JP2008248321A - Recovery method of resistance to twist-induced breaking of high strength ultra-fine steel wire - Google Patents

Recovery method of resistance to twist-induced breaking of high strength ultra-fine steel wire Download PDF

Info

Publication number
JP2008248321A
JP2008248321A JP2007091153A JP2007091153A JP2008248321A JP 2008248321 A JP2008248321 A JP 2008248321A JP 2007091153 A JP2007091153 A JP 2007091153A JP 2007091153 A JP2007091153 A JP 2007091153A JP 2008248321 A JP2008248321 A JP 2008248321A
Authority
JP
Japan
Prior art keywords
steel wire
twist
wire
twisting
reverse direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007091153A
Other languages
Japanese (ja)
Other versions
JP5005409B2 (en
Inventor
Makoto Kosaka
誠 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007091153A priority Critical patent/JP5005409B2/en
Publication of JP2008248321A publication Critical patent/JP2008248321A/en
Application granted granted Critical
Publication of JP5005409B2 publication Critical patent/JP5005409B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/022Measuring or adjusting the lay or torque in the rope
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/20Type of machine
    • D07B2207/207Sequential double twisting devices
    • D07B2207/208Sequential double twisting devices characterised by at least partially unwinding the twist of the upstream double twisting step
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords

Landscapes

  • Metal Extraction Processes (AREA)
  • Heat Treatment Of Steel (AREA)
  • Ropes Or Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a recovery method of resistance to twist-induced breaking of a high strength ultra-fine steel wire, the method being characterized in that the high strength ultra-fine steel wire having ≥3.0 wire-drawing stress after being patented or ≥3,000 MPa tensile strength and continuously advancing in the length direction is subjected to repeated operation in which the steel wire is twisted in one direction, then is restored to the original shape or twisted in the reverse direction in a similar way. <P>SOLUTION: The high strength ultra-fine steel wire is given the prescribed twist by using the prescribed number of apparatuses. Each of the apparatus has, as basic constitution, an original wire bobbin 1 for paying out the ultra-fine steel wire being the treating object, a twister 3 for applying a prescribed twist to the steel wire by rotating while incorporating a guide roller 2 for guiding the steel wire so that the steel wire is not come off, and an intermediate reel 4. After winding the steel wire at the suitable turns around the intermediate reel, the next twist in the reverse direction to the first twist, is applied to the steel wire by passing through the reversely rotated next twister. The steel wire is passed through the prescribed number of the apparatuses while adjusting the mutual positions of the apparatuses, the number of revolution per unit time and the speed of a winding apparatus, and thus prescribed twist are given to the high strength ultra-fine steel wires. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はタイヤ、ベルトコード、高圧ホース等、ゴムおよび有機材料の補強用に使用されているスチールコードなどの高強度極細鋼線に関するものである。   The present invention relates to high-strength ultrafine steel wires such as tires, belt cords, high-pressure hoses, etc., steel cords used for reinforcing rubber and organic materials.

一般に、極細鋼線は熱間圧延後、調整冷却された直径4.0〜5.5mm程度の高炭素線材を、鋼線の延性劣化に応じて中間パテンティングと乾式による一次伸線加工後を繰り返し、目標とする引張強さに応じた線径で最終パテンティング後、ブラスめっき処理を施し、湿式伸線を行って得られる。   Generally, ultra-fine steel wire is hot-rolled, adjusted and cooled to a high carbon wire with a diameter of about 4.0 to 5.5 mm, after intermediate wire drawing and dry primary wire drawing according to ductility deterioration of the steel wire. Repeatedly, after final patenting with a wire diameter corresponding to the target tensile strength, brass plating treatment is performed and wet wire drawing is performed.

この様にして製造された極細鋼線をタイヤ、ベルトコード、高圧ホース等の補強材として使用するために、通常撚り線加工が行われる。撚り線加工時には、極細鋼線を複数本高速で寄り合わせるため、個々の極細鋼線には断線に耐える高い靱延性が求められる。   In order to use the ultra-fine steel wire thus manufactured as a reinforcing material for tires, belt cords, high-pressure hoses, etc., stranded wire processing is usually performed. At the time of stranded wire processing, a plurality of ultra-fine steel wires are brought together at high speed, so that each individual ultra-fine steel wire is required to have high toughness to withstand disconnection.

この様な要望に対し、従来より極細鋼線の開発がなされている。例えば特許文献1には、2450MPa以上の引張強さの直径0.5mm以下の鋼線について、Mn含有量を規定してパテンティング時の過冷組織の発生を抑制し、C、Si、Mnの含有量を規定することで線材の強度および靱延性を向上させて、撚り線断線の減少を図る技術が開示されている。   In response to such demands, ultrafine steel wires have been developed conventionally. For example, in Patent Document 1, for steel wires with a tensile strength of 2450 MPa or more and a diameter of 0.5 mm or less, the Mn content is regulated to suppress the occurrence of supercooled structure during patenting, and C, Si, Mn A technique for improving the strength and tough ductility of the wire by defining the content and reducing the number of broken strands is disclosed.

しかし近年、タイヤの軽量化・高性能化に伴い、スチールコードのハイテンション化が急速に進展し、引張強さで3000MPa以上のものが主流になってきている。鋼線の引張強さが高くなると、一般に延性が低下し、デラミネーションと呼ばれる縦割れが発生し、撚り線加工中に断線し易くなる傾向がある。   However, in recent years, with the reduction in weight and performance of tires, high tension of steel cords has rapidly progressed, and those with a tensile strength of 3000 MPa or more have become mainstream. When the tensile strength of a steel wire increases, ductility generally decreases, vertical cracks called delamination occur, and there is a tendency that breakage tends to occur during stranded wire processing.

そこで、近年では引張強さで3000MPaを越えるような高強度でも延性を確保し、断線しにくい極細鋼線を得るために、種々の開発がなされている。   Therefore, in recent years, various developments have been made in order to obtain an ultrafine steel wire that secures ductility even at a high strength exceeding 3000 MPa in tensile strength and is difficult to break.

例えば、特許文献2では、パテンティングの際の加熱温度上限を規定し、冷却段階開始以降パーライト変態前に線材の表層部温度がその内部温度よりも低くなる時期を設け、表層部の平均パーライトノジュールサイズが内部よりも0.3μm以上小さい組織とすることで鋼線の捻回特性を向上させる技術を提案している。   For example, in Patent Document 2, the upper limit of the heating temperature at the time of patenting is defined, and the time when the surface layer temperature of the wire becomes lower than the internal temperature after the start of the cooling stage and before the pearlite transformation is provided. We have proposed a technique for improving the twisting characteristics of steel wires by making the structure 0.3 μm or smaller in size than the inside.

