JP2008243547A - Transparent electrode and its manufacturing method - Google Patents

Transparent electrode and its manufacturing method Download PDF

Info

Publication number
JP2008243547A
JP2008243547A JP2007081373A JP2007081373A JP2008243547A JP 2008243547 A JP2008243547 A JP 2008243547A JP 2007081373 A JP2007081373 A JP 2007081373A JP 2007081373 A JP2007081373 A JP 2007081373A JP 2008243547 A JP2008243547 A JP 2008243547A
Authority
JP
Japan
Prior art keywords
transparent electrode
conductive metal
substrate
transparent
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007081373A
Other languages
Japanese (ja)
Other versions
JP5022076B2 (en
JP2008243547A5 (en
Inventor
Taisuke Iseda
泰助 伊勢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2007081373A priority Critical patent/JP5022076B2/en
Publication of JP2008243547A publication Critical patent/JP2008243547A/en
Publication of JP2008243547A5 publication Critical patent/JP2008243547A5/ja
Application granted granted Critical
Publication of JP5022076B2 publication Critical patent/JP5022076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent electrode which can be obtained simply at a low cost and has a high conductivity and transparency. <P>SOLUTION: A coating liquid in which conductive metal particulates are dispersed in an organic solvent is coated on a transparent substrate under a condition of relative humidity 50-95% and temperature 20-70°C and dried under high humidity, then the transparent substrate coated with this coating liquid is calcined, and a transparent electrode having a linear part constructed of the conductive metal on the surface of the transparent substrate is manufactured. The average size of this linear part may be nano meter size. The linear part is connected in two-dimensional net-work shape on the substrate and the ratio of area occupied by the linear part to the area of the whole surface of the substrate is 20% or less. The volume resistivity of the transparent electrode may be 100 Ω/sq. or less. The conductive metal may be a Group 1B metal of the periodical table (for example, silver) or may be an alloy or the like containing the Group 1B metal of the periodical table. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、各種の光学表示装置などに用いられる透明電極及びその製造方法に関する。   The present invention relates to a transparent electrode used in various optical display devices and the like and a method for manufacturing the transparent electrode.

現在、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、液晶ディスプレイ(LCD)、有機及び無機エレクトロルミネッセンスディスプレイ(ELD)などの表示装置、シリコン半導体系やグレッツェル式などの太陽電池、タッチパネル式表示装置などには、高い導電性及び透明性を有する透明電極が使用されている。透明電極としては、スパッタリングでガラス基板などの透明基板の上に、インジウム錫酸化物(ITO)薄膜を形成することにより作製されたITO電極が普及している。ITO電極には、スパッタリングを用いた製造方法によって、数十〜数百Ω/□もの高い導電性を有する透明電極が形成されている。しかし、インジウムは埋蔵量が減少しているため、資源的に代替物が要求されている。また、埋蔵量の減少によりインジウムの価格が高騰しているため、より安価な代替物も求められている。さらに、ITO電極は、スパッタリングを使用して製造するため、成膜時に基板を高温(通常、500〜600℃程度)で加熱する必要があり、耐熱性の低い基板を使用することができない。さらに、スパッタリングは非常に高価な設備であるため、経済性も低い。   Currently, display devices such as plasma display panels (PDP), fluorescent display tubes (VFD), liquid crystal displays (LCD), organic and inorganic electroluminescent displays (ELD), solar cells such as silicon semiconductors and Gretzels, touch panel displays A transparent electrode having high conductivity and transparency is used in the device. As a transparent electrode, an ITO electrode produced by forming an indium tin oxide (ITO) thin film on a transparent substrate such as a glass substrate by sputtering has become widespread. A transparent electrode having a conductivity as high as several tens to several hundreds Ω / □ is formed on the ITO electrode by a manufacturing method using sputtering. However, since reserves of indium are decreasing, alternatives are required in terms of resources. In addition, since the price of indium has risen due to a decrease in reserves, a cheaper alternative is also required. Furthermore, since the ITO electrode is manufactured using sputtering, it is necessary to heat the substrate at a high temperature (usually about 500 to 600 ° C.) during film formation, and a substrate having low heat resistance cannot be used. Furthermore, since sputtering is a very expensive facility, its economic efficiency is low.

そこで、ITO代替物として、安価で、高い透明性及び導電性を有する酸化亜鉛が注目されている。しかし、酸化亜鉛で構成された導電膜もスパッタリングを用いて製造するため、同様の欠点を有している。   Therefore, zinc oxide that is inexpensive and has high transparency and conductivity has attracted attention as an ITO substitute. However, since the conductive film made of zinc oxide is also manufactured using sputtering, it has the same drawbacks.

なお、インジウムよりも低い電気抵抗性を有し、かつ安価な材料としては、他の金属が挙げられる。しかし、他の金属は可視光線を反射する性質を有しているため、他の金属で構成された導電膜は、数十nm以下の薄膜であっても充分な透明性は得られない。   In addition, another metal is mentioned as a cheap material which has an electrical resistance lower than indium. However, since other metals have a property of reflecting visible light, a conductive film made of another metal cannot obtain sufficient transparency even if it is a thin film of several tens of nm or less.

そこで、他の金属を用いた透明電極の製造方法として、金属などの微粒子が分散した塗布液を基板上に塗布し、乾燥させた後、焼成し透明電極を得る方法が知られている。この方法では、スパッタリングを利用しないため、経済性が高く、スパッタリングで作製した膜に比べて、空隙を有する膜が形成され易い。しかし、この方法でも高い透明性と導電性とを両立するのは困難である。   Therefore, as a method for producing a transparent electrode using another metal, a method is known in which a coating liquid in which fine particles such as metal are dispersed is applied on a substrate, dried, and then fired to obtain a transparent electrode. In this method, since sputtering is not used, the cost is high, and a film having voids is easily formed as compared with a film manufactured by sputtering. However, even with this method, it is difficult to achieve both high transparency and conductivity.

さらに、金属化合物についても、微粒子を用いた方法が知られており、例えば、特開2004−55363号公報(特許文献1)には、金属酸化物、金属水酸化物及び金属炭酸塩からなる群から選択された少なくとも一つの金属化合物で構成されるナノ粒子を含有するコロイド分散物を、インクジェット法により基板に吐出させ、レーザー光線により焼成する透明電極の製造方法が開示されている。しかし、この方法でも、高い透明性と導電性とを両立するのは困難であり、操作が煩雑であるため生産性が低い。   Further, a method using fine particles is also known for metal compounds. For example, Japanese Patent Application Laid-Open No. 2004-55363 (Patent Document 1) discloses a group consisting of metal oxides, metal hydroxides, and metal carbonates. A method for producing a transparent electrode is disclosed in which a colloidal dispersion containing nanoparticles composed of at least one metal compound selected from the above is discharged onto a substrate by an ink jet method and fired with a laser beam. However, even with this method, it is difficult to achieve both high transparency and electrical conductivity, and the productivity is low because the operation is complicated.

