JP2008246376A - Water purifier and water purification method - Google Patents

Water purifier and water purification method Download PDF

Info

Publication number
JP2008246376A
JP2008246376A JP2007091099A JP2007091099A JP2008246376A JP 2008246376 A JP2008246376 A JP 2008246376A JP 2007091099 A JP2007091099 A JP 2007091099A JP 2007091099 A JP2007091099 A JP 2007091099A JP 2008246376 A JP2008246376 A JP 2008246376A
Authority
JP
Japan
Prior art keywords
water
membrane
flow rate
membrane filtration
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007091099A
Other languages
Japanese (ja)
Inventor
Keiichi Ikeda
啓一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007091099A priority Critical patent/JP2008246376A/en
Publication of JP2008246376A publication Critical patent/JP2008246376A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress biofouling during membrane treatment by a reverse osmosis membrane or a nano filter membrane, to prevent the degradation of a membrane functional layer due to residual chlorine in tap water, to prolong the service life of a membrane cartridge, and to prevent bacteria contamination inside a water storage tank for storing membrane filtered water over a long period of time, in a water purifier for performing activated carbon treatment, then performing membrane filtration treatment by the reverse osmosis membrane or the nano filter membrane and storing the membrane filtered water in the water storage tank. <P>SOLUTION: The water purifier comprises a pretreatment cartridge 2 with an activated carbon treatment part 2b for filtering water by silver attached activated carbon, a membrane filter cartridge 4 for membrane-filtering the water treated in the pretreatment cartridge by the reverse osmosis membrane or the nano filter membrane, and a water storage tank 8 for storing the water membrane-filtered in the membrane filter cartridge. A sterilization unit 7 capable of generating chloride from an electrode to which a voltage is applied and controlling the chlorine concentration of the water inside the water storage tank to 0.1 to 0.4 mg/L is disposed between the membrane filter cartridge and the water storage tank. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、活性炭処理した後、逆浸透膜もしくはナノろ過膜で処理する浄水器および浄水方法に関するものである。   The present invention relates to a water purifier and a water purification method for treating with activated carbon and then treating with a reverse osmosis membrane or a nanofiltration membrane.

さらに詳しくは、銀添着活性炭を有する前処理カートリッジで前処理を行うことにより、逆浸透膜やナノろ過膜でのバイオファウリングを防止するとともに残留塩素に起因する膜機能層劣化を防止して、逆浸透膜やナノろ過膜を用いる膜カートリッジの寿命を延長し、次いで、電極に電圧を印加して塩素臭を感じさせずかつ殺菌効果が十分な濃度の塩素を生成させる殺菌ユニットを膜ろ過カートリッジの下流側に設置し、この殺菌ユニットによって貯水タンク内の雑菌汚染を防止する浄水器および浄水方法に関するものである。   More specifically, by performing pretreatment with a pretreatment cartridge having silver-impregnated activated carbon, biofouling in reverse osmosis membranes and nanofiltration membranes is prevented and membrane functional layer deterioration due to residual chlorine is prevented, Membrane filtration cartridges that extend the life of membrane cartridges that use reverse osmosis membranes and nanofiltration membranes, and then generate voltage with sufficient sterilization effect without applying a voltage to the electrodes to produce a chlorine odor It is related with the water purifier and the water purifying method which are installed in the downstream side of this, and prevent germs contamination in a water storage tank by this sterilization unit.

近年、環境汚染に伴う水源水質の悪化によって、上水場で処理された水道水にも様々な不純物が残留してきており、カルキ臭やカビ臭等の異臭味被害が発生している。特に、塩素に起因して生成する発ガン性物質のトリハロメタンは微量残留でも問題であり、より安全でおいしい飲料水・調理用水を得るために、使用前の水道水を浄化処理する方法や機器が改良されてきている。   In recent years, due to deterioration of water source water quality due to environmental pollution, various impurities have remained in tap water treated at a water supply station, causing off-flavor damage such as odor and mold odor. In particular, trihalomethane, which is a carcinogenic substance generated due to chlorine, is a problem even with a small amount of residue, and there are methods and equipment for purifying tap water before use in order to obtain safe and delicious drinking water and cooking water. It has been improved.

例えば、水道水を浄化する方法の一つとして、活性炭でろ過処理した後に逆浸透膜(以下、「RO膜」という)やナノろ過膜(以下、「NF膜」という)を用いてろ過処理する方法がある。   For example, as one of the methods for purifying tap water, after filtration with activated carbon, filtration is performed using a reverse osmosis membrane (hereinafter referred to as “RO membrane”) or a nanofiltration membrane (hereinafter referred to as “NF membrane”). There is a way.

RO膜やNF膜は、水中の有機物、無機イオン、細菌、ウイルス等、多くの不純物を除去することが可能であるので、不純物が殆ど残留しない清水を得ることができる。しかし、これらの膜は、精密ろ過膜や限外ろ過膜と比較すると単位膜面積あたり単位圧力あたりの膜ろ過処理水量が低いため、膜ろ過処理水量を高めるためには多くの膜面積や昇圧ポンプが必要である。そこで、膜面積を多くすることが困難な比較的小型の膜ろ過装置では、膜ろ過処理水を消費していない時にも膜ろ過処理を継続し膜ろ過処理水を貯水タンク内に貯留しておき、この貯水タンク内の処理水を消費に供するという方法が用いられている。   Since RO membranes and NF membranes can remove many impurities such as organic substances, inorganic ions, bacteria, and viruses in water, it is possible to obtain fresh water with almost no impurities remaining. However, since these membranes have a lower amount of membrane filtration water per unit pressure per unit membrane area than microfiltration membranes and ultrafiltration membranes, many membrane areas and booster pumps are required to increase the amount of membrane filtration water. is required. Therefore, in a relatively small membrane filtration device where it is difficult to increase the membrane area, the membrane filtration treatment is continued even when the membrane filtration treatment water is not consumed, and the membrane filtration treatment water is stored in the water storage tank. A method of using the treated water in the water storage tank for consumption is used.

しかし、膜ろ過されて貯水タンク内に貯留されている膜ろ過水中には、水道水中の塩素が残留していないので、貯水タンク内の膜ろ過水は雑菌等により汚染され易い。   However, since the chlorine in the tap water does not remain in the membrane filtered water that has been membrane filtered and stored in the water storage tank, the membrane filtered water in the water tank is likely to be contaminated by germs and the like.

そこで、貯水タンク内を定期的に洗浄したり、また、貯水タンク内に一定期間滞留した浄水を捨てたりするよう推奨されている。しかし、これら作業を実際に十分に実施するのは難しく、効果も未知数で根本的な解決には至っていない。   Therefore, it is recommended that the inside of the water tank be cleaned regularly and that the clean water staying in the water tank for a certain period should be discarded. However, it is difficult to actually carry out these operations sufficiently, and the effects are unknown and have not led to a fundamental solution.

また、浄水器の下流側に配設された電解槽内の雑菌汚染問題を解決するために電解槽内を殺菌処理する手段として、電解槽前の給水管路に、電気分解によって次亜塩素酸を生成させる電解殺菌水生成装置を配設し、電解槽や水回路内を殺菌処理する方法が提案されている(特許文献1参照)。この殺菌処理方法の場合、電解槽や水回路内の浄水に十分な次亜塩素酸を生成させて保持させることにより殺菌処理しているので、次亜塩素酸を生成させた時の浄水は、飲料等の消費に供されていない。即ち、殺菌に十分な次亜塩素酸を生成させているので、不快な塩素臭があり、飲料用途に適さない水となるので、殺菌処理後に、電解槽内の水を一旦捨てたり、次亜塩素酸のない浄水で洗い流したりすることが必要である。   In addition, as a means of sterilizing the inside of the electrolytic cell in order to solve the problem of contamination of bacteria in the electrolytic cell disposed on the downstream side of the water purifier, hypochlorous acid is electrolyzed in the water supply line before the electrolytic cell. There has been proposed a method of disposing an electrolytic sterilizing water generating device for generating water and sterilizing the inside of an electrolytic cell and a water circuit (see Patent Document 1). In the case of this sterilization treatment method, since it is sterilized by generating and holding sufficient hypochlorous acid for the purified water in the electrolytic cell and the water circuit, the purified water when hypochlorous acid was produced is It is not used for consumption of beverages. That is, since hypochlorous acid sufficient for sterilization is generated, there is an unpleasant chlorine odor and the water is not suitable for beverage use. It is necessary to rinse with clean water without chloric acid.

膜ろ過処理した水を銀添着活性炭や銀ゼオライトで処理した後に、貯水タンク内に貯留する方法が提案されている。しかし、銀添着活性炭処理では通水時間の経過に伴って、銀が添着していない活性炭表面に、微生物の栄養源となりうる有機物が吸着され増加していくため、銀が溶出するといえども、特に滞水時においては、銀が添着していない活性炭表面で細菌が増殖し易いという問題がある。また、銀ゼオライト処理においては、銀イオンの徐放量が一般的に少なく、寿命も短いため、通水のみでは充分な銀イオン濃度を水に付与することが難しい。ここで、銀ゼオライトからの銀イオン徐放量を多くするためには銀ゼオライトの充填量を多くすればよいが、充填量の増加に伴いカートリッジの大型化が必要となるので、小型浄水器においては採用困難である。また、所定の銀イオン濃度を維持するためには、カートリッジを頻繁に交換する必要がある、という問題もある。   A method has been proposed in which water subjected to membrane filtration is treated with silver-impregnated activated carbon or silver zeolite and then stored in a water storage tank. However, in the silver-impregnated activated carbon treatment, organic matter that can be a nutrient source for microorganisms is adsorbed and increased on the activated carbon surface where silver is not impregnated with the passage of water passing time. When the water is stagnant, there is a problem that bacteria are likely to grow on the activated carbon surface to which silver is not attached. In addition, in the silver zeolite treatment, the sustained release amount of silver ions is generally small and the life is short, so that it is difficult to impart sufficient silver ion concentration to water only by passing water. Here, in order to increase the amount of silver ions sustainedly released from the silver zeolite, it is sufficient to increase the filling amount of the silver zeolite. However, as the filling amount increases, the cartridge needs to be enlarged. It is difficult to adopt. Another problem is that the cartridge needs to be frequently replaced in order to maintain a predetermined silver ion concentration.