また、特許文献3では、パテンティング時のオーステナイト化温度からの強制冷却段階において、一度500〜560℃まで冷却した後、復熱させてからパーライト変態を行わせることで、伸線材の横断面におけるフェライト粒の長軸長さ(Da)、短軸長さ(Db)の積(Da×Db)を一定値以下に制御し、高強度材での縦割れを抑制する技術を提案している。   Moreover, in patent document 3, in the forced cooling stage from the austenitizing temperature at the time of patenting, after cooling once to 500-560 degreeC, it is made to perform pearlite transformation after reheating, in the cross section of a wire drawing material. A technique has been proposed in which the product (Da × Db) of the major axis length (Da) and minor axis length (Db) of the ferrite grains is controlled to a certain value or less to suppress longitudinal cracks in the high strength material.

特許文献4では、鋼線に含まれるボイドの最大径を鋼線のせん断降伏応力との関係で上限を規定し、かつ表層の引張残留応力値とその周方向のバラツキの上限値をそれぞれ規定することで耐デラミネーション特性に優れた鋼線を製造する技術を提案している。   In Patent Document 4, the upper limit of the maximum void diameter contained in the steel wire is defined in relation to the shear yield stress of the steel wire, and the upper limit value of the tensile residual stress value of the surface layer and the variation in the circumferential direction thereof are defined. Therefore, we have proposed a technology for manufacturing steel wires with excellent delamination resistance.

特許文献5には、最終パテンティング材の強度と初析フェライト/セメンタイトの面積率、およびパテンティング後の伸線加工方法を規定することで、鋼線表面の引張残留応力を線径に応じた値以下に抑え、デラミネーションを抑制する技術を提案している。   In Patent Document 5, the strength of the final patenting material, the area ratio of pro-eutectoid ferrite / cementite, and the wire drawing method after patenting are specified, so that the tensile residual stress on the surface of the steel wire depends on the wire diameter. We are proposing a technology that suppresses delamination by keeping the value below this value.

しかし、本発明者らの検討によれば、3000MPa超の高強度材の場合、上述の従来技術をもってしても、捻回特性の向上、縦割れおよびデラミネーションの抑制などの効果は十分ではなかった。また、従来技術はいずれも鋼材の成分設計からパテンティングおよび伸線方法を含めた技術であり、伸線後の歪時効等により耐撚線断線性が劣化した極細鋼線の延性回復を意図したものではない。   However, according to the study by the present inventors, in the case of a high-strength material exceeding 3000 MPa, even with the above-described conventional technology, effects such as improvement of twisting characteristics, suppression of vertical cracking and delamination are not sufficient. It was. In addition, all of the prior arts are technologies that include patenting and wire drawing methods from the component design of steel materials, and intended to recover the ductility of ultrafine steel wires that have deteriorated stranded wire breakage resistance due to strain aging, etc. after wire drawing. It is not a thing.

特開昭60−204865号公報JP 60-204865 A 特開平11−241280号公報Japanese Patent Application Laid-Open No. 11-241280 特開平11−199978号公報Japanese Patent Laid-Open No. 11-199978 特開2001−279380号公報JP 2001-279380 A 特開2001−279381号公報JP 2001-279281 A

本発明は上記の様な事情に鑑みてなされたものであり、パテンティング後の伸線加工歪みで3.0以上および3000MPa以上の引張強さを有し、伸線後に歪み時効等により延性が劣化した極細鋼線に対し、その耐撚線断線性を回復させる方法を提供しようとするものである。   The present invention has been made in view of the circumstances as described above, and has a tensile strength of 3.0 or more and 3000 MPa or more in the wire drawing strain after patenting, and the ductility is caused by strain aging or the like after wire drawing. An object of the present invention is to provide a method for recovering the wire breakage resistance of a deteriorated ultrafine steel wire.

本発明者らは、パテンティング後の伸線加工歪みで3.0以上および3000MPa以上の引張強さを有し、伸線後に歪み時効等により延性が劣化した高強度極細鋼線について、その耐撚線断線性を回復させる方法について鋭意研究し、その結果、高強度極細鋼線の線径の1000倍の長さにつき2〜20回の正方向への捻回を施した後、線径の1000倍の長さにつき2〜20回の逆方向への捻回を行い、前記正方向への捻回および前記逆方向への捻回を繰り返し行うことによって、高強度極細鋼線の耐撚線断線性を回復させることができることを見出して、本発明を完成した。   The inventors of the present invention have provided a high-strength ultrafine steel wire having a tensile strength of 3.0 or more and 3000 MPa or more in the wire drawing strain after patenting, and having deteriorated ductility due to strain aging or the like after wire drawing. As a result of earnest research on the method of restoring the twisted wire breakage, as a result, after twisting in the positive direction 2 to 20 times per 1000 times the wire diameter of the high-strength ultrafine steel wire, Twisting in the reverse direction 2 to 20 times per 1000 times the length, and repeatedly performing the twisting in the forward direction and the twisting in the reverse direction, thereby twisting resistance of the high-strength ultrafine steel wire The present invention has been completed by finding that the disconnection can be recovered.

本発明の要旨は以下のとおりである。   The gist of the present invention is as follows.

(1) 質量%で、C:0.75〜1.1%、Si:0.5〜2.0%、Mn:0.2〜2.0%Al:0.005%以下を含有し、残部はFeおよび不可避的不純物からなる鋼線材を、750℃〜1100℃でのオーステナイト化後、パテンティング処理し、ダイスのアプローチ角度:6〜20°ダイスのベアリング長さ:0.1〜0.7D(D:ダイス径)の条件を満たすダイスを用いて伸線加工歪みが3.0以上の冷間伸線加工を行って得られる、引張強さが3000MPa以上である高強度極細鋼線に、線径の1000倍の長さにつき2〜20回の正方向への捻回を施した後、線径の1000倍の長さにつき2〜20回の逆方向への捻回を行い、前記正方向への捻回および前記逆方向への捻回を繰り返し行って、前記正方向への捻回および前記逆方向への捻回の累積捻回量をそれぞれ2回以上200回未満とし、前記正方向への捻回の累積捻回量と前記逆方向への捻回の累積捻回量との差を50回未満とすることを特徴とする高強度極細鋼線の耐撚線断線性回復方法。   (1) By mass%, C: 0.75 to 1.1%, Si: 0.5 to 2.0%, Mn: 0.2 to 2.0% Al: 0.005% or less, The balance is austenitized at 750 ° C. to 1100 ° C., followed by patenting for a steel wire consisting of Fe and inevitable impurities, and approach angle of die: 6-20 ° Bearing length of die: 0.1-0. To a high-strength ultrafine steel wire having a tensile strength of 3000 MPa or more, obtained by performing cold wire drawing with a drawing strain of 3.0 or more using a die that satisfies the condition of 7D (D: die diameter) , After twisting in the forward direction 2 to 20 times per 1000 times the length of the wire diameter, performing twisting in the reverse direction 2 to 20 times per 1000 times the length of the wire diameter, Repeat the twisting in the forward direction and the twisting in the reverse direction to twist in the forward direction. And the cumulative amount of twisting in the reverse direction is set to two or more and less than 200 times, and the cumulative amount of twisting in the forward direction and the cumulative amount of twisting in the reverse direction A method for recovering breakage of twisted wire of a high-strength ultrafine steel wire, characterized in that the difference is less than 50 times.

