installed to cover the upper surfaces of the second preparative measurement chamber to the third preparative measurement chamber and the final measurement chamber, and the outflow soil measurement dredging of the present invention was formed as the top plate of each measurement chamber.

次に、上記流出土砂計測枡を用いて、本発明の流出土砂計測装置を以下のとおり形成して実施例1とした。実施例1の概略図を図9に示す。尚、図9において上記流出土砂計測枡は、203の符号を付して示す。
実施例1を形成するために測定対象領域としての農地5.2haを指定し、該領域から流れ出す全流水を集水するための排水路を設けた。そして該排水路に連結して、水路幅80cm、深さ80cmのU字溝201を送水路として設置した。そして上記U字溝201の下流側領域にスリット幅1cmのスリット板202を、U字溝201の幅方向略中央に設置し、U字溝201に流れる流水の略80分の1がスリット板202に分取されるよう設計した。尚、スリット板202は、縦60cm、横60cm、高さ60cmのステンレス製の板状部材を、面と面との距離が1cmとなるよう向かい合わせた状態で固定して形成した。
Next, using the outflow sediment measuring dredger, the outflow sediment measuring apparatus of the present invention was formed as follows to obtain Example 1. A schematic diagram of Example 1 is shown in FIG. In FIG. 9, the outflow sediment measuring pad is denoted by reference numeral 203.
In order to form Example 1, farmland 5.2ha was designated as a measurement target region, and a drainage channel for collecting all the flowing water flowing out from the region was provided. Then, a U-shaped groove 201 having a water channel width of 80 cm and a depth of 80 cm was installed as a water supply channel in connection with the drainage channel. Then, a slit plate 202 having a slit width of 1 cm is installed at a substantially central portion in the width direction of the U-shaped groove 201 in the downstream region of the U-shaped groove 201, and approximately 1/80 of running water flowing in the U-shaped groove 201 is slit plate 202. Designed to be sorted into The slit plate 202 was formed by fixing a plate member made of stainless steel having a length of 60 cm, a width of 60 cm, and a height of 60 cm facing each other so that the distance between the surfaces becomes 1 cm.

最後に、上記スリット板202により分取された流水が上記第1分取計測室に注ぎ込まれる位置に上記流出土砂計測枡203を設置して流出土砂計測装置204を形成し、実施例1とした。 Finally, the outflow sediment measuring device 203 is formed by installing the outflow sediment measuring gutter 203 at a position where the flowing water separated by the slit plate 202 is poured into the first preparative measurement chamber, and this is taken as Example 1. .

尚、実施例1で分取され測定され、その測定量をもとに算出された上記測定対象領域からの流水に含有される全土砂量と、実測値とを比較するために、U字溝201を流れる流水のうちスリット板202に分取されなかった排流水205及び流出土砂計測枡203から排出された排流水206を受け取り、こられ排流水の中に含有されていた比較的粒径の大きい土砂を沈殿させるための沈砂枡207を設置するとともに、沈砂枡207が備える排水路210から流れ出る流水の流量及び濁度を測定するために、排水路210の下流領域に流量計208及び濁度計209を設置した。 In addition, in order to compare the total amount of earth and sand contained in the flowing water from the measurement target area, which is fractionated and measured in Example 1 and calculated based on the measured amount, the measured value is a U-shaped groove. Of the flowing water flowing through 201, the discharged water 205 that has not been separated into the slit plate 202 and the discharged water 206 discharged from the outflow sediment measuring basin 203 are received, and the comparatively particle size contained in the discharged water is received. In order to install a sedimentation basin 207 for precipitating large earth and sand, and to measure the flow rate and turbidity of the flowing water flowing out from the drainage channel 210 provided in the sedimentation basin 207, a flow meter 208 and turbidity are provided in the downstream area of the drainage channel 210. A total of 209 was installed.

そして、流出土砂計測枡203及び沈砂枡207に沈殿した土砂量の実測値と、濁度計209により測定された土砂量とを足し合わせることにより、流出土砂量の実測値を計測した。 Then, the actual measured value of the spilled sediment was measured by adding the measured value of the amount of sediment deposited on the sediment slag measuring basin 203 and the sedimentation basin 207 and the amount of sediment measured by the turbidimeter 209.