かかる問題を解決するため、膜ろ過処理水を貯留する貯水タンク内に銀ゼオライトを浸漬設置する方法が考えられる。しかし、この場合、貯水タンク内の銀イオン濃度を均一にするには貯水タンク内の浄水を常時撹拌する必要があり、さらに、貯水タンク内の浄水を長時間使用せずかつ貯水タンク内の浄水を入れ替えない状態が続けば、貯水タンク内に銀イオンが溶出し続け、銀イオン濃度が規定量を超過するという問題がある。さらに、貯水タンク内の浄水の水質や水温によって銀イオンの徐放量が大きく変動するため、所定の銀イオン濃度を維持させるためには銀ゼオライト充填量を常に細かく調整する必要がある。   In order to solve such a problem, a method of immersing and installing silver zeolite in a water storage tank for storing membrane filtration treated water is conceivable. However, in this case, in order to make the silver ion concentration in the water tank uniform, it is necessary to constantly agitate the purified water in the water tank. Further, the purified water in the water tank is not used for a long time and the purified water in the water tank is not used. If the state is not replaced, silver ions continue to elute in the water storage tank, and there is a problem that the silver ion concentration exceeds the specified amount. Furthermore, since the sustained release amount of silver ions varies greatly depending on the quality and temperature of the purified water in the water storage tank, it is necessary to always finely adjust the silver zeolite filling amount in order to maintain a predetermined silver ion concentration.

さらに、銀は、浄水中の塩素イオン濃度が高い場合、塩素イオンと反応して塩化銀を生成し、抗菌に有効なイオン状態を維持できない。このように、銀添着活性炭や銀ゼオライトを用いて抗菌処理する従来技術では、貯水タンク内の浄水の雑菌汚染対策として不満足なものであった。   Furthermore, when the chlorine ion concentration in purified water is high, silver reacts with the chlorine ion to produce silver chloride and cannot maintain an ionic state effective for antibacterial activity. As described above, the conventional technique in which antibacterial treatment is performed using silver-impregnated activated carbon or silver zeolite is unsatisfactory as a measure against contamination of purified water in the water storage tank.

また、RO膜やNF膜の機能層を構成する材質としてポリアミド系樹脂が一般的に使われているので、水道水中の残留塩素によって機能層が経時的に劣化していくのを防ぐために、RO膜やNF膜でろ過処理する前に、水道水を活性炭等で前処理して残留塩素を除去することが行われる。   In addition, since a polyamide-based resin is generally used as a material constituting the functional layer of the RO membrane or NF membrane, in order to prevent the functional layer from deteriorating with time due to residual chlorine in tap water, Before filtration with a membrane or NF membrane, tap water is pretreated with activated carbon or the like to remove residual chlorine.

しかし、残留塩素が除去され抗菌性が失われた水を膜ろ過処理する場合、膜表面で微生物が増殖し易いので、膜表面へ微生物やその代謝物を主とするスライム状物質(生物膜)が付着し、すなわちバイオファウリングが生じ、RO膜やNF膜の透水性能が低下していくという問題がある。   However, when water that has lost residual chlorine and has lost its antibacterial properties is subjected to membrane filtration, microorganisms are likely to grow on the membrane surface, so a slime substance (biofilm) mainly consisting of microorganisms and their metabolites on the membrane surface Adheres, that is, biofouling occurs, and there is a problem that the water permeability of the RO membrane and the NF membrane decreases.

かかる問題を解決するために、例えば特許文献2で開示されているように、前処理を銀添着活性炭により行って銀イオンを含有させた水とした後に膜処理を行う方法がある。しかし、この場合、RO膜やNF膜のバイオファウリングを抑制することは可能であるが、水中の銀イオンの多くはRO膜やNF膜で除去されるので、膜処理後の浄水中には銀イオンは殆ど残存せず、膜処理後の貯水タンク内の浄水の細菌汚染を防止することは困難である。
特開平6−91268号公報 特開昭61−54278号公報
In order to solve such a problem, as disclosed in Patent Document 2, for example, there is a method in which a membrane treatment is performed after the pretreatment is performed with silver-impregnated activated carbon to obtain water containing silver ions. However, in this case, it is possible to suppress biofouling of the RO membrane and NF membrane, but most of the silver ions in the water are removed by the RO membrane and NF membrane, so in the purified water after membrane treatment Silver ions hardly remain and it is difficult to prevent bacterial contamination of the purified water in the storage tank after membrane treatment.
JP-A-6-91268 JP-A 61-54278

本発明は、従来技術における上述した問題点を解決し、RO膜やNF膜での膜処理時におけるバイオファウリングを抑制し、水道水中の残留塩素に起因する膜機能層の劣化を防止して、膜カートリッジの寿命を延長することができ、しかも、膜処理した浄水を貯留させる貯水タンク内の雑菌汚染を長期間にわたり防止することができる浄水器、浄水方法を提供することを目的とするものである。   The present invention solves the above-mentioned problems in the prior art, suppresses biofouling during membrane treatment with RO membranes and NF membranes, and prevents deterioration of the membrane functional layer due to residual chlorine in tap water. An object of the present invention is to provide a water purifier and a water purifying method that can extend the life of the membrane cartridge and can prevent contamination of germs in the water storage tank for storing the membrane-treated water over a long period of time. It is.

上記目的を達成するため、本発明は以下の構成を採用する。
すなわち、銀添着活性炭で水をろ過処理する活性炭処理部を有する前処理カートリッジと、該前処理カートリッジで処理された水を逆浸透膜またはナノろ過膜で膜ろ過する膜ろ過カートリッジと、該膜ろ過カートリッジで膜ろ過された水を貯留する貯水タンクを有してなる浄水器であって、電圧を印加した電極から塩素を生成し、貯水タンク内の水の塩素濃度を、殺菌能力が高く、多種の菌を殺す作用を有し、かつ塩素臭を感じさせない0.1〜0.4mg/Lに制御することが可能な殺菌ユニットを、前記膜ろ過カートリッジと前記貯水タンクとの間に配した浄水器、である。
In order to achieve the above object, the present invention adopts the following configuration.
That is, a pretreatment cartridge having an activated carbon treatment section for filtering water with silver-impregnated activated carbon, a membrane filtration cartridge for membrane-filtering water treated with the pretreatment cartridge with a reverse osmosis membrane or a nanofiltration membrane, and the membrane filtration A water purifier having a water storage tank for storing water membrane-filtered by a cartridge, generating chlorine from an electrode to which voltage is applied, and the chlorine concentration of water in the water storage tank is high in sterilizing ability, Purified water in which a sterilizing unit that has an action of killing bacteria and can be controlled to 0.1 to 0.4 mg / L so as not to feel a chlorine odor is disposed between the membrane filtration cartridge and the water storage tank Container.

このとき、膜ろ過水の流量が変動した場合でも、塩素濃度を所定の濃度に制御するために、前記膜ろ過水の流量を測定する流量計を膜ろ過水配管内に配置し、前記流量計で測定された膜ろ過水の流量に応じて前記殺菌ユニットの電極の電流を比例制御する電気回路を備えていることが好ましい。あるいは、前記膜ろ過カートリッジに供給される供給水流量を測定する流量計を供給水配管内に配置し、膜ろ過されずに膜ろ過カートリッジから排出される濃縮水流量を測定する流量計を濃縮水配管内に配置し、前記供給水流量と濃縮水流量の差から算出した膜ろ過流量に応じて前記殺菌ユニットの電極の電流を比例制御する電気回路を備えていることが好ましい。あるいは、前記膜ろ過水の流量を測定する流量計を膜ろ過水配管内に配置し、前記流量計で測定された膜ろ過水の流量および前記殺菌ユニットの電極に一定の電圧を印加した時の電極の電流値から、前記殺菌ユニットの電極の電圧印加時間と電圧印加休止時間を制御する電気回路を備えていることが好ましい。あるいは、前記膜ろ過カートリッジに供給される供給水流量を測定する流量計を供給水配管内に配置し、膜ろ過されずに膜ろ過カートリッジから排出される濃縮水流量を測定する流量計を濃縮水配管内に配置し、前記供給水流量と濃縮水流量の差から算出した膜ろ過水の流量および前記殺菌ユニットの電極に一定の電圧を印加した時の電極の電流値から、前記殺菌ユニットの電極の電圧印加時間と電圧印加休止時間を制御する電気回路を備えていることが好ましい。   At this time, even when the flow rate of the membrane filtrate varies, in order to control the chlorine concentration to a predetermined concentration, a flow meter for measuring the flow rate of the membrane filtrate is disposed in the membrane filtrate pipe, and the flow meter It is preferable to provide an electric circuit that proportionally controls the current of the electrode of the sterilization unit in accordance with the flow rate of the membrane filtrate measured in (1). Alternatively, a flow meter for measuring the flow rate of the supplied water supplied to the membrane filtration cartridge is arranged in the supply water pipe, and the flow meter for measuring the flow rate of the concentrated water discharged from the membrane filtration cartridge without being subjected to membrane filtration is used as the concentrated water. It is preferable to provide an electric circuit that is disposed in the pipe and proportionally controls the current of the electrode of the sterilization unit according to the membrane filtration flow rate calculated from the difference between the supply water flow rate and the concentrated water flow rate. Alternatively, when a flow meter for measuring the flow rate of the membrane filtrate is disposed in the membrane filtrate pipe, and when a constant voltage is applied to the flow rate of the membrane filtrate measured by the flow meter and the electrode of the sterilization unit It is preferable to provide an electric circuit for controlling the voltage application time and the voltage application pause time of the electrode of the sterilization unit from the current value of the electrode. Alternatively, a flow meter for measuring the flow rate of the supplied water supplied to the membrane filtration cartridge is arranged in the supply water pipe, and the flow meter for measuring the flow rate of the concentrated water discharged from the membrane filtration cartridge without being subjected to membrane filtration is used as the concentrated water. The electrode of the sterilization unit is arranged in a pipe, from the flow rate of membrane filtration water calculated from the difference between the flow rate of the supply water and the flow rate of concentrated water and the current value of the electrode when a constant voltage is applied to the electrode of the sterilization unit. It is preferable to provide an electric circuit for controlling the voltage application time and the voltage application pause time.