(2)正方向への捻回の回数と、それに続く逆方向への捻回の回数を同じにすることを特徴とする上記(1)に記載の高強度極細鋼線の耐撚線断線性回復方法。   (2) Twisted wire breakage resistance of high-strength ultrafine steel wire according to (1) above, wherein the number of twists in the forward direction and the number of subsequent twists in the reverse direction are the same. Recovery method.

(3)先の正方向への捻回に続く逆方向への捻回の回数が、前記先の正方向への捻回の回数を超え、更に、前記逆方向に続く後の正方向への捻回の回数が、前記逆方向への捻回の回数と前記先の正方向への捻回の回数との差を超えることを特徴とする上記(1)に記載の高強度極細鋼線の耐撚線断線性回復方法。   (3) The number of twists in the reverse direction following the twist in the forward direction exceeds the number of twists in the forward direction, and further, the twist in the forward direction following the reverse direction. The number of times of twisting exceeds the difference between the number of times of twisting in the reverse direction and the number of times of twisting in the forward direction, The high-strength ultrafine steel wire according to (1) above Method for recovering twisted wire breakage.

(4)先の正方向への捻回に続く逆方向への捻回の回数が、前記先の正方向への捻回の回数の2倍であり、更に、前記逆方向に続く後の正方向への捻回の回数が、前記逆方向への捻回の回数と前記先の正方向への捻回の回数との差の2倍であることを特徴とする上記(3)に記載の高強度極細鋼線の耐撚線断線性回復方法。   (4) The number of twists in the reverse direction following the twist in the forward direction is twice the number of twists in the forward direction. The number of twists in the direction is twice the difference between the number of twists in the reverse direction and the number of twists in the forward direction. A method for recovering the breakage of stranded wires from high-strength ultrafine steel wires.

(5)正方向への捻回および逆方向への捻回を、それぞれ、1〜10回施すことを特徴とする上記(1)〜(4)のいずれか1項に記載の高強度極細鋼線の耐撚線断線性回復方法。   (5) The high-strength ultrafine steel according to any one of (1) to (4) above, wherein the twisting in the forward direction and the twisting in the reverse direction are performed 1 to 10 times, respectively. Method for recovering wire breakage resistance.

(6)正方向への捻回および逆方向への捻回を、捻り降伏点歪みの50〜95%として行うことを特徴とする上記(1)〜(5)のいずれか1項に記載の高強度極細鋼線の耐撚線断線性回復方法。   (6) The twisting in the forward direction and the twisting in the reverse direction are performed as 50 to 95% of the twist yield point strain, as described in any one of (1) to (5) above A method for recovering the breakage of stranded wires from high-strength ultrafine steel wires.

本発明によれば、パテンティング後の伸線加工歪みで3.0以上および3000MPa以上の引張強さを有し、伸線後の歪み時効等により耐撚線断線性が劣化し、撚り線加工が不能になった極細鋼線の延性を回復させることができ、これにより、特に、引張強さで3000MPa以上の極細鋼線の撚り線加工が可能となるため、産業上の貢献が極めて大きい。   According to the present invention, the wire drawing strain after patenting has a tensile strength of 3.0 or more and 3000 MPa or more, and the wire breakage resistance is deteriorated due to strain aging or the like after wire drawing. This makes it possible to recover the ductility of the ultrafine steel wire that has become impossible, and in particular, this makes it possible to process a stranded wire of an ultrafine steel wire having a tensile strength of 3000 MPa or more, and thus contributes greatly to the industry.

以下、図を参酌して本発明を行う方法について説明する。   Hereinafter, a method for carrying out the present invention will be described with reference to the drawings.

図1は、本発明に係る繰り返し捻回装置の基本動作説明図である。図1に示したように、本発明は処理対象となる極細鋼線を繰り出すための元線ボビン1、鋼線が脱線しないよう案内するガイドローラー2を内蔵しつつ回転し、鋼線に所定の捻回を加えるツイスター(撚り機)3a、中間リール4を基本構成とする装置内を通材することによって実現される。図1は、正方向と逆方向への捻回を、中間リールを介して設置された2台のツイスター3a、3bによってそれぞれ与えるものである。ツイスターを1台とする場合には、元線ボビン及び中間リールを、繰り出しと巻き取りが可能な構造とし、正方向への捻回と逆方向への捻回を1台のツイスターで交互に行うことも可能である。   FIG. 1 is a basic operation explanatory view of a repeated twisting device according to the present invention. As shown in FIG. 1, the present invention rotates while incorporating a main wire bobbin 1 for feeding out an ultrafine steel wire to be processed and a guide roller 2 for guiding the steel wire so as not to be derailed. This is realized by passing through a device having a twister (twister) 3a for applying twist and an intermediate reel 4 as basic components. In FIG. 1, twisting in the forward direction and the reverse direction is given by two twisters 3 a and 3 b installed via intermediate reels, respectively. When a single twister is used, the main bobbin and the intermediate reel are structured so that they can be fed and wound, and the twisting in the forward direction and the twisting in the reverse direction are alternately performed by one twister. It is also possible.

正回転するツイスターを通過して正方向への捻回が与えられた後、中間リール4に適当な回数巻き付けられる。中間リールに巻き付いている極細鋼線はその摩擦力によって極細線周方向の動きが固定されるため、極細鋼線に捻回が付与される。中間リール4の後、次の逆回転するツイスター3bを通過することで、鋼線には、初めとは逆の方向の捻回が加えられる。この構成の基本単位を所定の数通過することにより、鋼線に所定の捻回を与えることが出来る。所定の捻回が与えられた極細鋼線は最終的に巻取機5に巻き取られる。   After passing through the positively rotating twister and being twisted in the positive direction, it is wound around the intermediate reel 4 an appropriate number of times. Since the movement of the ultrafine steel wire wound around the intermediate reel in the circumferential direction of the ultrafine wire is fixed by the friction force, twisting is imparted to the ultrafine steel wire. By passing through the next reversely rotating twister 3b after the intermediate reel 4, the steel wire is twisted in the direction opposite to the initial direction. By passing a predetermined number of basic units of this configuration, it is possible to give a predetermined twist to the steel wire. The ultrafine steel wire to which a predetermined twist is applied is finally wound around the winder 5.

