JP2008247864A - Mosaic serine protease, msp and its use - Google Patents

Mosaic serine protease, msp and its use Download PDF

Info

Publication number
JP2008247864A
JP2008247864A JP2007094184A JP2007094184A JP2008247864A JP 2008247864 A JP2008247864 A JP 2008247864A JP 2007094184 A JP2007094184 A JP 2007094184A JP 2007094184 A JP2007094184 A JP 2007094184A JP 2008247864 A JP2008247864 A JP 2008247864A
Authority
JP
Japan
Prior art keywords
mspl
enzyme
tmprss13
inhibitor
msps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007094184A
Other languages
Japanese (ja)
Other versions
JP2008247864A5 (en
Inventor
Hiroshi Kido
博 木戸
Yuji Okumura
裕司 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokushima NUC
Original Assignee
University of Tokushima NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokushima NUC filed Critical University of Tokushima NUC
Priority to JP2007094184A priority Critical patent/JP2008247864A/en
Publication of JP2008247864A publication Critical patent/JP2008247864A/en
Publication of JP2008247864A5 publication Critical patent/JP2008247864A5/ja
Pending legal-status Critical Current

Links

Classifications

    • Y02A50/60

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To promote a safer and more effective antiviral agent, and basic and applied research on highly pathogenic avian influenza, HPAI, and to establish a method for diagnosing abnormal production of a peptide hormone related to MSP under a situation that no vaccine nor drug having specific effectiveness against HPAI are practically used and an existing drug causes a serious side effect. <P>SOLUTION: MSPL, MSPS and TMPRSS13 inhibitors belonging to mosaic serine protease, MSP; a screening method for the above inhibitor using the degree of decomposition or cleavage of a substrate caused by these enzymes as an index; an antivirus agent and a therapeutic agent for peptide hormone disorder having the inhibitor as an active ingredient; an activation agent for enhancing infection and propagation of an HPAI virus and enabling its mass production; a therapeutic agent for peptide hormone disorder having the above enzymes as an active ingredient; an agent for diagnosing a hormone disorder using the amount of genetic expression of the above enzymes as an index; and the like. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、モザイクセリンプロテアーゼとその用途に関するものである。更に詳しくは、上記プロテアーゼの基質特異性、阻害剤スペクトラム、該遺伝子発現等を指標として用いる抗ウイルス剤とそのスクリーニング方法、特に高病原性トリ(鳥)インフルエンザの治療あるいは重症化防止のための抗ウイルス剤とそのスクリーニング方法、上記インフルエンザウイルスの感染又は増殖の活性化剤、該活性化剤を用いることにより製造されるウイルス粒子とその構成成分、ホルモン産生異常の診断剤と治療薬等に関するものである。   The present invention relates to a mosaic serine protease and its use. More specifically, an antiviral agent using the protease substrate specificity, inhibitor spectrum, gene expression, and the like as an index and a screening method thereof, particularly an antiviral agent for the treatment or prevention of severe pathogenic avian (bird) influenza. Virus agents and screening methods thereof, influenza virus infection or proliferation activators, virus particles produced by using the activators and their constituents, hormone production abnormal diagnostic agents and therapeutic agents, etc. is there.

<略語の説明>
MSP:モザイクセリンプロテアーゼ(mosaic serine protease);MSPL:MSP長鎖(mosaic serine protease,long);MSPL:MSP短鎖(mosaic serine protease,short);TMPRSS13:トランスメンブランセリンプロテアーゼ13(transmembrane protease serine 13);HA:赤血球凝集素(ヘマグルチニン);HPAI:高病原性トリ(鳥)インフルエンザ(highly pathogenic avian influenza);RT−PCR:逆転写PCR(reverse−transcription polymerase chain reaction)。
<配列番号の説明>
以下の各配列は全て、後述される非特許文献1に記載の配列の、本件特許出願時、2007年3月30日現在での最新改訂版である。
配列番号1はMSPL遺伝子cDNAの完全長コドン領域の塩基配列を示す。
配列番号2はMSPLの完全長アミノ酸配列を示す。
配列番号3はMSPS遺伝子cDNAの完全長コドン領域の塩基配列を示す。
配列番号4はMSPSの完全長アミノ酸配列を示す。
配列番号5はTMPRSS13遺伝子cDNAの完全長コドン領域の塩基配列を示す。
配列番号6はTMPRSS13の完全長アミノ酸配列を示す。
<Explanation of abbreviations>
MSP: Mosaic serine protease; MSPL: MSP long chain (mosaic serine protease, long); MSPL: MSP short chain (mosaic serine protease, short); TMPRSS13: transmembrane serine protease 13b HA: hemagglutinin; HPAI: highly pathogenic avian influenza; RT-PCR: reverse-transcription polymerase reaction.
<Description of sequence number>
Each of the following sequences is the latest revised version as of March 30, 2007, at the time of filing this patent, of the sequence described in Non-Patent Document 1 described later.
SEQ ID NO: 1 shows the base sequence of the full-length codon region of MSPL gene cDNA.
SEQ ID NO: 2 shows the full-length amino acid sequence of MSPL.
SEQ ID NO: 3 shows the base sequence of the full-length codon region of MSPS gene cDNA.
SEQ ID NO: 4 shows the full length amino acid sequence of MSPS.
SEQ ID NO: 5 shows the base sequence of the full-length codon region of TMPRSS13 gene cDNA.
SEQ ID NO: 6 shows the full-length amino acid sequence of TMPRSS13.