ここで、殺菌ユニットの陰極表面に炭酸カルシウムが生成するのを防止するためには前記殺菌ユニットの電極に印加する電圧の極性を所定時間毎に反転させる電気回路を備えていることが好ましい。また、原水の水道水中に鉄錆等の濁質が混入している場合には、前記膜ろ過カートリッジの一次側の流路が詰まったり、膜表面のケーク層が厚くなることよって、膜ろ過処理水量が低下し易いので、平均孔径が0.1〜10μmのフィルターを備えたフィルターろ過部カートリッジを前記膜カートリッジよりも上流側に配置させることが好ましい。   Here, in order to prevent the formation of calcium carbonate on the cathode surface of the sterilization unit, it is preferable to provide an electric circuit that reverses the polarity of the voltage applied to the electrode of the sterilization unit every predetermined time. In addition, when turbidity such as iron rust is mixed in the tap water of the raw water, the membrane filtration process is performed by clogging the flow path on the primary side of the membrane filtration cartridge or thickening the cake layer on the membrane surface. Since the amount of water tends to decrease, it is preferable to dispose a filter unit cartridge having a filter with an average pore diameter of 0.1 to 10 μm on the upstream side of the membrane cartridge.

また、本発明の浄水方法は、水道水圧で、またはポンプにより増圧された水圧で供給される水道水を、銀添着活性炭装填の前処理カートリッジを通過させて活性炭ろ過処理し、次いで逆浸透膜またはナノろ過膜を有する膜ろ過カートリッジを通過させて膜ろ過処理した後に、電圧を印加した電極から塩素を生成する殺菌ユニットを通過させ、貯水タンク内に貯留し、該貯水タンク内に貯留される水の塩素濃度を0.1〜0.4mg/Lとすることを特徴とするものである。   Further, the water purification method of the present invention is characterized in that tap water supplied at tap water pressure or at a pressure increased by a pump is passed through a pretreatment cartridge loaded with silver-impregnated activated carbon and subjected to activated carbon filtration, and then reverse osmosis membrane Or after passing through a membrane filtration cartridge having a nanofiltration membrane and passing through a membrane filtration treatment, it passes through a sterilization unit that generates chlorine from an electrode to which a voltage is applied, and stores it in a water storage tank, which is then stored in the water storage tank The chlorine concentration of water is 0.1 to 0.4 mg / L.

このとき、前記膜ろ処理後の膜ろ過水の流量を流量計にて測定し、前記膜ろ過水の流量に応じて前記殺菌ユニットの電極の電流を比例制御することが好ましい。あるいは、前記膜ろ過処理に供給される供給水の流量と前記膜ろ過処理から排出される濃縮水の流量とを流量計にて測定し、前記供給水流量と濃縮水流量の差から算出した膜ろ過水の流量に応じて前記殺菌ユニットの電極の電流を比例制御することが好ましい。あるいは、前記膜ろ過水の流量を流量計にて測定し、前記膜ろ過水の流量および一定の電圧を印加した時の前記殺菌ユニット電極の電流値に応じて前記殺菌ユニットの電極の電圧印加時間と電圧印加休止時間を制御することが好ましい。あるいは、前記膜ろ過処理に供給される供給水の流量と前記膜ろ過処理から排出される濃縮水の流量とを流量計にて測定し、前記供給水流量と濃縮水流量の差から算出した膜ろ過水の流量および一定の電圧を印加した時の前記殺菌ユニット電極の電流値に応じて前記殺菌ユニットの電極の電圧印加時間と電圧印加休止時間を制御することが好ましい。   At this time, it is preferable that the flow rate of the membrane filtration water after the membrane filtration treatment is measured with a flow meter, and the current of the electrode of the sterilization unit is proportionally controlled according to the flow rate of the membrane filtration water. Alternatively, the flow rate of the supply water supplied to the membrane filtration treatment and the flow rate of the concentrated water discharged from the membrane filtration treatment are measured with a flow meter, and the membrane is calculated from the difference between the supply water flow rate and the concentrated water flow rate It is preferable to proportionally control the current of the electrode of the sterilization unit according to the flow rate of the filtrate water. Alternatively, the flow rate of the membrane filtration water is measured with a flow meter, and the voltage application time of the sterilization unit electrode according to the flow rate of the membrane filtration water and the current value of the sterilization unit electrode when a constant voltage is applied It is preferable to control the voltage application pause time. Alternatively, the flow rate of the supply water supplied to the membrane filtration treatment and the flow rate of the concentrated water discharged from the membrane filtration treatment are measured with a flow meter, and the membrane is calculated from the difference between the supply water flow rate and the concentrated water flow rate It is preferable to control the voltage application time and voltage application pause time of the sterilization unit electrode according to the flow rate of filtered water and the current value of the sterilization unit electrode when a constant voltage is applied.

また、前記殺菌ユニットの電極に印加する電圧の極性を所定時間毎に反転させることが好ましい。   Moreover, it is preferable to reverse the polarity of the voltage applied to the electrode of the sterilization unit every predetermined time.

本発明によると、水道水を銀添着活性炭で処理し、次いでRO膜またはNF膜を有する膜カートリッジで膜ろ過処理した後に、膜ろ過処理水を貯水タンクに貯留する浄水器や浄水方法において、RO膜やNF膜での膜処理時におけるバイオファウリングを抑制し、残留塩素に起因する膜機能層の劣化を防止し、膜ろ過カートリッジの寿命を延長することができる。さらに、膜ろ過水を貯留させる貯水タンク内の雑菌汚染を長期間にわたり防止することができる。   According to the present invention, after treating tap water with silver-impregnated activated carbon and then membrane-filtering with a membrane cartridge having an RO membrane or NF membrane, in a water purifier and a water purification method for storing membrane filtration treated water in a water storage tank, Biofouling during membrane treatment with a membrane or NF membrane can be suppressed, deterioration of the membrane functional layer due to residual chlorine can be prevented, and the life of the membrane filtration cartridge can be extended. Furthermore, contamination with germs in the water storage tank for storing the membrane filtrate can be prevented over a long period of time.

以下、図面に示す実施態様に基づいて本発明をさらに詳細に説明する。なお、本発明は以下の実施態様に限定されるものではない。   Hereinafter, the present invention will be described in more detail based on embodiments shown in the drawings. In addition, this invention is not limited to the following embodiments.

図1は、本発明に係る浄水器において行われる水処理工程の一実施態様を示す概略フロー図である。   Drawing 1 is an outline flow figure showing one embodiment of a water treatment process performed in a water purifier concerning the present invention.

本発明の浄水器は、例えば図1に示すように、水道管と直結させて用いられるものである。図1において、水道水の通過順路に沿って、水道水用の開閉弁1、水道水中の鉄錆等の濁質を除去するためのフィルターろ過部2aと、水道水中の残留塩素を除去し水道水中に銀を溶出するための銀添着活性炭ろ過部2bとが直列に配置され一体化構成された前処理カートリッジ2、水道水圧が低すぎる時でも所定の膜ろ過処理水量を確保するために膜カートリッジ4の上流側に配される加圧ポンプ3、前処理カートリッジ2で処理された水を膜ろ過処理するRO膜またはNF膜を有する膜ろ過カートリッジ4、膜ろ過カートリッジ4の膜ろ過処理水の流量を測定する流量計6、電極に電圧を印加して、膜ろ過処理水に抗菌性金属イオンを溶出する殺菌ユニット7、殺菌ユニット7を通水した後の膜ろ過処理水を貯留する貯水タンク8、この貯水タンクから浄水を取り出すための蛇口10が設けられている。さらに、水回収率を制御するために膜カートリッジ4からの濃縮水量を所定水準に制御するための濃縮水弁5が、濃縮水の排出路に設けられ、貯水タンク8の水位を制御する水位センサー9が設けられている。そして、この水位センサー9からの信号によって、浄水器に供給される原水(水道水)の供給弁1が開閉される。   The water purifier of the present invention is used by being directly connected to a water pipe, for example, as shown in FIG. In FIG. 1, along tap water passage route, tap water open / close valve 1, filter filtration unit 2a for removing turbidity such as iron rust in tap water, and residual chlorine in tap water are removed. A pretreatment cartridge 2 which is arranged in series with a silver-impregnated activated carbon filtration unit 2b for eluting silver into water, and a membrane cartridge in order to ensure a predetermined amount of membrane filtration treatment water even when the tap water pressure is too low 4, a pressure pump 3 disposed upstream of the membrane 4, a membrane filtration cartridge 4 having an RO membrane or NF membrane for membrane filtration of water treated by the pretreatment cartridge 2, and a flow rate of membrane filtration treated water of the membrane filtration cartridge 4 A flow meter 6 for measuring the pressure, a sterilization unit 7 for eluting antibacterial metal ions into the membrane filtration treated water, and a water storage tank 8 for storing the membrane filtration treated water after passing through the sterilization unit 7 ,this Faucet 10 for taking out the purified water from the water tank. Further, a water level sensor for controlling the water level of the water storage tank 8 is provided in the concentrated water discharge path, and a concentrated water valve 5 for controlling the amount of concentrated water from the membrane cartridge 4 to a predetermined level in order to control the water recovery rate. 9 is provided. And the supply valve 1 of the raw | natural water (tap water) supplied to a water purifier is opened and closed by the signal from this water level sensor 9. FIG.

ここで、フィルターろ過部2aと銀添着活性炭ろ過部2bとが一体に構成されている前処理カートリッジ2としては、例えば図3のように、カートリッジ上部(上流側)に平均孔径が0.1〜10μmの円筒状のフィルター2aを配し、カートリッジ下部(下流側)に円筒容器内に銀添着活性炭を充填した活性炭ろ過部2bを配したものである。ここで、円筒状フィルター2aの外側から内側へと流れてろ過された水は、銀添着活性炭の層2bを通過する構造となっているが、フィルターと銀添着活性炭との通過順序は逆でも構わない。   Here, as the pretreatment cartridge 2 in which the filter filtration unit 2a and the silver impregnated activated carbon filtration unit 2b are integrally configured, for example, as shown in FIG. A 10 μm cylindrical filter 2 a is arranged, and an activated carbon filtration part 2 b in which a silver impregnated activated carbon is filled in a cylindrical container is arranged at the lower part (downstream side) of the cartridge. Here, the water filtered from the outside to the inside of the cylindrical filter 2a is structured to pass through the layer 2b of the silver-impregnated activated carbon, but the passing order of the filter and the silver-impregnated activated carbon may be reversed. Absent.