図1に示した構成の装置を線の進行方向に所定の捻回が与えられるように互いの位置と時間あたりの回転数および巻き取り装置の速度を調整して本発明の方法が実現される。   The method of the present invention is realized by adjusting the position, the number of rotations per hour, and the speed of the winding device so that a predetermined twist is applied to the device having the configuration shown in FIG. .

つぎに、本発明に係わる処理対象材である極細鋼線の成分、引張強さおよび伸線加工歪みを限定した理由について説明する。   Next, the reasons for limiting the components, tensile strength, and wire drawing distortion of the ultrafine steel wire that is the material to be treated according to the present invention will be described.

本発明の対象とする鋼の成分の限定理由について述べる。以下%は全て質量%である。   The reason for limiting the components of the steel that is the subject of the present invention will be described. Hereinafter, “%” means “% by mass”.

C:0.75〜1.1%、
Cはパテンティング処理後の引張強さの増加および伸線加工硬化率を高める効果があり、より少ない伸線加工歪で鋼線の引張強さを高めることができる。0.75%未満では合金元素を添加してもパテンティング処理後の引張強さが低く、また、伸線加工硬化率も小さいため高強度鋼線が得られない。一方、1.1%を越えるとパテンティング処理時に初析セメンタイトがオーステナイト粒界に析出して伸線加工性が劣化し伸線加工工程で断線が発生し易くなるため0.75〜1.1%の範囲に限定した。
C: 0.75 to 1.1%
C has the effect of increasing the tensile strength after the patenting treatment and increasing the wire drawing work hardening rate, and can increase the tensile strength of the steel wire with less wire drawing strain. If it is less than 0.75%, even if an alloy element is added, the tensile strength after the patenting treatment is low, and the wire drawing work hardening rate is also small, so that a high strength steel wire cannot be obtained. On the other hand, if it exceeds 1.1%, pro-eutectoid cementite precipitates at the austenite grain boundaries during the patenting process, and the wire drawing workability deteriorates, and breakage is likely to occur in the wire drawing process. % Range.

Si:0.5〜2.0%、
Siはパーライト中のフェライトを強化させるためと鋼の脱酸のために必要であり、更に熱による強度低下の抑制に極めて有効な元素である。0.5%未満では上記の効果が期待できない。一方2.0%を越えると熱間圧延工程で表面脱炭が発生し易くなるため、0.5〜2.0%の範囲に制限した。
Si: 0.5 to 2.0%,
Si is an element that is necessary for strengthening ferrite in pearlite and for deoxidation of steel, and is extremely effective for suppressing a decrease in strength due to heat. If it is less than 0.5%, the above effect cannot be expected. On the other hand, if it exceeds 2.0%, surface decarburization is likely to occur in the hot rolling process, so the content is limited to 0.5 to 2.0%.

Mn:0.2〜2.0%、
Mnは脱酸、脱硫のために必要であるばかりでなく、鋼の焼入性を向上させパテンティング処理後の引張強さを高めるために有効な元素であるが、0.2%未満では上記の効果が得られない。一方、2.0%を越えると上記の効果が飽和し、さらにパテンティング処理時のパーライト変態を完了させるための処理時間が長くなりすぎて生産性が低下するため、0.2〜2.0%の範囲に限定した。
Mn: 0.2 to 2.0%,
Mn is not only necessary for deoxidation and desulfurization, but also an element effective for improving the hardenability of steel and increasing the tensile strength after patenting treatment. The effect of can not be obtained. On the other hand, if it exceeds 2.0%, the above effect is saturated, and further, the processing time for completing the pearlite transformation during the patenting process becomes too long and the productivity is lowered. % Range.

Al:0.005%以下、
Alは0.005%を越えると鋼中の介在物の中で最も硬質なAl2 O3 系介在物が生成しやすくなり、それが起点となって伸線加工あるいは撚り線加工の際の断線原因となるため、0.005%以下に制限した。
Al: 0.005% or less,
If Al exceeds 0.005%, the hardest Al2O3 inclusions among the inclusions in the steel are likely to be generated, which may be the starting point and cause disconnection during wire drawing or stranded wire processing. Therefore, it was limited to 0.005% or less.

極細鋼線の引張強度が3000MPa未満、かつ伸線加工歪みが3.0未満の場合、鋼線の耐撚線断線性は劣化しないため、本発明を適用する必要がない。したがって、引張強度が3000MPa以上または伸線加工歪みを3.0以上とした。なお、伸線加工歪みは、伸線後の鋼線の断面積をS、伸線前の鋼線の断面積をS0とすると、ln(S0/S)で定義される値である。   When the tensile strength of the ultra fine steel wire is less than 3000 MPa and the wire drawing strain is less than 3.0, the stranded wire breakage resistance of the steel wire is not deteriorated, so that it is not necessary to apply the present invention. Accordingly, the tensile strength is set to 3000 MPa or more, or the wire drawing distortion is set to 3.0 or more. The wire drawing distortion is a value defined by ln (S0 / S), where S is the cross-sectional area of the steel wire after drawing and S0 is the cross-sectional area of the steel wire before drawing.

つぎに、パテンティング条件、および鋼線材の伸線に用いるダイス形状を限定した理由を説明する。   Next, the reasons for limiting the patenting conditions and the die shape used for drawing the steel wire will be described.

パテンティング時の加熱温度を750℃未満とした場合、オーステナイト化する為に要する時間が長くなり、生産性が低下するため、加熱温度を750℃以上に限定した。また、加熱温度を1100℃を越えて設定した場合、オーステナイト結晶粒が極端に粗大化し、鋼線の延性を著しく低下させるため、加熱温度を1100℃以下に限定した。   When the heating temperature at the time of patenting is less than 750 ° C., the time required for austenite becomes longer and the productivity is lowered, so the heating temperature is limited to 750 ° C. or higher. Further, when the heating temperature is set to exceed 1100 ° C., the austenite crystal grains become extremely coarse and the ductility of the steel wire is remarkably lowered. Therefore, the heating temperature is limited to 1100 ° C. or less.

伸線に用いるダイスのアプローチ角度を6°未満、または20°が越える場合、およびダイスのベアリング長さが0.1D未満、または0.7Dを越える場合、伸線後の横断面内での特性のバラツキが大きく、線材の延性を著しく低下させるため、上記の限定を付けた。   When the approach angle of the die used for wire drawing is less than 6 ° or more than 20 ° and when the bearing length of the die is less than 0.1D or more than 0.7D, the characteristics in the cross section after drawing In order to reduce the ductility of the wire material remarkably, the above limitation was applied.