筆頭発明者らは、ヒト肺由来のcDNAライブラリーから、新規な2種のMSP遺伝子をクローニングすると共に、これ等の各遺伝子の塩基配列の決定、それがコードするアミノ酸配列の解読、更に、これ等のペプチド鎖の構造解析等を行い、それぞれMSPL(GenBank Accession:AB048796)、及びMSPS(同Accession:AB048797)と命名し、2001年に報告した(非特許文献1)。その後、これ等の酵素との相同性の検索から、TMPRSS13(同Accession:NM_001077263)を発見するに至った。しかし、これ等の酵素の機能を明確にしたという報告や公開文書等は未だ知られていない。
酵素MSPとその遺伝子、並びにこれ等の用途に関しては、次の技術が知られている:筆頭発明者らが発明の「MSPとその遺伝子」(特許文献1)及び「MSP活性阻害を指標として用いる抗インフルエンザ剤のスクリーニング方法」(特許文献2)、体内におけるMSP産生の調節剤(特許文献3)、MSPとその遺伝子を用いる代謝活性剤(特許文献4)、MSPが関与する諸疾病の診断剤と治療薬(特許文献5及び6)等。
インフルエンザの予防や治療に関しては、ワクチン及び抗インフルエンザ薬が実用化されている。抗インフルエンザ薬としては、次の薬剤が臨床使用されている:塩酸アマンタジン(商品名シンメトリル、経口投与、M2タンパク質に作用してウイルスの脱殻を阻害するため、A型インフルエンザに有効であるが、M2のないB型には無効、副作用は不眠などの中枢神経系への為害作用、食欲低下、嘔気等)、ザナミビル(商品名リレンザ、経口吸入投与、ノイラミニダーゼ阻害によりインフルエンザウイルスの細胞から細胞への感染・伝播を阻止するため、AとB両型に有効、副作用は稀に出るアナフィラキシー様症状、じんま疹、喘息発作の誘発等)、及びリン酸オセルタミビル(商品名タミフル、経口投与、作用はノイラミニダーゼ阻害によるもので上記ザナミビルに同じ、AとB両型に有効、副作用は腹痛、下痢、嘔気、精神神経症状、アナフィラキシー様症状、急性腎不全等)。
また、プロテアーゼによるインフルエンザウイルスのヌクシレオカブシドの開裂、その部位の解析、開裂阻害剤(プロテアーゼ阻害剤)、かかる開裂と感染との相関等に関する報告、知見、技術等としては、既に多種多様に知られている。例えば、フリン(furin、エンドプロテーゼ)による開裂(非特許文献2)、セリンプテアーゼによるHIVの開裂とその断片ペプチドの分離(非特許文献3)、インフルエンザウイルス感染におけるミニプラスミンの必要性(非特許文献4)、インフルエンザウイルスの細胞内への進入にはプロテアーゼが必須(非特許文献5)等々。
尚、この発明では、後述される実験例及び実施例の記載において、これ等の文献に記載の技術が常法として援用される。
The first inventors cloned two new MSP genes from a cDNA library derived from human lung, determined the base sequence of each of these genes, decoded the amino acid sequence encoded by them, The peptide chain was analyzed for structure, etc. and named MSPL (GenBank Accession: AB048796) and MSPS (Accession: AB048797), respectively, and reported in 2001 (Non-patent Document 1). Thereafter, TMPRSS13 (Accession: NM_001077263) was discovered from the search for homology with these enzymes. However, reports and public documents that clarify the functions of these enzymes are still unknown.
Regarding the enzyme MSP and its gene, and their use, the following techniques are known: The first inventors use “MSP and its gene” (Patent Document 1) and “MSP activity inhibition of the invention as an index. Screening method for anti-influenza drugs "(Patent Document 2), regulator of MSP production in the body (Patent Document 3), metabolic activator using MSP and its gene (Patent Document 4), diagnostic agent for various diseases involving MSP And therapeutic agents (Patent Documents 5 and 6).
Vaccines and anti-influenza drugs have been put into practical use for the prevention and treatment of influenza. The following drugs are clinically used as anti-influenza drugs: amantadine hydrochloride (trade name: symmetril, orally administered, acts on M2 protein to inhibit viral shelling, and is effective against influenza A, but M2 Not effective for type B without side effects, adverse effects on central nervous system such as insomnia, loss of appetite, nausea, etc., zanamivir (trade name Relenza, oral inhalation administration, infection of influenza virus from cell to cell by neuraminidase inhibition・ Effective for both A and B types to prevent transmission, side effects rarely occur anaphylaxis-like symptoms, urticaria, asthma attack, etc., and oseltamivir phosphate (trade name Tamiflu, oral administration, action is neuraminidase Same as zanamivir, effective for both A and B types, side effects include abdominal pain, diarrhea, nausea, and psychiatric nerve Jo, anaphylactic-like symptoms, acute renal failure, etc.).
In addition, there are already a wide variety of reports, knowledge, techniques, etc. concerning the cleavage of influenza virus nucleosylkabside by protease, analysis of the site, cleavage inhibitor (protease inhibitor), correlation between such cleavage and infection, etc. Known to. For example, cleavage by furin (endoprosthesis) (Non-patent document 2), cleavage of HIV by serine protease and separation of its fragment peptide (non-patent document 3), necessity of miniplasmin in influenza virus infection (non-patent document 4) ), Protease is essential for the entry of influenza virus into cells (Non-patent Document 5), and so on.
In addition, in this invention, the technique described in these literature is used as a conventional method in description of the experiment example and Example which are mentioned later.

特開2000−253887JP2000-253887 特開2001−69980JP 2001-69980 A WO 01/96538WO 01/96538 WO 03/093432WO 03/093432 WO 2005/040401WO 2005/040401 米国公開公報US2006/0292155(特許文献5の米国出願)US Publication No. US2006 / 0292155 (US application of Patent Document 5) Biochemica et Biophysica Acta,1518,204−209,2001.Biochemica et Biophysica Acta, 1518, 204-209, 2001. EMBO Journal,11(7),2407−2414,1992EMBO Journal, 11 (7), 2407-2414, 1992 European Journal of Biochemistry, 237,64−74,1996.European Journal of Biochemistry, 237, 64-74, 1996. European Journal of Biochemistry, 268,2847−2855,2001.European Journal of Biochemistry, 268, 2847-2855, 2001. Current Pharmaceutical Desighn,13,403−412,2007.Current Pharmaceutical Design, 13, 403-412, 2007.

HPAIウイルスの本来の宿主はトリであり、ヒトには感染し難いとは言え、高病原性トリ(鳥)インフルエンザに対し特異的に有効なワクチンも薬剤も未だ実用化されていない。また、現行の抗インフルエンザ薬は、稀ではあるにせよ、重大な副作用を生じるため、更に安全かつ有効な薬剤の開発、HPAIに関するウイルス学やワクチン学分野の基礎及び応用研究の更なる進展等が切実に期待されている現状にある。併せて、MSPが関与するホルモン産生異常の診断方法の確立も重要課題である。 Although the original host of HPAI virus is a bird and it is difficult to infect humans, neither a vaccine nor a drug specifically effective against highly pathogenic avian (avian) influenza has been put into practical use. In addition, current anti-influenza drugs, although rare, cause serious side effects. Therefore, development of safer and more effective drugs, further progress in virology and vaccinology related to HPAI and applied research, etc. It is the current situation that is eagerly expected. In addition, establishment of a method for diagnosing abnormal hormone production involving MSP is also an important issue.

筆頭発明者らは、上述の通り、MSPL、及びMSPSの2酵素の発見を2001年にいち早く報告して以来(非特許文献1)、相同酵素としてのTMPRSS13を発見し、 更に鋭意、該酵素の機能につき研究を重ねた結果、「これ等の酵素が、高病原性トリ(鳥)インフルエンザ、即ち、HPAIウイルスのHAペプチド鎖を極めて特異的かつ効率的に切断ないしは開裂する」という驚くべき機能を発見した。この発明は、かかる発見に着想を凝らし、更なる創意工夫、試行錯誤、そして勤勉の結果、完成されたものである。 As described above, since the first inventors reported the discovery of two enzymes, MSPL and MSPS, in 2001 (Non-Patent Document 1), they discovered TMPRSS13 as a homologous enzyme. As a result of repeated research on the function, the surprising function that these enzymes cleave or cleave the highly pathogenic avian (avian) influenza, that is, the HA peptide chain of the HPAI virus very specifically and efficiently. discovered. The present invention has been conceived as a result of such discovery, and has been completed as a result of further ingenuity, trial and error, and diligence.

この発明によれば、前述の課題を解決するための手段として、次の(1)〜(9)がそれぞれ提供される:
(1)MSPL、MSPS及びTMPRSS13からなる酵素群から選ばれる少なく
とも1種の酵素に対する阻害剤。
(2)MSPL、MSPS及びTMPRSS13からなる酵素群から選ばれる少なく
とも1種の酵素による基質の分解度又は開裂度を指標として用いることを特徴とする酵素阻害剤のスクリーニング方法。
(3)上記スクリーニング方法により得られる酵素阻害剤。
(4)上記(1)又は(3)の阻害剤又は酵素阻害剤を有効成分として薬効を奏する量、含有する抗ウイルス剤。
(5)MSPL、MSPS及びTMPRSS13からなる酵素群から選ばれる少なく
とも1種の酵素を有効成分として薬効を呈する量、含有するウイルス感染及び/又は増殖の活性化剤。
(6)上記(5)の活性化剤を用いることにより製造されるウイルス粒子及び/又はその構成成分。
(7)MSPL、MSPS及びTMPRSS13からなる酵素群から選ばれる少なく
とも1種の酵素を有効成分として薬効を奏する量、含有するホルモン疾患の治療薬。
(8)MSPL、MSPS及びTMPRSS13からなる酵素群から選ばれる少なく
とも1種の酵素に対する阻害剤を有効成分として薬効を奏する量、含有するホルモン疾患の治療薬。
(9)MSPL、MSPS及びTMPRSS13からなる酵素群から選ばれる少なく
とも1種の酵素の遺伝子発現量を指標として用いるホルモン疾患の診断剤。
According to the present invention, the following (1) to (9) are provided as means for solving the above-described problems:
(1) An inhibitor for at least one enzyme selected from the group consisting of MSPL, MSPS and TMPRSS13.
(2) A screening method for an enzyme inhibitor, characterized by using, as an index, the degree of degradation or cleavage of a substrate by at least one enzyme selected from the group consisting of MSPL, MSPS and TMPRSS13.
(3) An enzyme inhibitor obtained by the above screening method.
(4) An antiviral agent comprising the above-mentioned (1) or (3) inhibitor or enzyme inhibitor as an active ingredient in an effective amount.
(5) A virus infection and / or proliferation activator containing an amount having medicinal effects, comprising at least one enzyme selected from the group consisting of MSPL, MSPS and TMPRSS13 as an active ingredient.
(6) Virus particles produced by using the activator of (5) above and / or components thereof.
(7) A therapeutic drug for a hormonal disease containing an effective amount of at least one enzyme selected from the group consisting of MSPL, MSPS and TMPRSS13 as an active ingredient.
(8) A therapeutic drug for a hormonal disease containing an effective amount of an inhibitor for at least one enzyme selected from the enzyme group consisting of MSPL, MSPS and TMPRSS13 as an active ingredient.
(9) A diagnostic agent for hormonal diseases using the gene expression level of at least one enzyme selected from the group consisting of MSPL, MSPS and TMPRSS13 as an index.