使用するフィルターは平均孔径が0.1〜10μmであればろ層形状は特に制限されるものではなく、プリーツ型、ワインド型、デプス型等のいずれでも構わなく、材質も、特に制限されるものではなく、ポリプロピレン、ポリエステル等のいずれでも構わない。   The filter layer used is not particularly limited as long as the average pore size is 0.1 to 10 μm, and may be any of a pleated type, a wind type, a depth type, etc., and the material is not particularly limited. However, any of polypropylene, polyester and the like may be used.

また、使用する銀添着活性炭は、銀添着活性炭の層2bを通過した後の水中の銀イオン濃度を5μg/L以上とし、かつ、塩素濃度を0.1mg/L以下とすることができれば特に制限されるものではなく、例えば、硝酸銀と硝酸マグネシウムを蒸留水に溶解し、これを活性炭に均一に散布した後、乾燥することにより得られる銀添着活性炭が挙げられる。また、かかる銀添着活性炭の形状は、粉末、粒状、繊維状等のいずれでも構わないが、銀添着活性炭が前処理カートリッジ2の外へ漏出しないよう、水流入部分と水流出部分はメッシュ構造、不織布フィルター等で覆うことが好ましい。また、銀添着活性炭を形成する活性炭の原材料は椰子殻、木、石炭、石油コークス等のいずれでも構わない。   The silver-impregnated activated carbon to be used is not particularly limited as long as the silver ion concentration in the water after passing through the layer 2b of the silver-impregnated activated carbon can be 5 μg / L or more and the chlorine concentration can be 0.1 mg / L or less. For example, silver impregnated activated carbon obtained by dissolving silver nitrate and magnesium nitrate in distilled water, spraying it uniformly on the activated carbon, and drying the resultant is mentioned. Further, the shape of the silver-impregnated activated carbon may be any of powder, granule, fiber, etc., but the water inflow portion and the water outflow portion are mesh structure so that the silver-impregnated activated carbon does not leak out of the pretreatment cartridge 2. It is preferable to cover with a nonwoven fabric filter or the like. The raw material of the activated carbon forming the silver-impregnated activated carbon may be coconut shell, wood, coal, petroleum coke or the like.

本発明で用いるRO膜またはNF膜を有する膜カートリッジ4に使用される分離膜としては、脱塩率が93%以上(評価条件 NaCl濃度:500mg/L、操作圧力:0.1MPa)のRO膜や、脱塩率が5%以上93%未満(評価条件 NaCl濃度:500mg/L、操作圧力:0.1MPa)のNF膜を選択して用いることができる。   The separation membrane used in the membrane cartridge 4 having the RO membrane or NF membrane used in the present invention has a desalination rate of 93% or more (evaluation conditions NaCl concentration: 500 mg / L, operating pressure: 0.1 MPa). Alternatively, an NF membrane having a desalination rate of 5% or more and less than 93% (evaluation conditions NaCl concentration: 500 mg / L, operating pressure: 0.1 MPa) can be selected and used.

かかる性能を有する分離膜の素材としては、RO膜の場合、酢酸セルロース、セルロース系のポリマー、ポリアミド、およびビニルポリマー等の高分子材料を用いることができ、NF膜の場合、ポリアミド系、ポリピペラジンアミド系、ポリエステルアミド系、あるいは水溶性のビニルポリマーを架橋したものなどを用いることができる。また、代表的なRO膜としては、酢酸セルロース系またはポリアミド系の非対称膜、および、ポリアミド系の活性層を有する複合膜を挙げることができ、中でも、ポリアミド系の活性層の表層にポリビニルアルコールを被覆させた複合膜は、高排除性能かつ高透水性かつ高耐汚染性を有するので好ましい。   As the material of the separation membrane having such performance, in the case of RO membrane, polymer materials such as cellulose acetate, cellulose-based polymer, polyamide, and vinyl polymer can be used. In the case of NF membrane, polyamide-based, polypiperazine An amide type, a polyester amide type, or a crosslinked water-soluble vinyl polymer can be used. Typical RO membranes include cellulose acetate-based or polyamide-based asymmetric membranes and composite membranes having a polyamide-based active layer. Among them, polyvinyl alcohol is used as the surface layer of the polyamide-based active layer. The coated composite membrane is preferable because it has high exclusion performance, high water permeability, and high stain resistance.

分離膜の形状としてはRO膜、NF膜ともに平膜または中空糸膜であることが好ましく、例えば分離膜の膜厚を10μm〜1mmの範囲、中空糸膜の場合は外径を50μm〜4mmの範囲とすることが好ましい。   As the shape of the separation membrane, both the RO membrane and the NF membrane are preferably flat membranes or hollow fiber membranes. For example, the separation membrane has a thickness of 10 μm to 1 mm, and in the case of a hollow fiber membrane, the outer diameter is 50 μm to 4 mm. It is preferable to be in the range.

RO膜ろ過カートリッジまたはNF膜ろ過カートリッジ4の形状は、分離膜が平膜状の場合はスパイラル型、プリーツ型、プレート・アンド・フレーム型、円盤状のディスクを積み重ねたディスクタイプがあり、中空糸膜の場合は、中空糸膜をU字状やI字状に束ねて容器に収納した円筒型があるが、本発明ではいずれのカートリッジ形状を用いてもよい。これら膜ろ過カートリッジ4は、ランニングコストを抑えるという観点から低圧で運転できるものであるのが好ましい。   The RO membrane filtration cartridge or NF membrane filtration cartridge 4 has a disk type in which spiral, pleated, plate-and-frame, and disk-shaped discs are stacked when the separation membrane is a flat membrane. In the case of a membrane, there is a cylindrical shape in which hollow fiber membranes are bundled in a U shape or an I shape and stored in a container, but any cartridge shape may be used in the present invention. These membrane filtration cartridges 4 are preferably operable at a low pressure from the viewpoint of reducing running costs.

本発明で用いる殺菌ユニット7では、例えば図4に示すように、流入口から流出口へと膜ろ過処理水が流れる水流に沿う形で、2枚の板状電極11が向かいあわせに配置されている。電極は、陰極、陽極両用に耐え得る電極、例えば白金電極やチタンの表面を白金でメッキ処理した電極で構成されているので、両電極に電圧を印加すると、水中に残存していた塩素イオンにより、陽極側から塩素Clが発生し、水HOと反応して殺菌能力の高い次亜塩素酸(HOCl)と殺菌能力のない塩素イオン(Cl)が生成する。(Cl+HO→HOCl+H+Cl)。本特許の塩素濃度とは塩素イオン(Cl)を含まず、有効塩素すなわち次亜塩素酸(HOCl)をCl濃度に換算した値である。 In the sterilization unit 7 used in the present invention, for example, as shown in FIG. 4, two plate-like electrodes 11 are arranged facing each other along the flow of the membrane filtration treated water from the inlet to the outlet. Yes. The electrode is composed of an electrode that can withstand both cathode and anode, for example, a platinum electrode or an electrode obtained by plating the surface of titanium with platinum. Chlorine Cl 2 is generated from the anode side and reacts with water H 2 O to produce hypochlorous acid (HOCl) having a high sterilizing ability and chlorine ions (Cl ) having no sterilizing ability. (Cl 2 + H 2 O → HOCl + H + + Cl ). The chlorine concentration in this patent is a value obtained by converting effective chlorine, that is, hypochlorous acid (HOCl), into Cl 2 concentration without containing chlorine ions (Cl ).

一方、陰極の表面にはカルシウムスケールが析出することから、この現象を防止するため、電極に印加する電圧の極性を所定時間毎に反転することが好ましいが、反転しても次亜塩素酸の生成量を常時安定させるために両電極の金属組成は同一とすることが好ましい。図4において、電極11は絶縁体13により固定されていて、電極11にはそれぞれ電線12が繋がれている。電線12の外周および電極11と電線12の接合部の外周は、膜ろ過処理水との接触により電触が生じないよう、樹脂等の絶縁体13で覆うことが好ましい。   On the other hand, since calcium scale is deposited on the surface of the cathode, in order to prevent this phenomenon, it is preferable to reverse the polarity of the voltage applied to the electrode every predetermined time. It is preferable that the metal composition of both electrodes is the same in order to always stabilize the generation amount. In FIG. 4, the electrodes 11 are fixed by an insulator 13, and electric wires 12 are connected to the electrodes 11. It is preferable to cover the outer periphery of the electric wire 12 and the outer periphery of the joint portion between the electrode 11 and the electric wire 12 with an insulator 13 such as a resin so that no electrical contact is caused by contact with the membrane filtration treated water.

水道水の水圧は、通常各家庭により異なっており、変動もすることから、膜ろ過カートリッジから出る濃縮水の量を所定水準に制御するために、濃縮水弁5が濃縮水の排出路に配される。水道水圧が異なったり変動したりしても水回収率を一定水準に制御するためには、膜カートリッジ4の膜ろ過処理水量は水道水圧と比例関係であるので、濃縮水弁5から吐出される濃縮水量が水道水圧と比例関係で変動するものを用いるのが好ましい。例えば、所定の水回収率を40%に設定したい場合、どの水道水圧においても、(膜ろ過処理水量):(濃縮水量)=40:60となるように、水道水圧に応じて濃縮水量を変動させることができる濃縮水弁5を選択することが好ましい。これに対し、濃縮水弁5で制御されて吐出される濃縮水量が水道水圧の変動に関わらず一定である場合には、水道水圧が低い時には、水回収率が低下してしまい、水道水を無駄に排出することとなるし、逆に水道水圧が高い時には、水回収率が上昇してしまい、シリカやカルシウムのスケールが析出しやすくなる、という問題が生じる。   Since the water pressure of tap water usually varies from one household to another and fluctuates, in order to control the amount of concentrated water coming out of the membrane filtration cartridge to a predetermined level, the concentrated water valve 5 is arranged in the concentrated water discharge path. Is done. In order to control the water recovery rate to a constant level even if the tap water pressure is different or fluctuates, the amount of membrane filtration treated water of the membrane cartridge 4 is proportional to the tap water pressure and is discharged from the concentrated water valve 5. It is preferable to use one whose concentrated water amount varies in proportion to the tap water pressure. For example, when it is desired to set the predetermined water recovery rate to 40%, the amount of concentrated water varies depending on the tap water pressure so that (water filtration treatment water amount) :( concentrated water amount) = 40: 60 at any tap water pressure It is preferable to select the concentrated water valve 5 that can be made to operate. On the other hand, when the amount of concentrated water controlled and discharged by the concentrated water valve 5 is constant regardless of fluctuations in the tap water pressure, when the tap water pressure is low, the water recovery rate decreases, and the tap water is reduced. When the tap water pressure is high, the water recovery rate increases, and there arises a problem that silica and calcium scales are likely to precipitate.

水回収率はシリカやカルシウムのスケール等が析出しないよう、各地域の水道水質に応じて適宜設定すればよい。濃縮水弁5は通過水量を制御することができる構造のものであれば特に限定されず、通常の絞り弁を用いればよい。流量計6は、膜ろ過処理水の流量を測定できれば、羽根車式、面積式等いずれでも構わない。   What is necessary is just to set a water recovery rate suitably according to the tap water quality of each area so that a scale of silica, calcium, etc. may not precipitate. The concentrated water valve 5 is not particularly limited as long as it has a structure capable of controlling the passing water amount, and a normal throttle valve may be used. The flow meter 6 may be an impeller type, an area type, or the like as long as it can measure the flow rate of membrane filtration treated water.

上述した本発明の浄水器において、浄水処理は次のように行われる。   In the water purifier of the present invention described above, the water purification treatment is performed as follows.

まず、貯水タンク8内の水位センサー9が所定下限水位以下になったことを検知した場合、信号が送られ、自動的に原水供給弁1が開となって、水道水が、フィルターろ過部2aと銀添着活性炭ろ過部2bとが一体的に配された前処理カートリッジ2へと供給される。水道水がフィルターろ過部2aを通過することで、水道水中の鉄錆等の濁質が除去され、銀添着活性炭ろ過部2bを通過することで、水道水中の残留塩素の殆どが除去され、水道水中に銀が溶出する。   First, when it is detected that the water level sensor 9 in the water storage tank 8 has fallen below the predetermined lower limit water level, a signal is sent, the raw water supply valve 1 is automatically opened, and the tap water is supplied to the filter filtration unit 2a. And the silver impregnated activated carbon filtration part 2b are supplied to the pretreatment cartridge 2 in which they are integrally arranged. By passing the tap water through the filter filtration unit 2a, turbidity such as iron rust in the tap water is removed, and by passing through the silver-impregnated activated carbon filtration unit 2b, most of the residual chlorine in the tap water is removed. Silver elutes in water.

次に、前処理カートリッジ2で処理された水は、RO膜ろ過カートリッジまたはNF膜ろ過カートリッジ4に供給される。残留塩素の殆どが除去されているので、RO膜またはNF膜の機能層の経時的劣化が防止され、膜ろ過処理水の水質の経時的悪化が防止される。また、銀が5μg/L以上溶出しているので、一般細菌等の雑菌の増殖が抑制され、バイオファウリングの発生が抑制される。ただし、水中の銀イオンはRO膜またはNF膜でろ過されることによりほとんど除去されるので、RO膜またはNF膜で膜ろ過された水にはほとんど銀イオンは残留していないこととなる。   Next, the water treated by the pretreatment cartridge 2 is supplied to the RO membrane filtration cartridge or the NF membrane filtration cartridge 4. Since most of the residual chlorine is removed, the functional layer of the RO membrane or NF membrane is prevented from deterioration over time, and the water quality of the membrane filtration treated water is prevented from deterioration over time. Further, since silver is eluted at 5 μg / L or more, the growth of miscellaneous bacteria such as general bacteria is suppressed, and the occurrence of biofouling is suppressed. However, since silver ions in water are almost removed by filtration through the RO membrane or NF membrane, almost no silver ions remain in the water filtered through the RO membrane or NF membrane.

そこで、RO膜またはNF膜でろ過された膜ろ過処理水を殺菌ユニット7に流入する。殺菌ユニット7は白金やチタンの表面を白金でメッキ処理した電極を1対備えており、膜ろ過処理水に電極を浸した状態で電極に電圧を印加して電極に電流を流すことで、陽極から塩素が生成する。理論的にはファラデーの法則に従い、電流量に比例して、水中の塩素生成量も多くなる。   Therefore, the membrane filtration treated water filtered through the RO membrane or NF membrane flows into the sterilization unit 7. The sterilization unit 7 has a pair of electrodes whose surfaces are platinum or titanium plated with platinum, and a current is applied to the electrodes by applying a voltage to the electrodes while the electrodes are immersed in the membrane filtration treated water. Produces chlorine. Theoretically, according to Faraday's law, the amount of chlorine produced in water increases in proportion to the amount of current.

所定の塩素濃度に制御する方法としては、流量計6で膜ろ過水の流量を測定し、流量計6からの流量出力に応じて殺菌ユニット7の電極の電流を比例制御する。すなわち膜ろ過水の流量が大きい場合は、電流を大きくし、流量が小さい場合は電流を小さくすることで、膜ろ過量の流量が変動しても、所定の塩素濃度に制御することが可能となる。   As a method for controlling to a predetermined chlorine concentration, the flow rate of the membrane filtrate is measured with the flow meter 6, and the current of the electrode of the sterilization unit 7 is proportionally controlled according to the flow rate output from the flow meter 6. In other words, when the flow rate of membrane filtration water is large, the current is increased, and when the flow rate is small, the current is decreased, so that the flow rate of the membrane filtration amount can be controlled to a predetermined chlorine concentration. Become.

塩素濃度の別の制御方法としては、膜ろ過水の流量および前記殺菌ユニットの電極に一定の電圧を印加した時の電極の電流値から、前記殺菌ユニットの電極の電圧印加時間と電圧印加休止時間を制御する。すなわち、電圧印加時の塩素を含有した膜ろ過水と電圧印加休止時の塩素が含有していない膜ろ過水を貯水タンク内で混合して、所定の塩素濃度に制御する。膜ろ過水の流量が小さい場合や電流値(膜ろ過水質)が高い場合は、電圧印加休止時間を多くし、膜ろ過水の流量が大きい場合や電流値(膜ろ過水質)が低い場合は、電圧印加休止時間を少なくする。塩素濃度の算出式は以下の通りである。   As another method for controlling the chlorine concentration, the voltage application time and voltage application pause time of the sterilization unit electrode are determined from the flow rate of membrane filtrate and the current value of the electrode when a constant voltage is applied to the electrode of the sterilization unit. To control. That is, the membrane filtrate containing chlorine at the time of voltage application and the membrane filtrate not containing chlorine at the time of voltage application suspension are mixed in a water storage tank to control to a predetermined chlorine concentration. If the flow rate of membrane filtration water is small or the current value (membrane filtration water quality) is high, increase the voltage application pause time. If the flow rate of membrane filtration water is large or the current value (membrane filtration water quality) is low, Reduce the voltage application pause time. The formula for calculating the chlorine concentration is as follows.

Figure 2008246376
Figure 2008246376

電圧印加時に陽極で塩素が生成されている一方で、陰極の表面にはカルシウムやマグネシウム等のスケールが析出していくので、徐々に塩素の生成効率が低下する。従って、電極に印加する電圧の極性を所定時間毎に反転する電気回路を備えて、極性の反転を実施することで、スケール析出の防止が可能となる。前記所定時間は特に限定されないが、塩素生成量を常時安定させるために1sec〜1minの範囲で反転することが好ましい。   While chlorine is generated at the anode when a voltage is applied, scales of calcium, magnesium, and the like are deposited on the surface of the cathode, so the chlorine generation efficiency gradually decreases. Therefore, it is possible to prevent scale deposition by providing an electric circuit that reverses the polarity of the voltage applied to the electrode every predetermined time and performing polarity reversal. The predetermined time is not particularly limited, but is preferably reversed within a range of 1 sec to 1 min in order to constantly stabilize the chlorine generation amount.

また、膜ろ過水の流量を測定する方法としては、図2に示すように、供給水配管内に流量計6′を配置するとともに濃縮水配管内に流量計6″を配置することで膜ろ過カートリッジ4に供給される供給水流量と膜ろ過されずに膜ろ過カートリッジ4から排出される濃縮水流量を測定し、供給水流量と濃縮水流量の差から膜ろ過水の流量を算出する方法もある。   Further, as a method for measuring the flow rate of membrane filtrate, as shown in FIG. 2, a membrane meter is installed by arranging a flow meter 6 'in the supply water pipe and a flow meter 6 "in the concentrated water pipe. There is also a method for measuring the flow rate of the feed water supplied to the cartridge 4 and the flow rate of the concentrated water discharged from the membrane filtration cartridge 4 without membrane filtration, and calculating the flow rate of the membrane filtrate from the difference between the flow rate of the feed water and the flow rate of the concentrated water. is there.

貯水タンク内に貯留される水の塩素濃度の下限を0.1mg/Lとすることが好ましいのは、一般細菌の増殖の抑制が大きく期待できるためであり、また上限を0.4mg/L以下とするのは、厚生省のおいしい水研究会が昭和60年4月25日に発表したおいしい水の要件に基づくものである。なお、本発明で規定する塩素濃度は上水試験方法(2001)のジエチル−p−フェニレンジアミン(DPD)法で測定した数値である。   The reason why the lower limit of the chlorine concentration of water stored in the water storage tank is preferably 0.1 mg / L is that the suppression of the growth of general bacteria can be expected greatly, and the upper limit is 0.4 mg / L or less. This is based on the delicious water requirement announced by the Ministry of Health and Welfare's Tasty Water Research Association on April 25, 1985. In addition, the chlorine density | concentration prescribed | regulated by this invention is the numerical value measured by the diethyl-p-phenylenediamine (DPD) method of the drinking water test method (2001).

殺菌ユニット7から流出した膜ろ過水は貯水タンク8内に貯留される。貯水タンク8内の水は所定量の塩素を含むので、長時間放置しても一般細菌等の雑菌の増殖が抑制される。一方、RO膜またはNF膜でろ過されなかった水は濃縮水弁5を介して濃縮水として系外に排出される。   Membrane filtrate flowing out from the sterilization unit 7 is stored in the water storage tank 8. Since the water in the water storage tank 8 contains a predetermined amount of chlorine, the proliferation of germs such as general bacteria is suppressed even if left for a long time. On the other hand, water that has not been filtered through the RO membrane or NF membrane is discharged out of the system as concentrated water through the concentrated water valve 5.

原水の供給弁1を開として浄水処理を続けていくと、徐々に貯水タンク8の水位が上昇し、貯水タンク8内の水位センサー8が所定上限水位以上になったことを検知した場合、信号が送られ、自動的に原水供給弁1が閉となり、水道水の前処理カートリッジ2への供給および殺菌ユニット7の電極への電圧の印加が自動停止する。貯水タンクに設けられた蛇口10から水を取水していき、水位が所定下限水位以下となった場合、信号が送られ、自動的に原水供給弁1が開となり、水道水の前処理カートリッジ2への供給および殺菌ユニット7の電極への電圧の印加が自動復帰する。   When the raw water supply valve 1 is opened and water purification is continued, the water level of the water storage tank 8 gradually rises, and when it is detected that the water level sensor 8 in the water storage tank 8 has exceeded the predetermined upper limit water level, Is automatically closed, and the supply of tap water to the pretreatment cartridge 2 and the application of voltage to the electrodes of the sterilization unit 7 are automatically stopped. When water is taken from the faucet 10 provided in the water storage tank, and the water level falls below a predetermined lower limit water level, a signal is sent, the raw water supply valve 1 is automatically opened, and the tap water pretreatment cartridge 2 And the voltage application to the electrodes of the sterilization unit 7 is automatically restored.

なお、水道水圧が低すぎて所定の膜ろ過処理水量が確保できないときには膜ろ過カートリッジ4の前段に加圧ポンプ3を備え、膜ろ過カートリッジ前の水を加圧することが好ましい。このとき加圧ポンプ3は、原水供給弁1と連動するようにし、原水供給弁1が開のときは加圧ポンプ3が作動し、原水供給弁1が閉のときは加圧ポンプ3が停止するようにすることが好ましい。また、図1では蛇口10が貯水タンク8の下部に取り付けられており、蛇口10の弁を開けば自重で水が吐出される構造となっている。蛇口10を貯水タンク8の上部に取り付ける場合には、貯水タンク8の下部にポンプ(図示なし)を備えて、揚水できるようにすればよい。   When the tap water pressure is too low to secure a predetermined amount of membrane filtration treatment water, it is preferable to provide the pressurization pump 3 in the previous stage of the membrane filtration cartridge 4 to pressurize the water before the membrane filtration cartridge. At this time, the pressure pump 3 is interlocked with the raw water supply valve 1, and the pressure pump 3 operates when the raw water supply valve 1 is open, and the pressure pump 3 stops when the raw water supply valve 1 is closed. It is preferable to do so. In FIG. 1, the faucet 10 is attached to the lower part of the water storage tank 8, and water is discharged by its own weight when the faucet 10 is opened. When the faucet 10 is attached to the upper part of the water storage tank 8, a pump (not shown) may be provided at the lower part of the water storage tank 8 so that the water can be pumped.

(実施例1)
図1に示す水処理工程を備えた浄水器を用いて、水道水圧が300kPa、色度4度、電気伝導率200μS/cm、残留塩素0.7mg/Lの水道水を、月曜日から金曜日の平日は毎日5L、浄水処理して系外に排出した。
Example 1
Using a water purifier equipped with the water treatment process shown in FIG. 1, tap water with a tap water pressure of 300 kPa, chromaticity of 4 degrees, electrical conductivity of 200 μS / cm, and residual chlorine of 0.7 mg / L is obtained from Monday to Friday. Was treated with 5 L of water every day and discharged out of the system.

ここで用いた浄水器における前処理カートリッジ2には図3に示す構造のカートリッジを用い、そのフィルター2aには平均孔径が1μmのワインド型フィルター(アドバンテック東洋(株)製、TCW−1N−PPS)を用い、銀添着活性炭2bには、粒状活性炭(クラレケミカル(株)製、クラレコールT−SB 24/42メッシュ)を100g使用した。膜カートリッジ4における膜としてはNF膜(東レ(株)製、UTC−60)を1m使用した。加圧ポンプ3は使用しなかった。 The pretreatment cartridge 2 in the water purifier used here is a cartridge having the structure shown in FIG. 3, and the filter 2a is a wind filter having an average pore diameter of 1 μm (manufactured by Advantech Toyo Co., Ltd., TCW-1N-PPS). 100 g of granular activated carbon (Kuraray Chemical Co., Ltd., Kuraray Coal T-SB 24/42 mesh) was used for the silver-impregnated activated carbon 2b. As the membrane in the membrane cartridge 4, 1 m 2 of NF membrane (manufactured by Toray Industries, Inc., UTC-60) was used. The pressurizing pump 3 was not used.

殺菌ユニット7としては図4に示す構造のものを用い、その電極11として両電極ともに厚み1μmの白金メッキをしたチタン製の板(大きさ:10mm×30mm、厚み1mm)を向かい合わせに配置した。貯水タンク8は容積6L、ABS系樹脂製タンクを用いた。濃縮水弁5には、絞り弁を使用し、流量計6には、羽根車式微小流量計を使用した。   As the sterilizing unit 7, a structure shown in FIG. 4 is used, and as the electrode 11, a plate made of titanium plated with platinum having a thickness of 1 μm for both electrodes (size: 10 mm × 30 mm, thickness 1 mm) is arranged face to face. . As the water storage tank 8, a 6L capacity ABS resin tank was used. A throttle valve was used as the concentrated water valve 5, and an impeller type micro flow meter was used as the flow meter 6.

殺菌ユニット7の制御では、電極に印加する電圧の極性を10s毎に反転することとし、電流X(mA)と膜ろ過水の流量Y(mL/min)との関係をY=200Xとし、電流を流量に対して比例制御した。   In the control of the sterilization unit 7, the polarity of the voltage applied to the electrode is reversed every 10 s, the relationship between the current X (mA) and the flow rate Y (mL / min) of the membrane filtrate is Y = 200X, Was proportional to the flow rate.

週5日間の浄水処理を継続して行った結果、運転開始直後の膜ろ過水の流量が200mL/minに対し、運転開始から6ヶ月後の膜ろ過水の流量は70mL/minと減少していたにもかかわらず、浄水吐出用の蛇口10から採水した水の塩素濃度は運転開始から6ヶ月間の長期にわたり0.2〜0.3mg/Lと良好な範囲内に維持することができ、その期間の一般細菌は常時10cfu/mL以下であった。   As a result of continuous water purification treatment for 5 days a week, the flow rate of membrane filtrate immediately after the start of operation was 200 mL / min, whereas the flow rate of membrane filtrate after 6 months from the start of operation was reduced to 70 mL / min. Nevertheless, the chlorine concentration of the water sampled from the tap 10 for discharging the purified water can be maintained within a good range of 0.2 to 0.3 mg / L over a long period of 6 months from the start of operation. The general bacteria during that period were always 10 cfu / mL or less.

(実施例2)
図2に示す水処理工程を備えた浄水器を用いて、水道水圧が400kPa、色度5度、電気伝導率450μS/cm、残留塩素0.9mg/Lの水道水を、月曜日から金曜日の平日は毎日5L、浄水処理して系外に排出した。
(Example 2)
Using a water purifier equipped with a water treatment process shown in FIG. 2, tap water having a tap water pressure of 400 kPa, a chromaticity of 5 degrees, an electrical conductivity of 450 μS / cm, and a residual chlorine of 0.9 mg / L is obtained on weekdays from Monday to Friday. Was treated with 5 L of water every day and discharged out of the system.

ここで用いた浄水器における前処理カートリッジ2、膜カートリッジ4、殺菌ユニット7、貯水タンク8、濃縮水弁5には実施例1と全く同じものを使用した。加圧ポンプ3は使用しなかった。流量計6′、6″には実施例1の流量計6と全く同じものを使用した。   The pretreatment cartridge 2, membrane cartridge 4, sterilization unit 7, water storage tank 8, and concentrated water valve 5 in the water purifier used here were the same as those in Example 1. The pressurizing pump 3 was not used. As the flowmeters 6 ′ and 6 ″, the same one as the flowmeter 6 of Example 1 was used.

殺菌ユニット7の制御では、電極に印加する電圧を4Vとし、電極に印加する電圧の極性を10s毎に反転し、この時の20sの連続電圧印加時の電流X(mA)と膜ろ過水の流量Y(mL/min)から電圧印加休止時間(s)=4000X/Y−20を算出し、電圧印加を休止した。休止終了後再び、20s連続電圧印加し、同様の制御を繰り返した。   In the control of the sterilization unit 7, the voltage applied to the electrode is set to 4 V, the polarity of the voltage applied to the electrode is reversed every 10 s, and the current X (mA) and the membrane filtered water when the continuous voltage of 20 s is applied at this time Voltage application pause time (s) = 4000X / Y-20 was calculated from the flow rate Y (mL / min), and voltage application was paused. After the end of the rest, a continuous voltage was applied again for 20 s and the same control was repeated.

週5日間の浄水処理を継続して行った結果、運転開始直後の膜ろ過水の流量が250mL/minに対し、運転開始から6ヶ月後の膜ろ過水の流量は80mL/minと減少していたにもかかわらず、浄水吐出用の蛇口10から採水した水の塩素濃度は運転開始から6ヶ月間の長期にわたり0.2〜0.3mg/Lと良好な範囲内に維持することができ、その期間の一般細菌は常時10cfu/mL以下であった。   As a result of continuous water purification treatment for 5 days a week, the flow rate of membrane filtrate immediately after the start of operation was 250 mL / min, whereas the flow rate of membrane filtrate after 6 months from the start of operation was reduced to 80 mL / min. Nevertheless, the chlorine concentration of the water sampled from the tap 10 for discharging the purified water can be maintained within a good range of 0.2 to 0.3 mg / L over a long period of 6 months from the start of operation. The general bacteria during that period were always 10 cfu / mL or less.

(比較例1)
流量計6を設置しなかった以外は実施例1と全く同じ浄水器を用い、電極間の電流値を1mAと一定に制御する以外は実施例1と同じ条件で浄水処理を行った。その結果、運転開始直後の浄水吐出用の蛇口10から採水した水の塩素濃度は0.2〜0.3mg/Lであったが、徐々に塩素濃度が上昇し、運転開始から6ヶ月後の塩素濃度は0.7〜0.9mg/Lと非常に高く、塩素の不快臭を強く感じた。その期間の一般細菌は常時10cfu/mL以下であった。
(Comparative Example 1)
Except that the flow meter 6 was not installed, the same water purifier as in Example 1 was used, and the water purification treatment was performed under the same conditions as in Example 1 except that the current value between the electrodes was controlled to be constant at 1 mA. As a result, the chlorine concentration of water sampled from the faucet 10 for discharging purified water immediately after the start of operation was 0.2 to 0.3 mg / L, but the chlorine concentration gradually increased and six months after the start of operation. The chlorine concentration of the sample was very high at 0.7 to 0.9 mg / L, and the unpleasant odor of chlorine was strongly felt. The number of general bacteria during that period was always 10 cfu / mL or less.

(比較例2)
殺菌ユニット7を設置しなかった以外は実施例1と全く同じ浄水器を用い、実施例1と同じ条件で浄水化処理の実験を行った。その結果、火曜日から金曜日に採水した水の一般細菌は1,000〜2,000cfu/mLと高く、特に、週明けの月曜日に採水した水の一般細菌は10,000cfu/mL以上と著しく高かった。
(Comparative Example 2)
Except that the sterilization unit 7 was not installed, the same water purifier as in Example 1 was used, and a water purification treatment experiment was performed under the same conditions as in Example 1. As a result, the general bacteria of water collected from Tuesday to Friday is as high as 1,000 to 2,000 cfu / mL, and in particular, the general bacteria of water sampled on Monday at the beginning of the week is significantly over 10,000 cfu / mL. it was high.

(比較例3)
殺菌ユニット7を設置せず、代わりに、粒状活性炭(クラレケミカル(株)製、クラレコールT−SB 24/42メッシュ)を10g充填したカラムを使用し、該カラムを通水した膜ろ過水を貯水タンク8に流入させた以外は、実施例1と全く同じ浄水器を用い、実施例1と同じ条件で浄水処理を行った。
(Comparative Example 3)
Instead of installing the sterilizing unit 7, instead, a column packed with 10 g of granular activated carbon (Kuraray Chemical T-SB 24/42 mesh, manufactured by Kuraray Chemical Co., Ltd.) was used. Except for flowing into the water storage tank 8, the same water purifier as in Example 1 was used, and water purification treatment was performed under the same conditions as in Example 1.

その結果、蛇口10から採水した水の銀イオン濃度は運転開始から7日間の一般細菌は常時100cfu/mL以下であった。しかし、7日間経過後の火曜日から金曜日に採水した水の一般細菌は100〜1,000cfu/mLと高く、特に、週明けの月曜日に採水した水の一般細菌は10,000cfu/mL以上と著しく高かった。   As a result, the silver ion concentration of water sampled from the tap 10 was always 100 cfu / mL or less for general bacteria for 7 days from the start of operation. However, the general bacteria of water collected from Tuesday to Friday after the passage of 7 days is as high as 100 to 1,000 cfu / mL, and in particular, the general bacteria of water sampled on Monday at the beginning of the week is 10,000 cfu / mL or more. It was remarkably high.

本発明に係る浄水器や浄水方法によると、水道水をRO膜やNF膜により高度に浄化処理することができるので、飲料や調理に用いる場合に好適であり、小型浄水器により安全で上質な水を得ることができる。   According to the water purifier and water purification method of the present invention, tap water can be highly purified by the RO membrane or NF membrane, so it is suitable for use in beverages and cooking, and is safe and high-quality by a small water purifier. You can get water.

本発明に係る浄水器において行われる水処理工程の一実施態様を示す概略フロー図である。It is a schematic flowchart which shows one embodiment of the water treatment process performed in the water purifier which concerns on this invention. 本発明に係る浄水器において行われる水処理工程の他の一実施態様を示す概略フロー図である。It is a schematic flowchart which shows another embodiment of the water treatment process performed in the water purifier which concerns on this invention. 本発明に係る浄水器に組込まれる前処理カートリッジの一実施構造を示す構造概略図(正面断面図)である。It is a structure schematic (front sectional drawing) which shows one implementation structure of the pre-processing cartridge integrated in the water purifier which concerns on this invention. 本発明に係る浄水器に組込まれる殺菌ユニットの一実施構造を示す構造概略図であって、正面断面、左側面断面、平面断面をそれぞれ示す。BRIEF DESCRIPTION OF THE DRAWINGS It is structural schematic which shows one implementation structure of the sterilization unit integrated in the water purifier which concerns on this invention, Comprising: A front cross section, a left side cross section, and a plane cross section are shown, respectively.

符号の説明Explanation of symbols

1:水道水供給用の開閉弁
2:前処理カートリッジ
2a:フィルターろ過部
2b:銀添着活性炭ろ過処理部
3:加圧ポンプ
4:膜ろ過カートリッジ
5:濃縮水弁
6、6′、6″:流量計
7:殺菌ユニット
8:貯水タンク
9:水位センサー
10:浄水吐用の蛇口
11:電極
12:電線
13:絶縁体
1: On-off valve for supplying tap water 2: Pretreatment cartridge 2a: Filter filtration unit 2b: Silver impregnated activated carbon filtration unit 3: Pressurization pump 4: Membrane filtration cartridge 5: Concentrated water valves 6, 6 ', 6 ": Flow meter 7: Sterilization unit 8: Reservoir tank 9: Water level sensor 10: Faucet for water purification 11: Electrode 12: Electric wire 13: Insulator

Claims (13)

銀添着活性炭で水をろ過処理する活性炭処理部を有する前処理カートリッジと、該前処理カートリッジで処理された水を逆浸透膜またはナノろ過膜で膜ろ過する膜ろ過カートリッジと、該膜ろ過カートリッジで膜ろ過された水を貯留する貯水タンクを有してなる浄水器であって、電圧を印加した電極から塩素を生成し、貯水タンク内の水の塩素濃度を0.1〜0.4mg/Lに制御することが可能な殺菌ユニットを、前記膜ろ過カートリッジと前記貯水タンクとの間に配したことを特徴とする浄水器。 A pretreatment cartridge having an activated carbon treatment section for filtering water with silver-impregnated activated carbon, a membrane filtration cartridge for membrane filtration of water treated with the pretreatment cartridge with a reverse osmosis membrane or a nanofiltration membrane, and the membrane filtration cartridge. A water purifier having a water storage tank for storing membrane-filtered water, generating chlorine from an electrode to which a voltage is applied, and setting the chlorine concentration of the water in the water storage tank to 0.1 to 0.4 mg / L The water purifier is characterized in that a sterilizing unit that can be controlled to a minimum is disposed between the membrane filtration cartridge and the water storage tank. 前記膜ろ過水の流量を測定する流量計を膜ろ過水配管内に配置し、前記流量計で測定された膜ろ過水の流量に応じて前記殺菌ユニットの電極の電流を比例制御する電気回路を備えていることを特徴とする請求項1に記載の浄水器。 An electric circuit that arranges a flow meter for measuring the flow rate of the membrane filtrate in the membrane filtrate pipe and proportionally controls the current of the electrode of the sterilization unit according to the flow rate of the membrane filtrate measured by the flow meter. The water purifier according to claim 1, wherein the water purifier is provided. 前記膜ろ過カートリッジに供給される供給水流量を測定する流量計を供給水配管内に配置し、膜ろ過されずに膜ろ過カートリッジから排出される濃縮水流量を測定する流量計を濃縮水配管内に配置し、前記供給水流量と濃縮水流量の差から算出した膜ろ過流量に応じて前記殺菌ユニットの電極の電流を比例制御する電気回路を備えていることを特徴とする請求項1に記載の浄水器。 A flow meter for measuring the flow rate of the supplied water supplied to the membrane filtration cartridge is disposed in the supply water piping, and a flow meter for measuring the flow rate of the concentrated water discharged from the membrane filtration cartridge without being subjected to membrane filtration is disposed in the concentrated water piping. The electric circuit which carries out proportional control of the electric current of the electrode of the said sterilization unit according to the membrane filtration flow computed from the difference of the supply water flow and the concentration water flow is arranged in Claim 1 characterized by the above-mentioned. Water purifier. 前記膜ろ過水の流量を測定する流量計を膜ろ過水配管内に配置し、前記流量計で測定された膜ろ過水の流量および前記殺菌ユニットの電極に一定の電圧を印加した時の電極の電流値から、前記殺菌ユニットの電極の電圧印加時間と電圧印加休止時間を制御する電気回路を備えていることを特徴とする請求項1に記載の浄水器。 A flow meter for measuring the flow rate of the membrane filtrate is disposed in the membrane filtrate pipe, and the flow rate of the membrane filtrate measured by the flow meter and the electrode when a constant voltage is applied to the electrode of the sterilization unit. The water purifier according to claim 1, further comprising an electric circuit that controls a voltage application time and a voltage application pause time of the electrode of the sterilization unit based on a current value. 前記膜ろ過カートリッジに供給される供給水流量を測定する流量計を供給水配管内に配置し、膜ろ過されずに膜ろ過カートリッジから排出される濃縮水流量を測定する流量計を濃縮水配管内に配置し、前記供給水流量と濃縮水流量の差から算出した膜ろ過水の流量および前記殺菌ユニットの電極に一定の電圧を印加した時の電極の電流値から、前記殺菌ユニットの電極の電圧印加時間と電圧印加休止時間を制御する電気回路を備えていることを特徴とする請求項1に記載の浄水器。 A flow meter for measuring the flow rate of the supplied water supplied to the membrane filtration cartridge is disposed in the supply water piping, and a flow meter for measuring the flow rate of the concentrated water discharged from the membrane filtration cartridge without being subjected to membrane filtration is disposed in the concentrated water piping. The voltage of the electrode of the sterilization unit is calculated from the flow rate of the membrane filtrate calculated from the difference between the supply water flow rate and the concentrated water flow rate and the current value of the electrode when a constant voltage is applied to the electrode of the sterilization unit. The water purifier according to claim 1, further comprising an electric circuit for controlling the application time and the voltage application pause time. 前記殺菌ユニットが、電極に印加する電圧の極性を所定時間毎に反転させる電気回路を備えていることを特徴とする請求項1〜5のいずれかに記載の浄水器。 The water purifier according to any one of claims 1 to 5, wherein the sterilizing unit includes an electric circuit that reverses the polarity of a voltage applied to the electrode every predetermined time. 平均孔径が0.1〜10μmのフィルターを備えたフィルターろ過カートリッジが前記膜ろ過カートリッジよりも上流側に配置されていることを特徴とする請求項1〜6のいずれかに記載の浄水器。 The water purifier according to any one of claims 1 to 6, wherein a filter filtration cartridge including a filter having an average pore diameter of 0.1 to 10 µm is disposed on the upstream side of the membrane filtration cartridge. 水道水圧で、またはポンプにより増圧された水圧で供給される水道水を、銀添着活性炭装填の前処理カートリッジを通過させて活性炭ろ過処理し、次いで逆浸透膜またはナノろ過膜を有する膜ろ過カートリッジを通過させて膜ろ過処理した後に、電圧を印加した電極から塩素を生成する殺菌ユニットを通過させ、貯水タンク内に貯留し、該貯水タンク内に貯留される水の塩素濃度を0.1〜0.4mg/Lとすることを特徴とする浄水方法。 Membrane filtration cartridge having a reverse osmosis membrane or a nanofiltration membrane after passing tap water supplied at a tap water pressure or with a water pressure increased by a pump through a pretreatment cartridge loaded with silver-impregnated activated carbon Is passed through a sterilization unit that generates chlorine from an electrode to which a voltage is applied, and is stored in a water storage tank. The chlorine concentration of water stored in the water storage tank is 0.1 to A water purification method characterized in that the concentration is 0.4 mg / L. 前記膜ろ過処理後の膜ろ過水の流量を流量計にて測定し、前記膜ろ過水の流量に応じて前記殺菌ユニットの電極の電流を比例制御することを特徴とする請求項8に記載の浄水方法。 The flow rate of the membrane filtration water after the membrane filtration treatment is measured by a flow meter, and the current of the electrode of the sterilization unit is proportionally controlled according to the flow rate of the membrane filtration water. Water purification method. 前記膜ろ過処理に供給される供給水の流量と前記膜ろ過処理から排出される濃縮水の流量とを流量計にて測定し、前記供給水流量と濃縮水流量の差から算出した膜ろ過水の流量に応じて前記殺菌ユニットの電極の電流を比例制御することを特徴とする請求項8に記載の浄水方法。 The flow rate of the feed water supplied to the membrane filtration treatment and the flow rate of the concentrated water discharged from the membrane filtration treatment were measured with a flow meter, and the membrane filtrate calculated from the difference between the supply water flow rate and the concentrated water flow rate The water purification method according to claim 8, wherein the current of the electrode of the sterilization unit is proportionally controlled according to the flow rate of the sterilization unit. 前記膜ろ過水の流量を流量計にて測定し、前記膜ろ過水の流量および一定の電圧を印加した時の前記殺菌ユニット電極の電流値に応じて前記殺菌ユニットの電極の電圧印加時間と電圧印加休止時間を制御することを特徴とする請求項8に記載の浄水方法。 The flow rate of the membrane filtration water is measured with a flow meter, and the voltage application time and voltage of the sterilization unit electrode according to the flow rate of the membrane filtration water and the current value of the sterilization unit electrode when a constant voltage is applied The water purification method according to claim 8, wherein the application pause time is controlled. 前記膜ろ過処理に供給される供給水の流量と前記膜ろ過処理から排出される濃縮水の流量とを流量計にて測定し、前記供給水流量と濃縮水流量の差から算出した膜ろ過水の流量および一定の電圧を印加した時の前記殺菌ユニット電極の電流値に応じて前記殺菌ユニットの電極の電圧印加時間と電圧印加休止時間を制御することを特徴とする請求項8に記載の浄水方法。 The flow rate of the feed water supplied to the membrane filtration treatment and the flow rate of the concentrated water discharged from the membrane filtration treatment were measured with a flow meter, and the membrane filtrate calculated from the difference between the supply water flow rate and the concentrated water flow rate 9. The purified water according to claim 8, wherein the voltage application time and the voltage application pause time of the sterilization unit electrode are controlled according to the flow rate of the sterilization unit and the current value of the sterilization unit electrode when a constant voltage is applied. Method. 前記殺菌ユニットの電極に印加する電圧の極性を所定時間毎に反転させることを特徴とする請求項8〜12のいずれかに記載の浄水方法。 The water purification method according to any one of claims 8 to 12, wherein the polarity of the voltage applied to the electrode of the sterilizing unit is reversed every predetermined time.
JP2007091099A 2007-03-30 2007-03-30 Water purifier and water purification method Pending JP2008246376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007091099A JP2008246376A (en) 2007-03-30 2007-03-30 Water purifier and water purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007091099A JP2008246376A (en) 2007-03-30 2007-03-30 Water purifier and water purification method

Publications (1)

Publication Number Publication Date
JP2008246376A true JP2008246376A (en) 2008-10-16

Family

ID=39971961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007091099A Pending JP2008246376A (en) 2007-03-30 2007-03-30 Water purifier and water purification method

Country Status (1)

Country Link
JP (1) JP2008246376A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102219321A (en) * 2011-05-11 2011-10-19 厦门市威士邦膜科技有限公司 Recycled water recycling equipment and process
JP2011224495A (en) * 2010-04-21 2011-11-10 Thrash:Kk Apparatus for purifying water and filter to be used therein
CN102527121A (en) * 2012-02-23 2012-07-04 胡孟春 Reverse osmosis preprocessed automatic backwashing filter
JP2014529506A (en) * 2011-09-07 2014-11-13 エレクトロリティック、オゾン、インコーポレイテッドElectrolytic Ozone Inc. Removable cartridge and hub that generates ozonated water
CN110723848A (en) * 2019-11-20 2020-01-24 浙江新研坤科技有限公司 Ionization type water purifier
JP2020507467A (en) * 2017-02-16 2020-03-12 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company Chlorination-assisted coagulation process for water purification
JP2020054801A (en) * 2018-09-07 2020-04-09 旭化成株式会社 Sorption material, specific substance capture system, and specific substance capture method
WO2023032305A1 (en) * 2021-08-30 2023-03-09 栗田工業株式会社 Drinking water supply system
WO2023071755A1 (en) * 2021-10-29 2023-05-04 珠海格力电器股份有限公司 Water purification apparatus and flushing control method therefor, and water purification system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011224495A (en) * 2010-04-21 2011-11-10 Thrash:Kk Apparatus for purifying water and filter to be used therein
CN102219321A (en) * 2011-05-11 2011-10-19 厦门市威士邦膜科技有限公司 Recycled water recycling equipment and process
JP2014529506A (en) * 2011-09-07 2014-11-13 エレクトロリティック、オゾン、インコーポレイテッドElectrolytic Ozone Inc. Removable cartridge and hub that generates ozonated water
US11214502B2 (en) 2011-09-07 2022-01-04 Enozo Technologies, Inc. Hub and removable cartridge for producing and delivering ozonated water
CN102527121A (en) * 2012-02-23 2012-07-04 胡孟春 Reverse osmosis preprocessed automatic backwashing filter
JP2020507467A (en) * 2017-02-16 2020-03-12 サウジ アラビアン オイル カンパニーSaudi Arabian Oil Company Chlorination-assisted coagulation process for water purification
JP2020054801A (en) * 2018-09-07 2020-04-09 旭化成株式会社 Sorption material, specific substance capture system, and specific substance capture method
CN110723848A (en) * 2019-11-20 2020-01-24 浙江新研坤科技有限公司 Ionization type water purifier
WO2023032305A1 (en) * 2021-08-30 2023-03-09 栗田工業株式会社 Drinking water supply system
WO2023071755A1 (en) * 2021-10-29 2023-05-04 珠海格力电器股份有限公司 Water purification apparatus and flushing control method therefor, and water purification system

Similar Documents

Publication Publication Date Title
JP4661583B2 (en) Water purifier and water purification method
JP2008246376A (en) Water purifier and water purification method
JP4976599B1 (en) Drinking water production apparatus and drinking water production method
WO2009128328A1 (en) Method of operating reverse osmosis membrane module
JP2009233591A (en) Water purifier
US20060096920A1 (en) System and method for conditioning water
JP2005279614A (en) Water cleaning device
WO2007130053A1 (en) System and method for conditioning water
Khan et al. Continuous and efficient removal of THMs from river water using MF membrane combined with high dose of PAC
JP2006043610A (en) Electrolytic hydrogen-containing water producing apparatus
JP2006281023A (en) Water cleaning system and method
WO2012057176A1 (en) Water-treatment method and desalinization method
JPH10296060A (en) Prevention method for contamination of separation membrane
CN113426193A (en) Method and apparatus for mitigating biofouling in reverse osmosis membranes
WO2019088304A1 (en) Water purification system
JP2009233566A (en) Water purifier
WO2013018819A1 (en) Device for manufacturing drinking water and method for manufacturing drinking water
KR100668065B1 (en) Ion purifier and purifier and silver electrolytic cell
CN204490645U (en) A kind of intelligent reverse osmosis water purifying plant
JP2009233570A (en) Water purifier
CN111344257A (en) Water dispensing device for dispensing water having a consistent taste
KR20040023291A (en) Purified system having electro dialysis
US20230064074A1 (en) Controlling biofouling in water purification
KR100666560B1 (en) Water purifier system, ion water purifier system, and method for sterilization a water purifier system or ion water purifier system
CN206298458U (en) A kind of 15 tons of reclaimed water counter-infiltration systems per hour