つぎに、本発明装置の動作の限定理由について説明する。線径の1000倍の長さあたりの捻回量が2回未満の場合、鋼線の耐撚線断線性を改善する効果がなく、断線回数の低減効果が発現しないため、有効な捻回量を線径の1000倍の長さあたり2回以上と規定した。
また、線径の1000倍の長さあたりの1回の捻回量が20回を越える場合、または、最終的な一方向への累積捻回量が200回を越える場合、また、正逆方向への捻回量の差異が50回を越える場合、鋼線の耐撚線断線性は改善されるものの、引張強度が低下するため、発明の範囲から除外した。
Next, the reason for limiting the operation of the device of the present invention will be described. When the amount of twist per 1000 times the wire diameter is less than 2 times, there is no effect of improving the twist resistance of the steel wire, and the effect of reducing the number of breaks is not manifested. Was defined as 2 times or more per 1000 times the wire diameter.
Also, when the amount of one twist per 1000 times the wire diameter exceeds 20 times, or when the cumulative amount of twist in one final direction exceeds 200 times, or in the forward and reverse directions When the difference in the amount of twisted wire exceeds 50 times, the wire breakage resistance of the steel wire is improved, but the tensile strength is lowered, so it was excluded from the scope of the invention.

次に、正方向への捻回の回数と、それに続く逆方向への捻回の回数を同じにした理由について述べる。自然形状からの回転が正方向と逆方向で同じ場合、どちらかの方向に回転を加えた後、拘束を開放するだけで自然形状に復帰させることが出来るため、必要なツイスターの数が少なく、装置構成を簡便にすることが出来る。このため、自然形状からの正逆方向の回転を同じに規定した。   Next, the reason why the number of twists in the forward direction and the number of subsequent twists in the reverse direction are the same will be described. If the rotation from the natural shape is the same in the forward direction and the reverse direction, after adding rotation in either direction, it can be returned to the natural shape simply by releasing the constraint, so the number of twisters required is small, The apparatus configuration can be simplified. For this reason, the forward / reverse rotation from the natural shape is defined to be the same.

次に、先の正方向への捻回に続く逆方向への捻回の回数が、前記先の正方向への捻回の回数を超え、更に、前記逆方向に続く後の正方向への捻回の回数が、前記逆方向への捻回の回数と前記先の正方向への捻回の回数との差を超える回転とした理由について述べる。
自然形状からの両方向へ変形を与えることができ、自然形状からの捻回が1方向だけの時と比較して、線癖が改善されやすくなるため、このように規定した。
Next, the number of twists in the reverse direction following the twist in the forward direction exceeds the number of twists in the forward direction, and further, the twist in the forward direction following the reverse direction. The reason why the number of twists exceeds the difference between the number of twists in the reverse direction and the number of twists in the forward direction will be described.
Since the deformation can be given in both directions from the natural shape and the wire wrinkles are easily improved as compared with the case where the twist from the natural shape is only in one direction, it is defined in this way.

次に、先の正方向への捻回に続く逆方向への捻回の回数が、前記先の正方向への捻回の回数の2倍であり、更に、前記逆方向に続く後の正方向への捻回の回数が、前記逆方向への捻回の回数と前記先の正方向への捻回の回数との差の2倍とした理由について述べる。
自然形状からの両方向へ均等に変形を与えることができ、前項の場合よりも更に線癖が改善されやすくなるため、このように規定した。
Next, the number of twists in the reverse direction following the twist in the forward direction is twice the number of twists in the forward direction, and the subsequent forward twist in the reverse direction. The reason why the number of twists in the direction is twice the difference between the number of twists in the reverse direction and the number of twists in the forward direction is described.
Since the deformation can be equally applied in both directions from the natural shape, and the wire wrinkles are more easily improved than in the case of the previous item, it is defined in this way.

次に、正方向への捻回および逆方向への捻回を、それぞれ、1〜10回に規定した理由について述べる。正逆の繰り返しを11回以上行った場合、鋼線の耐撚線断線性は改善されるものの、引張強度が低下するため、発明の範囲から除外した。   Next, the reason why the twisting in the forward direction and the twisting in the reverse direction are defined as 1 to 10 times will be described. When the forward / reverse repetition was performed 11 times or more, although the stranded wire breakage resistance of the steel wire was improved, the tensile strength was lowered, so it was excluded from the scope of the invention.

次に、正方向への捻回および逆方向への捻回を、捻り降伏点歪みの50〜95%に限定した理由について説明する。捻り降伏点歪みの50%未満の捻回を行っても、耐撚り線断線性改善の効果が発現しないため、範囲から除外した。また、捻り降伏点歪みの95%を越える捻回を行うと、鋼線の耐撚線断線性は改善されるものの、引張強度が低下するため、発明の範囲から除外した。   Next, the reason why the twist in the forward direction and the twist in the reverse direction are limited to 50 to 95% of the twist yield point strain will be described. Even if twisting of less than 50% of the twist yield point strain was performed, the effect of improving the resistance to twisting wire breakage was not exhibited, so it was excluded from the range. Further, when twisting exceeding 95% of the twist yield point strain is performed, the tensile strength is reduced although the twist resistance of the steel wire is improved, so it was excluded from the scope of the invention.

なお、ここでの捻り降伏点は、捻回後、チャックを開放したときに残存する自然形状からの塑性変形分の捻回角をθ、線径をDとしたとき、θ/1000D=0.002となる捻回量で定義する。   Here, the torsion yield point is θ / 1000D = 0.0 when the twist angle of the plastic deformation from the natural shape remaining when the chuck is opened after twisting is θ and the wire diameter is D. It is defined by a twist amount of 002.

以下に、本発明の実施の態様の一例を示す。なお、本発明は、以下の実施例に限定されるものではない。   An example of an embodiment of the present invention is shown below. The present invention is not limited to the following examples.