(1)HPAIに由来し感染による死亡率が30%を超える新型インフルエンザ、エイズ等のウイルス感染症の治療や重症化阻止において極めて特異的に機能する、安全かつ有効な抗ウイルス剤とそのスクリーニング方法が提供される。
(2)ペプチドホルモンの産生異常に起因する疾患の治療薬及び診断剤が提供される。
(3)この発明により提供されるウイルス感染及び/又は増殖の活性化剤は、培養や量産が困難
なウイルス、例えば鳥インフルエンザのウイルス粒子とその構成成分、ウイルス抗原、ウイルス遺伝子、抗体等々の量産を可能し、ウイルス学やワクチン学分野の基礎研究及び応用研究の更なる発展に大きく役立つ。
(4)上記の(1)〜(3)は、人類の保健と文明の進展に多大に寄与し、その私生活、社会生活、ビジネス活動、学術活動等々の諸活動に対し計り知れない精神的効果と経済的効果をもたらす。
(1) A safe and effective antiviral agent that functions extremely specifically in the treatment and prevention of serious infections of virus infections such as new influenza and AIDS, which are derived from HPAI and have a death rate due to infection exceeding 30%, and a screening method therefor Is provided.
(2) A therapeutic and diagnostic agent for a disease caused by abnormal production of peptide hormones is provided.
(3) The virus infection and / or proliferation activator provided by the present invention is a mass production of viruses that are difficult to culture or mass-produce, such as virus particles of avian influenza and its components, virus antigens, virus genes, antibodies, etc. It will be useful for the further development of basic research and applied research in the fields of virology and vaccinology.
(4) The above (1) to (3) greatly contribute to the progress of human health and civilization, and immeasurable mental effects on various activities such as private life, social life, business activities, academic activities, etc. And bring about economic effects.

この発明の実施の形態に関し、次の通り詳述する:
(1)抗ウイルス剤の対象疾患
この発明に係る抗ウイルス剤の対象となるウイルス疾患は、KR、RR、RKR、RRRR等、2個以上のR(アルギニン)やK(リジン)等の塩基性アミノ酸が連続してペプチド結合した一次構造が存在するヌクレオカプシドを保有し、かつ、該ヌシレオカプシドの切断又は開裂が病原性の発現に関与する一連のウイルスによる感染症である。
例えば、HPAIを起源とする新型インフルエンザウイルス、ムンプスウイルス、イヌジステンパーウイルス、RSウイルス(respiratory syncytial virus)、黄熱病ウイルス、HIV(human immunodeficiency virus)、ヒトサイトメガルウイルス、水痘ウイルス、強毒NDV(Newcastle disease virus)等による感染症を上げることができる。
The embodiment of the present invention will be described in detail as follows:
(1) Target diseases of antiviral agents Viral diseases targeted by the antiviral agents according to the present invention are basics such as KR, RR, RKR, RRRR, two or more R (arginine), K (lysine), etc. It is an infectious disease caused by a series of viruses having a nucleocapsid in which a primary structure in which amino acids are continuously peptide-bonded is present, and the cleavage or cleavage of the nucleocapsid is involved in pathogenic expression.
For example, a novel influenza virus originated from HPAI, mumps virus, canine distemper virus, RS virus (respiratory synchronous virus), yellow fever virus, HIV (human immunodefectious virus), human cytomegal virus, varicella virus, toxic NDV Infectious diseases such as Newcastle disease virus) can be raised.

(2)ホルモン疾患
この発明に係るホルモン疾患とは、KR、RR、RKR、RRRR等、2個以上のR(アルギニン)やK(リジン)等の塩基性アミノ酸が連続してペプチド結合した一次構造が存在するペプチドホルモン前駆体が、MSPL、MSPS及びTMPRSS13からなる酵素群から選ばれる少なくとも1種の酵素により切断又は開裂されることにより、活性化されるペプチドホルモンの産生異常に起因する疾患を意味する。
例えば、レニン(renin)、フォンウィルブランド因子(von Willebrand factor)、b−神経増殖因子(b−nerve growth factor)等のペプチドホルモンの産生異常に起因する疾患を上げることができる。
(2) Hormonal disease The hormonal disease according to the present invention is a primary structure in which two or more basic amino acids such as R (arginine) and K (lysine), such as KR, RR, RKR, RRRR, are continuously peptide-bonded. Means a disease caused by abnormal production of peptide hormones that are activated by cleaving or cleaving the peptide hormone precursor present in the presence of at least one enzyme selected from the enzyme group consisting of MSPL, MSPS and TMPRSS13 To do.
For example, diseases caused by abnormal production of peptide hormones such as renin, von Willebrand factor, b-nerve growth factor can be raised.

(3)阻害剤ないしは酵素阻害剤
発明に係る阻害剤又は酵素阻害剤とは、MSPL、MSPS及びTMPRSS13に対する各ポリクロナール抗体、これ等の酵素のエピトープ、即ち、配列番号2、4及び6に記載のアミノ酸配列から選定されるエピトープに対するモノクローナル抗体、これ等の酵素をコードする遺伝子、即ち、配列番号1、3及び5に記載のcDNA塩基配列から設計されるsiRNA、天然物から抽出精製される化合物、合成化合物等を意味する。ウイルス感染症やホルモン疾患の治療薬として用いる阻害剤としては、反復使用や非経口投与を考慮し、免疫原性ないしは抗原性のない低分子化合物が望ましい。尚、実験段階での阻害剤の具体例は、表2に列記されている。
(3) Inhibitor or Enzyme Inhibitor The inhibitor or enzyme inhibitor according to the invention is a polyclonal antibody against MSPL, MSPS and TMPRSS13, epitopes of these enzymes, ie, SEQ ID NOs: 2, 4 and 6 Monoclonal antibodies against epitopes selected from amino acid sequences, genes encoding these enzymes, that is, siRNAs designed from the cDNA base sequences set forth in SEQ ID NOs: 1, 3, and 5, compounds extracted and purified from natural products, It means a synthetic compound. Inhibitors used as therapeutic agents for viral infections and hormonal diseases are preferably low molecular weight compounds having no immunogenicity or antigenicity in consideration of repeated use and parenteral administration. Specific examples of inhibitors at the experimental stage are listed in Table 2.