上記実施例1および流出土砂量を実測する装置を用いて、測定対象領域より流出する土砂量を測定し。測定は、8月27日〜10月5日(40日間)を測定期間1、10月6日〜11月2日(28日間)を測定期間2、11月3日〜12月3日(31日間)を測定期間3、12月4日〜1月7日(35日間)を測定期間4、1月8日〜2月5日(29日間)を測定期間5として、それぞれ計測した。実施例1の装置に隣接して降雨計211を設置し、測定期間中の雨量を同時に測定した。
期間中の雨量及び降雨係数、流出率流出率、実施例1における全流出土砂量算定値[1]、全流出土砂量実測値[2]及び算定値[1]と実測値[2]との比率を、表2に示す。また算定値[1]と実測値[2]との比率を縦軸とし、各測定期間における降雨係数を横軸にとったグラフを図10として示す。
The amount of sediment flowing out from the measurement target area is measured using the first embodiment and the device that actually measures the amount of sediment discharged. Measurement is from August 27 to October 5 (40 days) in measurement period 1, October 6 to November 2 (28 days) in measurement period 2, November 3 to December 3 (31) Day) was measured with measurement period 3, December 4 to January 7 (35 days) as measurement period 4, and January 8 to February 5 (29 days) as measurement period 5. A rain gauge 211 was installed adjacent to the apparatus of Example 1, and the rainfall during the measurement period was measured simultaneously.
Rainfall and rainfall coefficient during the period, runoff rate runoff rate, total runoff sediment calculation value [1], total runoff sediment measurement value [2] and calculation value [1] and actual measurement value [2] in Example 1 The ratio is shown in Table 2. FIG. 10 is a graph in which the ratio between the calculated value [1] and the actually measured value [2] is on the vertical axis and the rainfall coefficient in each measurement period is on the horizontal axis.

尚、降雨係数とは、世界的に認知された土砂流出量を予測する経験式(USLE:Universal Soil Loss Equation)により定義された降雨による耕土の流亡量と相関する指数であり、次式で算出される。
(式2) 〔降雨係数〕=〔一連降雨の降雨エネルギーの累計(雨滴および表流水による土砂剥離に関する指標)×〔最大60分降雨強度〕÷100 (2)
また流出率とは、降雨量に対し地盤に染み込まず地盤表面を流出する水量の比を意味し、降雨量に対する、流量計208により測定された流量より算出される。
The rainfall coefficient is an index that correlates with the amount of runoff of cultivated soil caused by rainfall, defined by an empirical formula (USLE: Universal Soil Loss Equation) that predicts globally recognized sediment runoff. Is done.
(Equation 2) [Rainfall coefficient] = [Cumulative sum of rainfall energy of a series of rainfalls (indicator of sediment removal by raindrops and surface water) x [maximum 60-minute rainfall intensity] / 100 (2)
The runoff rate means the ratio of the amount of water that does not penetrate the ground and flows out of the ground surface with respect to the rainfall, and is calculated from the flow rate measured by the flow meter 208 with respect to the rainfall.

表2に示すとおり、本測定の結果から、全測定期間中、測定対象領域から流出した土砂量の総量は3641kgであり、これに対し、実施例1により算定した全流出土砂量は、3440kgであった。したがって実測値に対し算定値は94%であり、即ち算定値は6%の誤差で示された。
本測定結果をより詳しく見みるために図10に測定期間毎の実測値に対する算定値の比率と、降雨係数をプロットしたグラフを示す。図10によれば、本発明の流出土砂計測装置では測定期間毎の降雨係数が30.0以上あれば、実測値に対する算定値の割合が約80%以上となり、算定による測定誤差が±20%以内の精度で測定対象領域から流出する流出土砂量を測定できることが示された。
一方、降雨係数30.0未満の測定期間においては、測定誤差が20%以上と大きくなることが示された。ただし土壌侵食が問題となる地域であっても、降雨係数が約30%未満と小さい係数が示される期間においては土砂流出量も少なく、そのような期間の土砂流出量は合計しても年間の流出土砂量の数%に過ぎない。したがって長期的に行う測定において、降雨量の少ない期間における数%の測定誤差は、全測定期間をとおしてみた場合には、観測精度への影響は僅かである。その結果、9月から1月という比較的降雨量が少ない時期に行った本測定試験においてさえ、全観測期間では約94%の正確さで測定できた。このことから、特に土壌侵食が問題となる降雨の多い環境下での長期観測において、本発明の流出土砂計測装置が非常に有効に機能することが示唆された。
As shown in Table 2, from the results of this measurement, the total amount of sediment flowing out from the measurement target area during the entire measurement period was 3641 kg, whereas the total amount of sediment discharged in Example 1 was 3440 kg. there were. Therefore, the calculated value was 94% with respect to the actually measured value, that is, the calculated value was shown with an error of 6%.
In order to see this measurement result in more detail, FIG. 10 shows a graph in which the ratio of the calculated value to the actual measurement value for each measurement period and the rainfall coefficient are plotted. According to FIG. 10, in the runoff sediment measuring apparatus of the present invention, if the rainfall coefficient for each measurement period is 30.0 or more, the ratio of the calculated value to the actual measured value is about 80% or more, and the measurement error due to the calculation is ± 20%. It was shown that the amount of sediment discharged from the measurement area can be measured with an accuracy of within.
On the other hand, during the measurement period with a rainfall coefficient of less than 30.0, the measurement error was shown to be as large as 20% or more. However, even in areas where soil erosion is a problem, the amount of sediment runoff is small during the period when the coefficient of rainfall is as low as less than about 30%. It is only a few% of the amount of sediment. Therefore, in long-term measurements, a measurement error of several percent during periods with low rainfall has little effect on observation accuracy over the entire measurement period. As a result, even in this measurement test, which was conducted from September to January when the rainfall was relatively low, it was possible to measure with an accuracy of about 94% during the entire observation period. From this, it was suggested that the runoff sediment measurement device of the present invention functions very effectively, especially in long-term observation in a rainy environment where soil erosion is a problem.

Figure 2008249376
Figure 2008249376

Figure 2008249376
Figure 2008249376

本発明の流出土砂計測枡の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the outflow earth and sand measuring rod of this invention. 図1に示す流出土砂計測装置の上部切欠斜視図である。It is an upper notch perspective view of the outflow sediment measuring apparatus shown in FIG. 図1に示す流出土砂計測装置のX−X断面図である。It is XX sectional drawing of the outflow sediment measuring apparatus shown in FIG. 本発明の流出土砂計測装置の一実施形態を示す側面図である。It is a side view which shows one Embodiment of the outflow sediment measuring apparatus of this invention. 本発明の流出土砂計測装置における送水路及び分取路の一実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the water supply path in the outflow sediment measuring apparatus of this invention, and a sorting path. スリット板の一例を示す斜視図及び該スリット板のY−Y断面図である。It is the perspective view which shows an example of a slit board, and YY sectional drawing of this slit board. 本発明の流出土砂計測装置の一実施形態を示す分解斜視図である。It is a disassembled perspective view which shows one Embodiment of the outflow sediment measuring apparatus of this invention. 本発明の流出土砂計測装置の一実施形態を示す上面図である。It is a top view which shows one Embodiment of the outflow sediment measuring apparatus of this invention. 本発明の実施例を示す概略図である。It is the schematic which shows the Example of this invention. 実測値に対する実施例1を用いて測定される算定値の比率と、降雨係数の関係をプロットしたグラフである。It is the graph which plotted the ratio of the calculated value measured using Example 1 with respect to an actual value, and the relationship between a rainfall coefficient.

符号の説明Explanation of symbols

1 流出土砂計測枡
2 第1分取計測室
3 第2分取計測室
4 第3分取計測室
5 最終計測室
6、7、8 窓部
9、11、13 連接壁
10、12、14 連接口
15 流入口
16、17、18 天板
19a、19b、19c、19d 排出口
101 流出土砂計測装置
102 集水パイプ
103 U字溝
104 スリット板
105 流水導入路
106 分取水
107 排流水
111 支持台
121 ゴミ除去用筒体
122 天板
123 支持具
124 駆動芯
125 トルク伝達手段
126 水車羽
131 ゴミ
DESCRIPTION OF SYMBOLS 1 Outflow earth and sand measuring bowl 2 1st preparatory measurement room 3 2nd preparative measurement room 4 3rd preparative measurement room 5 Final measurement room 6, 7, 8 Window part 9, 11, 13 Connecting wall 10, 12, 14 station Contact 15 Inlet 16, 17, 18 Top plate 19 a, 19 b, 19 c, 19 d Discharge port 101 Sediment measurement device 102 Drainage pipe 103 U-shaped groove 104 Slit plate 105 Flowing water introduction path 106 Prepaid water 107 Drained water 111 Support stand 121 Dust removal cylinder 122 Top plate 123 Support 124 Drive core 125 Torque transmission means 126 Turbine blade 131 Waste

Claims (4)

第1番目の分取計測室から第n(但し、nは2以上の整数である)番目の分取計測室及び第n+1番目の最終計測室が、昇順に、連接口を介して連接されて構成されており、
上記第1番目の分取計測室から第n番目の分取計測室の其々の側面には複数の窓部を有し、また上記第1番目の分取計測室にはその上面に流入口を有し、
上記窓部が、1つの分取計測室においては同形状且つ同じ高さで設けられているとともに、隣り合う分取計測室同士の関係では昇順毎に窓部底部の位置が低くなるよう形成されており、また、
隣り合う分取計測室間あるいはn番目の分取計測室と第n+1番目の最終計測室との間において形成される上記連接口が、順序の小さい方の計測室の側面に設けられた窓部と同形状且つ同じ高さ位置で設けられていることを特徴とする流出土砂計測枡。
From the first preparatory measurement chamber, the nth (where n is an integer greater than or equal to 2) th preparative measurement chamber and the (n + 1) th final measurement chamber are connected in ascending order via a connection port. Configured,
Each of the first to nth measurement chambers has a plurality of windows on each side, and the first measurement chamber has an inlet on its upper surface. Have
The window is provided with the same shape and the same height in one preparative measurement chamber, and the position of the bottom of the window is lowered every ascending order in the relationship between adjacent preparative measurement chambers. And also
The above-mentioned connecting port formed between adjacent preparative measurement chambers or between the nth preparative measurement chamber and the (n + 1) th final measurement chamber is a window provided on the side surface of the measurement chamber having the smaller order Sediment measurement gutter characterized by having the same shape and height position.
請求項1に記載の流出土砂計測枡を用いる流出土砂計測装置であって、
測定対象領域から集水された流水を流すための送水路と、
上記送水路内を送水される流水を一定の割合で分取することが可能な分取路と、
上記請求項1に記載の流出土砂計測枡と、
を少なくとも備えており、
上記分取路によって分取された分取水の全量が、上記流出土砂計測枡における第1番目の分取計測室に導かれることを特徴とする流出土砂計測装置。
A runoff sediment measurement device using the runoff sediment measurement dredge according to claim 1,
A water channel for flowing water collected from the measurement target area;
A sorting channel capable of sorting the flowing water fed through the above-mentioned channel at a certain rate;
The outflow sediment measuring dredger according to claim 1,
At least,
The outflow sediment measuring apparatus, wherein the entire amount of the collected water separated by the sorting channel is guided to the first sorting measurement chamber in the outflow sediment measuring tank.
上記分取路の少なくとも上流側端部が上記送水路の下流領域に設けられており、且つ、
上記分取路の上流側の端部の手前に、側面が網目状であって中空の回転可能なゴミ除去用筒体が該ゴミ除去用筒体の側面が起立する姿勢で設置されていることを特徴とする請求項2に記載の流出土砂計測装置。
At least an upstream end of the sorting channel is provided in a downstream region of the water supply channel, and
Before the end on the upstream side of the sorting channel, the side surface of the dust removing cylinder is installed in a posture in which the side surface of the dust removing cylinder is upright. The outflow sediment measuring apparatus of Claim 2 characterized by these.
上記送水路に流れる流水から上記分取路によってその一部が一定の割合で分取された後の排流水と当接する位置に水車羽が設けられ、
一方、上記ゴミ除去用筒体内部には該筒体の一部と少なくとも連結し、上記ゴミ除去用筒体に回転運動用の動力を伝達する駆動芯が設けられ、且つ、
上記水車羽の回転動力を伝達可能なトルク伝達部材により、上記水車羽と上記駆動芯とが連結されていることを特徴とする請求項3に記載の流出土砂計測装置。
A water wheel is provided at a position where it comes into contact with the drained water after a part of it is separated from the flowing water flowing through the water supply channel by a certain ratio by the sorting channel,
On the other hand, a drive core that is connected to at least a part of the cylinder and that transmits rotational power to the dust removal cylinder is provided inside the cylinder for dust removal, and
The outflow sediment measuring apparatus according to claim 3, wherein the water wheel and the drive core are connected by a torque transmission member capable of transmitting the rotational power of the water wheel.
JP2007088216A 2007-03-29 2007-03-29 Runoff sediment measurement dredge and runoff sediment measurement device Active JP4891822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007088216A JP4891822B2 (en) 2007-03-29 2007-03-29 Runoff sediment measurement dredge and runoff sediment measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007088216A JP4891822B2 (en) 2007-03-29 2007-03-29 Runoff sediment measurement dredge and runoff sediment measurement device

