JP2008248894A - Cooling structure of cylinder head - Google Patents

Cooling structure of cylinder head Download PDF

Info

Publication number
JP2008248894A
JP2008248894A JP2008184346A JP2008184346A JP2008248894A JP 2008248894 A JP2008248894 A JP 2008248894A JP 2008184346 A JP2008184346 A JP 2008184346A JP 2008184346 A JP2008184346 A JP 2008184346A JP 2008248894 A JP2008248894 A JP 2008248894A
Authority
JP
Japan
Prior art keywords
exhaust
cooling
jacket
cylinder head
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008184346A
Other languages
Japanese (ja)
Inventor
Junro Iga
淳郎 伊賀
Ryoichi Kuroda
良一 黒田
Masahiro Saito
昌弘 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2008184346A priority Critical patent/JP2008248894A/en
Publication of JP2008248894A publication Critical patent/JP2008248894A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve cooling effect of respective parts in a cylinder head such as a combustion surface and a valve guide part to avoid high temperature stress responding to increase of output of the cylinder head. <P>SOLUTION: In the cylinder head CH of an internal combustion engine, an inter-exhaust-valve jacket 7, connected with an exhaust gas port side jacket 13, having a shape for enclosing an exhaust gas merging port 11 is formed at or around an exhaust valve guide hole 10 part and a passage 15 for cooling the exhaust gas port is opened in an attaching surface of a bottom surface of the cylinder head CH to a cylinder block. A cylindrical deflector 35 for communicating from the passage 15 for cooling the exhaust gas port to the inter-exhaust-valve jacket 7 is internally provided so that a fluid refrigerant from the cylinder block is directly introduced from the passage 15 for cooling exhaust gas port to the inter-exhaust-valve jacket 7. The deflector 35 is provided to detour to avoid interference with the exhaust gas merging port 11 and an exhaust gas branching port 11a. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、シリンダヘッドの高出力化に対応して高熱応力を回避すべく、燃焼面や弁ガイド部等のシリンダヘッド内部の各部の冷却効果を向上させるための構造に関する。   The present invention relates to a structure for improving the cooling effect of each part inside a cylinder head such as a combustion surface and a valve guide part in order to avoid high thermal stress in response to higher output of the cylinder head.

従来より、冷却水等の流体冷媒にて冷却される内燃機関(例えばディーゼル機関)のシリンダヘッド内には冷却水等流体冷媒の流路或いはジャケットを、鋳物加工にて、給排気弁や給排気ポート、燃料噴射弁(ディーゼル機関の場合)の周囲を包むように、或いはシリンダブロックへの取付面である底面、またその底面のうちでも、燃焼室に臨む面である燃焼面に対峙するように一体形成している。この中で、給気弁間及び給気ポートの周囲、また、特に高温となる排気弁及び排気ポートの周囲に流体冷媒ジャケットを設け、このジャケットにて燃焼面を冷却すべく、該ジャケットを燃焼面と平行状に対峙するように形成していた。   Conventionally, in a cylinder head of an internal combustion engine (for example, a diesel engine) cooled by a fluid refrigerant such as cooling water, a flow passage or jacket of the fluid refrigerant such as cooling water is formed by casting, a supply / exhaust valve or a supply / exhaust valve. Integrated so as to wrap around the port and fuel injection valve (in the case of a diesel engine), or to face the combustion surface, which is the surface facing the combustion chamber, among the bottom surface, which is the mounting surface to the cylinder block Forming. Among these, a fluid refrigerant jacket is provided between the air supply valves and around the air supply port, especially around the exhaust valve and the exhaust port that become hot, and the jacket burns to cool the combustion surface with this jacket. It was formed so as to face the surface in parallel.

また、シリンダヘッド内には、シリンダブロック内より導入する流体冷媒を、前記の弁間に形成する燃焼面冷却を兼ねる流体冷媒ジャケットまで流通する流体冷媒の流通経路を形成している。この一つの実施例として、4バルブOHV型ディーゼルエンジンの冷却構造を図1乃至図7にて説明する。図1はシリンダブロックCHの底面図、図2は同じく平面断面図、図3は同じく燃料噴射弁や動弁機構等を取り付けた状態の平面図、図4は同じく弁腕カバーを取り付けた状態の平面図、図5は同じく給気弁構造を示す側面断面図、図6は同じく排気弁構造を示す側面断面図、図7は図1におけるX−X線断面図である。   In the cylinder head, there is formed a fluid refrigerant flow path through which the fluid refrigerant introduced from the cylinder block is circulated to the fluid refrigerant jacket also serving as the combustion surface cooling formed between the valves. As one embodiment, a cooling structure of a four-valve OHV type diesel engine will be described with reference to FIGS. 1 is a bottom view of the cylinder block CH, FIG. 2 is also a plan sectional view, FIG. 3 is a plan view of a state where a fuel injection valve, a valve operating mechanism, and the like are also attached, and FIG. 4 is a state where a valve arm cover is also attached. FIG. 5 is a side sectional view showing the intake valve structure, FIG. 6 is a side sectional view showing the exhaust valve structure, and FIG. 7 is a sectional view taken along line XX in FIG.

まず、シリンダヘッドCHの底面(シリンダブロックへの取付面)のうち、図2の如く、シリンダブロックに内嵌されるシリンダボア内の燃焼室に臨む部分を燃焼面Aとしている。即ち、シリンダーライナー固定用のボルト孔16・16・・・・にて囲まれる部分である。また、該シリンダヘッドCHの底面には、該底面を介して取りつけるシリンダブロック内より流体冷媒を導入するため、流体冷媒の導入口を開口し、該シリンダヘッド内において、該導入口より該燃焼面Aに対して略垂直状の流体冷媒縦導入路1を形成しており、該流体冷媒縦導入路1より、給気弁ガイド孔8と排気弁ガイド孔10との間を通過して燃料噴射弁嵌入孔3に連通する、燃焼面Aに略平行な流体冷媒横導入路2を形成しており、該燃料噴射弁嵌入孔3より、給気弁ガイド孔8・8(給気分岐ポート9a・9a)間に形成した流体冷媒ジャケットである給気弁間ジャケット5に燃焼面Aと平行状の給気弁間冷却用流路4を、また排気弁ガイド孔10・10(排気分岐ポート11a・11a)間に形成した流体冷媒ジャケットである排気弁間ジャケット7に燃焼面Aと略平行状の排気弁間冷却用流路6を連通させている。そして該給気弁間ジャケット5及び排気弁間ジャケット7は、図7の如く、該燃焼面Aを冷却できるように、該燃焼面Aに略平行状に対峙する燃焼面冷却面5a・7aを有している。また、給気よりも排気が高温膨張しているため、多くの流体冷媒を必要とするので、図7の如く、排気弁間冷却用流路6は給気弁間冷却用流路4に比して口径が大きくなっている。なお、排気弁間冷却用流路6の穿設に当たっては、図2のように、シリンダヘッドCH側面より錐孔17を穿孔して、排気弁間ジャケット7と燃料噴射弁嵌入孔3との間の肉厚部に排気弁間冷却用流路6を穿設しており、その外側開口部にはキャップ18を施している。   First, of the bottom surface of the cylinder head CH (attachment surface to the cylinder block), a portion facing the combustion chamber in the cylinder bore fitted in the cylinder block is defined as a combustion surface A as shown in FIG. That is, it is a portion surrounded by bolt holes 16, 16,... For fixing the cylinder liner. Further, in order to introduce the fluid refrigerant from the inside of the cylinder block attached via the bottom surface, the fluid refrigerant introduction port is opened at the bottom surface of the cylinder head CH, and the combustion surface is introduced from the introduction port into the cylinder head. A fluid refrigerant vertical introduction path 1 that is substantially perpendicular to A is formed, and fuel injection is performed from the fluid refrigerant vertical introduction path 1 between the supply valve guide hole 8 and the exhaust valve guide hole 10. A fluid refrigerant lateral introduction passage 2 that is communicated with the valve insertion hole 3 and is substantially parallel to the combustion surface A is formed. From the fuel injection valve insertion hole 3, the air supply valve guide holes 8 and 8 (the air supply branch port 9a) are formed. 9a) An inter-supply valve cooling passage 4 parallel to the combustion surface A is provided in the inter-supply valve jacket 5 which is a fluid refrigerant jacket formed between the exhaust valves guide holes 10 and 10 (exhaust branch port 11a). 11a) Fluid refrigerant jacket formed between And communicates the combustion surface A substantially parallel shape of the exhaust valve between the cooling flow path 6 between the gas valve jacket 7. The intake valve jacket 5 and the exhaust valve jacket 7 have combustion surface cooling surfaces 5a and 7a facing the combustion surface A so as to cool the combustion surface A, as shown in FIG. Have. Further, since the exhaust gas is expanded at a higher temperature than the supply air, a large amount of fluid refrigerant is required. Therefore, as shown in FIG. And the caliber is getting bigger. When the inter-exhaust valve cooling flow path 6 is drilled, as shown in FIG. 2, a conical hole 17 is drilled from the side surface of the cylinder head CH, and the exhaust valve jacket 7 and the fuel injection valve insertion hole 3 are formed. An exhaust valve cooling flow path 6 is drilled in the thick part of the gas pipe, and a cap 18 is applied to the outer opening.

また、流体冷媒ジャケットとして、平面視で燃焼面Aの範囲内にて形成される前記の給気弁間ジャケット5及び排気弁間ジャケット7以外にも、図2図示の如く、燃焼面Aの範囲外において、給気ポート9を包むように給気合流ポート側ジャケット12を、排気合流ポート11を包むように排気ポート側ジャケット13を形成しており、各流体冷媒ジャケット12・13に対しては、従来、シリンダブロックより直接に流体冷媒を導入すべく、図2や図6の如く、シリンダヘッドCHの底面に導入口を開口する給気ポート冷却用流路14・排気ポート冷却用流路15をそれぞれ連通させている。該流体冷媒流路14・15は、図6の如く(排気ポート冷却用流路15のみ開示しているが、給気ポート冷却用流路14も同様である。)、各流体冷媒ジャケット12・13とシリンダヘッドCHの底面との間にて、該底面に対し略垂直状に介設されている。
特願開5−33640号公報
In addition to the above-described jacket 5 between the intake valves and the jacket 7 between the exhaust valves formed as a fluid refrigerant jacket in the range of the combustion surface A in plan view, the range of the combustion surface A as shown in FIG. Outside, a supply air merging port side jacket 12 is formed so as to wrap the air supply port 9, and an exhaust port side jacket 13 is formed so as to wrap the exhaust merging port 11, and each of the fluid refrigerant jackets 12 and 13 is conventionally provided. In order to introduce the fluid refrigerant directly from the cylinder block, as shown in FIG. 2 and FIG. 6, an air supply port cooling flow path 14 and an exhaust port cooling flow path 15 having openings at the bottom surface of the cylinder head CH are respectively provided. Communicate. The fluid refrigerant channels 14 and 15 are shown in FIG. 6 (only the exhaust port cooling channel 15 is disclosed, but the air supply port cooling channel 14 is also the same). 13 and the bottom surface of the cylinder head CH are interposed substantially perpendicular to the bottom surface.
Japanese Patent Application No. 5-33640

近年ますますの高出力化の傾向により、燃焼面や排気弁周りの冷却効果はより一層求められる。高出力化に比例してこれらの部分燃焼時の温度も高くなり、シリンダヘッド内のその他の部分との間での温度差による応力(高温応力)傾向がますます高くなるからである。高温応力は、シリンダヘッド内の各部品の損傷、流体冷媒(冷却水)や潤滑油の漏れ、動弁や弁座の摩擦、また、燃焼面でシリンダブロックとの隙間を生じることによるガスの吹き抜け等の弊害をもたらすことから、これをできるだけ抑制すべく、前記のシリンダヘッド内の燃焼面等の部分を十分冷却するのが課題である。   Due to the recent trend toward higher output, the cooling effect around the combustion surface and the exhaust valve is further required. This is because the temperature at the time of partial combustion increases in proportion to the increase in output, and the tendency for stress (high temperature stress) due to a temperature difference with other parts in the cylinder head becomes higher. High-temperature stress causes damage to parts in the cylinder head, leakage of fluid refrigerant (cooling water) and lubricating oil, friction of valves and valve seats, and gas blowout due to gaps between the cylinder block on the combustion surface. In order to suppress this as much as possible, it is a problem to sufficiently cool a portion such as the combustion surface in the cylinder head.

この中で、前記のように形成したシリンダヘッド内の流体冷媒ジャケットと流体冷媒流路の構成において、図7の如く、流体冷媒ジャケット5・7の燃焼面冷却面5a・7aは、流体冷媒流路4・6よりも低くなっている。言い換えれば、該流体冷媒流路4・6と燃焼面Aとの間の各距離が、該燃焼面冷却面5a・7aと燃焼面Aとの間の各距離に比して長くなっているのだが、これは、該流体冷媒流路4・6の形成部分が燃料噴射弁嵌入孔3の周囲であり、この周囲部分は、肉厚を十分にとらなければ燃料噴射弁嵌入孔3内に嵌入した燃料噴射弁の固定に支障が生じるからである。一方、該流体冷媒ジャケット5・7に関しては、燃焼面Aの冷却効果を向上すべく、該燃焼面冷却面5a・7aを該燃焼面Aに近接させているわけである。   In this configuration, in the configuration of the fluid refrigerant jacket and the fluid refrigerant flow path in the cylinder head formed as described above, the combustion surface cooling surfaces 5a and 7a of the fluid refrigerant jackets 5 and 7 have fluid refrigerant flow as shown in FIG. It is lower than Roads 4 and 6. In other words, the distances between the fluid refrigerant channels 4 and 6 and the combustion surface A are longer than the distances between the combustion surface cooling surfaces 5a and 7a and the combustion surface A. However, this is because the formation part of the fluid refrigerant channels 4 and 6 is the periphery of the fuel injection valve insertion hole 3, and this peripheral part is inserted into the fuel injection valve insertion hole 3 unless a sufficient thickness is taken. This is because there is a problem in fixing the fuel injection valve. On the other hand, with respect to the fluid refrigerant jackets 5 and 7, the combustion surface cooling surfaces 5a and 7a are brought close to the combustion surface A in order to improve the cooling effect of the combustion surface A.

ところが、燃焼面Aとの間の距離がこのように異なることにより、該流体冷媒流路4・6から該流体冷媒ジャケット5・7内に流入する流体冷媒は、本流部が燃焼面Aとは平行状に流動し、該流体冷媒ジャケット5・7の出口へと流出していく。従って、該流体冷媒ジャケット5・7内の燃焼面冷却面5a・7aに対しては、流体冷媒が表面を通過するのみで衝突する量が少なく、従って、各流体冷媒ジャケット5・7内に導入される流体冷媒量から見れば、燃焼面冷却面5a・7aに十分な冷却効果が現れず、燃焼面Aの冷却効果も十分でなかった。前記の近年の高出力化により、燃焼面Aについては一層の冷却効果が求められるが、従来のシリンダヘッドの冷却構造によっては、求められるこのような効果には至れないという問題を生じるようになった。即ち、高出力化により、特に排気分岐ポート11a・11a、排気合流ポート11内を流動する排気が高温化し、特に排気弁間ジャケット7の燃焼面冷却面7aの冷却が、従来のような構造では追いつかなくなり、燃焼面Aが高温化して前記の高温応力の弊害を生じるおそれが出てくるようになったのである。   However, since the distance from the combustion surface A is different in this way, the main part of the fluid refrigerant flowing into the fluid refrigerant jackets 5 and 7 from the fluid refrigerant flow paths 4 and 6 is different from the combustion surface A. It flows in parallel and flows out to the outlet of the fluid refrigerant jackets 5 and 7. Therefore, the amount of collision of the fluid refrigerant only by passing through the surface against the combustion surface cooling surfaces 5a and 7a in the fluid refrigerant jackets 5 and 7 is small, and therefore introduced into each fluid refrigerant jacket 5 and 7. From the viewpoint of the amount of fluid refrigerant to be produced, a sufficient cooling effect did not appear on the combustion surface cooling surfaces 5a and 7a, and the cooling effect on the combustion surface A was not sufficient. With the recent increase in output, a further cooling effect is required for the combustion surface A. However, depending on the conventional cooling structure of the cylinder head, such a required effect cannot be achieved. It was. That is, the high output particularly increases the temperature of the exhaust gas flowing in the exhaust branch ports 11a and 11a and the exhaust gas merge port 11, and particularly the cooling of the combustion surface cooling surface 7a of the jacket 7 between the exhaust valves has the conventional structure. As a result, the combustion surface A is heated to a high temperature, and the above-described high-temperature stress may be adversely affected.

また、給排気合流ポート9・11の周囲に形成した各流体冷媒ジャケット12・13に対し、シリンダヘッドCHの底面に略垂直状の流体冷媒流路14・15を介設していた図2及び図6図示の構造においては、直接的にシリンダブロックからの流体冷媒を導入するので、一見、各流体冷媒ジャケット12・13内を十分に冷却し、燃焼面A及び各ポート9・11の冷却効果を上げそうであるが、実は、例えば排気ポート冷却用流路15より排気ポート側ジャケット13内に噴出される流体冷媒が直接的に図6のB部分に衝突し、該B部分のみが冷却されて、該排気ポート側ジャケット13内の他の部分には十分に導入された流体冷媒の低温が伝導せず、また、給気ポート冷却用流路14と給気ポート側ジャケット12との間にも同様の事態が生じており、従って、給排気合流ポート9・11を全体的に冷却できず、また、シリンダヘッドCHの底面の冷却効果もあまり上がっていなかった。   2 and FIG. 2 in which substantially perpendicular fluid refrigerant channels 14 and 15 are provided on the bottom surface of the cylinder head CH with respect to the respective fluid refrigerant jackets 12 and 13 formed around the supply and exhaust merging ports 9 and 11. In the structure shown in FIG. 6, since the fluid refrigerant from the cylinder block is directly introduced, the inside of each fluid refrigerant jacket 12 and 13 is sufficiently cooled, and the cooling effect of the combustion surface A and the ports 9 and 11 is apparent. Actually, for example, the fluid refrigerant ejected from the exhaust port cooling flow path 15 into the exhaust port side jacket 13 directly collides with the B portion of FIG. 6, and only the B portion is cooled. Thus, the low temperature of the sufficiently introduced fluid refrigerant is not conducted to the other part in the exhaust port side jacket 13, and between the supply port cooling flow path 14 and the supply port side jacket 12. The same situation Occurs and, therefore, can not be entirely cooled feed gas converging port 9/11, also, the cooling effect of the bottom surface of the cylinder head CH is also not much increased.

また、特に排気弁間ジャケット7において、前記の排気合流ポート11内の冷却効果を高めるには、該排気合流ポート11及び排気分岐ポート11a・11aの周囲を包むように形成した排気弁間ジャケット7内の流体冷媒の流速を早めたり流量を増やしたりすることが考えられるが、従来の排気弁間ジャケット7の構造では高出力化に対応できるだけの冷却効果を得るには流速や流量が不足するという問題もある。   In order to enhance the cooling effect in the exhaust joint port 11 particularly in the exhaust valve jacket 7, the inside of the exhaust valve jacket 7 formed so as to wrap around the exhaust joint port 11 and the exhaust branch ports 11 a and 11 a. It is conceivable to increase the flow rate of the fluid refrigerant or increase the flow rate, but the conventional structure of the jacket 7 between the exhaust valves has a problem that the flow rate and the flow rate are insufficient to obtain a cooling effect sufficient for high output. There is also.

更に、排気弁ガイド部(前記の排気弁ガイド孔10)も特に高温となる部分であり、この周囲の流体冷媒ジャケット(前記の排気弁間ジャケット7或いは排気ポート側ジャケット15の一部となっている。)に直接的にシリンダブロックからの低温流体冷媒を導入する構造が求められるが、従来はシリンダヘッド内にこのような構造はなかった。   Further, the exhaust valve guide portion (the exhaust valve guide hole 10) is also a part that becomes particularly high in temperature, and becomes a part of the surrounding fluid refrigerant jacket (the exhaust valve jacket 7 or the exhaust port side jacket 15). However, there has been no such structure in the cylinder head in the past.

以上の如き課題を解決すべく、本発明は次のような手段を用いる。   In order to solve the above problems, the present invention uses the following means.

請求項1においては、内燃機関のシリンダヘッド(CH)内にて、排気弁ガイド孔(10)部または排気弁ガイド孔(10)部の周囲に、排気ポート側ジャケット(13)に連接しかつ排気合流ポート(11)を包む形状の排気弁間ジャケット(7)を形成すると共に、該シリンダヘッド(CH)の底面のシリンダブロックへの取付面に、排気ポート冷却用流路(15)を開口し、該排気ポート冷却用流路(15)より、該シリンダブロックからの流体冷媒を、直接的に前記排気弁間ジャケット(7)へ導くべく、該排気ポート冷却用流路(15)から前記排気弁間ジャケット(7)へ連通する筒状のデフレクタ(35)を内設配管し、該デフレクタ(35)は、排気合流ポート(11)や排気分岐ポート(11a)と干渉しないように迂回させたものである。   In claim 1, in the cylinder head (CH) of the internal combustion engine, the exhaust port guide jacket (13) is connected to the exhaust port side jacket (13) around the exhaust valve guide hole (10) or the exhaust valve guide hole (10). An exhaust valve jacket (7) shaped to enclose the exhaust confluence port (11) is formed, and an exhaust port cooling channel (15) is opened on the mounting surface of the bottom surface of the cylinder head (CH) to the cylinder block. From the exhaust port cooling flow path (15), the fluid refrigerant from the cylinder block is directly led from the exhaust port cooling flow path (15) to guide the fluid refrigerant from the cylinder block to the exhaust valve jacket (7). A tubular deflector (35) communicating with the jacket (7) between the exhaust valves is installed in the pipe, and the deflector (35) is detoured so as not to interfere with the exhaust junction port (11) and the exhaust branch port (11a). It is those that were.

本発明は以上のような構造としたことにより、次のような効果を奏する。   The present invention has the following effects due to the above structure.

請求項1の如く、内燃機関のシリンダヘッド(CH)内にて、排気弁ガイド孔(10)部または排気弁ガイド孔(10)部の周囲に、排気ポート側ジャケット(13)に連接しかつ排気合流ポート(11)を包む形状の排気弁間ジャケット(7)を形成すると共に、該シリンダヘッド(CH)の底面のシリンダブロックへの取付面に、排気ポート冷却用流路(15)を開口し、該排気ポート冷却用流路(15)より、該シリンダブロックからの流体冷媒を、直接的に前記排気弁間ジャケット(7)へ導くべく、該排気ポート冷却用流路(15)から前記排気弁間ジャケット(7)へ連通する筒状のデフレクタ(35)を内設配管し、該デフレクタ(35)は、排気合流ポート(11)や排気分岐ポート(11a)と干渉しないように迂回させたので、シリンダブロックから直接導入した流体冷媒を該流体冷媒ジャケット内全体に行き渡らせ、該流体冷媒ジャケット全体が均等に冷却され、シリンダヘッドにおける該流体冷媒ジャケットの周囲の燃焼面や動弁、動弁ポートその他の部分を冷却し、内燃機関の高出力化傾向の昨今において燃焼面やその他動弁部分等の冷却効果が高く、高温応力が生じない耐久性の高いシリンダヘッドを供給することができるのである。   As in claim 1, in the cylinder head (CH) of the internal combustion engine, the exhaust valve guide hole (10) is connected to the exhaust port side jacket (13) around the exhaust valve guide hole (10) or the exhaust valve guide hole (10). An exhaust valve jacket (7) shaped to enclose the exhaust confluence port (11) is formed, and an exhaust port cooling channel (15) is opened on the mounting surface of the bottom surface of the cylinder head (CH) to the cylinder block. From the exhaust port cooling flow path (15), the fluid refrigerant from the cylinder block is directly led from the exhaust port cooling flow path (15) to guide the fluid refrigerant from the cylinder block to the exhaust valve jacket (7). A cylindrical deflector (35) communicating with the jacket (7) between the exhaust valves is internally installed, and the deflector (35) is detoured so as not to interfere with the exhaust junction port (11) and the exhaust branch port (11a). Therefore, the fluid refrigerant introduced directly from the cylinder block is spread throughout the fluid refrigerant jacket, and the whole fluid refrigerant jacket is uniformly cooled, so that the combustion surface, the valve and the valve around the fluid refrigerant jacket in the cylinder head Since the ports and other parts are cooled and the internal combustion engine has a tendency to increase the output, it is possible to supply a highly durable cylinder head that has a high cooling effect on the combustion surface and other valve operating parts and does not generate high-temperature stress. is there.

また、該弁ガイド部分の周りにシリンダブロックから直接に流体冷媒を送り込んで、この部分の冷却効果を高めるとともに、デフレクタの周囲の動弁部分や動弁ポート等が冷却され、内燃機関の高出力化傾向の昨今において燃焼面やその他動弁部分等の冷却効果が高く、高温応力が生じない耐久性の高いシリンダヘッドを供給することができるのである。   In addition, the fluid refrigerant is sent directly from the cylinder block around the valve guide part to enhance the cooling effect of this part, and the valve part and the valve port around the deflector are cooled, resulting in high output of the internal combustion engine. In recent years, the cooling effect of the combustion surface and other valve operating parts is high, and a highly durable cylinder head free from high temperature stress can be supplied.

本発明の実施の形態を添付の図面に基づいて説明する。図8はシリンダヘッドCHの図1におけるX−X線断面図であって、排気弁間ジャケット7内に本発明に係る燃焼面冷却手段であるパイプ19を設けた場合の図、図9は同じく被覆部材20を設けた場合の図、図10は同じくデフレクタ21を設けた場合の図、図11は排気弁間ジャケット7内の燃焼面冷却面7aに流路制御板7bを突設した場合のシリンダヘッドCHの平面断面図、図12は図11におけるY−Y線断面図、図13は排気弁間ジャケット7内の燃焼面冷却面7aに流路制御板22を突設した場合のシリンダヘッドCHの平面断面図、図14は図13におけるY−Y線断面図、図15はシリンダヘッドCHの図1におけるX−X線断面図であって出口部分に湾曲部6’aを有する排気弁間冷却用流路6’を設けた場合の図、図16は傾斜状の排気弁間冷却用流路6”を設けた場合のシリンダヘッドCHの側面断面図、図17は流体冷媒導入路1・2に螺旋溝23aを内装する管部材23を内嵌した場合のシリンダヘッドCHの側面断面図、図18は流体冷媒横導入路2内にフィン部2aを形成した場合のシリンダヘッドCHの側面断面図、図19は排気弁間ジャケット7に狭小部7cを形成すべく排気分岐ポート11a・11aを変形した場合のシリンダヘッドCHの底面図、図20は排気ポート側ジャケット13にベンド状の流体冷媒流路15・15aを連接した場合のシリンダヘッドCHの平面断面図、図21は図20中のZ−Z線断面図、図22は流体冷媒流路15より排気弁ガイド孔8周りの排気弁間ジャケット7にデフレクタ23を延設した場合のシリンダヘッドCHの平面断面図、図23は図22中のZ’−Z’線断面図である。   Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 8 is a cross-sectional view of the cylinder head CH taken along the line XX in FIG. 1, and is a diagram in the case where the pipe 19 as the combustion surface cooling means according to the present invention is provided in the jacket 7 between the exhaust valves. FIG. 10 shows a case where a deflector 21 is provided, FIG. 11 shows a case where a flow path control plate 7b is provided on the combustion surface cooling surface 7a in the jacket 7 between the exhaust valves. FIG. 12 is a cross-sectional view taken along line YY in FIG. 11, and FIG. 13 is a cylinder head when a flow path control plate 22 projects from the combustion surface cooling surface 7a in the jacket 7 between the exhaust valves. FIG. 14 is a sectional view taken along line YY in FIG. 13, and FIG. 15 is a sectional view taken along line XX in FIG. 1 of the cylinder head CH, and has an exhaust valve having a curved portion 6'a at the outlet portion. A diagram in the case of providing the intercooling flow path 6 ′, 16 is a side sectional view of the cylinder head CH when an inclined exhaust valve cooling passage 6 ″ is provided, and FIG. 17 is an internal fitting of a pipe member 23 having a spiral groove 23a in the fluid refrigerant introduction passages 1 and 2. FIG. 18 is a side sectional view of the cylinder head CH when the fin portion 2 a is formed in the fluid refrigerant lateral introduction path 2, and FIG. 19 is a narrow portion 7 c in the jacket 7 between the exhaust valves. FIG. 20 is a bottom view of the cylinder head CH when the exhaust branch ports 11a and 11a are deformed to form a cylinder. FIG. 20 shows the cylinder head CH when the bend-like fluid refrigerant flow paths 15 and 15a are connected to the exhaust port side jacket 13. FIG. 21 is a cross-sectional view taken along the line ZZ in FIG. 20, and FIG. 22 is a cross-sectional view when the deflector 23 is extended from the fluid refrigerant passage 15 to the exhaust valve guide jacket 7 around the exhaust valve guide hole 8. Plan sectional view of Daheddo CH, FIG. 23 is a Z'-Z 'line cross-sectional view in FIG. 22.

本発明の実施の形態として、4バルブOHV型ディーゼルエンジンの一シリンダヘッドCHを採り上げる。シリンダヘッドCHの内部構造は、前記の従来技術で説明したものと基本的に同一である。即ち、図1乃至図7の如く、一シリンダヘッドCHの底面には燃焼室に臨む部分(平面視でボルト孔16・16・・・にて囲まれる部分)燃焼面Aを形成し、平面視において該燃焼面Aの略中央部分に燃料噴射弁嵌入孔3を形成して、その周囲に給気弁ガイド孔8・8、給気分岐ポート9a・9a、給気合流ポート9、排気ガイド孔10・10、排気分岐ポート11a・11a、及び排気合流ポート11を形成しており、更に、流体冷媒ジャケットとして、平面視燃焼面A内においては、燃焼面Aに対峙する燃焼面冷却面7a・9aを有する給気弁間ジャケット7と排気弁間ジャケット9を、燃焼面A外においては給気ポート側ジャケット12と排気ポート側ジャケット13を形成し、流体冷媒流路として、シリンダヘッドCHの底面より燃料噴射弁嵌入孔3に流体冷媒縦導入路1・流体冷媒横導入路2を、燃料噴射弁嵌入孔3より給気弁間ジャケット5に給気弁間冷却用流路4を、燃料噴射弁嵌入孔3より排気弁間ジャケット7に排気弁間冷却用流路6を、シリンダヘッドCHの底面より給気ポート側ジャケット12に給気ポート冷却用流路14を、シリンダヘッドCHの底面より排気ポート側ジャケット13に排気ポート冷却用流路15を形成している。   As an embodiment of the present invention, a one-cylinder head CH of a four-valve OHV type diesel engine is taken up. The internal structure of the cylinder head CH is basically the same as that described in the prior art. That is, as shown in FIG. 1 to FIG. 7, a portion facing the combustion chamber (portion surrounded by the bolt holes 16, 16... In a plan view) is formed on the bottom surface of one cylinder head CH. The fuel injection valve insertion hole 3 is formed substantially at the center of the combustion surface A, and the air supply valve guide holes 8 and 8, the air supply branch ports 9a and 9a, the air supply merging port 9 and the exhaust guide hole are formed around the fuel injection valve insertion hole 3. 10 and 10, exhaust branch ports 11 a and 11 a, and exhaust merge port 11 are formed. Further, as a fluid refrigerant jacket, the combustion surface cooling surface 7 a. An air supply valve jacket 7 and an exhaust valve jacket 9 having 9a are formed. Outside the combustion surface A, an air supply port side jacket 12 and an exhaust port side jacket 13 are formed, and the bottom surface of the cylinder head CH is used as a fluid refrigerant flow path. More burning The fluid refrigerant longitudinal introduction path 1 and the fluid refrigerant lateral introduction path 2 are inserted into the injection valve insertion hole 3, the air supply valve cooling flow path 4 is inserted from the fuel injection valve insertion hole 3 into the air supply valve jacket 5, and the fuel injection valve is inserted. From the hole 3 to the exhaust valve jacket 7, the inter-exhaust valve cooling flow path 6, from the bottom surface of the cylinder head CH to the air supply port side jacket 12, and from the bottom surface of the cylinder head CH to the exhaust port. An exhaust port cooling flow path 15 is formed in the side jacket 13.

ここで、該シリンダヘッドCHに付設する燃料噴射弁や動弁機構等の構成について、図2乃至図6より説明しておく。まず、シリンダヘッドCHは図示されないシリンダブロックの上面に取りつけられ、ボルト孔16・16・・・に螺入する取付ボルト24・24・・・にてシリンダブロックに締結される。この取付ボルト24・24・・・・にて締結される面の内部に燃焼室が形成され、これに臨むシリンダヘッドCHの底面が燃焼面Aとなるのである。該燃料噴射弁嵌入孔3内には、図3の如く燃料噴射弁25を嵌入固定し、各給気弁ガイド孔8及び各排気弁ガイド孔10にそれぞれ給気弁26及び排気弁27の各弁軸部分を摺動自在に嵌入する。シリンダヘッドCHの上面にはボルト28・28を介して弁腕支持台29を立設し、該弁腕支持台29の各側に各々給気弁腕30・排気弁腕31を枢支して、図5及び図6の如く、該給気弁腕30及び該排気弁腕31の各一端にそれぞれ二つの給気弁26・26、排気弁27・27の上端を取りつけ、各他端よりプッシュロッド32・33を下方に延設し、シリンダブロック内のカムにタペットを介して押接している。このように取りつけた燃料噴射弁25や動弁機構は、図4のようにシリンダヘッドCHの上面に取りつけた弁腕カバー34にて覆われる。   Here, the structure of a fuel injection valve, a valve operating mechanism, and the like attached to the cylinder head CH will be described with reference to FIGS. First, the cylinder head CH is attached to the upper surface of a cylinder block (not shown) and fastened to the cylinder block with mounting bolts 24, 24... Screwed into the bolt holes 16. A combustion chamber is formed inside the surface fastened by the mounting bolts 24, 24,..., And the bottom surface of the cylinder head CH facing this is the combustion surface A. A fuel injection valve 25 is fitted and fixed in the fuel injection valve insertion hole 3 as shown in FIG. 3, and each of the air supply valve 26 and the exhaust valve 27 is inserted into each air supply valve guide hole 8 and each exhaust valve guide hole 10. The valve shaft part is slidably inserted. A valve arm support base 29 is erected on the upper surface of the cylinder head CH via bolts 28 and 28, and an air supply valve arm 30 and an exhaust valve arm 31 are pivotally supported on each side of the valve arm support base 29, respectively. As shown in FIGS. 5 and 6, the upper ends of the two air supply valves 26 and 26 and the exhaust valves 27 and 27 are respectively attached to the one ends of the air supply valve arm 30 and the exhaust valve arm 31, and pushed from the other ends. The rods 32 and 33 extend downward and are pressed against the cam in the cylinder block via a tappet. The fuel injection valve 25 and the valve operating mechanism attached in this way are covered with a valve arm cover 34 attached to the upper surface of the cylinder head CH as shown in FIG.

以上のように、図1乃至図7図示のものと同一の流体冷媒ジャケット及び流体冷媒流路を有する4バルブ型シリンダヘッドCHの内部構造において、特に高温となる排気弁ガイド孔10・10及び排気分岐ポート11a・11aの間及びその周囲に形成する排気弁間ジャケット7に様々な燃焼面冷却手段を設ける構成について、図8乃至図14より説明する。以下の構成例において使用した燃焼面冷却手段は、給気弁間ジャケット5に対しても適用可能であり、給気弁間ジャケット5においても冷却効果の向上が望まれる時は適用すればよい。   As described above, in the internal structure of the 4-valve cylinder head CH having the same fluid refrigerant jacket and fluid refrigerant flow path as those shown in FIGS. A configuration in which various combustion surface cooling means are provided in the jacket 7 between the exhaust ports formed between and around the branch ports 11a and 11a will be described with reference to FIGS. The combustion surface cooling means used in the following configuration examples can also be applied to the inter-supply valve jacket 5, and may be applied to the inter-supply valve jacket 5 when it is desired to improve the cooling effect.

図8の構成例では、シリンダヘッドCHの外側面よりパイプ19を嵌入し、その内端を、排気弁間ジャケット7に対する排気弁間冷却用流路6の開口部に連通して、該パイプ19が該排気弁間ジャケット7を貫通するようにする。該パイプ19の排気弁間ジャケット7内の貫通部分においては、該燃焼面冷却面7aに対峙する部分に単数または複数の孔19aを設ける。パイプ19は鋼管等、耐熱性や耐蝕性のある管材が望ましい。なお、該パイプ19の配設に当たっては、前記の錐孔16を利用して、パイプ19を嵌入するものである。また、鋳造前の段階でシリンダヘッドCH内にパイプ19を所定位置に配設しておいて鋳込み加工としてもよい。また、パイプ19の外端部には、シリンダヘッドCHの外側より、流体冷媒の回収用の別のパイプを連結し、他部分の冷却に使用することが考えられる。   In the configuration example of FIG. 8, the pipe 19 is fitted from the outer surface of the cylinder head CH, and the inner end thereof is communicated with the opening of the inter-exhaust valve cooling passage 6 with respect to the inter-exhaust valve jacket 7. Pass through the jacket 7 between the exhaust valves. In the through portion of the pipe 19 in the jacket 7 between the exhaust valves, one or a plurality of holes 19a are provided in a portion facing the combustion surface cooling surface 7a. The pipe 19 is preferably a pipe material having heat resistance and corrosion resistance, such as a steel pipe. When the pipe 19 is provided, the pipe 19 is inserted using the conical hole 16. Alternatively, the pipe 19 may be disposed in a predetermined position in the cylinder head CH before casting, and casting may be performed. Further, it is conceivable that another pipe for recovering the fluid refrigerant is connected to the outer end of the pipe 19 from the outside of the cylinder head CH and used for cooling the other part.

このような構成において、排気弁間冷却用流路6からパイプ19内に流入する流体冷媒は、排気弁間ジャケット7内に対しては、孔19aより噴出し、まず燃焼面冷却面7aに衝突してから排気弁間ジャケット7内に充填されていき、排気弁ガイド孔10・10や排気分岐ポート11a・11a、排気合流ポート11の冷却に供される。従って、燃焼面冷却面7aには略垂直方向に、かつ排気弁間冷却用流路6から直接的に比較的低温な流体冷媒が衝突するので、該燃焼面冷却面7aが十分に冷却されて、燃焼面Aの冷却効果を向上させるのである。   In such a configuration, the fluid refrigerant flowing into the pipe 19 from the inter-exhaust valve cooling flow path 6 is ejected from the hole 19a into the inter-exhaust valve jacket 7, and first collides with the combustion surface cooling surface 7a. Then, the exhaust valve jacket 7 is filled and used for cooling the exhaust valve guide holes 10 and 10, the exhaust branch ports 11 a and 11 a, and the exhaust junction port 11. Accordingly, since the relatively low-temperature fluid refrigerant collides with the combustion surface cooling surface 7a in a substantially vertical direction and directly from the cooling passage 6 between the exhaust valves, the combustion surface cooling surface 7a is sufficiently cooled. The cooling effect of the combustion surface A is improved.

次の図9図示の燃焼面冷却手段について説明する。該排気弁間ジャケット7内において、燃焼面冷却面7aと、燃料噴射弁嵌入孔3周囲の壁部分とを覆うように、被覆部材20を配設する。該被覆部材20内において、該排気弁間冷却用流路6の出口が開口しているものであり、かつ該被覆部材20に出口20aを設けて、該被覆部材20内の流体冷媒を、該被覆部材20外側の排気弁間ジャケット7内に流出可能としている。該被覆部材20は、鋳物材や鋼板等が考えられ、耐熱性や耐蝕性のあるものが望ましい。配設加工方法としては、鋳造前に所定位置に配設しておいて鋳込み加工することが考えられる。   Next, the combustion surface cooling means shown in FIG. 9 will be described. In the jacket 7 between the exhaust valves, a covering member 20 is disposed so as to cover the combustion surface cooling surface 7a and the wall portion around the fuel injection valve insertion hole 3. In the covering member 20, an outlet of the cooling passage 6 between the exhaust valves is opened, and an outlet 20a is provided in the covering member 20, and the fluid refrigerant in the covering member 20 is It can flow out into the jacket 7 between the exhaust valves outside the covering member 20. The covering member 20 may be a cast material, a steel plate, or the like, and preferably has heat resistance and corrosion resistance. As an arrangement processing method, it is conceivable to arrange at a predetermined position before casting and perform casting.

このような構成において、排気弁間冷却用流路6から被覆部材11内に流入した流体冷媒は、まず、被覆部材20にて案内されて燃焼面冷却面7aに衝突するものであり、更に出口20aより流出した流体冷媒が排気弁間ジャケット7内に充填されていき、排気弁ガイド孔10・10や排気ポート11a・11a・11の冷却に供される。従って、燃焼面冷却面7aには略垂直方向に、かつ排気弁間冷却用流路6から直接的に比較的低温な流体冷媒が衝突するので、該燃焼面冷却面7aが十分に冷却されて、燃焼面Aの冷却効果を向上させるのである。   In such a configuration, the fluid refrigerant that has flowed into the covering member 11 from the inter-exhaust-valve cooling flow path 6 is first guided by the covering member 20 and collides with the combustion surface cooling surface 7a. The fluid refrigerant flowing out of 20a is filled in the exhaust valve jacket 7 and used for cooling the exhaust valve guide holes 10 and 10 and the exhaust ports 11a, 11a and 11. Accordingly, since the relatively low-temperature fluid refrigerant collides with the combustion surface cooling surface 7a in a substantially vertical direction and directly from the cooling passage 6 between the exhaust valves, the combustion surface cooling surface 7a is sufficiently cooled. The cooling effect of the combustion surface A is improved.

更に、図10図示の燃焼面冷却手段について説明する。該排気弁間ジャケット7内において、該排気弁間冷却用流路6の出口よりデフレクタ21を配管して、その出口21aを燃焼面冷却面7aに向けている。デフレクタ21は耐熱性や耐蝕性のある素材より構成し、配管方法としては、鋳造前に所定位置に配設しておいて鋳込み加工することが考えられる。   Further, the combustion surface cooling means shown in FIG. 10 will be described. In the jacket 7 between the exhaust valves, a deflector 21 is piped from the outlet of the cooling passage 6 between the exhaust valves, and the outlet 21a faces the combustion surface cooling surface 7a. The deflector 21 is made of a material having heat resistance and corrosion resistance. As a piping method, it is conceivable that the deflector 21 is disposed at a predetermined position before casting and is cast.

このような構成において、排気弁間冷却用流路6からデフレクタ21内に流入した流体冷媒は、まず、出口21aより流出して燃焼面冷却面7aに衝突するものであり、それから排気弁間ジャケット7内に充填されていき、排気弁ガイド孔10・10や排気ポート11a・11a・11の冷却に供される。従って、燃焼面冷却面7aには略垂直方向に、かつ排気弁間冷却用流路6から直接的に比較的低温な流体冷媒が衝突するので、該燃焼面冷却面7aが十分に冷却されて、燃焼面Aの冷却効果を向上させるのである。   In such a configuration, the fluid refrigerant that has flowed into the deflector 21 from the inter-exhaust-valve cooling flow path 6 first flows out of the outlet 21a and collides with the combustion surface cooling surface 7a, and then the exhaust-valve jacket. 7 is used to cool the exhaust valve guide holes 10 and 10 and the exhaust ports 11a, 11a and 11. Accordingly, since the relatively low-temperature fluid refrigerant collides with the combustion surface cooling surface 7a in a substantially vertical direction and directly from the cooling passage 6 between the exhaust valves, the combustion surface cooling surface 7a is sufficiently cooled. The cooling effect of the combustion surface A is improved.

次に、燃焼面冷却手段として、燃焼面冷却面より突出する流路制御板を構成する構成例を図11乃至図14より説明する。図11及び図12においては、該排気弁間冷却用流路6の出口に対峙するように、該排気弁間ジャケット7の燃焼面冷却面7aより、燃焼面冷却面7aの一部を突出して形成した流路制御板7bを開示している。流路制御板7bは、燃焼面冷却面7aと燃焼面Aとの間のシリンダヘッドCHの底部肉厚部と一体である。これはあたかも該底部肉厚部にフィンを設けたのと同じであって、該底部肉厚部から燃焼面Aへの熱伝導性を向上させているのである。該流路制御板7bに、該排気弁間冷却用流路6の出口から流出した流体冷媒が直接的に略垂直状に衝突することで、まず該流路制御板7bが冷却され、これと一体の該底部肉厚部に冷却効果が波及し、燃焼面Aを十分に冷却するのである。   Next, a configuration example of a flow path control plate that protrudes from the combustion surface cooling surface as the combustion surface cooling means will be described with reference to FIGS. 11 and 12, a part of the combustion surface cooling surface 7a protrudes from the combustion surface cooling surface 7a of the jacket 7 between the exhaust valves so as to face the outlet of the cooling passage 6 between the exhaust valves. The formed flow path control plate 7b is disclosed. The flow path control plate 7b is integral with the bottom thick portion of the cylinder head CH between the combustion surface cooling surface 7a and the combustion surface A. This is the same as if the fins were provided on the bottom thick part, and the thermal conductivity from the bottom thick part to the combustion surface A was improved. The fluid refrigerant that has flowed out of the outlet of the inter-exhaust-valve cooling passage 6 directly collides with the passage control plate 7b in a substantially vertical shape, whereby the passage control plate 7b is first cooled. The cooling effect spreads to the integral bottom thick part, and the combustion surface A is sufficiently cooled.

また、図13及び図14においては、シリンダヘッドCHの素材とは別部材の流路制御板22を、前記と同様に該排気弁間冷却用流路6の出口に対峙するように、該排気弁間ジャケット7の燃焼面冷却面7aより突出するようにして配設した構成を開示している。流路制御板22は燃焼面冷却面7aに連接されていて、燃焼面冷却面7a、前記底部肉厚部、そして燃焼面Aへの熱伝導性を向上させるものであり、排気弁間冷却用流路6の出口からの流体冷媒が直接的かつ略垂直状に衝突することで冷却され、その冷却効果を燃焼面Aまで十分に波及させるのである。ここで、シリンダヘッドCHと別部材とした流路制御板22は、例えば熱伝導性の高いアルミニウム等より構成し、このように該シリンダヘッドCHの素材よりも熱伝導性のよい素材とすることで、燃焼面冷却面7a、該底部肉厚部、及び燃焼面Aへの熱伝導性を一層向上させることができる。   Further, in FIGS. 13 and 14, the exhaust gas control plate 22, which is a member different from the material of the cylinder head CH, is disposed so as to face the outlet of the inter-exhaust valve cooling flow channel 6 in the same manner as described above. The structure arrange | positioned so that it may protrude from the combustion surface cooling surface 7a of the jacket 7 between valves is disclosed. The flow path control plate 22 is connected to the combustion surface cooling surface 7a, and improves the heat conductivity to the combustion surface cooling surface 7a, the bottom thick portion, and the combustion surface A, and is used for cooling between the exhaust valves. The fluid refrigerant from the outlet of the flow path 6 is cooled by colliding directly and substantially vertically, and the cooling effect is sufficiently spread to the combustion surface A. Here, the flow path control plate 22 which is a separate member from the cylinder head CH is made of, for example, aluminum having high thermal conductivity, and is made of a material having better thermal conductivity than the material of the cylinder head CH. Thus, the thermal conductivity to the combustion surface cooling surface 7a, the bottom thick portion, and the combustion surface A can be further improved.

以上のような流路制御板7bまたは22の構成により、燃焼面冷却面7aにおける図12及び図14図示のC部分の熱伝導性は、該流路制御板7bまたは22を設けない場合の熱伝導性に比べて、例えば約1.5倍となる。   With the configuration of the flow path control plate 7b or 22 as described above, the thermal conductivity of the portion C shown in FIGS. 12 and 14 on the combustion surface cooling surface 7a is the heat in the case where the flow path control plate 7b or 22 is not provided. For example, it is about 1.5 times the conductivity.

次に、同じく流体冷媒ジャケットの燃焼面冷却面を冷却させることを通じて燃焼面Aを冷却する構造として、流体冷媒流路を改良する構造を図15及び図16より説明する。なお、図15及び図16において、排気弁間ジャケット7の燃焼面冷却面7aを冷却させることを通じて燃焼面Aを冷却すべく、排気弁冷却用流路6を改良する構造が開示されているが、給気弁冷却用流路4に以下の改良構成を適用して、給気弁間ジャケット5の燃焼面冷却面5aを冷却することも考えられる。   Next, a structure for improving the fluid refrigerant flow path will be described with reference to FIGS. 15 and 16 as a structure for cooling the combustion surface A by cooling the combustion surface cooling surface of the fluid refrigerant jacket. 15 and 16 disclose a structure for improving the exhaust valve cooling flow path 6 to cool the combustion surface A by cooling the combustion surface cooling surface 7a of the jacket 7 between the exhaust valves. It is also conceivable to cool the combustion surface cooling surface 5a of the inter-supply valve jacket 5 by applying the following improved configuration to the supply valve cooling flow path 4.

基本的な考え方として、排気弁間冷却用流路6の出口端における燃焼面側部分を排気弁間ジャケット7の燃焼面冷却面7aに連接させれば、該排気弁間冷却用流路6内を流れる流体冷媒を該燃焼面冷却面7a上に案内できるのであるが、該排気弁間冷却用流路6の入口部は従来技術でも説明したように、燃料噴射弁嵌入孔3の周囲の壁部分と燃焼面Aとの間の肉厚を十分に取るために、燃焼面Aとの間の距離をある程度長くとらなければならないので、該入口部を燃焼面A側に寄せることはできない。従って、図7図示の燃焼面Aと平行な排気弁間冷却用流路6をそのまま平行状に燃焼面Aに寄せて構成するということはできない。そこで図15及び図16図示のような排気弁間冷却用流路6’・6”が考え出されたわけである。   As a basic idea, if the combustion surface side portion at the outlet end of the inter-exhaust valve cooling passage 6 is connected to the combustion surface cooling surface 7a of the inter-exhaust valve jacket 7, the inside of the inter-exhaust valve cooling passage 6 The fluid refrigerant flowing through the combustion surface cooling surface 7a can be guided onto the combustion surface cooling surface 7a, but the inlet portion of the inter-exhaust valve cooling flow path 6 is a wall around the fuel injection valve insertion hole 3 as described in the prior art. In order to obtain a sufficient thickness between the portion and the combustion surface A, the distance between the combustion surface A and the combustion surface A must be increased to some extent. Therefore, the inlet portion cannot be brought close to the combustion surface A side. Accordingly, the exhaust valve cooling flow path 6 parallel to the combustion surface A shown in FIG. 7 cannot be arranged in parallel with the combustion surface A as it is. Thus, the inter-exhaust-valve cooling flow paths 6 'and 6 "as shown in FIGS. 15 and 16 have been devised.

まず、図15図示の排気弁間冷却用流路6’は、基本的には図7図示の、燃焼面Aに略水平で、定径の排気弁間冷却用流路6と同様であり、入口部と燃焼面Aとの間の距離が十分に保たれているが、出口部分に改良点が見られる。即ち、排気弁間ジャケット7に開口する出口付近の燃焼面側部分に燃焼面Aに向けて湾曲した湾曲部分6’aを形成し、その出口端を該排気弁間ジャケット7の燃焼面冷却面7aに連接している。これにより、排気弁間冷却用流路6’内を流動する流体冷媒は、その燃焼面A寄り側の流れが出口付近で該傾斜部分6’aを介して燃焼面冷却面7aに案内され、該燃焼面冷却面7aに十分な低温流体冷媒を接触させ、これを通じて燃焼面Aを冷却するのである。   First, the exhaust valve cooling flow path 6 ′ shown in FIG. 15 is basically the same as the constant diameter exhaust gas cooling path 6 substantially horizontal to the combustion surface A shown in FIG. Although the distance between the inlet and the combustion surface A is sufficiently maintained, improvements can be seen at the outlet. That is, a curved portion 6 ′ a curved toward the combustion surface A is formed in the combustion surface side portion near the outlet opening in the exhaust valve jacket 7, and the outlet end thereof is the combustion surface cooling surface of the exhaust valve jacket 7. 7a is connected. Thereby, the fluid refrigerant flowing in the cooling passage 6 'between the exhaust valves is guided to the combustion surface cooling surface 7a through the inclined portion 6'a in the vicinity of the outlet of the flow near the combustion surface A, A sufficient low-temperature fluid refrigerant is brought into contact with the combustion surface cooling surface 7a, and the combustion surface A is cooled through this.

そして、図16図示の排気弁間冷却用流路6”は、定径の錐孔を傾斜状に穿設して形成したものとなっており、燃料噴射弁嵌入孔3に開口する入口は図2図示の排気弁間冷却用流路6と同一の位置にする一方で、その出口端の燃焼面側部分が排気弁間ジャケット7の燃焼面冷却面7aに連接されている。こうして、排気弁間冷却用流路6”内を流動する流体冷媒は、その燃焼面A寄り側の流れが出口付近で燃焼面冷却面7aに案内され、該燃焼面冷却面7aに十分な低温流体冷媒を接触させ、これを通じて燃焼面Aを冷却するのである。   16 is formed by drilling a constant-diameter conical hole in an inclined shape, and the inlet opening to the fuel injection valve insertion hole 3 is illustrated in FIG. 2, the combustion surface side portion of the outlet end thereof is connected to the combustion surface cooling surface 7a of the inter-exhaust valve jacket 7. Thus, the exhaust valve is located in the same position as the exhaust valve cooling flow path 6 shown in FIG. The fluid refrigerant flowing in the intercooling flow path 6 "is guided to the combustion surface cooling surface 7a in the vicinity of the outlet of the fluid refrigerant near the combustion surface A, and a sufficient low temperature fluid refrigerant is brought into contact with the combustion surface cooling surface 7a. Through this, the combustion surface A is cooled.

これらのうち、排気弁間冷却用流路6”の構成例の場合には、図16図示の燃焼面冷却面7aのD部分の熱伝導性が、従来の排気弁間冷却用流路6を形成していた場合の同一位置の熱伝導性を1とすると、例えば約2倍となる。このような高い熱伝導性を有することにより、燃焼面冷却面7aの冷却効果が十分に燃焼面Aに波及し、燃焼面Aに十分な冷却効果をもたらすのである。   Among these, in the case of the configuration example of the inter-exhaust valve cooling flow path 6 ″, the thermal conductivity of the D portion of the combustion surface cooling surface 7a shown in FIG. If the thermal conductivity at the same position in the case of being formed is 1, for example, the thermal conductivity is approximately doubled, and by having such a high thermal conductivity, the cooling effect of the combustion surface cooling surface 7a is sufficiently high. This causes a sufficient cooling effect on the combustion surface A.

次に、図1及び図2図示の流体冷媒横導入路2を改良して、弁間や燃焼面Aの冷却効果を高める構成について、図17及び図18より説明する。基本的には該流体冷媒横導入路2の内面をフィン状にして熱交換性を向上させるのであるが、このうち図17図示の構成例では、螺旋溝23aを内周面に形成したL字曲折状の管部材23を、流体冷媒導入用縦流路1・流体冷媒導入用横流路2にわたって内嵌配管している。この配管加工方法は、鋳造前に配管しておく鋳込み加工としており、管部材の材料は金属材等、耐熱性及び耐蝕性のあるものならよい。   Next, a configuration for improving the cooling effect between the valves and the combustion surface A by improving the fluid refrigerant lateral introduction path 2 shown in FIGS. 1 and 2 will be described with reference to FIGS. 17 and 18. Basically, the inner surface of the fluid refrigerant lateral introduction path 2 is finned to improve heat exchange. However, in the configuration example shown in FIG. 17, an L-shape having a spiral groove 23a formed on the inner peripheral surface. A bent tube member 23 is internally fitted over the longitudinal channel 1 for introducing fluid refrigerant and the transverse channel 2 for introducing fluid refrigerant. This piping method is a casting process for piping before casting, and the material of the pipe member may be a metal material or the like that has heat resistance and corrosion resistance.

一方、図18図示の構成例では、シリンダヘッドCHと一体形成する流体冷媒導入用横流路2の内周面そのものにフィン部2a・2a・・・を一体形成している。即ち、鋳型によりフィン部2a・2a・・・の形を取り、鋳造によってこれらを形成するものである。   On the other hand, in the configuration example shown in FIG. 18, the fin portions 2 a, 2 a... Are integrally formed on the inner peripheral surface of the fluid refrigerant introduction lateral flow path 2 formed integrally with the cylinder head CH. That is, the fins 2a, 2a,... Are formed by a mold, and these are formed by casting.

図17または図18のような構成により、流体冷媒導入用小流路2の周囲のシリンダヘッドCHの肉厚部の冷却効果が高まり、燃焼面A等にその冷却効果が波及する。前記の排気弁間ジャケット7内の燃焼面冷却手段や排気弁間冷却用流路6の改良構成等と合わせると、一層の冷却効果が見られる。   With the configuration as shown in FIG. 17 or 18, the cooling effect of the thick portion of the cylinder head CH around the small flow path 2 for introducing the fluid refrigerant is enhanced, and the cooling effect is spread to the combustion surface A and the like. When combined with the combustion surface cooling means in the jacket 7 between the exhaust valves and the improved configuration of the cooling passage 6 between the exhaust valves, a further cooling effect can be seen.

次に、排気弁間ジャケット7の変形により流体冷媒の流速を早め、熱伝導性を向上させる構成例を図19より説明する。排気弁間ジャケット7を挟む両側の排気分岐ポート11a・11aを、図19のように排気弁間ジャケット7に向けて張り出して、排気分岐ポート11a・11a間の通路、即ち排気弁間ジャケット7内の流体冷媒通路を狭めて狭小部7cを形成する。これにより、排気弁間ジャケット7の狭小部7cを通過する際に流体冷媒の流速が早まり、排気弁間ジャケット7内面の熱伝導性が向上して、燃焼面Aの冷却効果、更に、排気弁間ジャケット7に接する排気分岐ポート11a・11aや排気合流ポート11、そして排気弁ガイド孔10・10の冷却効果も向上する。   Next, a configuration example in which the flow rate of the fluid refrigerant is increased by the deformation of the exhaust valve jacket 7 to improve the thermal conductivity will be described with reference to FIG. The exhaust branch ports 11a and 11a on both sides sandwiching the exhaust valve jacket 7 project toward the exhaust valve jacket 7 as shown in FIG. 19, and the passage between the exhaust branch ports 11a and 11a, that is, the exhaust valve jacket 7 The fluid refrigerant passage is narrowed to form a narrow portion 7c. Thereby, when passing through the narrow portion 7c of the jacket 7 between the exhaust valves, the flow rate of the fluid refrigerant is increased, the thermal conductivity of the inner surface of the jacket 7 between the exhaust valves is improved, the cooling effect of the combustion surface A, and the exhaust valve The cooling effect of the exhaust branch ports 11a and 11a in contact with the intermediate jacket 7, the exhaust junction port 11, and the exhaust valve guide holes 10 and 10 is also improved.

次に、排気ポート側ジャケット13にシリンダブロックからの流体冷媒を直接的に導入する構成例について、図20及び図21より説明する。前記の従来技術でも説明したように、図6の如く、シリンダヘッドCHの底面に対して略垂直状の排気ポート冷却用流路15を排気ポート側ジャケット13に直接接続した構造が従来より採用されているが、従来の構造の不具合を解消すべく、図21の如く略L字に曲折したベンド状にし、該流路の後半部を、シリンダヘッドCHの底面に略平行な曲折部15aとし、一方、排気ポート側ジャケット13には、曲折部15aへの接続面として、該シリンダヘッドCHの底面に垂直な接続面13aを形成し、該接続面13aに、該底面と平行状の曲折部15aを接続して、排気ポート側ジャケット13内に流体冷媒がシリンダヘッドCHと平行状に導入されるようにする。これにより、該排気ポート冷却用流路15・15aからの流体冷媒が、排気ポート側ジャケット13内において、一か所に集中せず、全体に行き渡る。また、給気ポート冷却用流路14においても、図20図示の如く同様に曲折して給気ポート冷却用流路14の後半部をシリンダヘッドCHの底面に略平行な曲折部14aとし、給気ポート側ジャケット12には、シリンダヘッドCHの底面に略垂直な接続面12aを形成し、給気ポート冷却用流路14・14aを介して、給気ポート側ジャケット12内に、流体冷媒をシリンダヘッドCHの底面に略平行状に導入するようにしている。   Next, a configuration example in which the fluid refrigerant from the cylinder block is directly introduced into the exhaust port side jacket 13 will be described with reference to FIGS. 20 and 21. FIG. As described in the above prior art, as shown in FIG. 6, a structure in which the exhaust port cooling flow path 15 substantially perpendicular to the bottom surface of the cylinder head CH is directly connected to the exhaust port side jacket 13 is conventionally employed. However, in order to solve the problems of the conventional structure, a bend shape bent into a substantially L shape as shown in FIG. 21 is formed, and the latter half portion of the flow path is a bent portion 15a substantially parallel to the bottom surface of the cylinder head CH. On the other hand, the exhaust port side jacket 13 is formed with a connection surface 13a perpendicular to the bottom surface of the cylinder head CH as a connection surface to the bent portion 15a, and the bent portion 15a parallel to the bottom surface is formed on the connection surface 13a. Are connected so that the fluid refrigerant is introduced into the exhaust port side jacket 13 in parallel with the cylinder head CH. As a result, the fluid refrigerant from the exhaust port cooling passages 15 and 15a is not concentrated in one place in the exhaust port side jacket 13 but spreads throughout. In addition, the air supply port cooling flow path 14 is bent in the same manner as shown in FIG. 20 so that the rear half of the air supply port cooling flow path 14 becomes a bent portion 14a substantially parallel to the bottom surface of the cylinder head CH. The air port side jacket 12 is formed with a connecting surface 12a substantially perpendicular to the bottom surface of the cylinder head CH, and fluid refrigerant is supplied into the air port side jacket 12 via the air port cooling passages 14 and 14a. The cylinder head CH is introduced substantially parallel to the bottom surface of the cylinder head CH.

こうして、前記の従来技術で説明した図8中におけるB部分の熱伝導性を1とすれば、図20及び図21の構成例の場合の排気ポート側ジャケット13のB部分の熱伝導性は、例えば約0.3である。一見すれば、前者が後者に比べて熱伝導性が高く冷却効果が高いように見えるが、前者の場合、B部分一か所に熱伝導が集中する分だけ排気ポート側ジャケット13の熱伝導効率が悪く、それに比べて、後者の図20及び図21図示の構成例の場合には、B部分の熱伝導性は従来より小さくなるものの、その分、排気ポート側ジャケット13の他の部分の熱伝導性が均等状に高まっている。こうして、排気ポート側ジャケット13全体に熱伝導性を向上させることにより、排気ポート側ジャケット13に接する面全体、即ち排気合流ポート11やシリンダヘッドCHの底面全体が冷却され、冷却効果を高めるのである。   Thus, if the thermal conductivity of the B portion in FIG. 8 described in the prior art is 1, the thermal conductivity of the B portion of the exhaust port side jacket 13 in the configuration example of FIGS. For example, about 0.3. At first glance, it seems that the former has higher thermal conductivity and higher cooling effect than the latter, but in the former case, the heat conduction efficiency of the exhaust port side jacket 13 is as much as the heat conduction is concentrated in one part of the B portion. In contrast, in the case of the latter configuration example shown in FIGS. 20 and 21, the thermal conductivity of the B portion is smaller than that of the conventional one, but the heat of the other portion of the exhaust port side jacket 13 is correspondingly reduced. The conductivity is evenly increased. Thus, by improving the thermal conductivity of the exhaust port side jacket 13 as a whole, the entire surface in contact with the exhaust port side jacket 13, that is, the entire bottom surface of the exhaust merging port 11 and the cylinder head CH is cooled, and the cooling effect is enhanced. .

図22及び図23に示す実施例では、シリンダブロックからの流体冷媒を直接的に排気弁ガイド孔10周囲の流体冷媒ジャケット7(この部位は排気弁間ジャケット7の一部であって、排気合流ポート13を包む形状の排気ポート側ジャケット13に連接している。)に導くべく、排気ポート冷却用流路15よりデフレクタ35を配管して、その出口を排気弁ガイド孔10周囲の流体冷媒ジャケット7cに配設している。デフレクタ35は、排気合流ポート11や排気分岐ポート11aと干渉しないように迂回させている。これにより、排気弁ガイド孔10の周囲に低温のシリンダブロックからの流体冷媒を直接的に導入するので、排気弁の冷却効果を高め、排気弁の耐久性向上に貢献する。また、デフレクタ35に排気ポート11が近接していることで、該排気ポート11その他の部分の冷却にも貢献する。   In the embodiment shown in FIGS. 22 and 23, the fluid refrigerant from the cylinder block is directly fed to the fluid refrigerant jacket 7 around the exhaust valve guide hole 10 (this part is a part of the exhaust valve jacket 7 and is connected to the exhaust joint). In order to guide the exhaust port to the exhaust port side jacket 13 that encloses the port 13), a deflector 35 is piped from the exhaust port cooling flow path 15, and the outlet thereof is a fluid refrigerant jacket around the exhaust valve guide hole 10. 7c. The deflector 35 is detoured so as not to interfere with the exhaust merge port 11 and the exhaust branch port 11a. Thereby, since the fluid refrigerant from the low-temperature cylinder block is directly introduced around the exhaust valve guide hole 10, the cooling effect of the exhaust valve is enhanced and the durability of the exhaust valve is improved. Further, the proximity of the exhaust port 11 to the deflector 35 contributes to cooling of the exhaust port 11 and other parts.

シリンダブロックCHの底面図である。It is a bottom view of cylinder block CH. 同じく平面断面図である。It is a plane sectional view similarly. 同じく燃料噴射弁や動弁機構等を取り付けた状態の平面図である。It is a top view of the state which attached the fuel injection valve, the valve operating mechanism, etc. similarly. 同じく弁腕カバーを取り付けた状態の平面図である。It is a top view of the state where the valve arm cover was similarly attached. 同じく給気弁構造を示す側面断面図である。It is side surface sectional drawing which similarly shows an air supply valve structure. 同じく排気弁構造を示す側面断面図である。It is side surface sectional drawing which similarly shows an exhaust valve structure. 図1におけるX−X線断面図である。It is the XX sectional view taken on the line in FIG. シリンダヘッドCHの図1におけるX−X線断面図であって、排気弁間ジャケット7内に本発明に係る燃焼面冷却手段であるパイプ19を設けた場合の図である。FIG. 2 is a cross-sectional view of the cylinder head CH taken along the line XX in FIG. 1 and shows a case where a pipe 19 which is a combustion surface cooling means according to the present invention is provided in the exhaust valve jacket 7. 同じく被覆部材20を設けた場合の図である。It is a figure at the time of providing the covering member 20 similarly. 同じくデフレクタ21を設けた場合の図である。It is a figure at the time of providing the deflector 21 similarly. 排気弁間ジャケット7内の燃焼面冷却面7aに流路制御板7bを突設した場合のシリンダヘッドCHの平面断面図である。FIG. 6 is a plan sectional view of a cylinder head CH when a flow path control plate 7b is projected from a combustion surface cooling surface 7a in an exhaust valve jacket 7. 図11におけるY−Y線断面図である。It is the YY sectional view taken on the line in FIG. 排気弁間ジャケット7内の燃焼面冷却面7aに流路制御板22を突設した場合のシリンダヘッドCHの平面断面図である。FIG. 6 is a plan sectional view of a cylinder head CH when a flow path control plate 22 protrudes from a combustion surface cooling surface 7a in an exhaust valve jacket 7. 図13におけるY−Y線断面図である。It is the YY sectional view taken on the line in FIG. シリンダヘッドCHの図1におけるX−X線断面図であって出口部分に湾曲部6’aを有する排気弁間冷却用流路6’を設けた場合の図である。FIG. 2 is a cross-sectional view of the cylinder head CH taken along the line XX in FIG. 傾斜状の排気弁間冷却用流路6”を設けた場合のシリンダヘッドCHの側面断面図である。It is side surface sectional drawing of cylinder head CH at the time of providing the inclined flow path 6 "between exhaust valve cooling. 流体冷媒導入路1・2に螺旋溝23aを内装する管部材23を内嵌した場合のシリンダヘッドCHの側面断面図である。It is side surface sectional drawing of the cylinder head CH at the time of fitting the pipe member 23 which incorporates the spiral groove 23a in the fluid refrigerant introduction path 1 * 2. 流体冷媒横導入路2内にフィン部2aを形成した場合のシリンダヘッドCHの側面断面図である。3 is a side cross-sectional view of a cylinder head CH when a fin portion 2a is formed in a fluid refrigerant lateral introduction path 2. FIG. 排気弁間ジャケット7に狭小部7cを形成すべく排気分岐ポート11a・11aを変形した場合のシリンダヘッドCHの底面図である。FIG. 5 is a bottom view of the cylinder head CH when the exhaust branch ports 11a and 11a are deformed so as to form a narrow portion 7c in the exhaust valve jacket 7; 排気ポート側ジャケット13にベンド状の流体冷媒流路15・15aを連接した場合のシリンダヘッドCHの平面断面図である。FIG. 3 is a plan sectional view of a cylinder head CH when a bend-like fluid refrigerant flow path 15, 15 a is connected to the exhaust port side jacket 13. 図20中のZ−Z線断面図である。FIG. 21 is a sectional view taken along line ZZ in FIG. 20. 本発明の流体冷媒流路15より排気弁ガイド孔8周りの排気弁間ジャケット7にデフレクタ23を延設した場合のシリンダヘッドCHの平面断面図である。FIG. 5 is a plan sectional view of the cylinder head CH when a deflector 23 is extended from the fluid refrigerant flow path 15 of the present invention to the exhaust valve jacket 7 around the exhaust valve guide hole 8. 図22中のZ’−Z’線断面図である。FIG. 23 is a sectional view taken along line Z′-Z ′ in FIG. 22.

符号の説明Explanation of symbols

CH シリンダヘッド
A 燃焼面
1 流体冷媒縦導入路
2 流体冷媒横導入路
2a フィン部
3 燃料噴射弁嵌入孔
4 給気弁間冷却用流路
5 給気弁間ジャケット
5a 燃焼面冷却面
6 排気弁間冷却用流路
6’ 排気弁間冷却用流路
6’a 湾曲部
6” 傾斜状排気弁間冷却用流路
7 排気弁間ジャケット
7a 燃焼面冷却面
7b 流路制御板
7c 狭小部
8 給気弁ガイド孔
9 給気合流ポート
9a 給気分岐ポート
10 排気弁ガイド孔
11 排気合流ポート
11a 排気分岐ポート
12 給気ポート側ジャケット
13 排気ポート側ジャケット
14 給気ポート冷却用流路
15 排気ポート冷却用流路
19 パイプ(燃焼面冷却手段)
19a 孔
20 被覆部材(燃焼面冷却手段)
21 デフレクタ(燃焼面冷却手段)
22 流路制御板
23 管部材
23a 螺旋溝
35 デフレクタ
CH Cylinder Head A Combustion Surface 1 Fluid Refrigerant Vertical Introductory Path 2 Fluid Refrigerant Lateral Introductory Path 2a Fin Port 3 Fuel Injection Valve Insertion Hole 4 Cooling Channel between Supply Valves 5 Inter-Supply Valve Jacket 5a Combustion Surface Cooling Surface 6 Exhaust Valve Intercooling channel 6 'Exhaust valve cooling channel 6'a Curved portion 6 "Inclined exhaust valve cooling channel 7 Exhaust valve jacket 7a Combustion surface cooling surface 7b Channel control plate 7c Narrow part 8 Supply Air valve guide hole 9 Supply air merge port 9a Supply air branch port 10 Exhaust valve guide hole 11 Exhaust merge port 11a Exhaust branch port 12 Supply port side jacket 13 Exhaust port side jacket 14 Supply port cooling flow path 15 Exhaust port cooling Flow path 19 Pipe (combustion surface cooling means)
19a hole 20 coating member (combustion surface cooling means)
21 Deflector (combustion surface cooling means)
22 Flow path control plate 23 Pipe member 23a Spiral groove 35 Deflector

Claims (1)

内燃機関のシリンダヘッド(CH)内にて、排気弁ガイド孔(10)部または排気弁ガイド孔(10)部の周囲に、排気ポート側ジャケット(13)に連接し、かつ排気合流ポート(11)を包む形状の排気弁間ジャケット(7)を形成すると共に、
該シリンダヘッド(CH)の底面のシリンダブロックへの取付面に、排気ポート冷却用流路(15)を開口し、該排気ポート冷却用流路(15)より、該シリンダブロックからの流体冷媒を、直接的に前記排気弁間ジャケット(7)へ導くべく、該排気ポート冷却用流路(15)から前記排気弁間ジャケット(7)へ連通する筒状のデフレクタ(35)を内設配管し、
該デフレクタ(35)は、排気合流ポート(11)や排気分岐ポート(11a)と干渉しないように迂回させたことを特徴とするシリンダヘッドの冷却構造。
In the cylinder head (CH) of the internal combustion engine, connected to the exhaust port side jacket (13) around the exhaust valve guide hole (10) or the exhaust valve guide hole (10), and the exhaust merge port (11) ) To form a jacket (7) between the exhaust valves,
An exhaust port cooling flow path (15) is opened in a mounting surface of the bottom surface of the cylinder head (CH) to the cylinder block, and fluid refrigerant from the cylinder block is supplied from the exhaust port cooling flow path (15). In order to directly lead to the exhaust valve jacket (7), a cylindrical deflector (35) communicating from the exhaust port cooling flow path (15) to the exhaust valve jacket (7) is internally installed. ,
The cooling structure of a cylinder head, wherein the deflector (35) is detoured so as not to interfere with the exhaust merging port (11) and the exhaust branch port (11a).
JP2008184346A 2008-07-15 2008-07-15 Cooling structure of cylinder head Pending JP2008248894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008184346A JP2008248894A (en) 2008-07-15 2008-07-15 Cooling structure of cylinder head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008184346A JP2008248894A (en) 2008-07-15 2008-07-15 Cooling structure of cylinder head

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005323709A Division JP2006057639A (en) 2005-11-08 2005-11-08 Cooling structure of cylinder head

Publications (1)

Publication Number Publication Date
JP2008248894A true JP2008248894A (en) 2008-10-16

Family

ID=39974103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008184346A Pending JP2008248894A (en) 2008-07-15 2008-07-15 Cooling structure of cylinder head

Country Status (1)

Country Link
JP (1) JP2008248894A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014113A1 (en) * 2011-07-28 2013-01-31 Avl List Gmbh Cylinder head with liquid-type cooling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533640A (en) * 1991-07-24 1993-02-09 Yanmar Diesel Engine Co Ltd Cylinder head of water-cooled internal combustion engine
JPH0814101A (en) * 1994-06-24 1996-01-16 Isuzu Motors Ltd Cooling device of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533640A (en) * 1991-07-24 1993-02-09 Yanmar Diesel Engine Co Ltd Cylinder head of water-cooled internal combustion engine
JPH0814101A (en) * 1994-06-24 1996-01-16 Isuzu Motors Ltd Cooling device of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013014113A1 (en) * 2011-07-28 2013-01-31 Avl List Gmbh Cylinder head with liquid-type cooling
CN103827461A (en) * 2011-07-28 2014-05-28 Avl里斯脱有限公司 Cylinder head with liquid-type cooling
US9309830B2 (en) 2011-07-28 2016-04-12 Avl List Gmbh Cylinder head with liquid-type cooling
RU2596084C2 (en) * 2011-07-28 2016-08-27 Афл Лист Гмбх Cylinder head with liquid-type cooling

Similar Documents

Publication Publication Date Title
JP5846135B2 (en) Internal combustion engine
US20050257756A1 (en) Cylinder liner cooling structure
CN101666272A (en) Oil heat exchange apparatus in a cylinder head
US10480449B2 (en) Cylinder head of engine
JP2009002265A (en) Cooling structure of internal combustion engine
US20160146150A1 (en) Exhaust manifold-integrated cylinder head with water jacket
US7520257B2 (en) Engine cylinder head
KR101144517B1 (en) Cooling device and insert for water jacket of internal combustion engine
JP6607130B2 (en) Exhaust gas recirculation structure of cylinder head
US7963461B2 (en) Fuel injection nozzle
JP2005535835A5 (en)
JP2008248894A (en) Cooling structure of cylinder head
JP2006057639A (en) Cooling structure of cylinder head
JP2008014263A (en) Cooling structure for internal combustion engine and cylinder head gasket used for same
JP2008057360A (en) Exhaust gas recirculation device of engine
JP2010014025A (en) Cooling structure for internal combustion engine
JP2008082307A (en) Exhaust gas recirculating device for engine
JPH11190252A (en) Cooling structure of cylinder head
JP2006090329A (en) Cooling structure of cylinder head
KR101163824B1 (en) Cooling device and insert for water jacket of internal combustion engine
JP2001234807A (en) Cylinder head
JP2008075507A (en) Water cooled multi-cylinder engine
JP2007231897A (en) Direct injection type engine
JP4755953B2 (en) EGR cooler
JP5678526B2 (en) Engine water jacket structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A131 Notification of reasons for refusal

Effective date: 20110201

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705