(4)酵素
この発明では酵素として、MSPL、MSPS及びTMPRSS13をそれぞれ用いる。これ等の酵素は、遺伝子組換えの常法により量産できる。例えば、各酵素遺伝子の発現ベクターをそれぞれ構築の後、かかるベクターを各々、ヒト細胞、酵母、大腸菌等の宿主に移入して得られる形質転換体を培養することにより量産できる。その具体例は、実験例3に記載されている。
これ等の酵素の遺伝子のその構造は図1〜図3、アミノ酸配列の比較は図4、そしてMSPLの構造は図5にそれぞれ、実験例1の結果として記載されている。
また、該酵素の種々のヒト組織における発現度は図6にそれぞれ、実験例2の結果として記載されている。
(4) Enzyme In the present invention, MSPL, MSPS and TMPRSS13 are used as enzymes, respectively. These enzymes can be mass-produced by conventional methods of gene recombination. For example, after constructing an expression vector for each enzyme gene, the vector can be mass-produced by culturing transformants obtained by transferring the vectors to hosts such as human cells, yeast, E. coli, etc. Specific examples thereof are described in Experimental Example 3.
The structures of these enzyme genes are shown in FIGS. 1 to 3, the amino acid sequence comparison is shown in FIG. 4, and the structure of MSPL is shown in FIG.
The expression levels of the enzyme in various human tissues are shown in FIG. 6 as the results of Experimental Example 2, respectively.

(5)基質
この発明に係る上述(4)の酵素の基質特異性を考慮し、KR、RR、RKR、RRRR等、2個以上のR(アルギニン)やK(リジン)等の塩基性アミノ酸が連続してペプチド結合した一次構造が存在するペプチドの使用が望ましい。その具体例は、表1と表3に列記されている。尚、治療薬候補としての阻害剤のスクリーニングに用いる基質は、目的に応じて適宜、選定できる。例えば、HPAIウイルスに対する抗ウイルス剤のスクリーニングには、該ウイルスそれ自体のHAを基質として用いる。ペプチドホルモン疾患の治療薬のスクリーニングには、該ホルモンの前駆体を基質として用いる。
(5) Substrate In consideration of the substrate specificity of the enzyme of the above (4) according to the present invention, two or more basic amino acids such as R (arginine) and K (lysine) such as KR, RR, RKR, RRRR are present. It is desirable to use peptides in which there is a continuous primary structure with peptide bonds. Specific examples thereof are listed in Tables 1 and 3. In addition, the substrate used for screening for inhibitors as therapeutic drug candidates can be appropriately selected according to the purpose. For example, for screening antiviral agents against HPAI virus, the virus's own HA is used as a substrate. For the screening of therapeutic agents for peptide hormone diseases, the precursor of the hormone is used as a substrate.

(6)酵素活性の測定
測定は、酵素反応方法とその測定の常法により行う。即ち、濃度が一定の酵素と基質とを混合の後、溶媒組成とそのpH、並びに温度が一定の条件下で、一定時間、酵素反応を行った後、酵素による分解物を定量することにより測定する。具体例は、実験例4に記載されている。
(6) Measurement of enzyme activity The measurement is performed by an enzyme reaction method and a conventional method for the measurement. In other words, after mixing an enzyme and a substrate at a constant concentration, the enzyme composition is subjected to an enzyme reaction for a certain period of time under the conditions of the solvent composition, its pH, and temperature, and then measured by quantifying the enzyme degradation products. To do. A specific example is described in Experimental Example 4.

(7)酵素の基質特異性
基質特異性は、上記の酵素活性の測定と同様にして、酵素による種々の基質の分解活性を測定することにより決定できる。その具体例は、実施例1に記載されている。
(7) Substrate specificity of enzyme Substrate specificity can be determined by measuring the degradation activity of various substrates by an enzyme in the same manner as the measurement of enzyme activity described above. Specific examples thereof are described in Example 1.

(8)種々の阻害剤に対する酵素の特異性(阻害剤スペクトラム)
阻害剤スペクトラムは、阻害剤の共存で酵素反応を行うことにより検定する。酵素と阻害剤とを混合の後、かかる混合物につき、前述した酵素活性の測定と同様にして、酵素反応を行い、基質の分解度あるいは未分解基質の残存度を定量することにより検定することができる。その具体例は、実施例2に記載されている。
(8) Specificity of enzymes for various inhibitors (inhibitor spectrum)
The inhibitor spectrum is assayed by performing an enzyme reaction in the presence of an inhibitor. After mixing the enzyme and the inhibitor, the mixture can be assayed by conducting an enzyme reaction in the same manner as the measurement of the enzyme activity described above and quantifying the degree of degradation of the substrate or the remaining degree of the undegraded substrate. it can. A specific example is described in Example 2.

(9)抗ウイルス剤のスクリーニング方法
抗ウイルス剤は、上記の阻害剤スペクトラムに基づきスクリーニングする。この場合、基質としては、対象病原体ウイルスそのものから調製したウイルス構成タンパク質であって、かつ、本発明に係る酵素の基質特異性が高い物質、例えば、HPAIウイルスではそのヌクレオカブシド、カプソメア、HA等の使用が望ましい。スクリーニングの阻害剤の候補物質としては、前述の通り、免疫原性あるいは抗原性のない低分子化合物の使用が望ましい。その具体例は、実施例3に記載されている。
(9) Screening method for antiviral agents Antiviral agents are screened based on the above inhibitor spectrum. In this case, the substrate is a virus-constituting protein prepared from the target pathogen virus itself, and a substance having a high substrate specificity of the enzyme according to the present invention, such as nucleocapsid, capsomere, HA, etc. in the case of HPAI virus. Is desirable. As described above, as a screening inhibitor candidate substance, it is desirable to use a low molecular weight compound having no immunogenicity or antigenicity. A specific example is described in Example 3.

(10)ウイルス感染及び/又は増殖の活性化剤
この発明に係る活性剤に関し、前述の酵素MSPL、MSPS及びTMPRSS13を活性化剤の有効成分として用いる。この活性化剤は、HPAIウイルスやHIV等の培養や量産が困難なウイルスの全粒子、また、ウイルス遺伝子、抗原、ウイルス酵素、構造タンパク質、ヌクレオカプシド、カプソメア等々の構成成分の量産、更には、かかる抗原に対する抗体の作製を可能かつ容易にする。活性化剤の用法としては、例えば、ウイルス培養培地への添加混合、シードウイルスの前処理液への添加混合等のかたちで使用することができる。
(10) Activator of virus infection and / or growth Regarding the activator according to the present invention, the aforementioned enzymes MSPL, MSPS and TMPRSS13 are used as active ingredients of the activator. This activator is capable of mass production of all components of viruses such as HPAI virus and HIV, which are difficult to culture and mass-produce, and viral genes, antigens, viral enzymes, structural proteins, nucleocapsids, capsomeres, etc. Enables and facilitates the production of antibodies against antigens. The activator can be used, for example, in the form of addition and mixing to a virus culture medium or addition and mixing of a seed virus to a pretreatment solution.

(11)ペプチドホルモン疾患の治療薬
疾患がペプチドホルモンの産生過剰に起因する場合は、その治療薬として、この発明によりスクリーンされ提供される阻害剤を使用できる。逆に該ホルモンの産生過少による場合は、本発明に係る酵素を補充療法剤として用いることができる。
以下、実験例及び実施例を上げ、この発明の構成と効果を具体的に説明する。但し、この発明は、これ等の実験例及び実施例にのみに制限されるわけではない。
(11) Therapeutic Agent for Peptide Hormone Disease When the disease is caused by excessive production of peptide hormone, an inhibitor screened and provided by the present invention can be used as the therapeutic agent. Conversely, when the production of the hormone is insufficient, the enzyme according to the present invention can be used as a replacement therapy agent.
Hereinafter, the configuration and effects of the present invention will be specifically described with reference to experimental examples and examples. However, the present invention is not limited only to these experimental examples and examples.

[実験例1]
MSPL、MDPS及びTMPRSS13各遺伝子のクローニング、発現及び解析
上記の各遺伝子は、ヒト肺cDNAライブラリー[Clontech社(米国)製の商品名Marathon−Ready−cDNA]からPCRによりクローニングの後、それぞれ発現させた。また、これ等の遺伝子cDNAの塩基配列を決定する共に、これ等がコードするアミノ酸配列をそれぞれ解読した。その材料と方法、並びに結果の詳細は、筆頭発明者らによる既報(非特許文献1)の記載を援用する。
(1)更に、既報の記載を再確認した結果、塩基配列とアミノ酸配列において誤りが発見された。その結果に基づく訂正データを図1、図2及び図3にそれぞれ示す。
図1は、MSPL遺伝子cDNAの完全長コドン領域の塩基配列とそれがコードする完全長アミノ酸配列を示す。□で囲まれたアミノ酸は活性中心、↑は活性体になるための切断部位、下線太線は推定膜貫通領域、及び*は推定N型糖鎖付加部位をそれぞれ示す。
図2は、MSPS遺伝子cDNAの完全長コドン領域の塩基配列とそれがコードする完全長アミノ酸配列を示す。□で囲まれたアミノ酸は活性中心、↑は活性体になるための切断部位、及び*は推定N型糖鎖付加部位をそれぞれ示す。
図3は、TMPRSS13遺伝子cDNAの完全長コドン領域の塩基配列とそれがコードする完全長アミノ酸配列を示す。□で囲まれたアミノ酸は活性中心、↑は活性体になるための切断部位、下線太線は推定膜貫通領域、及び*は推定N型糖鎖付加部位をそれぞれ示す。
(2)併せて、これ等の3アミノ酸配列を相互に比較した。その結果を図4に示す。この図では、翻訳開始部位Metを第1番アミノ酸とし、相同部位を□で囲んだ。
(3)また、MSPLの構造解析を行った。その結果を図5に示す。この図では、MSPLが有するドメイン構造を模式的に示した。
尚、TMはransembrane domain(膜貫通ドメイン)、SRCRはcavenger eceptor istein−ich domain(スカベンジャーレセプターシステインリッチドメイン)、及びSPDはerine rotease omain(セリンプロテアーゼドメイン)をそれぞれ意味する。
また、TandemはN末端側細胞内領域に認められるtandem repeat sequenceのアミノ酸配列を意味し、更に、各種キナーゼによるリン酸化部位認識配列、即ち、Cdc2キナーゼによる認識配列S/T−P−X−K/R、CaMキナーゼIIによるR−X−X−S/T、及びプロテインキナーゼCによるR−X−X−S−X−Rの各認識配列をそれぞれ太字で示した。更にまた、繰り返し認められるアミノ酸配列ASPAを下線で示した。
[Experimental Example 1]
Cloning, expression and analysis of each gene of MSPL, MDPS and TMPRSS13 Each of the above genes was cloned by PCR from a human lung cDNA library [trade name Marathon-Ready-cDNA manufactured by Clontech (USA)] and then expressed respectively. It was. In addition, the base sequences of these gene cDNAs were determined, and the amino acid sequences encoded by them were decoded. The details of the materials and methods and the results are described in the previous report (Non-Patent Document 1) by the first inventors.
(1) Furthermore, as a result of reconfirming the description in the previous report, an error was found in the base sequence and amino acid sequence. Correction data based on the result is shown in FIGS. 1, 2, and 3, respectively.
FIG. 1 shows the base sequence of the full-length codon region of MSPL gene cDNA and the full-length amino acid sequence encoded by it. The amino acid surrounded by □ is the active center, ↑ is the cleavage site for becoming an active form, the underlined bold line is the putative transmembrane region, and * is the putative N-type glycosylation site.
FIG. 2 shows the base sequence of the full-length codon region of MSPS gene cDNA and the full-length amino acid sequence encoded by it. Amino acids surrounded by □ are active centers, ↑ is a cleavage site for becoming an active form, and * is a putative N-type glycosylation site.
FIG. 3 shows the base sequence of the full-length codon region of TMPRSS13 gene cDNA and the full-length amino acid sequence encoded by it. The amino acid surrounded by □ is the active center, ↑ is the cleavage site for becoming an active form, the underlined bold line is the putative transmembrane region, and * is the putative N-type glycosylation site.
(2) In addition, these three amino acid sequences were compared with each other. The result is shown in FIG. In this figure, the translation start site Met is the first amino acid, and the homologous site is surrounded by a square.
(3) Moreover, the structural analysis of MSPL was conducted. The result is shown in FIG. In this figure, the domain structure of MSPL is schematically shown.
Incidentally, TM is t rans m embrane domain (a transmembrane domain), SRCR is s cavenger r eceptor c istein- r ich domain ( scavenger receptor cysteine-rich domains), and the SPD s erine p rotease d omain (the serine protease domain) Each means.
Tandem means an amino acid sequence of tandem repeat sequence found in the N-terminal side intracellular region, and further, phosphorylation site recognition sequences by various kinases, that is, recognition sequences by Cdc2 kinase S / TPPX-K Recognized sequences of / R, R—X—X—S / T by CaM kinase II, and R—X—X—S—X—R by protein kinase C are shown in bold. Furthermore, the repeatedly recognized amino acid sequence ASPA is underlined.

[実験例2]
種々のヒト組織におけるMSPL及びTMPRSS13遺伝子発現の解析
MSPL及びTMPRSS13のヒト各組織におけるmRNA発現は、Human Multiple Tissue cDNA panels[BD Biosciences社(米国)より購入]を使用し、RT−PCR(reverse transcription− polymerase chain reaction)により解析した。PCR用の遺伝子特異的プライマーとしては、MSPLとTMPRSS13に共通のsense鎖には5’−GACCCTGTCCGCTCACATCCACCCT−3’、MSPLのantisense鎖には5’−CCTCTGCCTACACCCTGGGTGCTCCT−3’、及びTMPRSS13のantisense鎖には5’−CTGGTTAGGATTTTCTGAATCGCAC−3’をそれぞれ用いた。PCRは次の条件で行った:MSPLでは、変性が94℃で30秒間、アニーリングが66℃で30秒間、伸長が72℃で30秒間を35サイクル、また、TMPRSS13では、変性が94℃で30秒間、アニーリングが 62℃で30秒間、伸長が72℃で30秒間を35サイクル。内部標準には、ヒトGAPDH(glyceraldehydes−3−phosphate dehydrogenase)の特異的プライマーとして、GAPDHのsense鎖には5’−TGAAGGTCGGAGTCAACGGATTTGGT−3’、GAPDHのantisense鎖には5’−CATGTGGGCCATGAGGTCCACCAC−3’をそれぞれ使用した。PCRは次の条件で行った:変性が94℃で30秒間、アニーリング及び伸長が68℃で2分間を25サイクル。PCR産物は2%アガロース/TAE(40mM Tris、20mM酢酸、及び1mM EDTA)ゲルを用いて電気泳動し、エチジウムブロマイド染色にて検出した。PCR産物が目的遺伝子であることはシークエンスを行い確認した。その結果を図6に示す。
図6において、レーン1は比較対照(鋳型なし)、レーン2は脳、レーン3は心臓、レーン4は肺、レーン5は胸腺、レーン6は肝臓、レーン7は脾臓、レーン8は膵臓、レーン9は腎臓、レーン10は小腸、レーン11は大腸、レーン12は前立腺、レーン13は精巣、レーン14は卵巣、レーン15は骨格筋、レーン16は胎盤、レーン17は白血球ないしは末梢血リンパ球、レーン18は単核球細胞、レーン19はCD14細胞、レーン20はCD4細胞、レーン21はCD8細胞、及びレーン22はCD19細胞。
MSPLでは、肺、膵臓、前立腺、及び胎盤において高い遺伝子発現を認めた。また、TMPRSS13では、肺、膵臓、前立腺及び胎盤のみならず、胸腺、脾臓及び末梢血リンパ球においても高い遺伝子発現を認めると共に、脳と大腸においても遺伝子発現を認めた。
また、MSPSについても、特異的プライマーを用いるRT−PCRを上記と同様にして行った結果、肺、膵臓、前立腺及び胎盤のみならず、卵巣と末梢血リンパ球においても高い遺伝子発現を認めた。
[Experiment 2]
Analysis of MSPL and TMPRSS13 gene expression in various human tissues mRNA expression in human tissues of MSPL and TMPRSS13 was performed using RT-PCR (reverse transcription-) using Human Multiple Tissue cDNA panels [purchased from BD Biosciences (USA)]. (polymerase chain reaction). Gene-specific primers for PCR include 5′-GACCCTGTCCCGCTCACATCCACCCT-3 ′ for the sense strand common to MSPL and TMPRSS13, 5′-CCTCCTGCCCTACACCCTGGGTGCTCCT-3 ′ for MSPL and 5 for the antisense strand of TMPRSS13. '-CTGGTTAGGATTTTCTGAATCGCAC-3' was used, respectively. PCR was performed under the following conditions: MSPL denaturation at 94 ° C. for 30 seconds, annealing at 66 ° C. for 30 seconds, extension at 72 ° C. for 30 seconds for 35 cycles, and TMPRSS13 for denaturation at 94 ° C. for 30 cycles. Second, 35 cycles of annealing at 62 ° C for 30 seconds and extension at 72 ° C for 30 seconds. The internal standard includes human GAPDH (glyceraldehydes-3-phosphate dehydrogenase) specific primer, GAPDH sense chain 5'-TGAAGGTCGGAGTCAACGGATTTGGT-3 ', GAPDH antisense chain 5'-CATGGTG-3' used. PCR was performed under the following conditions: 25 cycles of denaturation at 94 ° C for 30 seconds, annealing and extension at 68 ° C for 2 minutes. PCR products were electrophoresed using 2% agarose / TAE (40 mM Tris, 20 mM acetic acid, and 1 mM EDTA) gels and detected by ethidium bromide staining. It was confirmed by sequencing that the PCR product was the target gene. The result is shown in FIG.
In FIG. 6, lane 1 is a control (no template), lane 2 is brain, lane 3 is heart, lane 4 is lung, lane 5 is thymus, lane 6 is liver, lane 7 is spleen, lane 8 is pancreas, lane 9 is kidney, lane 10 is small intestine, lane 11 is large intestine, lane 12 is prostate, lane 13 is testis, lane 14 is ovary, lane 15 is skeletal muscle, lane 16 is placenta, lane 17 is leukocyte or peripheral blood lymphocyte, Lane 18 is mononuclear cell, lane 19 is CD14 + cell, lane 20 is CD4 + cell, lane 21 is CD8 + cell, and lane 22 is CD19 + cell.
MSPL showed high gene expression in lung, pancreas, prostate, and placenta. TMPRSS13 showed high gene expression not only in lung, pancreas, prostate and placenta, but also in thymus, spleen and peripheral blood lymphocytes, as well as in brain and large intestine.
As for MSPS, RT-PCR using specific primers was performed as described above. As a result, high gene expression was observed not only in the lung, pancreas, prostate and placenta, but also in ovary and peripheral blood lymphocytes.

[実験例3]
MSPLとTMPRSS13の調製
(1)リコンビナントMSPL及びTMPRSS13の各発現ベクターの構築
MSPL及びTMPRSS13の各全長cDNAをテンプレートとしてPCRで増幅した後、その産物を発現用ベクターp3XFLAG−CMV14[SIGMA社(米国)より購入]の制限酵素EcoRI/XbaIサイトに組み込み、発現ベクターを構築した。同時に、MSPL及びTMPRSS13の各細胞外領域(SRCRドメインからセリンプロテアーゼドメインまで)のみをそれぞれ、発現用ベクターp3XFLAG−CMV9[SIGMA社(米国)より購入]のエンテロキナーゼ認識配列(DDDDK)の直下に組み込み、発現ベクターを構築した。次に、これ等の発現ベクターは全て、シークエンス解析により配列を確認した。
(2)リコンビナントMSPL及びTMPRSS13の生産と精製
上記の各発現ベクターをそれぞれ、Hily Max[同仁化学研究所(日本)より購入]を用いてHEK−293T細胞(ヒト胎児腎臓由来細胞)に移入した後、無血清培地で培養し、得られた培養上清(SFCM; erum ree ulture edia)を採取した。次いで、その上清を、限外濾過Biomax−10メンブレン[Millipore社(米国)より購入]を用いて濃縮の後、最終濃度が50mM Tris−HCl(pH7.4)、及び150mM NaClで平衡化した後、anti−FLAG M2−agarose affinity gelカラム[SIGMA社(米国)より購入]にかけ、0.1M Glycine−HCl(pH 3.5)で溶出し、精製した。得られた精製タンパクは、Phosphate−buffered saline (PBS)にて透析後、使用するまで−30℃にて保存した。
(3)トリプシンによるMSPL及びTMPRSS13の活性化
2μgのリコンビナントMSPLを10μlのトリプシンビーズ[immobilized Tos−Phe−CHCl(tosylphenylalanylchloromethane)−trypsin][Pierce社(米国)より購入]と0.1M ammonium bicarbonate(pH8.0)中にて、37℃で2時間反応させた。反応終了の後は、20,400xg、2分間の遠心によりトリプシンビーズを除去した後、上清を回収し、そのMSPL酵素活性を、実験例4に記載の方法で測定することにより確認した。
[Experiment 3]
Preparation of MSPL and TMPRSS13 (1) Construction of Recombinant MSPL and TMPRSS13 Expression Vectors After amplification by PCR using the full-length cDNAs of MSPL and TMPRSS13 as templates, the product was obtained from the expression vector p3XFLAG-CMV14 [SIGMA (USA) It was incorporated into restriction enzyme EcoRI / XbaI sites of [purchase] to construct an expression vector. At the same time, only the extracellular regions of MSPL and TMPRSS13 (from SRCR domain to serine protease domain) are incorporated directly under the enterokinase recognition sequence (DDDDDK) of the expression vector p3XFLAG-CMV9 [purchased from SIGMA (USA)]. An expression vector was constructed. Next, the sequences of all these expression vectors were confirmed by sequence analysis.
(2) Production and purification of recombinant MSPL and TMPRSS13 After each of the above expression vectors was transferred to HEK-293T cells (human embryonic kidney-derived cells) using Hily Max (purchased from Dojin Chemical Laboratory (Japan)). , it was cultured in serum-free medium, the resulting culture supernatant (SFCM; S erum f ree c ulture m edia) were collected. The supernatant was then concentrated using an ultrafiltration Biomax-10 membrane (purchased from Millipore (USA)), and then equilibrated with 50 mM Tris-HCl (pH 7.4) and 150 mM NaCl. Thereafter, it was applied to an anti-FLAG M2-agarose affinity gel column [purchased from SIGMA (USA)] and eluted with 0.1 M Glycine-HCl (pH 3.5) for purification. The obtained purified protein was dialyzed with Phosphate-buffered saline (PBS) and stored at −30 ° C. until use.
(3) Activation of MSPL and TMPRSS13 by trypsin 2 μg of recombinant MSPL was obtained from 10 μl of trypsin beads [immobilized Tos-Phe-CH 2 Cl (tosylphenylally chloromethane) -trypsin] (Pirce, USA) The reaction was carried out at 37 ° C. for 2 hours in (pH 8.0). After completion of the reaction, trypsin beads were removed by centrifugation at 20,400 × g for 2 minutes, and then the supernatant was collected and its MSPL enzyme activity was confirmed by measuring by the method described in Experimental Example 4.

[実験例4]
酵素活性の測定
酵素活性測定は、トリス緩衝液(0.1M Tris−HCl、pH8.5)中で活性化リコンビナントMSPLと蛍光標識人工ペプチド基質とを反応させ、その反応産物(AMC;7−mino−4ethyloumarin)の生成量を蛍光分光光度計[HITACHI社(日本)製のModel 650−10MS]を用い、Excitation 波長370nm、及びEmission波長460nmで測定した。酵素活性は1分間当たり1μmolのAMCを生成する酵素量を1単位(Unit)とした。
[Experimental Example 4]
Measurement of enzyme activity The enzyme activity was measured by reacting activated recombinant MSPL with a fluorescent-labeled artificial peptide substrate in Tris buffer (0.1 M Tris-HCl, pH 8.5), and the reaction product (AMC; 7- a mino-4 m ethyl c oumarin) fluorescence spectrophotometer production of using [HITACHI Ltd. (Japan) made Model 650-10MS], was measured at Excitation wavelength 370 nm, and Emission wavelength 460 nm. Enzyme activity was defined as 1 unit (Unit), which is the amount of enzyme that produces 1 μmol of AMC per minute.

酵素の基質特異性
実験例4の記載と同様にして、酵素による種々の基質の分解活性を測定した。得られた測定値は、人工基質Boc−Gln−Ala−Arg−MCAの分解活性を100とし、各基質の分解活性の割合(%:相対活性)で表記した。その結果を表1に示す。
表1において、Bocはt−butoxycarbonyl、MCAは4−methylcoumaryl−7−amide、Bzはbenzoyl、及びOBzlはbenzyloxyをそれぞれ意味する。
MSPLは、Boc−Leu−Arg−Arg−MCA、Boc−Glu−Arg−Arg−MCA、Boc−Leu−Lys−Arg−MCA、及びBoc−Arg−Val−Arg−Arg−MCAを極めて特異的に分解した。
Enzyme Substrate Specificity In the same manner as described in Experimental Example 4, the degradation activity of various substrates by the enzyme was measured. The obtained measured value was expressed as the degradation activity ratio (%: relative activity) of each substrate, with the degradation activity of the artificial substrate Boc-Gln-Ala-Arg-MCA being 100. The results are shown in Table 1.
In Table 1, Boc means t-butycarbonyl, MCA means 4-methylcoumeric-7-amide, Bz means benzoyl, and OBzl means benzyloxy.
MSPL is very specific for Boc-Leu-Arg-Arg-MCA, Boc-Glu-Arg-Arg-MCA, Boc-Leu-Lys-Arg-MCA, and Boc-Arg-Val-Arg-Arg-MCA Disassembled.

酵素の各種阻害剤に対する特異性(阻害剤スペクトラム)
また、各種阻害剤の影響は活性化リコンビナントMSPLと阻害剤をあらかじめ緩衝液中で37℃、5分間反応させた後、残存するMSPL酵素活性を、実験例4の記載と同様にして測定した。得られた測定値は、阻害剤非存在下での人工基質Boc−Gln−Ala−Arg−MCAの分解活性を100とし、各阻害剤存在下での残存活性の割合(%:相対残存活性)で表記した。その結果を表2に示す。
表2において、E−64cはsynthetic E−64[trans−epoxysuccinyl−L−leucylamido−(4−guanidino)butane]analogue、UTIはurinary trypsin inhibitor、SLPIはsecretory leukoprotease inhibitorをそれぞれ意味する。
MSPL活性は、Aprotinin、Benzamidine、Bowman−Birk trypsin inhibitor、及びdec−RVKR−cmkにより特異的に阻害された。
Specificity of enzymes for various inhibitors (inhibitor spectrum)
The influence of various inhibitors was determined by reacting activated recombinant MSPL and inhibitor in advance in a buffer solution at 37 ° C. for 5 minutes, and then measuring the remaining MSPL enzyme activity as described in Experimental Example 4. The obtained measured value is the ratio of the residual activity in the presence of each inhibitor (%: relative residual activity) where the degradation activity of the artificial substrate Boc-Gln-Ala-Arg-MCA in the absence of the inhibitor is taken as 100. The notation. The results are shown in Table 2.
In Table 2, E-64c is synthetic E-64 [trans-epoxysuccinyl-L-leucylamide- (4-guanidino) butane] analogue, UTI is urinary trypsin inhibitor, and SLPI is secure.
MSPL activity was specifically inhibited by Aprotinin, Benzamidine, Bowman-Birk trypsin inhibitor, and dec-RVKR-cmk.

MSPLによるインフルエンザウイルスのヘマグルチニン限定分解部位ペプチドの切断効率
MSPLによる高病原性鳥インフルエンザウイルスとヒト低病原性インフルエンザウイルスの膜
融合活性と感染性の発現に係わる、ヘマグルチニン限定分解部位ペプチドの切断効率を次の通り測定した。
高病原性鳥インフルエンザH5N1とH7N7、並びに低病原性ヒトインフルエンザH3N2のヘマグルチニンの限定的分解部位を含むペプチドを常法により合成の後、これらのペプチド10μgに対し、0.1μgのMSPLを添加混合して反応させ、MSPLによるペプチドの切断活性を検定した。反応は、100mMトリス緩衝液(Tris−HCl、PH7.0)50μl中で37℃にて3時間、行った。反応終了の後、1%になるようにトリクロロ酢酸を添加混合して停止させ、次いで、反応産物を常法(非特許文献3)により、ODS−120Tの逆相クロマトかけ分離した。分離したペプチドのアミノ酸配列を常法(非特許文献4)により、Applied Biosystems model 492 プロテインシークエンサー[Applied
Biosytems社(米国)製]を用いて解析し、切断部位と切断ペプチドの量を決定した。切断率(%)は、加えたペプチド量(mol)を100としたときの分解産物の割合で表記した。その結果を表3に示す。
MSPLは、低病原性ヒトインフルエンザH3N2ヘマグルチニンのペプチド構造はほとんど切断せず、高病原性鳥インフルエンザH5N1とH7N7両マグルチニンのペプチド構造を、いずれも極めて特異的に切断することが確認された。
Cleavage efficiency of hemagglutinin-restricted degradation site peptide of influenza virus by MSPL Following the cleavage efficiency of hemagglutinin-restricted degradation site peptide related to the expression of membrane fusion activity and infectivity of highly pathogenic avian influenza virus and human pathogenic influenza virus by MSPL Measured as follows.
After synthesizing peptides containing limited pathogenic sites for hemagglutinin of highly pathogenic avian influenza H5N1 and H7N7 and low pathogenic human influenza H3N2, 0.1 μg of MSPL was added to 10 μg of these peptides and mixed. And the peptide cleavage activity by MSPL was assayed. The reaction was carried out at 37 ° C. for 3 hours in 50 μl of 100 mM Tris buffer (Tris-HCl, PH 7.0). After completion of the reaction, trichloroacetic acid was added and mixed so as to be 1%, and then the reaction product was separated by reverse phase chromatography using ODS-120T by a conventional method (Non-patent Document 3). The amino acid sequence of the separated peptide was determined using an applied biosystems model 492 protein sequencer [Applied
Biosystems (USA)] was used to determine the cleavage site and the amount of the cleaved peptide. The cleavage rate (%) was expressed as the ratio of degradation products when the added peptide amount (mol) was 100. The results are shown in Table 3.
MSPL hardly cleaves the peptide structure of the low pathogenic human influenza H3N2 hemagglutinin, and it was confirmed that both the peptide structures of both the highly pathogenic avian influenza H5N1 and H7N7 maglutinins were cleaved very specifically.

この発明は、抗ウイルス剤とそのスクリーニング、ウイルス感染及び/又は増殖の活性化剤、ペプチドホルモン疾患の治療薬とそのスクリーニング、診断剤等に関するものであり、ウイルス学、ワクチン学、医薬、創薬、診断剤、獣医薬等の分野で利用できる。   The present invention relates to antiviral agents and screening thereof, viral infection and / or proliferation activators, therapeutic agents for peptide hormone diseases and screening thereof, diagnostic agents, etc. It can be used in fields such as diagnostic agents and veterinary medicine.

図1は、MSPLのヌクレオチド配列、及びアミノ酸配列を示す。FIG. 1 shows the nucleotide sequence and amino acid sequence of MSPL. 図2は、MSPSのヌクレオチド配列、及びアミノ酸配列を示す。FIG. 2 shows the nucleotide sequence and amino acid sequence of MSPS. 図3は、TMPRSS13のヌクレオチド配列、及びアミノ酸配列を示す。FIG. 3 shows the nucleotide sequence and amino acid sequence of TMPRSS13. 図4は、MSPL、MSPS及びTMPRSS13のアミノ酸配列比較を示す。FIG. 4 shows an amino acid sequence comparison of MSPL, MSPS and TMPRSS13. 図5は、MSPLの構造を示す。FIG. 5 shows the structure of MSPL. 図6は、ヒト各組織におけるMSPL及びTMPRSS13の遺伝子発現の比較を示す。FIG. 6 shows a comparison of gene expression of MSPL and TMPRSS13 in human tissues.

Claims (9)

MSPL、MSPS、及びTMPRSS13からなる酵素群から選ばれる少なくとも1種の酵素に対する阻害剤。 An inhibitor for at least one enzyme selected from the group consisting of MSPL, MSPS, and TMPRSS13. MSPL、MSPS、及びTMPRSS13からなる酵素群から選ばれる少なくとも1種の酵素による基質の分解度又は開裂度を指標として用いることを特徴とする酵素阻害剤のスクリーニング方法。 A screening method for an enzyme inhibitor, characterized by using as an index the degree of degradation or cleavage of a substrate by at least one enzyme selected from the group consisting of MSPL, MSPS, and TMPRSS13. 請求項1に記載のスクリーニング方法により得られる酵素阻害剤。 An enzyme inhibitor obtained by the screening method according to claim 1. 請求項1又は3に記載の阻害剤又は酵素阻害剤を有効成分として薬効を奏する量、含有する抗ウイルス剤。 An antiviral agent containing the inhibitor or enzyme inhibitor according to claim 1 or 3 as an active ingredient in an effective amount. MSPL、MSPS、及びTMPRSS13からなる酵素群から選ばれる少なくとも1種の酵素を有効成分として薬効を呈する量、含有するウイルス感染及び/又は増殖の活性化剤。 A virus infection and / or proliferation activator comprising an amount having a medicinal effect with at least one enzyme selected from the group consisting of MSPL, MSPS, and TMPRSS13 as an active ingredient. 請求項5に記載の活性化剤を用いることにより製造されるウイルス粒子及び/又はその構成成分。   Virus particles produced by using the activator according to claim 5 and / or components thereof. MSPL、MSPS、及びTMPRSS13からなる酵素群から選ばれる少なくとも1種の酵素を有効成分として薬効を奏する量、含有するホルモン疾患の治療薬。 A therapeutic agent for a hormonal disease containing an effective amount of at least one enzyme selected from the group consisting of MSPL, MSPS and TMPRSS13 as an active ingredient. MSPL、MSPS、及びTMPRSS13からなる酵素群から選ばれる少なくとも1種の酵素に対する阻害剤を有効成分として薬効を奏する量、含有するホルモン疾患の治療薬。 A therapeutic agent for hormonal diseases comprising an effective amount of an inhibitor for at least one enzyme selected from the enzyme group consisting of MSPL, MSPS, and TMPRSS13 as an active ingredient. MSPL、MSPS、及びTMPRSS13からなる酵素群から選ばれる少なくとも1種の酵素の遺伝子発現量を指標として用いるホルモン疾患の診断剤。 A diagnostic agent for hormonal diseases using the gene expression level of at least one enzyme selected from the enzyme group consisting of MSPL, MSPS, and TMPRSS13 as an index.
JP2007094184A 2007-03-30 2007-03-30 Mosaic serine protease, msp and its use Pending JP2008247864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007094184A JP2008247864A (en) 2007-03-30 2007-03-30 Mosaic serine protease, msp and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007094184A JP2008247864A (en) 2007-03-30 2007-03-30 Mosaic serine protease, msp and its use

Publications (2)

Publication Number Publication Date
JP2008247864A true JP2008247864A (en) 2008-10-16
JP2008247864A5 JP2008247864A5 (en) 2009-09-17

Family

ID=39973244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007094184A Pending JP2008247864A (en) 2007-03-30 2007-03-30 Mosaic serine protease, msp and its use

Country Status (1)

Country Link
JP (1) JP2008247864A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013158516A1 (en) * 2012-04-16 2013-10-24 Regeneron Pharmaceuticals, Inc. Methods for treating or preventing influenza virus infection by administering a serine protease inhibitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013158516A1 (en) * 2012-04-16 2013-10-24 Regeneron Pharmaceuticals, Inc. Methods for treating or preventing influenza virus infection by administering a serine protease inhibitor
JP2015516975A (en) * 2012-04-16 2015-06-18 リジェネロン・ファーマシューティカルズ・インコーポレイテッドRegeneron Pharmaceuticals, Inc. Method for treating or preventing influenza virus infection by administering a serine protease inhibitor
US9498529B2 (en) 2012-04-16 2016-11-22 Regeneron Pharmaceuticals, Inc. Methods for treating or preventing influenza virus infection by administering a serine protease inhibitor
AU2018200265B2 (en) * 2012-04-16 2019-07-18 Regeneron Pharmaceuticals, Inc. Methods for treating or preventing influenza virus infection by administering a serine protease inhibitor
EP3536342A1 (en) * 2012-04-16 2019-09-11 Regeneron Pharmaceuticals, Inc. Methods for treating or preventing influenza virus infection by administering a serine protease inhibitor

Similar Documents

Publication Publication Date Title
US11351242B1 (en) HMPV/hPIV3 mRNA vaccine composition
AU2004215133B2 (en) Nucleic acid molecules, polypeptides, antibodies and compositions containing same useful for treating and detecting influenza virus infection
EP4096710A1 (en) Coronavirus rna vaccines
CN116113430A (en) Coronavirus vaccine
JP2024513999A (en) Influenza-coronavirus combination vaccine
Shih et al. Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells.
WO2022221335A9 (en) Respiratory virus combination vaccines
RU2465328C2 (en) Mutations in oas1 genes
Hifumi et al. Highly efficient method of preparing human catalytic antibody light chains and their biological characteristics
TW201945388A (en) Optimized engineered meganucleases having specificity for a recognition sequence in the hepatitis B virus genome
KR20220074917A (en) HBV vaccines and methods of treating HBV
Le et al. Fusion (F) protein gene of Newcastle disease virus: sequence and hydrophobicity comparative analysis between virulent and avirulent strains
AU2022237382A1 (en) Therapeutic use of sars-cov-2 mrna domain vaccines
Yoshimoto et al. Identification of amino acids of influenza virus HA responsible for resistance to a fusion inhibitor, Stachyflin
KR20220095183A (en) Compositions and methods for treating viral infections
JP2004514415A (en) Nucleotide sequence of influenza A / Udorn / 72 (H3N2) genome
JP2008247864A (en) Mosaic serine protease, msp and its use
JPH10509037A (en) Inhibition of proteolytic activity by dysfunctional protease formation
US20110142811A1 (en) Measles virus for the elimination of unwanted cell populations
Zhang et al. Locking the two ends of tetrapeptidic HTLV-I protease inhibitors inside the enzyme
CA2327584A1 (en) Attenuated influenza viruses
TWI359867B (en) Iridovirus vaccine
US20010043931A1 (en) Human respiratory syncytial virus
JPWO2021226348A5 (en)
US20220228172A1 (en) Novel Mechanism to Control RNA Virus Replication and Gene Expression

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120629