一方、多孔質フィルムの製造方法としては、疎水性有機溶媒に高分子を溶解し、高湿度条件下で基板にキャストすると、溶媒蒸発過程において結露成長した水滴が自己組織化により集合して生じる規則配列を鋳型として(生じた規則配列性を形成した高分子膜を剥離して)、規則的に穴が開いた高分子フィルムを製造する方法が提案されている[Nature 369,387(1994)(非特許文献1)や表面技術 Vol.55,No.12,2004,p770−774(非特許文献2)]。この方法の原理は、溶媒が蒸発する際の潜熱によって空気中の水分子が凝結し水滴が生じることにより起こると考えられている。詳しくは、凝結により生じた水滴が、液面状でパッキングし、さらに潜熱によって溶液内に生じた対流や毛管法によって溶液と基板との界面まで運ばれた後、溶媒の後退により基板上に固定化され、さらに水が蒸発することで、高分子のネットワークが形成されると考えられている。   On the other hand, as a method for producing a porous film, when a polymer is dissolved in a hydrophobic organic solvent and cast on a substrate under a high humidity condition, water droplets which are condensed and grown in the solvent evaporation process are aggregated by self-organization. There has been proposed a method for producing a polymer film having regularly formed holes by using an array as a template (peeling the resulting polymer film having regular alignment) [Nature 369, 387 (1994) ( Non-Patent Document 1) and surface technology Vol. 55, no. 12, 2004, p770-774 (Non-Patent Document 2)]. The principle of this method is considered to be caused by condensation of water molecules in the air due to latent heat generated when the solvent evaporates to form water droplets. Specifically, water droplets generated by condensation are packed in the form of a liquid surface, and further transported to the interface between the solution and the substrate by convection or capillary method generated in the solution by latent heat, and then fixed on the substrate by the receding solvent. It is considered that a polymer network is formed by evaporation of water and further evaporation of water.

しかし、この方法は、溶質として有機化合物を用いる方法であり、無機化合物を溶質とした場合の規則構造を制御する方法ではない。
特開2004−55363号公報(請求項1及び2) Nature 369,387(1994) 表面技術 Vol.55,No.12,2004,p770−774
However, this method uses an organic compound as a solute, and is not a method for controlling a regular structure when an inorganic compound is used as a solute.
JP 2004-55363 A (Claims 1 and 2) Nature 369, 387 (1994) Surface technology Vol. 55, no. 12, 2004, p770-774

従って、本発明の目的は、簡便で安価に得られ、かつ導電性及び透明性が高い透明電極及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a transparent electrode which is simple and inexpensive and has high conductivity and transparency and a method for producing the same.

本発明の他の目的は、耐熱性の低い基板を用いても製造可能な透明電極及びその製造方法を提供することにある。   Another object of the present invention is to provide a transparent electrode that can be manufactured even by using a substrate having low heat resistance and a method for manufacturing the transparent electrode.

本発明者は、前記課題を達成するため鋭意検討した結果、導電性金属微粒子の有機溶媒分散液を透明基板上に塗布するとともに、高湿度下で乾燥することにより、有機溶媒を蒸発させ、蒸発潜熱を利用して微小水滴を生成させて導電性金属による多孔質構造を形成した後、焼成すると、導電性及び透明性が高い透明電極が簡便かつ安価に得られることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventor applied an organic solvent dispersion of conductive metal fine particles on a transparent substrate and dried it under high humidity to evaporate the organic solvent and evaporate it. We found that transparent electrodes with high conductivity and transparency can be obtained easily and inexpensively by firing after forming a porous structure of conductive metal by generating minute water droplets using latent heat. did.

すなわち、本発明の透明電極は、透明基板と、この透明基板の表面に導電性金属で構成された線状部とを有する透明電極であって、前記線状部は前記基板上で二次元ネットワーク状に連なっており、かつ前記基板の全表面の面積に対して前記線状部の占める面積の割合が20%以下である。前記線状部の平均径はナノメータサイズであってもよい。この透明電極は、体積比抵抗が100Ω/□以下であってもよい。前記導電性金属は、周期表第1B族金属(例えば、銀)、又は周期表第1B族金属を含む合金などであってもよい。   That is, the transparent electrode of the present invention is a transparent electrode having a transparent substrate and a linear portion made of a conductive metal on the surface of the transparent substrate, and the linear portion is a two-dimensional network on the substrate. The ratio of the area occupied by the linear portion to the area of the entire surface of the substrate is 20% or less. The average diameter of the linear portion may be nanometer size. The transparent electrode may have a volume specific resistance of 100Ω / □ or less. The conductive metal may be a periodic table group 1B metal (for example, silver) or an alloy containing a periodic table group 1B metal.

本発明には、導電性金属微粒子を有機溶媒中に分散させた塗布液を透明基板上に塗布し、かつ高湿度下で乾燥させて透明電極前駆体を形成する乾燥工程と、前記透明電極前駆体を焼成する焼成工程とを含む透明電極の製造方法も含まれる。前記乾燥工程において、微小水滴を凝縮させ、透明基板表面に、孔部に前記微小水滴を有する導電性金属で構成され、かつ前記孔部面積の割合が80%以上である網目状の多孔質体を形成してもよい。さらに、前記乾燥工程において、相対湿度50〜95%及び温度20〜99℃の条件下で乾燥してもよい。また、前記導電性金属微粒子として導電性金属ナノ粒子を用いてもよい。さらに、前記塗布液中の導電性金属微粒子の割合は、有機溶媒1mlに対して、0.01〜100mg/ml程度であってもよい。また、本発明にはこの製造方法により得られた透明電極も含まれる。   The present invention includes a drying step in which a coating liquid in which conductive metal fine particles are dispersed in an organic solvent is coated on a transparent substrate and dried under high humidity to form a transparent electrode precursor, and the transparent electrode precursor The manufacturing method of the transparent electrode including the baking process which bakes a body is also included. In the drying step, fine water droplets are condensed, and the transparent porous substrate surface is made of a conductive metal having the fine water droplets in the holes, and the ratio of the area of the holes is 80% or more. May be formed. Furthermore, in the said drying process, you may dry on the conditions of relative humidity 50-95% and temperature 20-99 degreeC. In addition, conductive metal nanoparticles may be used as the conductive metal fine particles. Furthermore, the ratio of the conductive metal fine particles in the coating solution may be about 0.01 to 100 mg / ml with respect to 1 ml of the organic solvent. The present invention also includes a transparent electrode obtained by this production method.

本発明では、透明基板の表面にネットワークを形成する線状導電性金属部を有しているので、汎用の導電性金属を用いて、簡便かつ安価な方法で、透明電極の導電性及び透明性を向上できる。従って、このような透明電極は、ITO透明電極の代替品として利用できる。さらに、スパッタリングを使用しないため、耐熱性の低い基板を用いても透明電極を製造できる。   Since the present invention has a linear conductive metal portion that forms a network on the surface of the transparent substrate, the conductivity and transparency of the transparent electrode can be easily and inexpensively used using a general-purpose conductive metal. Can be improved. Therefore, such a transparent electrode can be used as a substitute for the ITO transparent electrode. Furthermore, since sputtering is not used, a transparent electrode can be manufactured even using a substrate having low heat resistance.

[透明電極]
本発明の透明電極は、透明基板の表面に導電性金属で構成された線状部を有する。すなわち、線状部は、透明基板の表面に一体化して形成されており、透明基板の表面で二次元ネットワーク状(ランダム又は規則的な網目状)に連なっている。このように、導電性金属が透明基板の表面で連続しているため、本発明の透明電極は導電性が高い。
[Transparent electrode]
The transparent electrode of the present invention has a linear portion made of a conductive metal on the surface of a transparent substrate. That is, the linear portion is formed integrally with the surface of the transparent substrate, and is continuous in a two-dimensional network shape (random or regular mesh shape) on the surface of the transparent substrate. Thus, since the conductive metal is continuous on the surface of the transparent substrate, the transparent electrode of the present invention has high conductivity.

具体的には、本発明の透明電極の体積比抵抗は、例えば、100Ω/□以下であり、好ましくは0.1〜80Ω/□、さらに好ましくは0.5〜50Ω/□(特に1〜30Ω/□)程度である。このように本発明の透明電極は、ITO電極と同等、もしくはITO電極を超える高い導電性を有している。   Specifically, the volume resistivity of the transparent electrode of the present invention is, for example, 100Ω / □ or less, preferably 0.1-80Ω / □, more preferably 0.5-50Ω / □ (particularly 1-30Ω). / □) grade. Thus, the transparent electrode of the present invention has high conductivity equivalent to or exceeding that of the ITO electrode.

さらに、本発明の透明電極は、その表面において、透明性の低い導電性金属で構成された線状部の占める面積が小さいため、透明性も高い。線状部が透明基板の表面を占める面積の割合は、透明基板の全表面に対して20%以下(例えば、0.01〜20%程度)であり、好ましくは0.1〜18%、さらに好ましくは1〜16%(特に5〜15%)程度である。   Furthermore, the transparent electrode of the present invention has high transparency because the area occupied by the linear portion made of a conductive metal having low transparency is small on the surface. The ratio of the area where the linear portion occupies the surface of the transparent substrate is 20% or less (for example, about 0.01 to 20%) with respect to the entire surface of the transparent substrate, preferably 0.1 to 18%, Preferably it is about 1 to 16% (especially 5 to 15%).

線状部の平均径(幅及び高さ)はナノメータサイズであるのが好ましく、ナノメータサイズであることにより透明電極の透明性がさらに向上する。ここで、「ナノメータサイズ」とは1nm〜10,000nm(例えば、1〜1000nm)を意味する。線状部の平均径(平均幅及び高さ)は、いずれも、例えば、1〜1000nm、好ましくは10〜800nm、さらに好ましくは50〜500nm(特に100〜400nm)程度である。   The average diameter (width and height) of the linear portion is preferably nanometer size, and the transparency of the transparent electrode is further improved by the nanometer size. Here, “nanometer size” means 1 nm to 10,000 nm (for example, 1 to 1000 nm). The average diameter (average width and height) of the linear portion is, for example, about 1 to 1000 nm, preferably 10 to 800 nm, and more preferably about 50 to 500 nm (particularly 100 to 400 nm).

本発明の透明電極の全光線透過率は、例えば、30〜100%、好ましくは40〜99%、さらに好ましくは50〜95%程度である。   The total light transmittance of the transparent electrode of the present invention is, for example, about 30 to 100%, preferably about 40 to 99%, and more preferably about 50 to 95%.

透明基板としては、例えば、透明であれば特に限定されず、無機材料であってもよく、有機材料であってもよい。無機材料としては、例えば、ガラス類(ソーダガラス、ホウケイ酸ガラス、クラウンガラス、バリウム含有ガラス、ストロンチウム含有ガラス、ホウ素含有ガラス、低アルカリガラス、無アルカリガラス、結晶化透明ガラス、シリカガラス、石英ガラス、耐熱ガラスなど)、アルミナ、サファイア、ジルコニア、チタニア、酸化イットリウムなどが挙げられる。有機材料としては、例えば、ポリメタクリル酸メチル系樹脂、スチレン系樹脂、塩化ビニル系樹脂、ポリエステル系樹脂(ポリアリレート系樹脂や液晶ポリマーを含む)、ポリアミド系樹脂、ポリカーボネート系樹脂、ポリスルホン系樹脂、ポリエーテルスルホン系樹脂、ポリイミド系樹脂、セルロース誘導体、フッ素樹脂などが挙げられる。これらの材料は、焼成工程を経るため、耐熱性の高い材料、例えば、無機材料、エンジニアリングプラスチック(例えば、ポリアリレート系樹脂、ポリイミド系樹脂、ポリスルホン系樹脂など)、液晶ポリマー、フッ素樹脂などが好ましい。なかでも汎用性などの点から、ソーダガラスや無アルカリガラスなどのガラス類が好ましい。但し、後述するように、本発明では、焼成温度を低めに設定できるため、耐熱性の低い基板も使用できる。   The transparent substrate is not particularly limited as long as it is transparent, for example, and may be an inorganic material or an organic material. Examples of inorganic materials include glasses (soda glass, borosilicate glass, crown glass, barium-containing glass, strontium-containing glass, boron-containing glass, low alkali glass, alkali-free glass, crystallized transparent glass, silica glass, and quartz glass. , Heat resistant glass, etc.), alumina, sapphire, zirconia, titania, yttrium oxide, and the like. Examples of organic materials include polymethyl methacrylate resin, styrene resin, vinyl chloride resin, polyester resin (including polyarylate resin and liquid crystal polymer), polyamide resin, polycarbonate resin, polysulfone resin, Examples include polyethersulfone resins, polyimide resins, cellulose derivatives, and fluororesins. Since these materials are subjected to a firing step, materials having high heat resistance, such as inorganic materials, engineering plastics (for example, polyarylate resins, polyimide resins, polysulfone resins, etc.), liquid crystal polymers, fluororesins, and the like are preferable. . Of these, from the viewpoint of versatility, glass such as soda glass and non-alkali glass is preferable. However, as described later, in the present invention, since the firing temperature can be set lower, a substrate having low heat resistance can also be used.

透明基板の厚みは、用途に応じて適宜選択すればよく、例えば、0.001〜10mm、好ましくは0.01〜5mm、さらに好ましくは0.05〜3mm(特に0.1〜1mm)程度である。   What is necessary is just to select the thickness of a transparent substrate suitably according to a use, for example, 0.001-10 mm, Preferably it is 0.01-5 mm, More preferably, it is about 0.05-3 mm (especially 0.1-1 mm). is there.

線状部を構成する導電性金属としては、例えば、周期表3A族元素、周期表第4A族金属、第5A族金属(バナジウム、ニオブ、タンタルなど)、第6A族金属(モリブデン、タングステン、クロムなど)、第7A族金属、第8族金属(鉄、コバルト、ロジウム、パラジウム、イリジウム、白金など)、第1B族金属(銅、銀、金など)、第2B族金属、第3B族金属(アルミニウム、ガリウムなど)、第4B族金属(スズ、鉛など)、第5B族金属などが挙げられる。これらの金属は、単独で又は二種以上組み合わせて使用でき、また金属単体に限定されず、インジウム錫酸化物(ITO)などの酸化物であってもよい。   Examples of the conductive metal constituting the linear portion include a periodic table group 3A element, a periodic table group 4A metal, a group 5A metal (vanadium, niobium, tantalum, etc.), and a group 6A metal (molybdenum, tungsten, chromium). Group 7A metal, Group 8 metal (iron, cobalt, rhodium, palladium, iridium, platinum, etc.), Group 1B metal (copper, silver, gold, etc.), Group 2B metal, Group 3B metal ( Aluminum, gallium, etc.), Group 4B metals (tin, lead, etc.), Group 5B metals and the like. These metals can be used alone or in combination of two or more, and are not limited to simple metals, but may be oxides such as indium tin oxide (ITO).

これらの導電性金属のうち、導電性が高く、かつ比較的に低い温度で焼成できる点から、少なくとも周期表第1B族金属を含む金属単体又は合金、特に、銅、銀、金、又はこれらの合金が好ましい。なかでも、透明電極などに使用された場合の化学的安定性、導電性、焼成温度などのバランスの点から、銀単体が特に好ましい。   Among these conductive metals, since they are highly conductive and can be fired at a relatively low temperature, a simple metal or alloy containing at least Group 1B metal of the periodic table, particularly copper, silver, gold, or these Alloys are preferred. Among these, silver alone is particularly preferable from the viewpoint of balance between chemical stability, conductivity, firing temperature and the like when used for a transparent electrode.

なお、透明電極表面における導電性金属で構成された線状部の形状は、走査型電子顕微鏡(SEM)により観察できるが、SEM観察の原理において、対象物が導電体でない場合には、「チャージアップ」という現象を起こし、瘤状(隆起状)に観察されることが知られている。従って、SEM写真において、二次元ネットワーク状線状部以外で、瘤状に観察される部分には、導電体は存在せず、透明基板部分であると推定できる。   The shape of the linear portion made of a conductive metal on the surface of the transparent electrode can be observed with a scanning electron microscope (SEM). However, in the principle of SEM observation, if the object is not a conductor, “charge” It is known that the phenomenon of “up” occurs and is observed in the shape of a bump (bump). Therefore, in the SEM photograph, it can be presumed that the conductor is not present in the portion observed in the shape of the bump other than the two-dimensional network-like linear portion, and is a transparent substrate portion.

[透明電極の製造方法]
本発明の透明電極は、導電性金属微粒子を有機溶媒中に分散させた塗布液(ドープ液)を透明基板上に塗布し、かつ高湿度下で乾燥させて透明電極前駆体を得る乾燥工程と、前記透明電極前駆体を焼成する焼成工程とを含む製造方法により得られる。
[Method for producing transparent electrode]
The transparent electrode of the present invention comprises a drying step of applying a coating solution (dope solution) in which conductive metal fine particles are dispersed in an organic solvent on a transparent substrate and drying the coating solution under high humidity to obtain a transparent electrode precursor. And a baking method of baking the transparent electrode precursor.

乾燥工程において、塗布液中に含まれる導電性金属微粒子は、後述する焼成工程を経て、前述の線状部を形成可能な導電性金属微粒子であり、前述の導電性金属で構成されている。導電性金属微粒子はナノメータサイズの前記線状部を形成可能な導電性金属ナノ粒子であればよく、例えば、その平均粒径が500nm以下(例えば、0.1〜300nm)、好ましくは100nm以下(例えば、1〜100nm)、さらに好ましくは3〜80nm(特に5〜50nm)程度である。   In the drying step, the conductive metal fine particles contained in the coating liquid are conductive metal fine particles capable of forming the above-described linear portion through a baking step described later, and are composed of the above-described conductive metal. The conductive metal fine particle may be a conductive metal nanoparticle capable of forming the nanometer-sized linear portion. For example, the average particle size is 500 nm or less (for example, 0.1 to 300 nm), preferably 100 nm or less ( For example, it is about 1 to 100 nm), more preferably about 3 to 80 nm (especially 5 to 50 nm).

導電性金属微粒子の形状は、ナノメータサイズの粉粒状又は粉末状であれば特に限定されず、例えば、球状、楕円球状、多角方体状、針状などであってもよいが、通常、不定形状である。   The shape of the conductive metal fine particles is not particularly limited as long as it is a nanometer-sized powder or powder, and may be, for example, spherical, elliptical, polygonal, or needle-like, but is usually indefinite. It is.

有機溶媒としては、水よりも高揮発性であればよく、例えば、炭化水素類[脂肪族炭化水素類(ヘキサンなどの脂肪族炭化水素など)、脂環式炭化水素類(シクロヘキサンなどの脂環式炭化水素など)、芳香族炭化水素類(ベンゼンなどの芳香族炭化水素など)など]、ハロゲン化炭化水素類(塩化メチレン、クロロホルム、ジクロロエタンなど)、アルコール類(メタノール、エタノール、イソプロパノールなど)、エーテル類(ジエチルエーテル、ジイソプロピルエーテルなど)、ケトン類(アセトン、メチルエチルケトンなど)、アミド類(ジメチルホルムアミド、ジメチルアセトアミドなど)、ニトリル類(アセトニトリルなど)などが挙げられる。これらの有機溶媒は、単独で又は二種以上組み合わせて使用できる。これらの有機溶媒のうち、非水溶性又は疎水性有機溶媒が好ましく、例えば、クロロホルムなどのハロゲン化炭化水素などが汎用される。   The organic solvent may be higher in volatility than water. For example, hydrocarbons [aliphatic hydrocarbons (aliphatic hydrocarbons such as hexane), alicyclic hydrocarbons (alicyclic rings such as cyclohexane) Formula hydrocarbons), aromatic hydrocarbons (eg aromatic hydrocarbons such as benzene)], halogenated hydrocarbons (eg methylene chloride, chloroform, dichloroethane), alcohols (eg methanol, ethanol, isopropanol), Examples include ethers (diethyl ether, diisopropyl ether, etc.), ketones (acetone, methyl ethyl ketone, etc.), amides (dimethylformamide, dimethylacetamide, etc.), nitriles (acetonitrile, etc.) and the like. These organic solvents can be used alone or in combination of two or more. Of these organic solvents, water-insoluble or hydrophobic organic solvents are preferable, and halogenated hydrocarbons such as chloroform are generally used.

塗布液中の導電性金属微粒子の割合(濃度)は、例えば、有機溶媒1mlに対して、例えば、0.01〜100mg/ml、好ましくは0.05〜50mg/ml、さらに好ましくは0.1〜10mg/ml(特に0.5〜5mg/ml)程度である。導電性金属微粒子の割合がこの範囲にあると、導電性金属微粒子によるナノメータサイズのネットワーク構造を形成し易い。すなわち、導電性金属微粒子の割合が少なすぎると、網目構造の形成が困難となり、焼成後の体積比抵抗が100Ω/□を超え易い。一方、導電性金属微粒子の割合が多すぎると、ハニカム構造の開口面積が小さくなり、透過率が低下する。   The ratio (concentration) of the conductive metal fine particles in the coating solution is, for example, 0.01 to 100 mg / ml, preferably 0.05 to 50 mg / ml, more preferably 0.1 to 1 ml of the organic solvent. It is about 10 mg / ml (especially 0.5-5 mg / ml). When the proportion of the conductive metal fine particles is within this range, it is easy to form a nanometer-sized network structure with the conductive metal fine particles. That is, when the proportion of the conductive metal fine particles is too small, it is difficult to form a network structure, and the volume resistivity after firing tends to exceed 100Ω / □. On the other hand, when the proportion of the conductive metal fine particles is too large, the opening area of the honeycomb structure becomes small, and the transmittance decreases.

塗布の方法は、慣用の方法であってもよく、例えば、水蒸気を含む空気を吹き付けなどにより供給しながら、塗布液を基板に滴下する方法が好ましい。塗布量は、固形分換算で、例えば、500〜5000mg/m、好ましくは1000〜3000mg/m程度である。 The coating method may be a conventional method. For example, a method of dropping the coating liquid onto the substrate while supplying air containing water vapor by spraying or the like is preferable. The coating amount is, for example, about 500 to 5000 mg / m 2 , preferably about 1000 to 3000 mg / m 2 in terms of solid content.

乾燥工程では、高湿度下での乾燥が必須であり、具体的には、例えば、相対湿度50〜95%、好ましくは55〜90%、さらに好ましくは60〜85%(特に65〜80%)程度である。本発明では、高湿度下で乾燥することにより、微小水滴を凝縮又は凝結させ、透明基板表面に、孔部に前記微小水滴を有する導電性金属で構成された多孔質体を形成させることが発端となって、前述の構造を有する透明電極が得られる。このような多孔質(ハニカム状)構造が生成する原理は明確ではないが、分散液中の有機溶媒が蒸発する際の潜熱によって空気中の水分子が凝結して生じた水滴が、塗布液の液面上で細密にパッキングし、さらに潜熱によって塗布液内に生じた対流や毛管現象によって塗布液と基板との界面まで運ばれ、溶媒の蒸発により基板上に、ドット状で固定されることによると推定できる。さらに、このようにしてドット状に固定された水が蒸発し、導電性金属微粒子のネットワークが形成される。   In the drying step, drying under high humidity is essential. Specifically, for example, relative humidity is 50 to 95%, preferably 55 to 90%, more preferably 60 to 85% (especially 65 to 80%). Degree. In the present invention, drying under high humidity condenses or condenses minute water droplets to form a porous body made of a conductive metal having the minute water droplets in the pores on the transparent substrate surface. Thus, a transparent electrode having the above-described structure is obtained. Although the principle of generating such a porous (honeycomb-like) structure is not clear, water droplets generated by condensation of water molecules in the air due to latent heat when the organic solvent in the dispersion evaporates are formed in the coating liquid. By packing finely on the surface of the liquid, it is carried to the interface between the coating liquid and the substrate by convection and capillary action generated in the coating liquid due to latent heat, and fixed on the substrate in the form of dots by evaporation of the solvent. Can be estimated. Furthermore, the water thus fixed in the form of dots evaporates, and a network of conductive metal fine particles is formed.

なお、このような高湿度下での乾燥は、塗布液を塗布した後に高湿度としてもよいが、簡便性などの点から、通常、高湿度下で塗布を行うことにより、高湿度下での乾燥と塗布とを同時に行う。   In addition, although drying under such high humidity may be performed after applying the coating liquid, the humidity may be increased, but from the viewpoint of simplicity, the application under high humidity is usually performed by applying under high humidity. Drying and coating are performed simultaneously.

乾燥温度は、特に限定されず、溶媒の種類に応じて選択すればよく、室温(自然乾燥)でもよい。具体的な乾燥温度は、例えば、20〜99℃、好ましくは25〜70℃、さらに好ましくは30〜60℃(特に35〜50℃)程度である。乾燥温度をこの範囲にすると、溶媒の蒸発と水分の凝縮とをバランス良く同時に行うことができる。   The drying temperature is not particularly limited, and may be selected according to the type of solvent, and may be room temperature (natural drying). The specific drying temperature is, for example, about 20 to 99 ° C, preferably about 25 to 70 ° C, more preferably about 30 to 60 ° C (particularly about 35 to 50 ° C). When the drying temperature is within this range, evaporation of the solvent and condensation of the water can be simultaneously performed in a well-balanced manner.

乾燥は、このような湿度及び温度条件で行えばよいが、さらに、水分を供給するため、前記湿度下で水分を有する気体を塗布液の表面(塗布面)に吹き付けなどにより供給してもよい。供給する気体の風量は、例えば、0.01〜50リットル/分、好ましくは0.1〜30リットル/分、さらに好ましくは0.5〜10リットル/分(特に1〜5リットル/分)程度である。このような風量で、水分を有する気体を供給することにより、水分の凝結と溶媒の乾燥とをバランス良く同時に行うことができる。また、気体を透明基板の塗布面に供給する(例えば、吹き付ける)角度は、特に限定されず、斜め方向であってもよいが、規則的なハニカム構造を形成できる点から、通常、基板の塗布面に対して略垂直方向である。さらに、気体は、窒素ガス、アルゴンガスなどの不活性ガスなどであってもよいが、通常、空気である。   Drying may be performed under such humidity and temperature conditions, and further, in order to supply moisture, a gas having moisture under the humidity may be supplied by spraying the surface (application surface) of the coating liquid. . The amount of gas supplied is, for example, 0.01 to 50 liters / minute, preferably 0.1 to 30 liters / minute, more preferably 0.5 to 10 liters / minute (particularly 1 to 5 liters / minute). It is. By supplying a gas having moisture with such an air volume, condensation of moisture and drying of the solvent can be simultaneously performed in a balanced manner. In addition, the angle at which gas is supplied (for example, sprayed) to the application surface of the transparent substrate is not particularly limited, and may be an oblique direction. However, since a regular honeycomb structure can be formed, the application of the substrate is usually performed. It is substantially perpendicular to the surface. Further, the gas may be an inert gas such as nitrogen gas or argon gas, but is usually air.

乾燥時間は、特に限定されず、疎水性有機溶媒が蒸発すればよい。例えば、30秒〜180分、好ましくは1〜120分、さらに好ましくは5〜60分程度である。   The drying time is not particularly limited as long as the hydrophobic organic solvent evaporates. For example, it is 30 seconds to 180 minutes, preferably 1 to 120 minutes, more preferably about 5 to 60 minutes.

湿度や風量の調整は、慣用の加湿器を用いて行ってもよい。加湿器としては、蒸気加湿方式又は水噴霧方式の加湿器などが使用できる。   Adjustment of humidity and air volume may be performed using a conventional humidifier. As the humidifier, a steam humidifier or water spray humidifier can be used.

このように、乾燥工程では、水滴が鋳型となって、透明基板上で導電性金属微粒子が線状に連続してネットワーク(網目)を形成し、表面に規則的なハニカム構造を有する多孔質体が形成された透明電極前駆体が得られる。この前駆体の多孔質体における開口部の平均径は、例えば、0.1〜50μm、好ましくは0.3〜30μm、さらに好ましくは0.5〜10μm(特に1〜5μm)程度である。開口部の面積の割合は、80%以上(例えば、80〜99.99%程度)であり、好ましくは82〜99.9%、さらに好ましくは84〜99%(特に85〜95%)程度である。導電性金属微粒子で構成された線状部の平均幅及び高さは、いずれも1〜1000nm、好ましくは10〜800nm、さらに好ましくは50〜500nm(特に100〜400nm)程度である。   As described above, in the drying step, the porous body has a regular honeycomb structure on the surface, with water droplets serving as a mold, and conductive metal fine particles form a continuous network (network) on a transparent substrate. A transparent electrode precursor in which is formed is obtained. The average diameter of the openings in the precursor porous body is, for example, about 0.1 to 50 μm, preferably about 0.3 to 30 μm, and more preferably about 0.5 to 10 μm (particularly 1 to 5 μm). The area ratio of the opening is 80% or more (for example, about 80 to 99.99%), preferably about 82 to 99.9%, more preferably about 84 to 99% (particularly about 85 to 95%). is there. The average width and height of the linear portion composed of the conductive metal fine particles are each about 1 to 1000 nm, preferably about 10 to 800 nm, more preferably about 50 to 500 nm (particularly 100 to 400 nm).

焼成工程において、透明電極前駆体の焼成温度は、例えば、150〜400℃程度の範囲から選択でき、好ましくは160〜350℃、さらに好ましくは180〜300℃(特に200〜250℃)程度である。本発明では、導電性金属ナノ粒子を用いるためか、このような比較的低い温度で焼成が可能である。従って、耐熱性の低い基板であっても、焼成が可能であり、安定性及び導電性の高い透明電極を得ることができる。焼成時間は、例えば、1〜180分間、好ましくは3〜120分間、さらに好ましくは5〜60分間(特に10〜30分間)程度である。   In the firing step, the firing temperature of the transparent electrode precursor can be selected from the range of, for example, about 150 to 400 ° C, preferably 160 to 350 ° C, more preferably about 180 to 300 ° C (particularly 200 to 250 ° C). . In the present invention, firing can be performed at such a relatively low temperature because of the use of conductive metal nanoparticles. Therefore, even a substrate with low heat resistance can be baked, and a transparent electrode with high stability and conductivity can be obtained. The firing time is, for example, about 1 to 180 minutes, preferably 3 to 120 minutes, more preferably 5 to 60 minutes (particularly 10 to 30 minutes).

このような温度で焼成することにより、前述の構造を有する透明電極が得られる。なお、焼成によって焼成前のようなハニカム構造における規則性は消失するが、導電性金属による前述の二次元ネットワーク構造が形成される。   By baking at such a temperature, a transparent electrode having the above-described structure can be obtained. Although the regularity in the honeycomb structure before firing disappears due to firing, the above-described two-dimensional network structure is formed by the conductive metal.

本発明の透明電極は、透明性及び導電性がいずれも高いため、プラズマディスプレイパネル(PDP)、蛍光表示管(VFD)、液晶ディスプレイ(LCD)、有機及び無機エレクトロルミネッセンスディスプレイ(ELD)などの表示装置、シリコン半導体系やグレッツェル式などの太陽電池、タッチパネル式表示装置などに用いられる透明電極として利用できる。   Since the transparent electrode of the present invention has both high transparency and conductivity, displays such as plasma display panel (PDP), fluorescent display tube (VFD), liquid crystal display (LCD), organic and inorganic electroluminescence display (ELD), etc. It can be used as a transparent electrode used in a device, a solar cell of a silicon semiconductor system or a Gretzel type, a touch panel type display device or the like.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例において、得られたシートの体積比抵抗は、抵抗率計(キースレイ(株)製、「型番2002マルチメーター」)を用いて測定した。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. In the examples, the volume specific resistance of the obtained sheet was measured using a resistivity meter (“Model No. 2002 Multimeter” manufactured by Keith Lei Co., Ltd.).

実施例1
銀ナノ粒子(三ツ星ベルト(株)製、平均粒径4nm)1mgをクロロホルム1mlに分散させて、銀ナノ粒子を含む塗布液を調製した。温度40℃、湿度70%の空気をガラス基板(コーニング社製、商品名「1737液晶用無アルカリガラス」)に加湿機(ヤマト科学(株)製、Humidic Chamber IG47M)を用いて、2リットル/分の風量で吹き付けながら、ガラス基板上に塗布液を塗布量2200ml/m2で滴下、乾燥させ、透明電極前駆体を作製した。得られた透明電極前駆体表面の走査型電子顕微鏡(SEM)写真(1000倍)を図1に示す。この写真から、前駆体の表面は、規則性を有する銀の網目構造を形成していることが観察できた。網目構造の開口部直径は約1〜5μmであり、網目構造の幅は100〜500nmであり、開口部の面積は全表面の86.2%であった。
Example 1
1 mg of silver nanoparticles (manufactured by Mitsuboshi Belting Ltd., average particle size 4 nm) was dispersed in 1 ml of chloroform to prepare a coating solution containing silver nanoparticles. Using a humidifier (manufactured by Yamato Scientific Co., Ltd., Humidic Chamber IG47M), air at a temperature of 40 ° C. and a humidity of 70% was applied to a glass substrate (Corning Corp., trade name “Non-alkali glass for liquid crystal” 1737). The coating solution was dropped onto the glass substrate at a coating amount of 2200 ml / m 2 and dried while spraying with a minute air volume to produce a transparent electrode precursor. A scanning electron microscope (SEM) photograph (1000 times) of the surface of the obtained transparent electrode precursor is shown in FIG. From this photograph, it was observed that the surface of the precursor formed a regular silver network structure. The opening diameter of the network structure was about 1 to 5 μm, the width of the network structure was 100 to 500 nm, and the area of the opening was 86.2% of the entire surface.

この前駆体を220℃で20分間焼成し、透明電極が得られた。得られた透明電極表面のSEM写真(1000倍)を図2に示す。この写真から、透明電極の表面には、前駆体で見られた網目状構造の規則性は消失しているが、二次元ネットワークを形成していることが観察できた。また、透明電極表面においても、開口部の面積は全表面の92.8%であった。透明電極の体積比抵抗は、10Ω/□であった。   This precursor was baked at 220 ° C. for 20 minutes to obtain a transparent electrode. The SEM photograph (1000 times) of the obtained transparent electrode surface is shown in FIG. From this photograph, it was observed that the regularity of the network structure seen in the precursor disappeared on the surface of the transparent electrode, but a two-dimensional network was formed. Also, the area of the opening on the transparent electrode surface was 92.8% of the entire surface. The volume specific resistance of the transparent electrode was 10Ω / □.

なお、図2の写真には、銀で構成された二次元ネットワーク状線状部以外に、瘤状(隆起状)部が観察できるが、この瘤状部は、銀で構成された線状部ではなく、導電体が存在していないガラス基板部分であると推定できる。   In addition to the two-dimensional network-like linear portion made of silver, a grooved (protruded) portion can be observed in the photograph of FIG. 2, and this grooved portion is a linear portion made of silver. Rather, it can be estimated that it is a glass substrate portion where no conductor exists.

比較例1
温度25℃、湿度20%の空気で乾燥する以外は実施例1と同様にして、塗布、乾燥及び焼成を行い、電極を製造した。得られた電極表面のSEM写真(30000倍)を図3に示す。この写真から、電極の表面全体に銀ナノ粒子が覆っており、開口部の面積は全表面の0%であった。
Comparative Example 1
Coating, drying, and baking were performed in the same manner as in Example 1 except that drying was performed with air at a temperature of 25 ° C. and a humidity of 20%, thereby manufacturing an electrode. The SEM photograph (30000 times) of the obtained electrode surface is shown in FIG. From this photograph, the entire surface of the electrode was covered with silver nanoparticles, and the area of the opening was 0% of the entire surface.

比較例2
温度25℃、湿度20%の空気で乾燥し、かつ塗布液を1500rpm、30秒で、ガラス基板上にスピンコートする以外は実施例1と同様にして、塗布、乾燥及び焼成を行い電極を製造した。得られた電極表面のSEM写真(30000倍)を図4に示す。この写真から、電極の表面では、隣接する銀ナノ粒子が少なかったため、網目構造をとることができず、縞状に銀が点在していることがわかる。この電極の体積比抵抗は、10Ω/□以上の高抵抗であった。
Comparative Example 2
An electrode is manufactured by coating, drying and firing in the same manner as in Example 1 except that the coating is dried with air at a temperature of 25 ° C. and a humidity of 20% and the coating solution is spin-coated on a glass substrate at 1500 rpm for 30 seconds. did. The SEM photograph (30000 times) of the obtained electrode surface is shown in FIG. From this photograph, it can be seen that on the surface of the electrode, the number of adjacent silver nanoparticles was small, so that a network structure could not be taken and silver was scattered in a striped pattern. The volume specific resistance of this electrode was a high resistance of 10 6 Ω / □ or more.

図1は実施例1で得られた透明電極前駆体表面のSEM写真(1000倍)である。1 is an SEM photograph (1000 times) of the surface of the transparent electrode precursor obtained in Example 1. FIG. 図2は実施例1で得られた透明電極表面のSEM写真(1000倍)である。FIG. 2 is an SEM photograph (1000 times) of the surface of the transparent electrode obtained in Example 1. 図3は比較例1で得られた電極表面のSEM写真(30000倍)である。FIG. 3 is an SEM photograph (30000 times) of the electrode surface obtained in Comparative Example 1. 図4は比較例2で得られた電極表面のSEM写真(30000倍)である。4 is a SEM photograph (30000 times) of the electrode surface obtained in Comparative Example 2. FIG.

Claims (11)

透明基板と、この透明基板の表面に形成され、かつ導電性金属で構成された線状部とを有する透明電極であって、前記線状部が前記基板上で二次元ネットワーク状に連なっており、かつ前記基板の全表面の面積に対して前記線状部の占める面積の割合が20%以下である透明電極。   A transparent electrode having a transparent substrate and a linear portion formed on a surface of the transparent substrate and made of a conductive metal, wherein the linear portion is connected in a two-dimensional network form on the substrate. And the ratio of the area which the said linear part occupies with respect to the area of the whole surface of the said board | substrate is 20% or less. 体積比抵抗が100Ω/□以下である請求項1記載の透明電極。   The transparent electrode according to claim 1, wherein the volume resistivity is 100Ω / □ or less. 導電性金属が、少なくとも周期表第1B族金属を含む請求項1記載の透明電極。   The transparent electrode according to claim 1, wherein the conductive metal includes at least a Group 1B metal of the periodic table. 導電性金属が銀である請求項1記載の透明電極。   The transparent electrode according to claim 1, wherein the conductive metal is silver. 線状部の平均径がナノメータサイズである請求項1〜4のいずれかに記載の透明電極。   The transparent electrode according to any one of claims 1 to 4, wherein an average diameter of the linear portion is nanometer size. 導電性金属微粒子を有機溶媒中に分散させた塗布液を透明基板上に塗布し、かつ高湿度下で乾燥させて透明電極前駆体を形成する乾燥工程と、前記透明電極前駆体を焼成する焼成工程とを含む透明電極の製造方法。   A coating step in which conductive metal fine particles are dispersed in an organic solvent is coated on a transparent substrate and dried under high humidity to form a transparent electrode precursor, and firing to sinter the transparent electrode precursor A process for producing a transparent electrode comprising a step. 乾燥工程において、微小水滴を凝縮させ、透明基板表面に、孔部に前記微小水滴を有する導電性金属で構成され、かつ前記孔部面積の割合が80%以上である網目状の多孔質体を形成する請求項6記載の製造方法。   In the drying process, a minute porous water droplet is condensed, and on the transparent substrate surface, a mesh-like porous body composed of a conductive metal having the fine water droplet in the hole and having a ratio of the hole area of 80% or more is obtained. The manufacturing method of Claim 6 formed. 乾燥工程において、相対湿度50〜95%及び温度20〜99℃の条件下で乾燥する請求項6記載の製造方法。   The production method according to claim 6, wherein the drying step is performed under conditions of a relative humidity of 50 to 95% and a temperature of 20 to 99 ° C. 導電性金属微粒子が導電性金属ナノ粒子である請求項6記載の製造方法。   The production method according to claim 6, wherein the conductive metal fine particles are conductive metal nanoparticles. 塗布液中の導電性金属微粒子の割合が、有機溶媒1mlに対して、0.01〜100mg/mlである請求項6記載の製造方法。   The production method according to claim 6, wherein the ratio of the conductive metal fine particles in the coating solution is 0.01 to 100 mg / ml with respect to 1 ml of the organic solvent. 請求項6記載の製造方法により得られる透明電極。   The transparent electrode obtained by the manufacturing method of Claim 6.
JP2007081373A 2007-02-28 2007-03-27 Transparent electrode and manufacturing method thereof Expired - Fee Related JP5022076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081373A JP5022076B2 (en) 2007-02-28 2007-03-27 Transparent electrode and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007048574 2007-02-28
JP2007048574 2007-02-28
JP2007081373A JP5022076B2 (en) 2007-02-28 2007-03-27 Transparent electrode and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2008243547A true JP2008243547A (en) 2008-10-09
JP2008243547A5 JP2008243547A5 (en) 2009-03-26
JP5022076B2 JP5022076B2 (en) 2012-09-12

Family

ID=39914643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081373A Expired - Fee Related JP5022076B2 (en) 2007-02-28 2007-03-27 Transparent electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5022076B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001786A1 (en) * 2008-07-02 2010-01-07 株式会社日本触媒 Process for producing electroconductive film and electroconductive film
JP2011138622A (en) * 2009-12-25 2011-07-14 Tohoku Univ Method of manufacturing conductive film and conductive film
WO2012124647A1 (en) * 2011-03-14 2012-09-20 コニカミノルタホールディングス株式会社 Method for producing planar electrode for organic electronic device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312715A (en) * 1997-05-13 1998-11-24 Sumitomo Osaka Cement Co Ltd Transparent conductive film and its manufacture
JP2001064540A (en) * 1999-08-30 2001-03-13 Catalysts & Chem Ind Co Ltd Transparent, electrically conductive coated film-forming coating liquid, substrate having transparent, electrically conductive coated film and display device
JP2001262359A (en) * 2000-03-22 2001-09-26 Sumitomo Osaka Cement Co Ltd Coating liquid for forming catalyst film, method for forming transparent conductive film and transparent conductive film
JP2003331654A (en) * 2002-05-08 2003-11-21 Toppan Printing Co Ltd Conductive film and method of manufacturing same
JP2005332705A (en) * 2004-05-20 2005-12-02 Fujimori Kogyo Co Ltd Transparent electrode substrate, its manufacturing method and dye-sensitized solar cell using it
WO2006040989A1 (en) * 2004-10-08 2006-04-20 Toray Industries, Inc. Conductive film
JP2006127929A (en) * 2004-10-29 2006-05-18 Mitsubishi Chemicals Corp Substrate with transparent conductive film, coating liquid and its manufacturing method
JP2006169592A (en) * 2004-12-16 2006-06-29 Sumitomo Electric Ind Ltd Metal fine particle-dispersed liquid, wiring using the same and method for forming the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312715A (en) * 1997-05-13 1998-11-24 Sumitomo Osaka Cement Co Ltd Transparent conductive film and its manufacture
JP2001064540A (en) * 1999-08-30 2001-03-13 Catalysts & Chem Ind Co Ltd Transparent, electrically conductive coated film-forming coating liquid, substrate having transparent, electrically conductive coated film and display device
JP2001262359A (en) * 2000-03-22 2001-09-26 Sumitomo Osaka Cement Co Ltd Coating liquid for forming catalyst film, method for forming transparent conductive film and transparent conductive film
JP2003331654A (en) * 2002-05-08 2003-11-21 Toppan Printing Co Ltd Conductive film and method of manufacturing same
JP2005332705A (en) * 2004-05-20 2005-12-02 Fujimori Kogyo Co Ltd Transparent electrode substrate, its manufacturing method and dye-sensitized solar cell using it
WO2006040989A1 (en) * 2004-10-08 2006-04-20 Toray Industries, Inc. Conductive film
JP2006127929A (en) * 2004-10-29 2006-05-18 Mitsubishi Chemicals Corp Substrate with transparent conductive film, coating liquid and its manufacturing method
JP2006169592A (en) * 2004-12-16 2006-06-29 Sumitomo Electric Ind Ltd Metal fine particle-dispersed liquid, wiring using the same and method for forming the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001786A1 (en) * 2008-07-02 2010-01-07 株式会社日本触媒 Process for producing electroconductive film and electroconductive film
JP2010034039A (en) * 2008-07-02 2010-02-12 Tohoku Univ Method of manufacturing conductive film, and conductive film
JP2011138622A (en) * 2009-12-25 2011-07-14 Tohoku Univ Method of manufacturing conductive film and conductive film
WO2012124647A1 (en) * 2011-03-14 2012-09-20 コニカミノルタホールディングス株式会社 Method for producing planar electrode for organic electronic device

Also Published As

Publication number Publication date
JP5022076B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
Zhu et al. Flexible transparent electrodes based on silver nanowires: Material synthesis, fabrication, performance, and applications
Hong et al. Precise morphology control and continuous fabrication of perovskite solar cells using droplet-controllable electrospray coating system
Zhu et al. Superlyophilic interfaces and their applications
Araki et al. Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method
Li et al. Physical processes-aided periodic micro/nanostructured arrays by colloidal template technique: fabrication and applications
Ye et al. Metal nanowire networks: the next generation of transparent conductors
Hsu et al. Directed spatial organization of zinc oxide nanorods
Liu et al. Fabrication of platinum-decorated single-walled carbon nanotube based hydrogen sensors by aerosol jet printing
Nguyen et al. Epitaxial directional growth of indium-doped tin oxide nanowire arrays
Matsushita et al. New mesostructured porous TiO2 surface prepared using a two-dimensional array-based template of silica particles
Baek et al. Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder
JP5290926B2 (en) Conductive film manufacturing method using conductive structure
JP5390526B2 (en) Carbon nanotube conductive film using spray coating and method for producing the same
TWI573285B (en) Photoelectric conversion element
US8932898B2 (en) Deposition and post-processing techniques for transparent conductive films
Voronin et al. Cu–Ag and Ni–Ag meshes based on cracked template as efficient transparent electromagnetic shielding coating with excellent mechanical performance
Wang et al. Roll-to-roll slot die production of 300 mm large area silver nanowire mesh films for flexible transparent electrodes
Varea et al. Electrospray as a suitable technique for manufacturing carbon-based devices
Yasin et al. Aqueous, screen-printable paste for fabrication of mesoporous composite Anatase–Rutile TiO2 nanoparticle thin films for (photo) electrochemical devices
Fox et al. Uniform deposition of silver nanowires and graphene oxide by superhydrophilicity for transparent conductive films
JP5022076B2 (en) Transparent electrode and manufacturing method thereof
Zhao et al. Electrospray as a fabrication tool in organic photovoltaics
Zhu et al. Structure of nanoparticle aggregate films built using pulsed-mode electrospray atomization
Tao et al. Homogeneous surface profiles of inkjet-printed silver nanoparticle films by regulating their drying microenvironment
Han et al. Efficient planar-heterojunction perovskite solar cells fabricated by high-throughput sheath-gas-assisted electrospray

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120615

R150 Certificate of patent or registration of utility model

Ref document number: 5022076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees