JP2008244373A - Two-layer structure provided by directly depositing manganese oxide on amorphous substrate or amorphous film - Google Patents

Two-layer structure provided by directly depositing manganese oxide on amorphous substrate or amorphous film Download PDF

Info

Publication number
JP2008244373A
JP2008244373A JP2007086187A JP2007086187A JP2008244373A JP 2008244373 A JP2008244373 A JP 2008244373A JP 2007086187 A JP2007086187 A JP 2007086187A JP 2007086187 A JP2007086187 A JP 2007086187A JP 2008244373 A JP2008244373 A JP 2008244373A
Authority
JP
Japan
Prior art keywords
manganese oxide
layer structure
amorphous
film
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007086187A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
浩史 山本
Tatsuya Murakami
達也 村上
Minoru Sakai
穣 坂井
Shozo Imai
捷三 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Advanced Institute of Science and Technology
Original Assignee
Japan Advanced Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute of Science and Technology filed Critical Japan Advanced Institute of Science and Technology
Priority to JP2007086187A priority Critical patent/JP2008244373A/en
Publication of JP2008244373A publication Critical patent/JP2008244373A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a switching element or a memory element of a manganese oxide operating at room temperature and at a low temperature. <P>SOLUTION: By manufacturing a two-layer structure provided by depositing the manganese oxide on an amorphous substrate or an amorphous film, the switching element or the memory element, having the characteristics of reversibly changing from a high resistance condition to a low resistance condition, or from a low resistance condition to a high resistance condition by applying specific current threshold or voltage threshold. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description


本発明は、マンガン酸化物のスイッチング素子あるいはメモリー素子に関するものである。

The present invention relates to a manganese oxide switching element or memory element.

化学式Pr1-xCaxMnO3 (0.3≦ x <0.75 ; PCMO)で表されるペロブスカイト型マンガン酸化物は、低温 (~240 K) でヤーンテラー変形が生じることで、Mn3+とMn4+が交互に並ぶ電荷整列 (CO) が起こる。さらに低温でスピンも整列し、反強磁性絶縁体になる物質である。COしたPCMOに電場による外部摂動を与えることで、PCMOのCO崩壊が起こって、PCMOの物性が絶縁体から金属に転移する報告がある。特許3030333号では、T = 20 KにおいてCOしているPCMO (x = 0.3) に電圧を印加していくと、ある特定の電圧閾値(700 V付近)でPCMOの抵抗が急激に高抵抗から低抵抗状態へ変化し、逆に電圧を低くしていくと、250 V付近で低抵抗から高抵抗状態へ戻る可逆的な変化が示されている。この作用は、COが低温でしか起こらないことから、低温でのみ起きると考えられている。実際、特許3030333号の中で用いられている図1によると、約110 K以下においてのみ抵抗の変化を示している。
(特許文献1)
Perovskite-type manganese oxides represented by the chemical formula Pr1-xCaxMnO3 (0.3 ≦ x <0.75; PCMO) undergo charge-alignment (CO) in which Mn3 + and Mn4 + are arranged alternately due to Yarn-Teller deformation at low temperatures (~ 240 K) Happens. Furthermore, it is a substance that aligns with spin at low temperatures and becomes an antiferromagnetic insulator. There has been a report that the PCMO CO decay occurs by applying external perturbation to the COMO PCMO due to the electric field, and the physical properties of the PCMO are transferred from the insulator to the metal. In Patent 3030333, when a voltage is applied to PCMO (x = 0.3) that is CO at T = 20 K, the resistance of PCMO suddenly decreases from high to low at a specific voltage threshold (around 700 V). It shows a reversible change from low resistance to high resistance at around 250 V when the voltage changes to the resistance state and decreases. This effect is thought to occur only at low temperatures because CO occurs only at low temperatures. In fact, according to FIG. 1 used in Japanese Patent No. 3030333, the change in resistance is shown only at about 110 K or less.
(Patent Document 1)

また、PCMOの電圧印加による電気抵抗の変化はPCMO (x = 0.5)の膜を用いた積層型接合でも確認されている[J. Sakai et al., J. Appl. Phys. 90, 1410 (2001)]。ここでは、T = 30 Kにおいて電圧4.7Vで高抵抗から低抵抗状態へ変化しており、また1.3Vで高抵抗状態へ戻っていることがわかる。しかし、この場合も少し高い温度T = 75 K付近で測定すると、既に抵抗の変化が見られなくなっている。他にもPCMO (x = 0.5) 膜を利用したランプエッジ型接合においても、抵抗の変化が観測されているものの、その変化もT = 160 K付近より低温のみで観測されている [T. Murakami et al., J. Appl. Phys. 94, 6549 (2003)]。(非特許文献1、2)   In addition, changes in electrical resistance due to the application of PCMO voltage have been confirmed even in laminated junctions using PCMO (x = 0.5) films [J. Sakai et al., J. Appl. Phys. 90, 1410 (2001). )]. Here, it can be seen that at T = 30 K, the voltage changes from the high resistance state to the low resistance state at a voltage of 4.7 V, and returns to the high resistance state at 1.3 V. However, in this case as well, when measuring at a slightly high temperature T = 75 K, a change in resistance is no longer observed. In addition, a change in resistance was observed in a ramp edge type junction using a PCMO (x = 0.5) film, but the change was also observed only at low temperatures from around T = 160 K [T. Murakami et al., J. Appl. Phys. 94, 6549 (2003)]. (Non-Patent Documents 1 and 2)

また、CO現象とは別に、室温において、PCMOに電圧パルスを印加することで高抵抗、低抵抗の状態が切り替わる現象 [S. Q. Liu et al., Appl. Phys. Lett. 76, 2749 (2000)] や、電圧−電流特性が8の字型になる現象 (正の電圧で高抵抗から低抵抗、負の電圧で低抵抗から高抵抗に変化する現象) [A. Odagawa et. al., Thin Solid Films 486, 75 (2005)] が報告されている。 これら室温で起こる現象は、いずれも不揮発性の特徴を持っている。すなわち印加電圧を0 Vに戻しても高抵抗、または低抵抗状態が維持されていることから、上で述べたCOに起因する特性とは異なり、金属電極とPCMOの界面で生じている現象であると一部で考えられている。現在、この現象を利用したメモリー素子の応用が始まっている。(非特許文献3、4)   In addition to the CO phenomenon, a high-resistance, low-resistance state is switched by applying a voltage pulse to PCMO at room temperature [SQ Liu et al., Appl. Phys. Lett. 76, 2749 (2000)] Phenomenon that voltage-current characteristics become figure-eight (a phenomenon that changes from high resistance to low resistance at a positive voltage and from low resistance to high resistance at a negative voltage) [A. Odagawa et. Al., Thin Solid Films 486, 75 (2005)] has been reported. All of these phenomena that occur at room temperature have non-volatile characteristics. In other words, even if the applied voltage is returned to 0 V, the high resistance or low resistance state is maintained, so unlike the characteristics due to CO described above, this phenomenon occurs at the interface between the metal electrode and PCMO. Some think that there is. Currently, the application of memory elements using this phenomenon has begun. (Non-Patent Documents 3 and 4)

従来のPCMOのCOを崩壊させて生じる絶縁体金属転移は、低温でのみ生じることから室温でスイッチング素子として用いることは出来ない。また室温で動作する界面現象を利用したと考えられる不揮発性の抵抗変化素子は、メモリー素子として用いるには適しているが、スイッチング素子として用いるには、電圧を0 Vに戻しても前の抵抗状態を保持したままなので、その抵抗状態を解除する動作が余計に必要になる。
特許登録3030333号 J. Sakai et al., J. Appl. Phys. 90, 1410 (2001) T. Murakami et al., J. Appl. Phys. 94, 6549 (2003) S. Q. Liu et al., Appl. Phys. Lett. 76, 2749 (2000). A. Odagawa et al., Thin Solid Films 486, 75 (2005).
Insulator-metal transition caused by the collapse of conventional PCMO CO occurs only at low temperatures and cannot be used as a switching element at room temperature. In addition, a nonvolatile resistance change element that is considered to use an interface phenomenon that operates at room temperature is suitable for use as a memory element, but for use as a switching element, the previous resistance is maintained even when the voltage is returned to 0 V. Since the state is maintained, an operation for releasing the resistance state is necessary.
Patent registration 3030333 J. Sakai et al., J. Appl. Phys. 90, 1410 (2001) T. Murakami et al., J. Appl. Phys. 94, 6549 (2003) SQ Liu et al., Appl. Phys. Lett. 76, 2749 (2000). A. Odagawa et al., Thin Solid Films 486, 75 (2005).

解決しようとする問題点は、マンガン酸化物を室温 (300 K付近) 〜 低温(150 K付近)で電流または電圧で制御するスイッチング素子として容易に用いることができない点である。   The problem to be solved is that manganese oxide cannot be easily used as a switching element that is controlled by current or voltage from room temperature (around 300 K) to low temperature (around 150 K).

アモルファス基板またはアモルファス膜を加熱する工程と、そのアモルファス基板またはアモルファス膜に直にマンガン酸化物を堆積させる工程によって得られる2層構造物を作製することにより、室温または低温において、電流または電圧で制御できるスイッチング素子あるいはメモリー素子が得られる。   By controlling the current or voltage at room temperature or low temperature by creating a two-layer structure obtained by heating the amorphous substrate or film and depositing manganese oxide directly on the amorphous substrate or film. A switching element or a memory element that can be obtained is obtained.

アモルファス基板はマンガン酸化物の結晶化に要する温度、800度以上に軟化点を持つことが望ましい。特にアモルファス基板として1600度の高軟化点を持つ合成石英ガラスが望ましい。   It is desirable that the amorphous substrate has a softening point at a temperature required for crystallization of manganese oxide, 800 ° C. or more. In particular, synthetic quartz glass having a high softening point of 1600 degrees is desirable as an amorphous substrate.

マンガン酸化物は、化学式R1-xAxMnO3(Rは希土類イオン、Aはアルカリ土類イオン)で表されるペロブスカイト型マンガン酸化物が望ましく、特に希土類イオンがプラセオジム、アルカリ土類イオンがカルシウムであることが望ましい。 The manganese oxide is preferably a perovskite type manganese oxide represented by the chemical formula R1-xAxMnO3 (where R is a rare earth ion and A is an alkaline earth ion), and in particular, the rare earth ion is praseodymium and the alkaline earth ion is calcium. desirable.

本発明によるアモルファス基板またはアモルファス膜上に直に堆積させたマンガン酸化物は、電流または電圧の印加により、室温や低温において、抵抗値の急激な変化を示すため、室温あるいは低温で動作するスイッチング素子(例えば、高抵抗状態を0、低抵抗状態を1とするスイッチング素子)またはメモリー素子として用いることが出来る。また、基板が合成石英基板などのアモルファス基板を用いることから安価に作製でき、かつ膜と電極端子のみの単純な構造で構成できるので面積を小さく出来るという利点がある。さらに、既に応用が始まっているメモリーの抵抗変化素子など酸化物の電子デバイスとの共存が容易になる。   The manganese oxide deposited directly on the amorphous substrate or the amorphous film according to the present invention exhibits a sudden change in resistance value at room temperature or low temperature by application of current or voltage. It can be used as a memory element (for example, a switching element in which the high resistance state is 0 and the low resistance state is 1). In addition, since an amorphous substrate such as a synthetic quartz substrate is used as the substrate, it can be manufactured at low cost and can be configured with a simple structure including only a film and an electrode terminal. In addition, coexistence with oxide electronic devices such as memory resistance change elements that have already begun to be applied is facilitated.

本発明者は、アモルファス基板に直に堆積したマンガン酸化物の2層構造物が室温でそのマンガン酸化物の単結晶に比べ高い抵抗率を持つことを見出し、電圧−電流特性を測定し、特定の電流閾値、あるいは電圧閾値を加えると、高抵抗から低抵抗状態へ変化し、電流または電圧を下げると可逆的に低抵抗から高抵抗状態へスイッチングすることを見出した。   The present inventor has found that a two-layer structure of manganese oxide deposited directly on an amorphous substrate has a higher resistivity than that of the single crystal of manganese oxide at room temperature, measured voltage-current characteristics, and identified When the current threshold or the voltage threshold is added, the high resistance is changed to the low resistance state, and when the current or voltage is lowered, the low resistance is switched to the high resistance state.

この2層構造物は次のように製造する。まず、アモルファス基板を加熱装置に装着し、製膜装置のチャンバーに挿入する。アモルファス基板は、溶融石英ガラス、合成石英ガラス、アモルファス金属などが挙げられる。   This two-layer structure is manufactured as follows. First, an amorphous substrate is mounted on a heating apparatus and inserted into a chamber of a film forming apparatus. Examples of the amorphous substrate include fused silica glass, synthetic quartz glass, and amorphous metal.

アモルファス基板の代わりに、酸化物単結晶基板や金属多結晶基板などを用い、その上にアモルファス膜を堆積したものを用いても良い。アモルファス膜としてはSiO2膜などが挙げられる。   Instead of an amorphous substrate, an oxide single crystal substrate or a metal polycrystalline substrate may be used, and an amorphous film deposited thereon may be used. Examples of the amorphous film include a SiO2 film.

製膜装置としては、パルスレーザー堆積装置、スパッタ装置などが挙げられる。チャンバー内を高真空にしたあと、アモルファス基板を加熱する。酸素をチャンバー内に導入する。その後マンガン酸化物を堆積することで、2層構造物が得られる。ここで、アモルファス基板を加熱することと酸素をチャンバー内に導入することの順は逆でもよい。また、あらかじめ製膜装置でマンガン酸化物を加熱していないアモルファス基板の上に堆積させておいて、その後その2層構造物を加熱してマンガン酸化物を結晶化してもよい。   Examples of the film forming apparatus include a pulse laser deposition apparatus and a sputtering apparatus. After the chamber is evacuated, the amorphous substrate is heated. Oxygen is introduced into the chamber. Thereafter, manganese oxide is deposited to obtain a two-layer structure. Here, the order of heating the amorphous substrate and introducing oxygen into the chamber may be reversed. Alternatively, manganese oxide may be preliminarily deposited on an amorphous substrate that has not been heated by a film forming apparatus, and then the two-layer structure may be heated to crystallize the manganese oxide.

この2層構造物のマンガン酸化物として、例えば、ペロブスカイト型マンガン酸化物の、化学式R1-xAxMnO3(Rは希土類イオン、Aはアルカリ土類イオン)で表される材料が挙げられる。希土類イオンとして、プラセオジム、ネオジムなどで、アルカリ土類イオンとして、カルシウムやストロンチウムなどがある。   Examples of the two-layer structure manganese oxide include a perovskite-type manganese oxide material represented by the chemical formula R1-xAxMnO3 (where R is a rare earth ion and A is an alkaline earth ion). Examples of rare earth ions include praseodymium and neodymium, and examples of alkaline earth ions include calcium and strontium.

以下に、本発明の実施例を示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって何等の制約をも受けるものでないことはいうまでもないところである。また、本発明には、以下の実施例の他にも更には上記した発明の実施の形態における記述以外にも、本発明の趣旨を逸脱し得ない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが理解されるべきである。   Examples of the present invention will be shown below to clarify the present invention more specifically, but it goes without saying that the present invention is not limited by the description of such examples. There is no place. In addition to the following examples, in addition to the description in the embodiment of the present invention described above, the present invention is based on the knowledge of those skilled in the art unless it departs from the spirit of the present invention. It should be understood that various changes, modifications, improvements and the like can be made.

ペロブスカイト型マンガン酸化物PCMO (x = 0.5) 膜をPulsed laser deposition (PLD) 法 (KrF excimer laser) を用いて、合成石英(アモルファスSiO2)基板上に堆積した。本実施例で用いる合成石英基板の軟化点は約1600℃である。まず、銀ペーストを用いてヒーターに合成石英基板を接着した。そのヒーターをPLD装置のチャンバーに挿入し、チャンバー内を高真空(10-6 Torrオーダー)にした。   A perovskite-type manganese oxide PCMO (x = 0.5) film was deposited on a synthetic quartz (amorphous SiO2) substrate using a pulsed laser deposition (PLD) method (KrF excimer laser). The softening point of the synthetic quartz substrate used in this example is about 1600 ° C. First, a synthetic quartz substrate was bonded to a heater using a silver paste. The heater was inserted into the chamber of the PLD apparatus, and the inside of the chamber was set to a high vacuum (10-6 Torr order).

その後、ヒーターに電流を流し、合成石英基板温度を760℃にした。この基板温度はPCMOの結晶化を促すため700度以上が望ましく、また、PCMO結晶の極端な凝集を避けるため800度以下が望ましい。   Thereafter, an electric current was passed through the heater to set the synthetic quartz substrate temperature to 760 ° C. The substrate temperature is preferably 700 ° C. or more to promote crystallization of PCMO, and is preferably 800 ° C. or less to avoid extreme aggregation of PCMO crystals.

酸素をチャンバーに導入し、酸素分圧を300 mTorrにした。合成石英基板とPCMO多結晶ターゲットの間の距離を29 mmに合わせた。レーザー周波数を4 Hz、エネルギー密度を1 J/cm2に設定し、レーザーを14分間PCMO多結晶ターゲットに照射し、そこから発生したアブレーションプラズマを合成石英基板上に堆積した。このとき、PCMOの膜厚は約200nmであった。   Oxygen was introduced into the chamber and the partial pressure of oxygen was 300 mTorr. The distance between the synthetic quartz substrate and the PCMO polycrystalline target was adjusted to 29 mm. The laser frequency was set to 4 Hz, the energy density was set to 1 J / cm2, the laser was irradiated to the PCMO polycrystalline target for 14 minutes, and the ablation plasma generated therefrom was deposited on the synthetic quartz substrate. At this time, the film thickness of PCMO was about 200 nm.

PCMO堆積後、酸素分圧を10 Torrにして、合成石英基板温度を550℃まで下げ、1時間のアニールを行った。このようにして、図1に示すマンガン酸化物PCMOと合成石英基板の2層構造物が得られた。   After the PCMO deposition, the oxygen partial pressure was set to 10 Torr, the synthetic quartz substrate temperature was lowered to 550 ° C., and annealing was performed for 1 hour. Thus, a two-layer structure of the manganese oxide PCMO and the synthetic quartz substrate shown in FIG. 1 was obtained.

PCMO膜の堆積した基板をチャンバーから取り出した後、電圧−電流測定を行なうための電極端子を形成した。電極間距離1μmとする電極パターンを形成する際に、有機レジストの感光手段として電子ビーム露光を用いた。パターニングしたレジストの上に真空蒸着法を用いてTi、Auを堆積し、リフトオフ法により電極を形成した。   After the substrate on which the PCMO film was deposited was taken out of the chamber, electrode terminals for voltage-current measurement were formed. When forming an electrode pattern having an interelectrode distance of 1 μm, electron beam exposure was used as a photosensitive means for organic resist. Ti and Au were deposited on the patterned resist by vacuum evaporation, and electrodes were formed by lift-off.

電圧印加電流測定は、アドバンテスト社製R6243電圧電流源モニターを用い、室温(298 K)で、図2に示す回路で行なった。PCMO膜保護のため、電流制限を10 mAとした。   The voltage application current measurement was performed with the circuit shown in FIG. 2 at room temperature (298 K) using a R6243 voltage current source monitor manufactured by Advantest Corporation. The current limit was set to 10 mA to protect the PCMO film.

電圧-電流特性を図3に示す。この図は、2層構造物に印加する電圧を0 Vから4 Vまで0.1 V刻みで上昇させ、ついで4Vから-4Vまで下降、さらに-4Vから0Vに戻るように設定し、各刻みでの電流値を読み取ってプロットしたグラフである。図3の挿入図は、対数表示で表したものである。   Fig. 3 shows the voltage-current characteristics. This figure shows that the voltage applied to the two-layer structure is increased from 0 V to 4 V in increments of 0.1 V, then decreased from 4 V to -4 V, and then returned from -4 V to 0 V. It is the graph which read and plotted the electric current value. The inset in FIG. 3 is expressed in logarithmic display.

詳しくこのグラフを見ていくと、まず印加電圧が0.1 Vのとき、PCMO膜の抵抗は約30 kΩ(抵抗率は約180 Ωcm) であり、PCMO単結晶の抵抗率0.1~0.01 Ωcmより1800~18000倍大きくなっていることが分かる。   Looking at this graph in detail, when the applied voltage is 0.1 V, the resistance of the PCMO film is about 30 kΩ (resistivity is about 180 Ωcm), and the resistivity of the PCMO single crystal is 1800 to 1 It can be seen that it is 18000 times larger.

電圧を上昇させていくと、3.3 Vから3.5 Vにおいて、4 mAだった電流値が10 mA以上と約2倍以上の急激な変化を示しており、2層構造物の抵抗が高抵抗から低抵抗状態へ変化し、スイッチングしていることが確認できる。次に印加電圧を下降させていくと、2.4 V付近から電流が10 mAより小さくなっており、1V付近で元の高抵抗状態に戻っているのが分かる。印加電圧を負にしても同様の特性が確認でき、-3.3 Vで-3 mAだった電流が-3.4 Vで-10 mA以下に急激に変化しており、電圧を0Vに戻す際、-1.5V付近で高抵抗状態に戻っているのが分かる。   As the voltage is increased, the current value that was 4 mA from 3.3 V to 3.5 V is 10 mA or more, showing a rapid change of about twice or more, and the resistance of the two-layer structure is reduced from high resistance to low. It changes to a resistance state and it can confirm that it is switching. Next, when the applied voltage is lowered, the current becomes smaller than 10 mA from around 2.4 V, and it can be seen that the original high resistance state is restored around 1 V. The same characteristics can be confirmed even when the applied voltage is negative, and the current that was -3 mA at -3.3 V has suddenly changed to -10 mA or less at -3.4 V. When the voltage is returned to 0 V, -1.5 V It turns out that it has returned to the high resistance state near V.

このように電圧を加えていくと、ある電圧閾値あるいは電流閾値を超えると高抵抗状態から低抵抗状態へ変化し、電圧を戻していくと低抵抗状態から高抵抗状態へ戻る可逆的な変化を示している。過去にPCMO単結晶やPCMO積層型接合において低温でのみ見られていたCO崩壊の際の特性に良く似ているが、図3の結果は室温(298 K)で取得したものである。   When a voltage is applied in this way, when a certain voltage threshold or current threshold is exceeded, the state changes from a high resistance state to a low resistance state, and when the voltage is returned, a reversible change returns from the low resistance state to the high resistance state. Show. Although it resembles the characteristics at the time of CO decay, which had been seen only at low temperatures in PCMO single crystals and PCMO laminated junctions in the past, the results in Fig. 3 were obtained at room temperature (298 K).

同じ試料を、低温 (150 K) で測定した電圧―電流特性結果を図4に示す。電圧を上昇させていくと、5.2 Vから5.4 Vにおいて、0.5 mAだった電流値が10 mA以上と約20倍以上の急激な変化を示しており、高抵抗から低抵抗状態へスイッチングしていることが確認できる。その後、印加電圧を下降させていくと、2.5 V付近で高抵抗状態に戻っているのが分かる。印加電圧を負にしても同様の特性が確認できる。 Figure 4 shows the results of voltage-current characteristics of the same sample measured at low temperature (150 K). As the voltage is increased, the current value that was 0.5 mA from 5.2 V to 5.4 V is 10 mA or more, indicating a rapid change of approximately 20 times or more, and switching from a high resistance to a low resistance state. I can confirm that. After that, when the applied voltage is lowered, it can be seen that the high resistance state is restored at around 2.5 V. Similar characteristics can be confirmed even if the applied voltage is negative.

このように室温においても低温においても抵抗の変化が起こっており、スイッチング素子として用いることが出来る。   Thus, the resistance changes at both room temperature and low temperature, and can be used as a switching element.

また、メモリーとして用いるには、次の方法によって可能となる。図3の電圧−電流特性に見られるように、高抵抗状態から低抵抗状態になったあとヒステリシスを示し高抵抗状態へ戻っている。このヒステリシスの範囲内の電圧に、2層構造物に印加する電圧を固定することで、2値の抵抗状態を存在させることが可能になる。例えば、図3では印加電圧を3 Vに固定する。高抵抗状態では、2.9 mAの電流が流れ、低抵抗状態では、10 mA以上の電流が流れることになる。   Further, it can be used as a memory by the following method. As can be seen from the voltage-current characteristics in FIG. 3, after the high resistance state is changed to the low resistance state, hysteresis is shown and the state returns to the high resistance state. By fixing the voltage applied to the two-layer structure to a voltage within the hysteresis range, a binary resistance state can be present. For example, in FIG. 3, the applied voltage is fixed at 3 V. In the high resistance state, a current of 2.9 mA flows, and in the low resistance state, a current of 10 mA or more flows.

高抵抗から低抵抗状態に書き換えるには、2層構造物に印加する電圧を上昇させ、低抵抗状態にスイッチングさせ、電圧を再び3 Vに下げることにより行なえる。   Rewriting from a high resistance state to a low resistance state can be performed by increasing the voltage applied to the two-layer structure, switching to a low resistance state, and lowering the voltage to 3 V again.

逆に低抵抗から高抵抗状態に書き換えるには、印加電圧を下げ、高抵抗にスイッチングさせたあと再び3Vに戻すことで行える。このように2値の切り替えが可能であり、高抵抗または低抵抗状態を維持できることから、メモリーとして用いることが出来る。   Conversely, rewriting from low resistance to high resistance can be done by lowering the applied voltage, switching to high resistance, and then returning to 3V again. In this way, switching between two values is possible, and a high resistance or low resistance state can be maintained, so that it can be used as a memory.

本発明のマンガン酸化物スイッチング素子あるいはメモリー素子は、酸化物デバイスへの応用に期待できる。   The manganese oxide switching element or memory element of the present invention can be expected for application to oxide devices.

本発明のアモルファス基板にマンガン酸化物を堆積した2層構造物。A two-layer structure in which manganese oxide is deposited on the amorphous substrate of the present invention. 測定方法を示した図である。(実施例1)It is the figure which showed the measuring method. Example 1 室温(298K)での電流―電圧特性を示した図である。(実施例1)It is the figure which showed the current-voltage characteristic in room temperature (298K). Example 1 低温(150K)での電流―電圧特性を示した図である。(実施例1)It is the figure which showed the electric current-voltage characteristic in low temperature (150K). Example 1

Claims (12)


アモルファス基板またはアモルファス膜の上にマンガン酸化物を直に堆積させた2層構造物。

A two-layer structure in which manganese oxide is deposited directly on an amorphous substrate or film.

アモルファス基板がマンガン酸化物の結晶化に要する温度より高温で、800度以上の軟化点を持つ請求項1記載の2層構造物。

2. The two-layer structure according to claim 1, wherein the amorphous substrate has a softening point of 800 ° C. or higher at a temperature higher than that required for crystallization of manganese oxide.

アモルファス基板が合成石英ガラスである請求項2記載の2層構造物。

3. The two-layer structure according to claim 2, wherein the amorphous substrate is synthetic quartz glass.

マンガン酸化物は、化学式R1-xAxMnO3(Rは希土類イオン、Aはアルカリ土類イオン)で表されるペロブスカイト型マンガン酸化物である請求項1記載の2層構造物。

2. The two-layer structure according to claim 1, wherein the manganese oxide is a perovskite-type manganese oxide represented by the chemical formula R1-xAxMnO3 (R is a rare earth ion and A is an alkaline earth ion).

マンガン酸化物は、化学式Pr1-xCaxMnO3で表されるペロブスカイト型マンガン酸化物である請求項1記載の2層構造物。

2. The two-layer structure according to claim 1, wherein the manganese oxide is a perovskite-type manganese oxide represented by a chemical formula Pr1-xCaxMnO3.

アモルファス基板またはアモルファス膜の上にマンガン酸化物を直に堆積させた2層構造を持つスイッチング素子。

A switching element with a two-layer structure in which manganese oxide is deposited directly on an amorphous substrate or film.

アモルファス基板またはアモルファス膜の上にマンガン酸化物を直に堆積させた2層構造を持つメモリー素子。

A memory device with a two-layer structure in which manganese oxide is deposited directly on an amorphous substrate or film.

電圧または電流によってマンガン酸化物の電気抵抗が2倍以上変化する請求項6のスイッチング素子。

7. The switching element according to claim 6, wherein the electrical resistance of the manganese oxide changes by a factor of 2 or more depending on the voltage or current.

電圧または電流によってマンガン酸化物の電気抵抗が2倍以上変化する請求項7のメモリー素子。

8. The memory element according to claim 7, wherein the electrical resistance of the manganese oxide changes by a factor of 2 or more depending on voltage or current.

アモルファス基板またはアモルファス膜を加熱する工程と、そのアモルファス基板またはアモルファス膜に直にマンガン酸化物を堆積させる工程によって作製する2層構造物の製造方法。

A method for manufacturing a two-layer structure manufactured by heating an amorphous substrate or film and depositing manganese oxide directly on the amorphous substrate or film.

アモルファス基板またはアモルファス膜上に直にマンガン酸化物を堆積させて2層構造物を作製する工程と、その2層構造物を加熱する工程からなる製造方法。

A manufacturing method comprising a step of producing a two-layer structure by depositing manganese oxide directly on an amorphous substrate or an amorphous film, and a step of heating the two-layer structure.

マンガン酸化物を結晶化させるのに必要な温度700度から800度の間で加熱する請求項10または請求項11の2層構造物の製造方法。


12. The method for producing a two-layer structure according to claim 10 or 11, wherein heating is performed at a temperature required for crystallizing the manganese oxide between 700 and 800 degrees.

JP2007086187A 2007-03-29 2007-03-29 Two-layer structure provided by directly depositing manganese oxide on amorphous substrate or amorphous film Pending JP2008244373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007086187A JP2008244373A (en) 2007-03-29 2007-03-29 Two-layer structure provided by directly depositing manganese oxide on amorphous substrate or amorphous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007086187A JP2008244373A (en) 2007-03-29 2007-03-29 Two-layer structure provided by directly depositing manganese oxide on amorphous substrate or amorphous film

Publications (1)

Publication Number Publication Date
JP2008244373A true JP2008244373A (en) 2008-10-09

Family

ID=39915296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007086187A Pending JP2008244373A (en) 2007-03-29 2007-03-29 Two-layer structure provided by directly depositing manganese oxide on amorphous substrate or amorphous film

Country Status (1)

Country Link
JP (1) JP2008244373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049269A (en) * 2009-08-26 2011-03-10 Fujitsu Ltd Resistance switch element, and resistance switch memory element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255481A (en) * 1997-03-14 1998-09-25 Agency Of Ind Science & Technol Switching element and memory element using current and electric field induction phase transition in manganese oxide material
JP2005200271A (en) * 2004-01-15 2005-07-28 Sharp Corp Perovskite manganese oxide film and its producing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255481A (en) * 1997-03-14 1998-09-25 Agency Of Ind Science & Technol Switching element and memory element using current and electric field induction phase transition in manganese oxide material
JP2005200271A (en) * 2004-01-15 2005-07-28 Sharp Corp Perovskite manganese oxide film and its producing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012060215; 本津 茂樹、仲森 昌也、田畑 仁、石井 順也、川合 知二: '28a-ZF-8 アモルファス基板上への結晶化Ba(Sr)TiO3薄膜の作製' 応用物理学関係連合講演会講演予稿集 45(2), 19980328, p.513, 応用物理学会 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011049269A (en) * 2009-08-26 2011-03-10 Fujitsu Ltd Resistance switch element, and resistance switch memory element

Similar Documents

Publication Publication Date Title
EP1498952B1 (en) Oxygen content system and method for controlling memory resistance properties
US7514367B2 (en) Method for manufacturing a narrow structure on an integrated circuit
Yao et al. Intrinsic resistive switching and memory effects in silicon oxide
US20160172574A1 (en) Piezoelectric thin film device and method for manufacturing the same
JP4949396B2 (en) Memory device using abrupt metal-insulator transition and operation method thereof
JP2010016381A (en) Resistance change memory device equipped with oxide film and solid electrolyte film, and operation method of these
JP2009218260A (en) Variable resistance element
US8536554B2 (en) Three-terminal metal-insulator transition switch, switching system including the same, and method of controlling metal-insulator transition of the same
Chen et al. Transient Resistive Switching for Nonvolatile Memory Based on Water‐Soluble Cs4PbBr6 Perovskite Films
US7923711B2 (en) Switching elements and production methods thereof
JP2008311449A (en) Two-terminal resistance switch element by silicon, and semiconductor device
JP2007288016A (en) Memory element, and method of manufacturing memory element
Cortese et al. On the origin of resistive switching volatility in Ni/TiO2/Ni stacks
EP2522041B1 (en) Electrically actuated switch
JP2008244373A (en) Two-layer structure provided by directly depositing manganese oxide on amorphous substrate or amorphous film
JP3850605B2 (en) Solid-phase excimer device and manufacturing method thereof
Chen et al. Suppressing Structural Relaxation in Nanoscale Antimony to Enable Ultralow‐Drift Phase‐Change Memory Applications
JP6813844B2 (en) Tunnel junction element and non-volatile memory element
JP2015216241A (en) Functional device, and method for manufacturing vanadium dioxide thin film
Zhang et al. Modeling of conducting bridge evolution in bipolar vanadium oxide-based resistive switching memory
Dai et al. Ge2Sb2Te5 nanobelts by femtosecond laser direct writing for resistive switching devices
JP2010070853A (en) Method for producing metal oxide thin film
JP2010028001A (en) Resistance change element, and method for manufacturing resistance change element
Park et al. Effects of Switching Parameters on Resistive Switching Behaviors of Polycrystalline $\hbox {SrZrO} _ {3} $: Cr-Based Metal–Oxide–Metal Structures
Lin et al. Bipolar switching characteristics of RRAM cells with CaBi 4 Ti 4 O 15 film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130507