Publications (2)

Publication Number Publication Date
JP2008249376A true JP2008249376A (en) 2008-10-16
JP4891822B2 JP4891822B2 (en) 2012-03-07

Family

ID=39974522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007088216A Active JP4891822B2 (en) 2007-03-29 2007-03-29 Runoff sediment measurement dredge and runoff sediment measurement device

Country Status (1)

Country Link
JP (1) JP4891822B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563660B1 (en) * 2013-12-30 2015-10-28 강원대학교산학협력단 A Earth and Sand Collection Unit for Monitoring Leaking Sand
CN112146711A (en) * 2020-08-21 2020-12-29 宁波方太厨具有限公司 Device for measuring spraying flow of spraying holes of spraying arm and measuring system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101841269B1 (en) * 2017-06-07 2018-03-22 세명이엔시 (주) Measurement method of ground water discharge and sediment yield accorging to the ground excavation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042389A (en) * 1983-08-19 1985-03-06 Shin Etsu Chem Co Ltd Organocyclopolysiloxane
JP2002294670A (en) * 2001-04-03 2002-10-09 Sabo Jisuberi Gijutsu Center Bedload trap

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6042389A (en) * 1983-08-19 1985-03-06 Shin Etsu Chem Co Ltd Organocyclopolysiloxane
JP2002294670A (en) * 2001-04-03 2002-10-09 Sabo Jisuberi Gijutsu Center Bedload trap

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101563660B1 (en) * 2013-12-30 2015-10-28 강원대학교산학협력단 A Earth and Sand Collection Unit for Monitoring Leaking Sand
CN112146711A (en) * 2020-08-21 2020-12-29 宁波方太厨具有限公司 Device for measuring spraying flow of spraying holes of spraying arm and measuring system
CN112146711B (en) * 2020-08-21 2021-12-17 宁波方太厨具有限公司 Device for measuring spraying flow of spraying holes of spraying arm and measuring system

Also Published As

Publication number Publication date
JP4891822B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
Kinnell A review of the design and operation of runoff and soil loss plots
US7955030B2 (en) Controlling sediment
JP4891822B2 (en) Runoff sediment measurement dredge and runoff sediment measurement device
CN205369520U (en) Clear instrument of drawing of silt
AU2008246228A1 (en) Soil moisture sampling device
CN111795864A (en) Water sample collecting equipment adopting extraction mode
JP4721207B2 (en) Runoff sediment observation system, runoff sediment measurement device, and sediment separator
CN107589030A (en) A kind of field riverbank in-situ testing device and method of testing
Horne Design and construction of a rainfall simulator for large-scale testing of erosion control practices and products
KR101084306B1 (en) A sample picking apparatus for examination of water
CN205898796U (en) Four holes reposition of redundant personnel soil erosion and water loss monitoring system
US4351438A (en) Apparatus for analyzing a fish population
CN206192989U (en) Paddy field surface runoff collection device suitable for different run -offs
RU2552358C1 (en) Method of washing storage pond of livestock wastes (versions)
DE19933391B4 (en) Geschiebückhalteschacht with measuring arrangement
CN109425550A (en) A kind of soil loss monitoring system
Kee et al. Determination of manning’sn for subsurface modular channel
CN214310081U (en) Ditch of adjustable delivery port loses monitoring devices
CN214763812U (en) Sewage slag-dragging grid machine and sewage treatment system
CN217267942U (en) Rain and sewage diversion well
CN216689711U (en) Pre-buried formula inspection shaft to food and beverage trade
CN210263326U (en) Rainwater tray
CN214940803U (en) Supermarket drainage structures
CN114894971A (en) Quantitative measuring and calculating system for forest vegetation ecological water demand based on evapotranspiration
DE4304883C1 (en) Sludge removal apparatus

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20070420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111216

R150 Certificate of patent or registration of utility model

Ref document number: 4891822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250