極細鋼線は5.5φの熱間圧延材を用い、3.5〜1.6mmまで乾式伸線加工した鉄線を750℃〜1100℃、望ましくは850℃〜1000℃でのオーステナイト化後、パテンティング処理し、ダイスのアプローチ角度:6〜20°ダイスのベアリング長さ:0.1〜0.7D(D:ダイス径)の条件を満たすダイスを用いて0.35mmまで湿式伸線、または乾式伸線を2.0〜0.9mmまで乾式伸線加工した鉄線に対して同様のパテンティング処理を行い0.2mmまで湿式伸線使用して製造した。成分組成を表1に示す。   The ultra-fine steel wire is a hot rolled material with a diameter of 5.5φ, and an iron wire that has been dry drawn to 3.5 to 1.6 mm is austenitized at 750 ° C to 1100 ° C, preferably 850 ° C to 1000 ° C. Die treatment, die approach angle: 6-20 ° bearing length: 0.1-0.7 D (D: die diameter) using a die that satisfies the conditions of wet drawing to 0.35 mm, or dry A similar patenting treatment was performed on an iron wire that had been subjected to a dry drawing process to 2.0 to 0.9 mm, and was manufactured using a wet drawing method to 0.2 mm. The component composition is shown in Table 1.

表1において、鋼種A、B、CはC、Si、Mn、Alの各成分が適切であるため、製鋼のプロセスを阻害せず、伸線時の断線トラブルが少なく、かつ熱処理時の生産性を妨げることなく極細線まで製造することが出来る例である。   In Table 1, each of C, Si, Mn, and Al is appropriate for steel types A, B, and C, so the steelmaking process is not hindered, there are few disconnection troubles during wire drawing, and productivity during heat treatment. It is an example that can be manufactured up to ultrafine wires without hindering.

鋼種DはC含有量が不足しているため、本発明に規定する強度に到達することが出来ない例である。鋼種Eは逆にC含有量が過剰なため、パテンティング処理時に初析セメンタイトが、オーステナイト粒界に析出して伸線加工性が劣化し伸線加工工程で断線が発生し易くなる例である。   Steel type D is an example in which the C content cannot be reached because the steel content D is insufficient. On the contrary, steel type E is an example in which the C content is excessive, so that the pro-eutectoid cementite precipitates at the austenite grain boundaries during the patenting process, and the wire drawing workability deteriorates and wire breakage is likely to occur in the wire drawing process. .

鋼種FはSi含有量が過剰なため、熱間圧延工程で表面脱炭が発生し易く、スチールコードの疲労寿命特性を著しく低下させるため不適となる例である。   Steel type F is an unsuitable example because the Si content is excessive and surface decarburization is likely to occur in the hot rolling process, and the fatigue life characteristics of the steel cord are significantly reduced.

鋼種GはMn含有量が過剰なため、パテンティング処理時のパーライト変態を完了させるための処理時間が長くなりすぎ、生産性が低下するため不適となる例である。   Steel type G is an unsuitable example because the Mn content is excessive, so that the processing time for completing the pearlite transformation during the patenting process becomes too long and the productivity is lowered.

鋼種HはAl含有量が過剰なため、鋼中の介在物の中で最も硬質なAl系介在物が生成しやすくなり、それが起点となって伸線加工あるいは撚り線加工の際の断線原因となるため不適となる例である。 Steel type H has an excessive Al content, so it is easy to produce the hardest Al 2 O 3 inclusions in the inclusions in the steel, and this is the starting point for wire drawing or stranded wire processing. This is an example that is not suitable because it causes disconnection.

種々の引張り度(TS)、伸線加工歪の極細線に対し、本発明装置で、1000dあたりの捻回数、捻回の繰り返し数、を種々の水準でそれぞれ重量が100kgのリールを2リール分、計200kg採取し、耐撚線断線性を評価した。なお、1000dとは、線径の1000倍の長さを意味する。   For ultra-fine wires with various tensile strengths (TS) and wire drawing strains, the device of the present invention can be used for two reels each weighing 100 kg at various levels of the number of twists per 1000 d and the number of repeated twists. A total of 200 kg was collected and evaluated for resistance to stranded wire breakage. 1000d means a length 1000 times the wire diameter.

耐撚線断線性の定義および評価装置について説明する。   The definition and evaluation apparatus of the twist resistance against breakage will be described.

図2は耐撚線断線性評価装置、評価方法に関する説明図である。鋼線撚り線断線性評価装置は、図2に示すように、2本の極細鋼線をある一定の張力を保ちながら一定の角度で連続的に撚り合わせることで、実際の撚り線加工工程を模擬している。   FIG. 2 is an explanatory diagram relating to a stranded wire breakage evaluation apparatus and an evaluation method. As shown in FIG. 2, the steel wire stranded wire breakability evaluation device performs an actual stranded wire processing step by continuously twisting two ultrafine steel wires at a constant angle while maintaining a certain tension. Mock up.

高強度極細鋼線は速度計6a、6bとテンションメーター7a、7bを有する2台のペイオフリール8a、8bより一定速度の100m/minで繰り出される。また、テンションメーター7a、7bにより線張力を高強度極細鋼線単線の9.5〜10.5%の範囲で制御している。   The high-strength ultrafine steel wire is fed out at a constant speed of 100 m / min from two payoff reels 8a and 8b having speedometers 6a and 6b and tension meters 7a and 7b. Moreover, the line tension is controlled in the range of 9.5 to 10.5% of the high-strength ultrafine steel wire single wire by the tension meters 7a and 7b.

2本の鋼線は1000回転/分の一定速度で回転するツイスター(撚り機)9により寄り合わされる。ツイスター内のボビンによる撚り線の巻取速度は、側方より撚り線の結び目を制御カメラ11で高速度撮影し、その位置がある範囲内で一定になるように制御されている、2本の元線と撚り線は互いに120°をなすように装置が設置されている。   The two steel wires are brought close together by a twister 9 that rotates at a constant speed of 1000 revolutions / minute. The winding speed of the stranded wire by the bobbin in the twister is controlled so that the knot of the stranded wire is photographed at a high speed by the control camera 11 from the side and the position is constant within a certain range. The apparatus is installed so that the main wire and the stranded wire form an angle of 120 ° with each other.

1リール当たりの重量が100kgの極細鋼線を2リール用いて、上記の装置で撚り線を実施し、200kgあたりの耐撚線断線回数を計数する。これを、正方向への捻回および逆方向への捻回を施す本発明の方法を適用した場合と、適用しない場合とで行い、両者を比較して、本発明の方法を適用した場合の耐撚り線断線回数が、本発明の方法を適用しない場合の耐撚り線断線回数の何倍になったかを調べる。この耐撚線断線回数の比が1.0倍を下回れば、本発明を適用した極細鋼線の耐撚線断線性が向上したことになる。   Using two reels of ultra fine steel wire having a weight of 100 kg per reel, the stranded wire is carried out with the above-mentioned apparatus, and the number of twist-resistant wire breaks per 200 kg is counted. This is performed with and without applying the method of the present invention in which the twist in the forward direction and the twist in the reverse direction are applied. It is examined how many times the number of stranded wire breaks is greater than the number of stranded wire breaks when the method of the present invention is not applied. If the ratio of the number of times of stranded wire breakage is less than 1.0, the stranded wire breakage resistance of the ultra fine steel wire to which the present invention is applied is improved.

結果を表2に示す。本発明例1〜10は対象となる極細鋼線の伸線加工歪、引張強さ、線径の1000倍の長さあたりの捻回数、捻回の繰り返しセット数が全て適切であるため、本発明に係る装置に通材しなかった時と比較して、明確に耐撚線断線性が向上している例である。   The results are shown in Table 2. Since Examples 1 to 10 of the present invention are all suitable for wire drawing strain, tensile strength, number of twists per 1000 times the length of the wire diameter, and the number of repeated sets of twists, This is an example in which the resistance to breakage of the twisted wire is clearly improved as compared with the case where the material according to the invention was not passed.

比較例11〜13は元の極細鋼線の特性が真歪みで3.0未満、かつ3000MPa未満であったために、本発明の効果を発現しなかった例である。元より極細鋼線の耐撚線断線性が高いため、本発明品を通材してもそれが変化しなかった。   Comparative Examples 11 to 13 are examples in which the effect of the present invention was not exhibited because the original ultrafine steel wire had a true strain of less than 3.0 and less than 3000 MPa. Since the twist resistance of the ultrafine steel wire was higher than the original, it did not change even when the product of the present invention was passed.

比較例14、15は、線径の1000倍の長さに対する捻回数が2回未満であったため、耐撚線断線性の改善効果が発現しなかった例である。   In Comparative Examples 14 and 15, the number of twists with respect to a length of 1000 times the wire diameter was less than 2, and thus the effect of improving the twist resistance was not exhibited.

比較例16、17は、線径の1000倍の長さに対する1回の捻回数が20回を越えているため、耐撚線断線性の回復は見られるものの、引張強さが低下してしまう例である。   In Comparative Examples 16 and 17, since the number of twists for one time with respect to the length of 1000 times the wire diameter exceeds 20, the recovery of the twist-resistant wire breakage can be seen, but the tensile strength decreases. It is an example.

比較例18、19は、一方向への累積捻回数が200回を越えているため、耐撚り線断線性は向上しても、処理後の引張強さが低下してしまった例である。   In Comparative Examples 18 and 19, the cumulative number of twists in one direction exceeds 200, and thus the tensile strength after the treatment is lowered even though the resistance to breakage of the twisted wire is improved.

比較例20は正逆方向の累積捻回量の差異が50回を越えているため、耐撚り線断線性は向上しても、処理後の引張強さが低下してしまった例である。処理後の引張強さが低下している例である。   Comparative Example 20 is an example in which the tensile strength after the treatment was lowered even though the twist resistance against breakage was improved because the difference in the cumulative amount of twist in the forward and reverse directions exceeded 50 times. This is an example in which the tensile strength after treatment is reduced.

Figure 2008248321
Figure 2008248321

Figure 2008248321
Figure 2008248321

本発明に係る繰り返し捻回装置の基本動作説明図である。It is basic operation explanatory drawing of the repeated twisting apparatus which concerns on this invention. 耐撚線断線性評価装置、評価方法に関する説明図である。It is explanatory drawing regarding a twist-proof wire breakability evaluation apparatus and an evaluation method.

符号の説明Explanation of symbols

1 元線ボビン
2 ガイドローラー
3a、3b ツイスター
4 中間リール
5 巻取機
6a、6b 速度計
7a、7b テンションメーター
8a、8b ペイオフリール
9 ツイスター
10 ボビン
11 制御用カメラ
1 Main line bobbin 2 Guide rollers 3a and 3b Twister 4 Intermediate reel 5 Winders 6a and 6b Speedometers 7a and 7b Tension meters 8a and 8b Payoff reel 9 Twister 10 Bobbin 11 Control camera

Claims (6)

質量%で、C:0.75〜1.1%、Si:0.5〜2.0%、Mn:0.2〜2.0%Al:0.005%以下を含有し、残部はFeおよび不可避的不純物からなる鋼線材を、750℃〜1100℃でのオーステナイト化後、パテンティング処理し、ダイスのアプローチ角度:6〜20°、ダイスのベアリング長さ:0.1〜0.7D(D:ダイス径)の条件を満たすダイスを用いて伸線加工歪みが3.0以上の冷間伸線加工を行って得られる、引張強さが3000MPa以上である高強度極細鋼線に、線径の1000倍の長さにつき2〜20回の正方向への捻回を施した後、線径の1000倍の長さにつき2〜20回の逆方向への捻回を行い、前記正方向への捻回および前記逆方向への捻回を繰り返し行って、前記正方向への捻回および前記逆方向への捻回の累積捻回量をそれぞれ2回以上200回未満とし、前記正方向への捻回の累積捻回量と前記逆方向への捻回の累積捻回量との差を50回未満とすることを特徴とする高強度極細鋼線の耐撚線断線性回復方法。   In mass%, C: 0.75 to 1.1%, Si: 0.5 to 2.0%, Mn: 0.2 to 2.0% Al: 0.005% or less, the balance being Fe And austenitizing a steel wire consisting of unavoidable impurities at 750 ° C. to 1100 ° C., followed by patenting treatment, die approach angle: 6-20 °, die bearing length: 0.1-0.7D ( D: a high-strength ultrafine steel wire having a tensile strength of 3000 MPa or more, obtained by performing cold wire drawing with a wire drawing strain of 3.0 or more using a die that satisfies the condition of D: Die diameter) Twist in the forward direction 2 to 20 times per 1000 times the diameter, then twist in the reverse direction 2 to 20 times per 1000 times the wire diameter, Repeatedly twisting in the reverse direction and twisting in the reverse direction, The cumulative amount of twisting in the reverse direction is set to 2 or more and less than 200 times, and the difference between the cumulative amount of twisting in the forward direction and the cumulative amount of twisting in the reverse direction The method of recovering the breakage resistance of the high-strength ultrafine steel wire, characterized by comprising 正方向への捻回の回数と、それに続く逆方向への捻回の回数を同じにすることを特徴とする請求項1に記載の高強度極細鋼線の耐撚線断線性回復方法。   2. The method for recovering twist resistance of a high-strength ultrafine steel wire according to claim 1, wherein the number of twists in the forward direction and the number of subsequent twists in the reverse direction are made the same. 先の正方向への捻回に続く逆方向への捻回の回数が、前記先の正方向への捻回の回数を超え、更に、前記逆方向に続く後の正方向への捻回の回数が、前記逆方向への捻回の回数と前記先の正方向への捻回の回数との差を超えることを特徴とする請求項1に記載の高強度極細鋼線の耐撚線断線性回復方法。   The number of twists in the reverse direction following the twist in the forward direction exceeds the number of twists in the forward direction, and further, the number of twists in the forward direction following the reverse direction. The number of times exceeds the difference between the number of times of twisting in the reverse direction and the number of times of twisting in the forward direction, and the twist-resistant wire breakage of the high-strength ultrafine steel wire according to claim 1 Sexual recovery method. 先の正方向への捻回に続く逆方向への捻回の回数が、前記先の正方向への捻回の回数の2倍であり、更に、前記逆方向に続く後の正方向への捻回の回数が、前記逆方向への捻回の回数と前記先の正方向への捻回の回数との差の2倍であることを特徴とする請求項3に記載の高強度極細鋼線の耐撚線断線性回復方法。   The number of twists in the reverse direction following the twist in the forward direction is twice the number of twists in the forward direction, and further, the number of twists in the forward direction following the reverse direction. The high-strength ultrafine steel according to claim 3, wherein the number of twists is twice the difference between the number of twists in the reverse direction and the number of twists in the forward direction. Method for recovering wire breakage resistance. 正方向への捻回および逆方向への捻回を、それぞれ、1〜10回施すことを特徴とする請求項1〜4のいずれか1項に記載の高強度極細鋼線の耐撚線断線性回復方法。   The twist-proof wire breakage of the high-strength ultrafine steel wire according to any one of claims 1 to 4, wherein twisting in the forward direction and twisting in the reverse direction are performed 1 to 10 times, respectively. Sexual recovery method. 正方向への捻回および逆方向への捻回を、捻り降伏点歪みの50〜95%として行うことを特徴とする請求項1〜5のいずれか1項に記載の高強度極細鋼線の耐撚線断線性回復方法。   The high-strength ultrafine steel wire according to any one of claims 1 to 5, wherein the twisting in the forward direction and the twisting in the reverse direction are performed as 50 to 95% of the twist yield point strain. Method for recovering twisted wire breakage.
JP2007091153A 2007-03-30 2007-03-30 Recovery method for breakage resistance of high strength extra fine steel wire Expired - Fee Related JP5005409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007091153A JP5005409B2 (en) 2007-03-30 2007-03-30 Recovery method for breakage resistance of high strength extra fine steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091153A JP5005409B2 (en) 2007-03-30 2007-03-30 Recovery method for breakage resistance of high strength extra fine steel wire

Publications (2)

Publication Number Publication Date
JP2008248321A true JP2008248321A (en) 2008-10-16
JP5005409B2 JP5005409B2 (en) 2012-08-22

Family

ID=39973612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007091153A Expired - Fee Related JP5005409B2 (en) 2007-03-30 2007-03-30 Recovery method for breakage resistance of high strength extra fine steel wire

Country Status (1)

Country Link
JP (1) JP5005409B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117512276A (en) * 2023-11-09 2024-02-06 嘉兴东方钢帘线有限公司 Steel cord residual stress control and adjustment device and application method thereof
CN117512276B (en) * 2023-11-09 2024-05-28 嘉兴东方钢帘线有限公司 Steel cord residual stress control and adjustment device and application method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569037A (en) * 1979-07-05 1981-01-29 Kanai Hiroyuki Production of steel wire
JPH08218282A (en) * 1995-02-08 1996-08-27 Tokyo Seiko Co Ltd Ultrahigh strength steel wire and steel cord for reinforcing rubber
JPH08291330A (en) * 1995-04-19 1996-11-05 Nippon Steel Corp High strength extra fine steel wire excellent in fatigue characteristic and its production
JPH11241280A (en) * 1998-02-25 1999-09-07 Bridgestone Corp Steel wire and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569037A (en) * 1979-07-05 1981-01-29 Kanai Hiroyuki Production of steel wire
JPH08218282A (en) * 1995-02-08 1996-08-27 Tokyo Seiko Co Ltd Ultrahigh strength steel wire and steel cord for reinforcing rubber
JPH08291330A (en) * 1995-04-19 1996-11-05 Nippon Steel Corp High strength extra fine steel wire excellent in fatigue characteristic and its production
JPH11241280A (en) * 1998-02-25 1999-09-07 Bridgestone Corp Steel wire and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117512276A (en) * 2023-11-09 2024-02-06 嘉兴东方钢帘线有限公司 Steel cord residual stress control and adjustment device and application method thereof
CN117512276B (en) * 2023-11-09 2024-05-28 嘉兴东方钢帘线有限公司 Steel cord residual stress control and adjustment device and application method thereof

Also Published As

Publication number Publication date
JP5005409B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5114684B2 (en) Wire material excellent in ductility, high-strength steel wire, and production method thereof
JP5092749B2 (en) High ductility high carbon steel wire
JP5939359B2 (en) High carbon steel wire and method for producing the same
JP5162875B2 (en) High strength wire rod excellent in wire drawing characteristics and method for producing the same
JP4970562B2 (en) High strength steel wire rod excellent in ductility and method for manufacturing steel wire
JP5157230B2 (en) High carbon steel wire rod with excellent wire drawing workability
WO2011089782A1 (en) Wire material, steel wire, and process for production of wire material
WO2011092905A1 (en) Wire material, steel wire, and processes for production of those products
WO2011055746A1 (en) High-carbon steel wire material with excellent processability
US10156001B2 (en) Filament for high strength steel cord
WO2016158901A1 (en) High-carbon steel wire material with excellent wire drawability, and steel wire
JP6354481B2 (en) Steel wire and method for manufacturing steel wire
JP5201009B2 (en) High-strength extra-fine steel wire, high-strength extra-fine steel wire, and manufacturing methods thereof
US20200370142A1 (en) Drawn steel wire
JP4980172B2 (en) Manufacturing method of high-strength ultrafine steel wire with excellent balance of strength and ductility
JP5879897B2 (en) Ultra fine steel wire with excellent delamination resistance and its manufacturing method
JP4377715B2 (en) High strength PC steel wire with excellent twisting characteristics
JP5304323B2 (en) Wire material for high-strength steel wire, high-strength steel wire, and production method thereof
JP5796781B2 (en) Steel wire for high strength spring excellent in spring workability, manufacturing method thereof, and high strength spring
JP5005409B2 (en) Recovery method for breakage resistance of high strength extra fine steel wire
JP5573223B2 (en) High-strength ultrafine steel wire excellent in breakage resistance and method for producing the same
JP6614005B2 (en) Hot rolled wire rod for high-strength steel wire and method for producing the same
JP3267833B2 (en) High-strength extra-fine steel wire with excellent fatigue properties and method for producing the same
JP6724435B2 (en) Hot rolled wire rod and method for manufacturing the same
JP6736951B2 (en) Steel wire and method for manufacturing the steel wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5005409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees