JP2008241937A - Multimode interference optical coupler and mach-zehnder optical modulator - Google Patents

Multimode interference optical coupler and mach-zehnder optical modulator Download PDF

Info

Publication number
JP2008241937A
JP2008241937A JP2007080209A JP2007080209A JP2008241937A JP 2008241937 A JP2008241937 A JP 2008241937A JP 2007080209 A JP2007080209 A JP 2007080209A JP 2007080209 A JP2007080209 A JP 2007080209A JP 2008241937 A JP2008241937 A JP 2008241937A
Authority
JP
Japan
Prior art keywords
optical waveguide
multimode
optical
input
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007080209A
Other languages
Japanese (ja)
Inventor
Hideaki Okayama
秀彰 岡山
Hiroshi Wada
浩 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2007080209A priority Critical patent/JP2008241937A/en
Publication of JP2008241937A publication Critical patent/JP2008241937A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multimode interference optical coupler which is capable of increasing an allowable width error while keeping an overall length short. <P>SOLUTION: The multimode interference optical coupler 100 includes the first input/output optical waveguides 110 and 120, at least two second input/output optical waveguides 140 and 150 adjacent to each other, and a multimode optical waveguide 130 provided between the first input/output optical waveguides 110 and 120 and the second input/output optical waveguides 140 and 150 and for propagating multimode guided wave. The multimode optical waveguide 130 included in the multimode interference optical couple 100 includes a first multimode optical waveguide part 131 having the first input/output optical waveguides 110 and 120 connected thereto and a second multimode optical waveguide part 132 which has the second input/output optical waveguides 140 and 150 connected thereto and has a width narrower than that of the first multimode optical waveguide part 131 in a direction perpendicular to the propagation direction of the multimode guided wave. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、マルチモード干渉光カプラ及びマッハツェンダ型光変調器に関する。   The present invention relates to a multimode interference optical coupler and a Mach-Zehnder optical modulator.

近年、光エレクトロニクスが飛躍的に発展し、光を用いた光通信等の情報伝達技術が目覚しい発展を遂げている。この光エレクトロニクスでは、様々な光学素子が開発されている。中でも、伝搬する光を分離する光カプラや、光を結合する光スプリッタ等は、多様な用途を有し複雑化し多様化する光通信網をも支える光学素子として重要である。   In recent years, optoelectronics have been dramatically developed, and information transmission technology such as optical communication using light has been remarkably developed. Various optical elements have been developed in this optoelectronics. Among them, an optical coupler that separates propagating light, an optical splitter that couples light, and the like are important as optical elements that support an optical communication network that has various uses and is complicated and diversified.

この光カプラは、主に方向性結合器型、X分岐型、Y分岐型、マルチモード干渉(Multimode Interferometer:MMI)型に分類される。このうちMMI型の光カプラ(以下、「MMI光カプラ」という。)は、構造が単純化でき、小型に形成可能であり、屈折率や伝搬する光の波長によって特性があまり変化しない等の利点を有しており、また、製造プロセスの寸法精度の偏差に対しても影響を受け難いという特性を有している。   This optical coupler is mainly classified into a directional coupler type, an X-branch type, a Y-branch type, and a multimode interference (MMI) type. Among these, the MMI type optical coupler (hereinafter referred to as “MMI optical coupler”) has an advantage that the structure can be simplified, it can be formed in a small size, and the characteristics do not change so much depending on the refractive index and the wavelength of propagating light. Moreover, it has the characteristic that it is hard to be influenced by the deviation of the dimensional accuracy of a manufacturing process.

また、光カプラを用いたマッハツェンダ型光変調器は、高屈折率性によって微小な導波路構造を有することができるが、マッハツェンダ型光変調器を製造する場合、微細な構造を形成するためには、製造プロセスに影響を受けやすい方向性結合器型等の光カプラを使用するよりも、MMI光カプラが多く使用される。また、出力ポートを2つ用意できるので、波長チャープ効果の少ない変調光を出力するポートを選択可能であるという理由から、2×1型のMMI光カプラを使用するよりも、2×2型のMMI光カプラを使用する方が一般化している。   Also, a Mach-Zehnder type optical modulator using an optical coupler can have a minute waveguide structure due to its high refractive index, but when manufacturing a Mach-Zehnder type optical modulator, in order to form a fine structure MMI optical couplers are often used rather than directional coupler type optical couplers that are easily affected by the manufacturing process. Also, since two output ports can be prepared, it is possible to select a port that outputs modulated light with little wavelength chirp effect, so that a 2 × 2 type MMI optical coupler is used rather than a 2 × 1 type MMI optical coupler. The use of MMI optical couplers has become more common.

このようなMMI光カプラの更なる性能向上を図るために多くの開発が成されている。例えば、特許文献1には、MMI光カプラによる過剰損失及び損失の波長特性を低減するために、シングルモード導波路のコアの幅をマルチモード光導波路に接近するほど拡大するテーパ状に形成する発明が開示されており、特許文献2には、MMI光カプラの全長を短縮するために、マルチモード光導波路の中央部で導波路幅を狭く形成する発明が開示されている。   Many developments have been made to further improve the performance of such MMI optical couplers. For example, in Patent Document 1, in order to reduce the wavelength characteristics of excess loss and loss due to an MMI optical coupler, an invention is formed in which the width of the core of a single mode waveguide is tapered so as to increase as it approaches the multimode optical waveguide. Patent Document 2 discloses an invention in which the waveguide width is narrowed at the center of the multimode optical waveguide in order to shorten the overall length of the MMI optical coupler.

特開2000−162454号公報JP 2000-162454 A 米国特許第5689597号明細書US Pat. No. 5,689,597

MMI光カプラを製造する場合、フォトリソグラフィやエッチング等による微細加工技術が使用され、製造プロセスの寸法精度の偏差により、最適な幅Wからの製造誤差(以下、「幅誤差」、「幅誤差dW」、「dW」等という。)が生じる。上述のようにMMI光カプラは他の種類の光カプラよりも優れた特性を有するが、この幅誤差dWによる従来のMMI光カプラの特性の変化は、依然として大きいという問題があった。   When manufacturing an MMI optical coupler, a microfabrication technique such as photolithography or etching is used, and a manufacturing error (hereinafter referred to as “width error”, “width error dW”) from an optimum width W due to a deviation in dimensional accuracy of the manufacturing process. "," DW ", etc.). As described above, the MMI optical coupler has characteristics superior to those of other types of optical couplers. However, the change in characteristics of the conventional MMI optical coupler due to the width error dW is still large.

上記特許文献1に記載のMMI光カプラによれば、シングルモード光導波路をテーパ状に形成することにより、この幅誤差dWによる特性の変化を低減することができるが、幅誤差dWによる影響を充分に低減するには至っていない。また、特許文献1に記載のMMI光カプラによれば、シングルモード光導波路をテーパ形状とするため、並設されたシングルモード光導波路間の間隙が狭くなる。この間隙は、ドライエッチング等によって掘り込むことにより形成するが、この間隙が狭いと、エッチングガスの進入が難しくなり、製造過程で使用する反応生成物の離脱も困難となる。その結果、エッチングレートが極端に悪くなり、間隙を2μm以下にすることは製造上困難であるという問題があった。   According to the MMI optical coupler described in Patent Document 1, the change in characteristics due to the width error dW can be reduced by forming the single mode optical waveguide in a tapered shape, but the influence of the width error dW is sufficiently affected. It has not yet been reduced. Further, according to the MMI optical coupler described in Patent Document 1, since the single mode optical waveguide is tapered, the gap between the single mode optical waveguides arranged side by side becomes narrow. This gap is formed by digging by dry etching or the like. However, if this gap is narrow, it becomes difficult for the etching gas to enter, and it becomes difficult to separate reaction products used in the manufacturing process. As a result, there is a problem that the etching rate is extremely deteriorated and it is difficult to manufacture the gap of 2 μm or less.

そこで、この間隙を2μm以上にすることも考えられるが、この場合、MMI光カプラの幅Wをも大きくする必要があり、それに伴いMMI光カプラの最適な長さLを長くする必要があるため、MMI光カプラ全体の大きさが大きくなるという問題があった。   Therefore, it is conceivable to set the gap to 2 μm or more. In this case, however, it is necessary to increase the width W of the MMI optical coupler, and accordingly, it is necessary to increase the optimum length L of the MMI optical coupler. There is a problem that the overall size of the MMI optical coupler becomes large.

上述のように、MMI光カプラの長さLを短縮する方法が上記特許文献2には開示されているが、特許文献2に記載のMMI光カプラによっても充分な短縮効率は得られていなかった。また、2×2MMI光カプラを構成した場合、光を分岐したときの分配比が1:1からずれてしまうという問題があった。   As described above, a method for shortening the length L of the MMI optical coupler is disclosed in Patent Document 2, but sufficient shortening efficiency has not been obtained even by the MMI optical coupler described in Patent Document 2. . Further, when the 2 × 2 MMI optical coupler is configured, there is a problem that the distribution ratio when the light is branched is deviated from 1: 1.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、全長を短く保ったまま、許容できる幅誤差を大きくすることが可能な、新規かつ改良されたマルチモード干渉光カプラ及びマッハツェンダ型光変調器を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is a new and improved that can increase an allowable width error while keeping the entire length short. An object is to provide a multimode interference optical coupler and a Mach-Zehnder type optical modulator.

上記課題を解決するために、本発明のある観点によれば、第1入出力光導波路と、相隣接する少なくとも2つの第2入出力光導波路と、第1入出力光導波路と第2入出力光導波路との間に設けられマルチモード導波光を伝搬するマルチモード光導波路と、を有するマルチモード干渉光カプラであって、マルチモード光導波路は、第1入出力光導波路が接続される第1マルチモード光導波路部と、第2入出力光導波路が接続され、マルチモード導波光の伝搬方向に垂直な方向の幅が第1マルチモード光導波路部より狭い第2マルチモード光導波路部と、から構成されることを特徴とする、マルチモード干渉光カプラが提供される。かかる構成によれば、幅誤差の変化によるマルチモード干渉光カプラの特性の変化を低減することができる。   In order to solve the above problems, according to an aspect of the present invention, a first input / output optical waveguide, at least two second input / output optical waveguides adjacent to each other, a first input / output optical waveguide, and a second input / output are provided. A multimode interference optical coupler having a multimode optical waveguide provided between the optical waveguide and propagating multimode guided light, wherein the multimode optical waveguide is connected to the first input / output optical waveguide. A multimode optical waveguide section and a second input / output optical waveguide are connected to each other, and a width in a direction perpendicular to the propagation direction of the multimode waveguide light is narrower than the first multimode optical waveguide section. A multi-mode interference optical coupler is provided that is configured. According to this configuration, it is possible to reduce changes in the characteristics of the multimode interference optical coupler due to changes in width error.

また、第1入出力光導波路は、マルチモード導波光の伝搬方向と平行なマルチモード光導波路の中心軸から、マルチモード光導波路の幅の約1/6の距離離隔して配置されてもよい。   The first input / output optical waveguide may be arranged at a distance of about 1/6 of the width of the multimode optical waveguide from the central axis of the multimode optical waveguide parallel to the propagation direction of the multimode optical waveguide. .

また、伝搬方向と平行な第2マルチモード光導波路部の側面と、各第2入出力光導波路の外側面とが段差なく接合されてもよい。   Further, the side surface of the second multi-mode optical waveguide portion parallel to the propagation direction and the outer surface of each second input / output optical waveguide may be joined without a step.

また、第1入出力光導波路及び第2入出力光導波路の少なくともいずれか一方は、マルチモード光導波路に接近するに従ってテーパ状に拡大する幅を有してもよい。かかる構成によれば、テーパ状に拡大する幅により、マルチモード光導波路への入力光のスポットサイズを拡大することができ、その結果、励振された一次モードとの干渉の効率を大きくすることができ、損失を小さくすることができる。   In addition, at least one of the first input / output optical waveguide and the second input / output optical waveguide may have a width that expands in a tapered shape as the multimode optical waveguide approaches. According to such a configuration, the spot size of the input light to the multimode optical waveguide can be increased by the width expanding in a tapered shape, and as a result, the efficiency of interference with the excited primary mode can be increased. And loss can be reduced.

また、第2入出力光導波路は、マルチモード導波光の伝搬方向と平行なマルチモード光導波路の中心軸から、マルチモード光導波路の幅の1/6〜1/5の距離だけ離隔して配置されてもよい。   Further, the second input / output optical waveguide is arranged at a distance of 1/6 to 1/5 of the width of the multimode optical waveguide from the central axis of the multimode optical waveguide parallel to the propagation direction of the multimode optical waveguide. May be.

また、第2マルチモード光導波路部の幅は、第1マルチモード光導波路部の幅の50%〜60%であってもよい。   Further, the width of the second multimode optical waveguide portion may be 50% to 60% of the width of the first multimode optical waveguide portion.

また、第2マルチモード光導波路部の長さは、マルチモード光導波路の長さの2%〜10%であってもよい。   Further, the length of the second multimode optical waveguide portion may be 2% to 10% of the length of the multimode optical waveguide.

また、上記課題を解決するために、本発明の別の観点によれば、第1入出力光導波路と、相隣接する少なくとも2つの第2入出力光導波路と、第1入出力光導波路と第2入出力光導波路との間に設けられマルチモード導波光を伝搬するマルチモード光導波路と、を有し、マルチモード光導波路は、第1入出力光導波路が接続される第1マルチモード光導波路部と、第2入出力光導波路が接続され、第1マルチモード光導波路部よりマルチモード導波光の伝搬方向に垂直な方向の幅が狭い第2マルチモード光導波路部と、から構成されるマルチモード干渉光カプラを2つ有し、一のマルチモード干渉光カプラの第2入出力光導波路と、他のマルチモード干渉光カプラの第2入出力光導波路とが連結導波路で連結されることを特徴とする、マッハツェンダ型光変調器が提供される。かかる構成によれば、幅誤差の変化によるマルチモード干渉光カプラの特性の変化を低減することができる。   In order to solve the above problems, according to another aspect of the present invention, a first input / output optical waveguide, at least two adjacent second input / output optical waveguides, a first input / output optical waveguide, A multimode optical waveguide that is provided between the two input / output optical waveguides and propagates the multimode guided light, and the multimode optical waveguide is connected to the first input / output optical waveguide. And a second multimode optical waveguide section, to which a second input / output optical waveguide is connected, and a second multimode optical waveguide section whose width in the direction perpendicular to the propagation direction of the multimode waveguide light is narrower than that of the first multimode optical waveguide section. Two mode interference optical couplers are provided, and a second input / output optical waveguide of one multimode interference optical coupler and a second input / output optical waveguide of another multimode interference optical coupler are connected by a connection waveguide. Characterized by Mach Enda optical modulator is provided. According to this configuration, it is possible to reduce changes in the characteristics of the multimode interference optical coupler due to changes in width error.

以上説明したように本発明によれば、全長を短く保ったまま、許容できる幅誤差を大きくすることができる。   As described above, according to the present invention, an allowable width error can be increased while keeping the entire length short.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。尚、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, the duplicate description is abbreviate | omitted by attaching | subjecting the same code | symbol.

本願の一実施形態に係るMMI光カプラの説明をする前に、まず、図8を参照して、例えば特許文献1に記載の従来のMMI光カプラについて説明する。   Before describing an MMI optical coupler according to an embodiment of the present application, first, a conventional MMI optical coupler described in Patent Document 1, for example, will be described with reference to FIG.

<従来のMMI光カプラ500>
図8は、従来のMMI光カプラ500を説明するための説明図である。図8の(A)は、従来のMMI光カプラ500の構成を示し、(B)は、従来のMMI光カプラ500の特性を示し、(C)は、従来のMMI光カプラ500によって構成されたマッハツェンダ型光変調器700を示し、(D)は、そのマッハツェンダ型光変調器700の特性を示す。
<Conventional MMI Optical Coupler 500>
FIG. 8 is an explanatory diagram for explaining a conventional MMI optical coupler 500. 8A shows the configuration of the conventional MMI optical coupler 500, FIG. 8B shows the characteristics of the conventional MMI optical coupler 500, and FIG. 8C shows the configuration of the conventional MMI optical coupler 500. The Mach-Zehnder type optical modulator 700 is shown, and (D) shows the characteristics of the Mach-Zehnder type optical modulator 700.

尚、MMI光カプラの特性は、MMI光カプラによって光を分岐する場合の出力光の強度比や、製造時の幅誤差に対する出力光の強度の変化等によって判断され、この特性は、マッハツェンダ型光変調器を構成した場合のこの幅誤差による出力強度の変化等にも表れる。そこで、以下では、このMMI光カプラやマッハツェンダ型光変調器の特性を、単に「特性」という。   The characteristics of the MMI optical coupler are determined by the intensity ratio of the output light when the light is branched by the MMI optical coupler, the change in the intensity of the output light with respect to the width error at the time of manufacture, etc. It also appears in a change in output intensity due to this width error when a modulator is configured. Therefore, hereinafter, the characteristics of the MMI optical coupler and the Mach-Zehnder optical modulator are simply referred to as “characteristics”.

従来のMMI光カプラ500は、図8の(A)に示すように、シングルモード光導波路510、520、540、550と、マルチモード光導波路530と、を有する。マルチモード光導波路530は、シングルモード光導波路510、520と、シングルモード光導波路540、550との間に配置される。そして、シングルモード光導波路510、520、540、550は、それぞれマルチモード光導波路530に近づくに従ってテーパ状に拡大する幅を有する。   As shown in FIG. 8A, the conventional MMI optical coupler 500 includes single mode optical waveguides 510, 520, 540, and 550, and a multimode optical waveguide 530. The multimode optical waveguide 530 is disposed between the single mode optical waveguides 510 and 520 and the single mode optical waveguides 540 and 550. Each of the single mode optical waveguides 510, 520, 540, and 550 has a width that expands in a tapered shape as the multimode optical waveguide 530 is approached.

この従来のMMI光カプラ500は、n型InP等の化学物半導体等で形成された基板上に、順次積層された下部クラッド、光導波路及び上部クラッドによる三層構造を有するリッジ導波路(図示せず)として形成される。この下部クラッドは、n型InP等で形成され、光導波路は、InGaAsPで形成され、上部クラッドは、p型InPで形成される。   This conventional MMI optical coupler 500 is a ridge waveguide (not shown) having a three-layer structure of a lower clad, an optical waveguide and an upper clad that are sequentially stacked on a substrate formed of a chemical semiconductor such as n-type InP. Z). The lower cladding is formed of n-type InP or the like, the optical waveguide is formed of InGaAsP, and the upper cladding is formed of p-type InP.

ここで、この従来のMMI光カプラ500を、1.55μmの波長の光を伝搬するとして以下のような寸法で形成した。
テーパ状のシングルモード光導波路510、520、540、550の幅が狭い端部の幅を1.8μmとし、幅が広い端部の幅を2μmとし、長さを50μmとした。マルチモード光導波路530の長さを205μmとして、幅を12μmとした。この際、シングルモード光導波路510とシングルモード光導波路520との間隙、及び、シングルモード光導波路540とシングルモード光導波路550との間隙は2μmとした。そして、下部クラッドの厚みを0.5μmとし、光導波層の厚みを0.2μmとし、上部クラッドの厚みを、2μmとした。
Here, the conventional MMI optical coupler 500 is formed with the following dimensions assuming that light having a wavelength of 1.55 μm is propagated.
The widths of the narrow end portions of the tapered single mode optical waveguides 510, 520, 540, and 550 were 1.8 μm, the width of the wide end portion was 2 μm, and the length was 50 μm. The length of the multimode optical waveguide 530 was 205 μm and the width was 12 μm. At this time, the gap between the single mode optical waveguide 510 and the single mode optical waveguide 520 and the gap between the single mode optical waveguide 540 and the single mode optical waveguide 550 were set to 2 μm. The thickness of the lower cladding was 0.5 μm, the thickness of the optical waveguide layer was 0.2 μm, and the thickness of the upper cladding was 2 μm.

このような構成を有する従来のMMI光カプラ500の特性について、Beam Propagation Method(以下、「BPM」という。)等のシミュレーション方法を使用してシミュレーションを行うことにより算出した結果を、図8の(B)に示す。横軸は、幅の誤差である幅誤差dWを示し、縦軸は、入力光の強度を1とした場合の出力光強度を示す。尚、このシミュレーション方法と各軸については、以下で説明するグラフにおいて共通である。   The characteristics of the conventional MMI optical coupler 500 having such a configuration are calculated by performing simulation using a simulation method such as Beam Propagation Method (hereinafter referred to as “BPM”). Shown in B). The horizontal axis represents the width error dW, which is a width error, and the vertical axis represents the output light intensity when the input light intensity is 1. This simulation method and each axis are common in the graphs described below.

図8の(B)は、従来のMMI光カプラ500のシングルモード光導波路510に入力光610を入力した場合に、シングルモード光導波路540から出力される第1出力光620と、シングルモード光導波路550から出力される第2出力光630との幅誤差dWに対する変化を示している。   8B shows the first output light 620 output from the single mode optical waveguide 540 and the single mode optical waveguide when the input light 610 is input to the single mode optical waveguide 510 of the conventional MMI optical coupler 500. FIG. The change with respect to the width | variety error dW with the 2nd output light 630 output from 550 is shown.

図8の(B)から判るように、幅誤差dWが−0.3μmから−0.1μmへと変化するにつれて、第1出力光620の強度は約0.35から約0.49へと増加している。そして、dWが−0.1μmと0μmとの間では、第1出力光620の強度はほぼ一定の値となり、dWが0μmから0.3μmへと変化するにつれて、第1出力光620は、約0.49から約0.3近傍まで減少する。一方、第2出力光630の強度は、dW=−0.3〜0.3μmの間、第1出力光620の強度とほぼ同じ値となっている。   As can be seen from FIG. 8B, the intensity of the first output light 620 increases from about 0.35 to about 0.49 as the width error dW changes from −0.3 μm to −0.1 μm. is doing. When the dW is between −0.1 μm and 0 μm, the intensity of the first output light 620 becomes a substantially constant value. As the dW changes from 0 μm to 0.3 μm, the first output light 620 is about It decreases from 0.49 to around 0.3. On the other hand, the intensity of the second output light 630 is substantially the same as the intensity of the first output light 620 during dW = −0.3 to 0.3 μm.

つまり、従来のMMI光カプラ500は、第1出力光320と第2出力光330との強度比を、dWの変化にかかわらず約1:1にすることができる。しかし、従来のMMI光カプラ500によれば、|dW|が大きくなると、第1出力光620及び第2出力光630の強度は、急激に減少し、dW=0.3μm近傍においては、約0.3まで減少してしまうことが判る。   That is, the conventional MMI optical coupler 500 can make the intensity ratio of the first output light 320 and the second output light 330 about 1: 1 regardless of the change in dW. However, according to the conventional MMI optical coupler 500, when | dW | increases, the intensity of the first output light 620 and the second output light 630 decreases rapidly, and is approximately 0 in the vicinity of dW = 0.3 μm. It can be seen that it decreases to 3.

次に、この従来のMMI光カプラ500を2つ使用してマッハツェンダ型光変調器700を構成した場合の出力光について説明する。マッハツェンダ型光変調器700は、2つのMMI光カプラ500と、2つの連結導波路とによって構成される。   Next, output light when the Mach-Zehnder type optical modulator 700 is configured using two conventional MMI optical couplers 500 will be described. The Mach-Zehnder type optical modulator 700 includes two MMI optical couplers 500 and two coupling waveguides.

連結導波路は、曲線導波路210と、直線導波路220と、曲線導波路210とによって構成される。そして、連結導波路の1つは、一方のMMI光カプラ500のシングルモード光導波路540と、他方のMMI光カプラ500のシングルモード光導波路540とを接続し、連結導波路の他の1つは、一方のMMI光カプラ500のシングルモード光導波路550と、他方のMMI光カプラ500のシングルモード光導波路550とを接続する。この各連結導波路については、本発明の一実施形態に係るMMI光カプラ100に使用されるものと同様であるため、後述する。   The coupling waveguide includes a curved waveguide 210, a straight waveguide 220, and a curved waveguide 210. One of the coupling waveguides connects the single mode optical waveguide 540 of one MMI optical coupler 500 and the single mode optical waveguide 540 of the other MMI optical coupler 500, and the other one of the coupling waveguides is The single mode optical waveguide 550 of one MMI optical coupler 500 is connected to the single mode optical waveguide 550 of the other MMI optical coupler 500. Each of the connecting waveguides is the same as that used in the MMI optical coupler 100 according to an embodiment of the present invention, and will be described later.

このような構成を有する従来のマッハツェンダ型光変調器700の特性について、BPM等のシミュレーション方法によってシミュレーションを行うことにより算出した結果を、図8の(D)に示す。   FIG. 8D shows the result of calculating the characteristics of the conventional Mach-Zehnder type optical modulator 700 having such a configuration by performing simulation using a simulation method such as BPM.

図8の(D)は、従来のマッハツェンダ型光変調器700の一方のシングルモード光導波路510に入力光610を入力した場合に、他方のシングルモード光導波路510から出力される第3出力光640と、シングルモード光導波路520から出力される第4出力光650との幅誤差dWに対する変化を示している。   FIG. 8D shows the third output light 640 output from the other single mode optical waveguide 510 when the input light 610 is input to one single mode optical waveguide 510 of the conventional Mach-Zehnder optical modulator 700. And a change with respect to the width error dW of the fourth output light 650 output from the single mode optical waveguide 520.

図8の(D)から判るように、第3出力光640の強度は、dWの変化に対して0.1以下の小さな値に抑えられている。一方、第4出力光650の強度は、dW=−0.3μmにおいて0.5であったものが、dWが増加するに従って増加し、dW=−0.23μmで0.6を超え、dW=0.12μm付近まで0.6以上となっている。そして、この第4出力光650は、dWが0.12μm以上では0.6以下となっている。   As can be seen from FIG. 8D, the intensity of the third output light 640 is suppressed to a small value of 0.1 or less with respect to the change in dW. On the other hand, the intensity of the fourth output light 650 is 0.5 when dW = −0.3 μm, but increases as dW increases, exceeds 0.6 when dW = −0.23 μm, and dW = It is 0.6 or more up to about 0.12 μm. The fourth output light 650 is 0.6 or less when dW is 0.12 μm or more.

ここで、一般的にマッハツェンダ型光変調器の製品品質を維持するためには、この第4出力光の強度が0.6〜0.7よりも大きいことが望まれる。そこで、以下ではこの強度を約0.6〜0.7よりも大きくするために、誤差として許容しうる幅誤差dWの範囲を「許容幅誤差」という。つまり、許容幅誤差が大きければ大きいほど、製造プロセスの偏差により発生する幅誤差dWによる製品品質のバラツキを抑えることができることを意味する。   Here, in general, in order to maintain the product quality of the Mach-Zehnder type optical modulator, it is desired that the intensity of the fourth output light is larger than 0.6 to 0.7. Therefore, in the following, in order to make this intensity larger than about 0.6 to 0.7, the range of the width error dW that can be allowed as an error is referred to as “allowable width error”. That is, the larger the allowable width error, the more the variation in product quality due to the width error dW caused by the manufacturing process deviation can be suppressed.

従来のMMI光カプラ500によるマッハツェンダ型光変調器700の許容幅誤差は、図8の(D)に示すように、約−0.2〜0.1μmの約0.3μmとなる。そこで、本願出願人は、この許容幅誤差を更に広くして幅誤差dWの変化に対するMMI光カプラの特性の変化を抑えることにより、MMI光カプラの更なる品質の向上が図れることに着目した。   The allowable width error of the Mach-Zehnder type optical modulator 700 due to the conventional MMI optical coupler 500 is about −0.2 μm to 0.1 μm, about 0.3 μm, as shown in FIG. Accordingly, the applicant of the present application has focused on the fact that the quality of the MMI optical coupler can be further improved by further widening the allowable width error and suppressing the change in the characteristics of the MMI optical coupler with respect to the change in the width error dW.

ここで、このような2×2MMI光カプラ及びマッハツェンダ型光変調器の最適な寸法は、一般的には、マルチモード光導波路の長さをLとし、その幅をWとした場合、
L=2nW/(3λ) …(式1)
で表される。このnは導波路の屈折率を意味し、λは伝搬する光の波長を意味する。
Here, the optimum dimensions of such a 2 × 2 MMI optical coupler and a Mach-Zehnder optical modulator are generally when the length of the multimode optical waveguide is L and the width is W,
L = 2nW 2 / (3λ) (Formula 1)
It is represented by This n means the refractive index of the waveguide, and λ means the wavelength of the propagating light.

そして、MMI光カプラの特性の変化は、例えば、dL/Lの値が所定の値以上になることで表され、このdL/Lは、
dL/L=(2×dW)/W …(式2)
で表される。即ち、dWが大きくなると、dL/Lも大きくなり所定の値以上になった場合には、MMI光カプラの特性の変化は大きくなり、製品品質の劣化を招いてしまう。このdL/Lが所定の値以上となり特性の変化が大きくない幅誤差dWの範囲が、許容幅誤差となる。
The change in the characteristics of the MMI optical coupler is expressed, for example, when the value of dL / L becomes equal to or greater than a predetermined value.
dL / L = (2 × dW) / W (Expression 2)
It is represented by That is, as dW increases, if dL / L also increases and exceeds a predetermined value, the change in the characteristics of the MMI optical coupler increases, leading to deterioration of product quality. The range of the width error dW in which the dL / L is equal to or greater than a predetermined value and the characteristic change is not large is an allowable width error.

このdWによる特性の変化を抑えるために、許容幅誤差を大きくするのではなくdWを小さくこともできるが、そのためには、製造プロセスの精度を上げる必要がある。しかし、数μm単位での加工精度をより向上させることは容易ではない。そこで、Wを大きくしてdWによる影響を小さくすることにより、製品品質を低下させない程度の許容できる幅誤差dWを大きくすることもできるが、Wを大きくすると(式1)より最適なLが大きくなり、MMI光カプラ全体の大きさが大きくなってしまう。   In order to suppress the change in characteristics due to dW, it is possible to reduce the dW instead of increasing the tolerance error, but for this purpose, it is necessary to increase the accuracy of the manufacturing process. However, it is not easy to improve the processing accuracy in units of several μm. Therefore, by increasing W and reducing the influence of dW, it is possible to increase the allowable width error dW that does not deteriorate the product quality. However, when W is increased, the optimum L is larger than (Equation 1). Therefore, the overall size of the MMI optical coupler is increased.

そこで、本願出願人は、上記のように製品品質の向上を図り、かつ、上記の問題点を解決すべく鋭意研究を行った結果、以下のような本願発明に想到した。以下で、本発明の一実施形態に係るMMI光カプラについて詳細に説明する。   Therefore, as a result of intensive studies to improve the product quality as described above and solve the above problems, the applicant of the present application has arrived at the present invention as follows. Hereinafter, an MMI optical coupler according to an embodiment of the present invention will be described in detail.

<本実施形態に係るMMI光カプラ100>
本実施形態に係るMMI光カプラは、様々な用途で効果を発揮するが、特にマッハツェンダ型光変調器に適用した場合にその効果を発揮する。従って、以下では、まず、図1〜図3を参照して、本実施形態に係るMMI光カプラの構成を説明し、その後、MMI光カプラの特性、及びこのMMI光カプラを使用したマッハツェンダ型光変調器の構成及び特性について説明する。
<MMI Optical Coupler 100 According to the Present Embodiment>
The MMI optical coupler according to the present embodiment exhibits an effect in various applications, but particularly when applied to a Mach-Zehnder optical modulator. Therefore, in the following, first, the configuration of the MMI optical coupler according to the present embodiment will be described with reference to FIGS. 1 to 3, and then the characteristics of the MMI optical coupler and the Mach-Zehnder type light using this MMI optical coupler will be described. The configuration and characteristics of the modulator will be described.

(MMI光カプラ100)
図1は、本実施形態に係るMMI光カプラ100の構成を示す説明図である。図2は、本実施形態に係るMMI光カプラ100の構成を示す断面図であり、図1のA−A線における断面図である。そして、図3は、本実施形態に係るMMI光カプラ100の構成を示す平面図である。尚、図1においては、MMI光カプラ100に入出力される光の導波路を、MMI光カプラ100と一体に構成して基板10上に形成した場合の例を示した。図3においては、MMI光カプラ100のみを図示した。
(MMI optical coupler 100)
FIG. 1 is an explanatory diagram illustrating a configuration of an MMI optical coupler 100 according to the present embodiment. FIG. 2 is a cross-sectional view showing a configuration of the MMI optical coupler 100 according to the present embodiment, and is a cross-sectional view taken along the line AA of FIG. FIG. 3 is a plan view showing the configuration of the MMI optical coupler 100 according to this embodiment. FIG. 1 shows an example in which a waveguide of light input / output to / from the MMI optical coupler 100 is integrally formed with the MMI optical coupler 100 and formed on the substrate 10. In FIG. 3, only the MMI optical coupler 100 is shown.

図1では、MMI光カプラ100をマッハツェンダ型光変調器に使用する場合において、伝搬する光を分岐する用途に使用されたMMI光カプラ100を示している。以下では、光が図1中のx軸負の方向から正の方向に伝搬する場合について説明するが、かかる例に限定されず、光は、図1中のx軸正の方向から負の方向へと伝搬してもよいことは、言うまでもない。つまり、図1に示す下記の構成において、マルチモード光導波路130の部材をy軸に関して反転させて、シングルモード光導波路110、120をMMI光カプラ100の出力導波路として使用し、光導波路140、150の少なくともいずれかを入力導波路として使用することも可能である。   FIG. 1 shows the MMI optical coupler 100 used for branching propagating light when the MMI optical coupler 100 is used in a Mach-Zehnder optical modulator. In the following, the case where light propagates from the x-axis negative direction in FIG. 1 to the positive direction will be described, but the present invention is not limited to this example, and the light is directed from the x-axis positive direction in FIG. Needless to say, it may be propagated to. That is, in the following configuration shown in FIG. 1, the members of the multimode optical waveguide 130 are inverted with respect to the y-axis, and the single mode optical waveguides 110 and 120 are used as output waveguides of the MMI optical coupler 100. It is also possible to use at least one of 150 as an input waveguide.

本実施形態に係るMMI光カプラ100は、例えば、図1、2に示すように、n型InP等の化合物半導体等で形成された基板10上に形成される。MMI光カプラ100は、下部クラッド20A、光導波層20B及び上部クラッド20Cによる三層構造を有するリッジ導波路20として形成される。この下部クラッド20Aの厚み(図2中のz軸方向の厚み)をDとし、光導波層20Bの厚みをDとし、上部クラッド20Cの厚みをDとする。 The MMI optical coupler 100 according to the present embodiment is formed on a substrate 10 formed of a compound semiconductor such as n-type InP, for example, as shown in FIGS. The MMI optical coupler 100 is formed as a ridge waveguide 20 having a three-layer structure including a lower clad 20A, an optical waveguide layer 20B, and an upper clad 20C. The lower cladding 20A of the thickness of the (z-axis direction of the thickness in FIG. 2) and D A, and the thickness of the optical waveguide layer 20B and D B, the thickness of the upper cladding 20C and D C.

ここで、下部クラッド20Aは、例えば、基板10と同じくn型InP等の化合物半導体で形成されてもよく、基板10と一体に形成されてもよい。また、光導波層20Bは、例えば、InGaAsPで形成されてもよく、上部クラッド20Cは、例えば、p型InP等の化合物半導体で形成されてもよい。   Here, the lower clad 20 </ b> A may be formed of a compound semiconductor such as n-type InP as with the substrate 10, or may be formed integrally with the substrate 10. The optical waveguide layer 20B may be formed of, for example, InGaAsP, and the upper clad 20C may be formed of, for example, a compound semiconductor such as p-type InP.

尚、このMMI光カプラ100は、基板10の上に、下部クラッド20A、光導波層20B、及び上部クラッド20Cを順次積層してリッジ導波路20を形成した後、下部クラッド20A、光導波層20B及び上部クラッド20Cをドライエッチング等を行うことにより形成される。   In the MMI optical coupler 100, a lower clad 20A, an optical waveguide layer 20B, and an upper clad 20C are sequentially laminated on the substrate 10 to form a ridge waveguide 20, and then the lower clad 20A and the optical waveguide layer 20B. The upper cladding 20C is formed by dry etching or the like.

このような三層構造を有するMMI光カプラ100は、基板10上に以下のような構成で形成される。つまり、MMI光カプラ100は、シングルモード光導波路110、120と、マルチモード光導波路130と、光導波路140、150と、を有する。   The MMI optical coupler 100 having such a three-layer structure is formed on the substrate 10 with the following configuration. That is, the MMI optical coupler 100 includes single mode optical waveguides 110 and 120, a multimode optical waveguide 130, and optical waveguides 140 and 150.

シングルモード光導波路110、120は、シングルモード導波光を伝搬する第1入出力光導波路の一例であり、外部からの光をマルチモード光導波路130に入力するか、又はマルチモード光導波路130からの光を外部に出力する。   The single-mode optical waveguides 110 and 120 are an example of a first input / output optical waveguide that propagates single-mode guided light. Light from the outside is input to the multi-mode optical waveguide 130 or from the multi-mode optical waveguide 130. Output light to the outside.

このシングルモード光導波路110、120は、基板10と平行な面である光導波層20B内において光が伝搬する方向(以下、「伝搬方向」という。)に略平行にマルチモード光導波路130の端部に接続され、マルチモード光導波路130の中心軸133を挟んで互いに対称に形成される。尚、以下では、シングルモード光導波路110に光が入力されるとして説明する。   These single mode optical waveguides 110 and 120 are the ends of the multimode optical waveguide 130 substantially parallel to the direction in which light propagates in the optical waveguide layer 20B that is a plane parallel to the substrate 10 (hereinafter referred to as “propagation direction”). Connected to each other and formed symmetrically with respect to the central axis 133 of the multimode optical waveguide 130. In the following description, it is assumed that light is input to the single mode optical waveguide 110.

シングルモード光導波路110、120は、例えば、マルチモード光導波路130(第1マルチモード光導波路部131)に近づくに従って、伝搬方向と直交する方向(以下、「幅方向」という。)の幅(y軸方向の長さ)がテーパ状に拡大するように形成されてもよい。そして、例えば、シングルモード光導波路110は、伝搬方向に平行な中心軸111に対して対称的な形状で形成されてもよく、シングルモード光導波路120は、伝搬方向に平行な中心軸121に対して対称的な形状で形成されてもよい。尚、以下では、各部材の幅方向(y軸方向)の長さを単に「幅」といい、各部材の伝搬方向(x軸方向)の長さを単に「長さ」という。   The single mode optical waveguides 110 and 120 have, for example, a width (y) in a direction orthogonal to the propagation direction (hereinafter referred to as “width direction”) as the multimode optical waveguide 130 (first multimode optical waveguide portion 131) approaches. (Axial length) may be formed to expand in a tapered shape. For example, the single mode optical waveguide 110 may be formed in a symmetric shape with respect to the central axis 111 parallel to the propagation direction, and the single mode optical waveguide 120 is configured with respect to the central axis 121 parallel to the propagation direction. It may be formed in a symmetrical shape. In the following, the length of each member in the width direction (y-axis direction) is simply referred to as “width”, and the length of each member in the propagation direction (x-axis direction) is simply referred to as “length”.

この場合、図3に示すように、シングルモード光導波路110、120の幅が狭い端部の幅をWss1とし、幅が広い端部の幅をWsl1とする。そして、シングルモード光導波路110、120の長さをLs1とする。この幅が広い端部の幅Wsl1を広くすることにより、MMI光カプラ100の特性を向上させることができる。   In this case, as shown in FIG. 3, the width of the narrow ends of the single mode optical waveguides 110 and 120 is Wss1, and the width of the wide end is Wsl1. The length of the single mode optical waveguides 110 and 120 is Ls1. The characteristics of the MMI optical coupler 100 can be improved by widening the width Wsl1 of the wide end portion.

このシングルモード光導波路110、120は、例えば、それぞれ、光の伝搬方向に対して平行なマルチモード光導波路130の中心軸133から、マルチモード光導波路130の幅(図1中、y軸方向の長さ)の約1/6の距離だけ離隔した位置の近傍でマルチモード光導波路130に接続されてもよい。   For example, the single mode optical waveguides 110 and 120 each have a width (in the y-axis direction in FIG. 1) from the central axis 133 of the multimode optical waveguide 130 that is parallel to the light propagation direction. The multimode optical waveguide 130 may be connected in the vicinity of a position separated by a distance of about 1/6 of the (length).

つまり、マルチモード光導波路130の幅をWmとした場合、中心軸133からシングルモード光導波路110、120の中心軸111、121までの距離P1は、(1/6)×Wmとなる。この位置にシングルモード光導波路110、120を接続することにより、マルチモード光導波路130の伝搬方向の長さLが最適な値からずれた場合に、光の出力方向が最適な場合から大きくずれてしまうことを防ぐことができ、MMI光カプラ100は、伝搬方向へ光を出力する特性を保持することができる。   That is, when the width of the multimode optical waveguide 130 is Wm, the distance P1 from the central axis 133 to the central axes 111 and 121 of the single mode optical waveguides 110 and 120 is (1/6) × Wm. By connecting the single mode optical waveguides 110 and 120 to this position, when the length L in the propagation direction of the multimode optical waveguide 130 deviates from the optimum value, the light output direction deviates greatly from the optimum case. The MMI optical coupler 100 can maintain the characteristic of outputting light in the propagation direction.

ここで、シングルモード光導波路110とシングルモード光導波路120との間隙をWg1とすると、Wg1は、例えば、2μm以上に設定されてもよい。このように間隙Wg1を設定することにより、ドライエッチング等による製造プロセスの精度に起因する製品品質への影響を抑えることができる。   Here, if the gap between the single mode optical waveguide 110 and the single mode optical waveguide 120 is Wg1, Wg1 may be set to 2 μm or more, for example. By setting the gap Wg1 in this way, it is possible to suppress the influence on the product quality due to the accuracy of the manufacturing process by dry etching or the like.

MMI光カプラ100は、第1入出力光導波路として、図1に示すように2つのシングルモード光導波路110、120を備える場合について説明したが、1つのシングルモード光導波路110を備えてもよく、3つ以上のシングルモード光導波路を備えてもよい。複数のシングルモード光導波路を備える場合、各第1入出力光導波路は、幅方向に並設される。   The MMI optical coupler 100 has been described with respect to the case where the first input / output optical waveguide includes the two single mode optical waveguides 110 and 120 as illustrated in FIG. 1, but may include the single single mode optical waveguide 110, Three or more single mode optical waveguides may be provided. When a plurality of single mode optical waveguides are provided, the first input / output optical waveguides are arranged in parallel in the width direction.

マルチモード光導波路130は、入力されたシングルモード導波光を干渉させることでマルチモード導波光に励振し、このマルチモード導波光を伝搬する。マルチモード光導波路130は、シングルモード光導波路110、120と、光導波路140、150との間に配置される。   The multi-mode optical waveguide 130 excites the multi-mode guided light by causing the input single-mode guided light to interfere, and propagates the multi-mode guided light. The multimode optical waveguide 130 is disposed between the single mode optical waveguides 110 and 120 and the optical waveguides 140 and 150.

マルチモード光導波路130の幅は、光導波路140、150が接続された端部(x軸正方向側の端部)で絞られている。つまり、マルチモード光導波路130は、シングルモード光導波路110、120が接続される第1マルチモード光導波路部131と、光導波路140、150が接続され第1マルチモード光導波路部131よりも幅が狭い第2マルチモード光導波路部132と、によって構成される。   The width of the multimode optical waveguide 130 is narrowed at the end (the end on the x-axis positive direction side) where the optical waveguides 140 and 150 are connected. That is, the multimode optical waveguide 130 is wider than the first multimode optical waveguide portion 131 to which the first multimode optical waveguide portion 131 to which the single mode optical waveguides 110 and 120 are connected and the optical waveguides 140 and 150 are connected to each other. And a narrow second multimode optical waveguide section 132.

この第1マルチモード光導波路部131の幅をWmとし、第2マルチモード光導波路部132の幅をWm2とする。この場合、マルチモード光導波路130の幅とは、第1マルチモード光導波路部131の幅Wmを意味する。   The width of the first multimode optical waveguide portion 131 is Wm, and the width of the second multimode optical waveguide portion 132 is Wm2. In this case, the width of the multimode optical waveguide 130 means the width Wm of the first multimode optical waveguide portion 131.

第1マルチモード光導波路部131は、入力されたシングルモード導波光を干渉させることでマルチモード導波光に励振し、このマルチモード導波光を伝搬する導波路である。この第1マルチモード光導波路部131には、シングルモード光導波路110、120が接続される。   The first multimode optical waveguide section 131 is a waveguide for exciting the multimode waveguide light by causing the input single mode waveguide light to interfere with each other and propagating the multimode waveguide light. Single mode optical waveguides 110 and 120 are connected to the first multimode optical waveguide portion 131.

第1マルチモード光導波路部131は、幅方向に第2マルチモード光導波路部132よりも広い幅で形成され、伝搬方向に第2マルチモード光導波路部132よりも長く形成される。この第1マルチモード光導波路部131の長さをLm1とし、幅をWmとする。   The first multimode optical waveguide section 131 is formed with a width wider than the second multimode optical waveguide section 132 in the width direction and longer than the second multimode optical waveguide section 132 in the propagation direction. The length of the first multimode optical waveguide portion 131 is Lm1, and the width is Wm.

第2マルチモード光導波路部132は、伝搬する光を第1マルチモード光導波路部131とは異なる干渉状態で干渉させることでマルチモード導波光のモードの間隙を広げて、マルチモード導波光を伝搬する導波路である。この第2マルチモード光導波路部132は、第1マルチモード光導波路部131と光導波路140、150との間を接続する。   The second multi-mode optical waveguide section 132 propagates the multi-mode waveguide light by expanding the mode gap of the multi-mode waveguide light by causing the propagating light to interfere in a different interference state from the first multi-mode optical waveguide section 131. It is a waveguide. The second multimode optical waveguide section 132 connects the first multimode optical waveguide section 131 and the optical waveguides 140 and 150.

第2マルチモード光導波路部132は、幅方向に第1マルチモード光導波路部131よりも狭い幅で形成され、伝搬方向に第1マルチモード光導波路部131よりも短く形成される。つまり、第2マルチモード光導波路部132の幅をWm2とし、長さをLm2とすると、Wm2<Wm、Lm2<Lm1となる。   The second multimode optical waveguide section 132 is formed with a width narrower than that of the first multimode optical waveguide section 131 in the width direction and shorter than the first multimode optical waveguide section 131 in the propagation direction. That is, when the width of the second multimode optical waveguide section 132 is Wm2 and the length is Lm2, Wm2 <Wm and Lm2 <Lm1.

この幅Wm2は、例えば、マルチモード光導波路130の幅Wmの50〜60%であることが好ましい。このWm2をWmの50%よりも小さくすると、マッハツェンダ型光変調器を構成した場合の出力強度が全体的に低下してしまう。また、Wm2を60%よりも大きくすると、許容幅誤差が狭くなり、幅誤差dWの変化による特性の変化が大きくなる。   The width Wm2 is preferably 50 to 60% of the width Wm of the multimode optical waveguide 130, for example. If this Wm2 is made smaller than 50% of Wm, the output intensity when the Mach-Zehnder type optical modulator is configured will be lowered as a whole. Further, if Wm2 is larger than 60%, the allowable width error is narrowed, and the change in characteristics due to the change in the width error dW is increased.

そして、長さLm2は、例えば、マルチモード光導波路130の長さLの2%〜10%であることが好ましい。このLm2がLの2%未満であると、許容幅誤差が狭くなり、幅誤差dWの変化による特性の変化が大きくなる。また、Lm2をLの10%を超過すると、マッハツェンダ型光変調器を構成した場合の出力強度が全体的に低下して特性が劣化してしまう。   The length Lm2 is preferably 2% to 10% of the length L of the multimode optical waveguide 130, for example. When this Lm2 is less than 2% of L, the allowable width error becomes narrow, and the change in characteristics due to the change in the width error dW becomes large. Further, if Lm2 exceeds 10% of L, the output intensity when the Mach-Zehnder type optical modulator is configured is lowered as a whole, and the characteristics are deteriorated.

尚、第1マルチモード光導波路部131は、第2マルチモード光導波路部132に近づくに従って、幅が狭くなるテーパ状の部位を有していてもよい。但し、このテーパ状の部位の長さが短いほど、MMI光カプラ100の特性は良い傾向にあり、この長さが5μm以上では特性は劣化する。よって、このテーパ状の部位の伝搬方向の長さは、例えば、5μm未満とすることが好ましい。   Note that the first multimode optical waveguide section 131 may have a tapered portion whose width becomes narrower as the second multimode optical waveguide section 132 approaches. However, the shorter the length of the tapered portion, the better the characteristics of the MMI optical coupler 100. When this length is 5 μm or more, the characteristics deteriorate. Therefore, it is preferable that the length of the tapered portion in the propagation direction is, for example, less than 5 μm.

このように、マルチモード光導波路130は、幅の広い第1マルチモード光導波路部131と、幅の狭い第2マルチモード光導波路部132と、によって構成されるため、これらの外側面(x軸方向に平行な側面)に段差が形成されている。従来では、このように段差が形成されると、MMI光カプラの特性が悪くなることが知られており、本実施形態に係るMMI光カプラ100では、このような特性の悪化を招くことなく、更なる特性の向上をさせることに成功している。   As described above, the multimode optical waveguide 130 includes the first multimode optical waveguide portion 131 having a large width and the second multimode optical waveguide portion 132 having a small width. A step is formed on a side surface parallel to the direction. Conventionally, it is known that when such a step is formed, the characteristics of the MMI optical coupler are deteriorated. In the MMI optical coupler 100 according to the present embodiment, such characteristics are not deteriorated. We have succeeded in further improving the characteristics.

光導波路140、150は、シングルモード導波光を伝搬する第2入出力光導波路の一例であり、マルチモード光導波路130からの光を外部に出力するか、又は外部からの光をマルチモード光導波路130に入力する。   The optical waveguides 140 and 150 are examples of a second input / output optical waveguide that propagates single-mode guided light, and outputs light from the multi-mode optical waveguide 130 to the outside, or transmits external light to the multi-mode optical waveguide. Input to 130.

尚、ここでは、上記のように光導波路140、150から光が外部に出力されるとする。この光導波路140、150は、幅方向に互いに隣接して並設され、伝搬方向と略平行に第2マルチモード光導波路部132の端部に接続される。   Here, it is assumed that light is output from the optical waveguides 140 and 150 to the outside as described above. The optical waveguides 140 and 150 are juxtaposed adjacent to each other in the width direction, and are connected to the end of the second multimode optical waveguide portion 132 substantially parallel to the propagation direction.

また、光導波路140、150は、例えば、マルチモード光導波路130の第2マルチモード光導波路部132に近づくに従って幅がテーパ状に拡大するように形成されてもよい。そして、例えば、光導波路140は、伝搬方向に平行な中心軸141に対して対称的な形状で形成されてもよく、光導波路150は、伝搬方向に平行な中心軸151に対して対称的な形状で形成されてもよい。   Moreover, the optical waveguides 140 and 150 may be formed so that the width increases in a tapered shape as the second multimode optical waveguide portion 132 of the multimode optical waveguide 130 is approached, for example. For example, the optical waveguide 140 may be formed in a symmetric shape with respect to the central axis 141 parallel to the propagation direction, and the optical waveguide 150 is symmetric with respect to the central axis 151 parallel to the propagation direction. It may be formed in a shape.

ここで、図3に示すように、光導波路140、150の幅が狭い端部の幅をWss2とし、幅が広い端部の幅をWsl2とする。そして、光導波路140、150の長さをLs2とする。   Here, as shown in FIG. 3, the width of the narrow end of the optical waveguides 140 and 150 is Wss2, and the width of the wide end is Wsl2. The length of the optical waveguides 140 and 150 is Ls2.

光導波路140、150の接続位置は、第2マルチモード光導波路部132の幅Wm2と、接続端における光導波路140、150の幅Wsl2とに依存する。しかし、この光導波路140、150は、例えば、それぞれ、マルチモード光導波路130の中心軸133から、マルチモード光導波路130の幅(図1中、y軸方向の長さ)の1/6〜1/5の距離だけ離隔した位置の近傍において、第2マルチモード光導波路部132に接続されることが好ましい。   The connection position of the optical waveguides 140 and 150 depends on the width Wm2 of the second multimode optical waveguide section 132 and the width Wsl2 of the optical waveguides 140 and 150 at the connection end. However, the optical waveguides 140 and 150 are each, for example, 1/6 to 1 of the width of the multimode optical waveguide 130 (the length in the y-axis direction in FIG. 1) from the central axis 133 of the multimode optical waveguide 130. It is preferable to connect to the second multimode optical waveguide section 132 in the vicinity of a position separated by a distance of / 5.

つまり、マルチモード光導波路130の中心軸133から光導波路140、150の中心軸141、151までの距離をP2とした場合、P2は、例えば、マルチモード光導波路130の幅Wmの1/6〜1/5とすることが好ましい。P2がWmの1/5を超えると、このMMI光カプラ100でマッハツェンダ光変調器を構成する場合に、許容幅誤差が狭くなり、幅誤差dWの変化による特性の変化が大きくなる。また、P2を1/6より小さく設定すると、光導波路140と光導波路150との間の間隙Wg2が小さくなり、ドライエッチング等の製造プロセスの精度による製品品質への影響を抑えることができなくなる。この影響を抑えるために、この間隙Wg2を、例えば、2μm以上に設定することが好ましい。   That is, when the distance from the central axis 133 of the multimode optical waveguide 130 to the central axes 141 and 151 of the optical waveguides 140 and 150 is P2, P2 is, for example, 1/6 to the width Wm of the multimode optical waveguide 130. It is preferable to set to 1/5. When P2 exceeds 1/5 of Wm, when the MMI optical coupler 100 constitutes a Mach-Zehnder optical modulator, the allowable width error becomes narrow, and the change in characteristics due to the change in the width error dW becomes large. If P2 is set to be smaller than 1/6, the gap Wg2 between the optical waveguide 140 and the optical waveguide 150 becomes small, and it becomes impossible to suppress the influence on the product quality due to the accuracy of the manufacturing process such as dry etching. In order to suppress this influence, the gap Wg2 is preferably set to 2 μm or more, for example.

例えば図3に示したように、光導波路140の幅方向の外側面140aは、段差を有さずに第2マルチモード光導波路部132の幅方向の一方の側面132aと連続して形成される。そして、光導波路150の幅方向の外側面150bは、段差を有さずに第2マルチモード光導波路部132の幅方向の一方の側面132bと連続して形成される。   For example, as shown in FIG. 3, the outer side surface 140a in the width direction of the optical waveguide 140 is formed continuously with one side surface 132a in the width direction of the second multimode optical waveguide part 132 without having a step. . The outer side surface 150b in the width direction of the optical waveguide 150 is formed continuously with one side surface 132b in the width direction of the second multimode optical waveguide part 132 without having a step.

このように、光導波路140、150を第2マルチモード光導波路部132の側面132a、132bに対して段差を有さず連続して形成することにより、このMMI光カプラでマッハツェンダ光変調器を構成したときの特性を向上させることができる。つまり、このように構成したMMI光カプラ100によってマッハツェンダ光変調器を構成すると、マルチモード光導波路130の幅誤差dWが増減した際の、出力光の強度差を低減することができる。   In this way, the MMI optical coupler is configured by the MMI optical coupler by forming the optical waveguides 140 and 150 continuously without any step with respect to the side surfaces 132a and 132b of the second multimode optical waveguide section 132. The characteristics can be improved. That is, when a Mach-Zehnder optical modulator is configured by the MMI optical coupler 100 configured as described above, it is possible to reduce the intensity difference of the output light when the width error dW of the multimode optical waveguide 130 increases or decreases.

しかし、本発明は係る例に限定されず、光導波路140の外側面140aと、第2マルチモード光導波路部132の側面132aとの間は、連続して形成されずに段差が形成されてもよく、光導波路150の外側面150bと、第2マルチモード光導波路部132の側面132bとの間は、連続して形成されずに段差が形成されてもよい。   However, the present invention is not limited to this example, and a step may be formed between the outer side surface 140a of the optical waveguide 140 and the side surface 132a of the second multimode optical waveguide unit 132 without being continuously formed. In addition, a step may be formed between the outer surface 150b of the optical waveguide 150 and the side surface 132b of the second multimode optical waveguide portion 132 without being continuously formed.

尚、図1に示して上述したように、シングルモード光導波路110、120、及び光導波路140、150は、それぞれマルチモード光導波路130に近づくに従って幅が拡大するテーパ状に形成された場合について説明した。シングルモード光導波路110、120、及び光導波路140、150をこのような形状で形成することにより、マルチモード光導波路130の始点(例えば、シングルモード光導波路110、120が接続された端部)において、マルチモード導波光に励振する光の幅が、マルチモード光導波路130の幅に対して広くなる。これにより、低次のモードだけを励振することができ、幅誤差によるモード間の位相差変化を小さくすることができる。その結果、上記(式2)におけるMMI光カプラ100の特性の変化の許容値であるdL/Lの比を大きくすることができ、幅誤差に対するMMI光カプラ100の特性の変化を抑えることができる。   As described above with reference to FIG. 1, the case where the single mode optical waveguides 110 and 120 and the optical waveguides 140 and 150 are each formed in a tapered shape whose width increases as approaching the multimode optical waveguide 130 will be described. did. By forming the single mode optical waveguides 110 and 120 and the optical waveguides 140 and 150 in such a shape, at the start point of the multimode optical waveguide 130 (for example, an end portion to which the single mode optical waveguides 110 and 120 are connected). The width of the light excited by the multimode waveguide light is wider than the width of the multimode optical waveguide 130. As a result, only the low-order mode can be excited, and the change in phase difference between modes due to the width error can be reduced. As a result, it is possible to increase the ratio of dL / L, which is an allowable value of the change in the characteristic of the MMI optical coupler 100 in (Equation 2), and to suppress the change in the characteristic of the MMI optical coupler 100 with respect to the width error. .

以上、MMI光カプラ100の構成について説明した。このMMI光カプラ100を使用してマッハツェンダ型光変調器等を構成する場合等においては、シングルモード光導波路110、120、及び光導波路140、150に入出力される光の導波路を、例えば、同一の基板10上に形成することができる。この光の導波路の例として、図1には、曲線導波路210を示す。   The configuration of the MMI optical coupler 100 has been described above. In the case where a Mach-Zehnder type optical modulator or the like is configured using the MMI optical coupler 100, the optical waveguides input and output to the single mode optical waveguides 110 and 120 and the optical waveguides 140 and 150 are, for example, They can be formed on the same substrate 10. As an example of the optical waveguide, a curved waveguide 210 is shown in FIG.

曲線導波路210は、図1に示すように、例えば、光導波路140又は光導波路150に接続されて一体に形成されてもよい。このように、入出力される光の導波路を、各シングルモード光導波路110、120、及び光導波路140、150等と一体に形成することで、テーパ形状を有する各シングルモード光導波路110、120、及び光導波路140、150を、入出力される光の導波路の一部として構成することができ、光学素子全体の大きさを小さくすることができる。しかし、本発明は係る例に限定されず、曲線導波路210は、光導波路140又は光導波路150と別体に形成されてもよい。   As shown in FIG. 1, the curved waveguide 210 may be formed integrally with the optical waveguide 140 or the optical waveguide 150, for example. As described above, the input / output optical waveguides are formed integrally with the single mode optical waveguides 110 and 120, the optical waveguides 140 and 150, and the like, so that each single mode optical waveguide 110 and 120 having a tapered shape is formed. , And the optical waveguides 140 and 150 can be configured as a part of the waveguide of input and output light, and the size of the entire optical element can be reduced. However, the present invention is not limited to such an example, and the curved waveguide 210 may be formed separately from the optical waveguide 140 or the optical waveguide 150.

図1においては、伝搬する光の入力光310が、シングルモード光導波路110に入力される場合について説明した。この場合、光は、第1マルチモード光導波路部131において干渉して2つのモードの光に分離される。そして、分離された光は、第2マルチモード光導波路部132において第1マルチモード光導波路部131とは違う干渉状態となり、それにより分離された2つの光のモードの間隙は、広げられる。この分離光の間隙が広がることにより、光導波路140と光導波路150との間隙Wg2が確保されて、分離された2つの光は、光導波路140と光導波路150とに分岐して出力される。これらの光は、それぞれ光導波路140を介して曲線導波路210から第1出力光320として、及び、光導波路150を介して曲線導波路210から第2出力光330として、出力される。   In FIG. 1, the case where the input light 310 of the propagating light is input to the single mode optical waveguide 110 has been described. In this case, the light is separated into two modes of light by interference in the first multimode optical waveguide section 131. Then, the separated light enters an interference state different from that of the first multimode optical waveguide section 131 in the second multimode optical waveguide section 132, thereby widening the gap between the modes of the two separated light beams. By widening the gap of the separated light, a gap Wg2 between the optical waveguide 140 and the optical waveguide 150 is secured, and the two separated lights are branched into the optical waveguide 140 and the optical waveguide 150 and output. These lights are output as the first output light 320 from the curved waveguide 210 via the optical waveguide 140 and as the second output light 330 from the curved waveguide 210 via the optical waveguide 150, respectively.

ここで、この伝搬する光の入力光310は、シングルモード光導波路110に入力されるとしたが、かかる例に限られず、例えば、伝搬する光が、それぞれの曲線導波路210を介して光導波路140と、光導波路150と、に入力されてもよい。この場合、光は、マルチモード光導波路130において結合され、シングルモード光導波路110から出力される。   Here, it is assumed that the input light 310 of the propagating light is input to the single mode optical waveguide 110. However, the present invention is not limited to this example. For example, the propagating light is guided through the curved waveguides 210. 140 and the optical waveguide 150 may be input. In this case, the light is coupled in the multimode optical waveguide 130 and output from the single mode optical waveguide 110.

(本実施形態に係るMMI光カプラ100の特性)
以上、本実施形態に係るMMI光カプラ100の構成について説明した。以下では、図4を参照して、このような構成を有するMMI光カプラ100に光通信等で使用される約1.55μmの波長の光を伝搬する場合の、MMI光カプラ100の特性について説明する。但し、以下に示すMMI光カプラ100の各構成の寸法は、この場合の一例であり、他の波長の光を伝搬する場合等においては、以下の寸法を適宜変更することもできることはいうまでもない。
(Characteristics of the MMI optical coupler 100 according to the present embodiment)
The configuration of the MMI optical coupler 100 according to this embodiment has been described above. Hereinafter, the characteristics of the MMI optical coupler 100 when light having a wavelength of about 1.55 μm used in optical communication or the like is propagated to the MMI optical coupler 100 having such a configuration will be described with reference to FIG. To do. However, the dimensions of each component of the MMI optical coupler 100 shown below are examples of this case, and it goes without saying that the following dimensions can be changed as appropriate in the case of propagating light of other wavelengths. Absent.

図4は、本実施形態に係るMMI光カプラ100の特性を説明するための説明図である。そして、図4の(A)は、MMI光カプラ100の寸法を示し、(B)は、幅誤差dWに対するMMI光カプラ100の第1出力光320、第2出力光330の変化をBPM等で計算した結果を示す。そして、(C)は、MMI光カプラ100によって構成したマッハツェンダ型光変調器400の構成及び寸法を示し、(D)は、幅誤差dWに対するマッハツェンダ型光変調器400の第3出力光340、第4出力光350の変化をBPM等で計算した結果を示すグラフである。   FIG. 4 is an explanatory diagram for explaining the characteristics of the MMI optical coupler 100 according to the present embodiment. 4A shows the dimensions of the MMI optical coupler 100, and FIG. 4B shows changes in the first output light 320 and the second output light 330 of the MMI optical coupler 100 with respect to the width error dW in BPM or the like. The calculated result is shown. (C) shows the configuration and dimensions of the Mach-Zehnder type optical modulator 400 configured by the MMI optical coupler 100, and (D) shows the third output light 340 of the Mach-Zehnder type optical modulator 400 with respect to the width error dW, It is a graph which shows the result of having calculated the change of 4 output light 350 by BPM etc. FIG.

まず、この場合の、MMI光カプラ100の各構成の寸法の一例を、図4の(A)を参照して説明する。基板10及び下部クラッド20Aをn型InPにより形成し、下部クラッド20Aの厚みを0.5μmとした。光導波層20BをInGaAsPにより形成し、厚みを0.2μmとした。そして上部クラッド20Cをp型InPにより形成し、厚みを2μmとした。   First, an example of dimensions of each component of the MMI optical coupler 100 in this case will be described with reference to FIG. The substrate 10 and the lower clad 20A were formed of n-type InP, and the thickness of the lower clad 20A was 0.5 μm. The optical waveguide layer 20B is formed of InGaAsP and has a thickness of 0.2 μm. Then, the upper clad 20C was formed of p-type InP, and the thickness was 2 μm.

この場合、基板10、下部クラッド20A、上部クラッド20Cの屈折率は3.17となり、光導波層20Bの屈折率は3.32となる。また、基板10上のMMI光カプラ100等の導波路が形成されていない表面には、例えばポリイミド等の屈折率1.5程度の高分子層が形成されてもよい。この場合、等価屈折率法で2次元化すると、導波路部分の屈折率を3.2に、その他の部分の屈折率を1.5にすることができる。   In this case, the refractive index of the substrate 10, the lower clad 20A, and the upper clad 20C is 3.17, and the refractive index of the optical waveguide layer 20B is 3.32. Further, a polymer layer having a refractive index of about 1.5 such as polyimide may be formed on the surface of the substrate 10 where the waveguide such as the MMI optical coupler 100 is not formed. In this case, when two-dimensionalization is performed by the equivalent refractive index method, the refractive index of the waveguide portion can be set to 3.2, and the refractive indexes of the other portions can be set to 1.5.

図4の(A)に示すように、シングルモード光導波路110、120の幅が狭い端部の幅Wss1を1.8μmとし、幅が広い端部の幅Wsl1を2.6μmとし、長さLs1を50μmとした。そして、シングルモード光導波路110とシングルモード光導波路120との間隙Wg1を2μmとした。   As shown in FIG. 4A, the width Wss1 of the narrow ends of the single-mode optical waveguides 110 and 120 is 1.8 μm, the width Wsl1 of the wide end is 2.6 μm, and the length Ls1 is set. Was 50 μm. The gap Wg1 between the single mode optical waveguide 110 and the single mode optical waveguide 120 was set to 2 μm.

マルチモード光導波路130の長さLを210μmとし、幅Wmを12μmとした。そして、第1マルチモード光導波路部131の長さLm1を200μmとして、第2マルチモード光導波路部132の長さLm2を10μmとした。この際、Lm2はLの約4.8%となる。そして、第2マルチモード光導波路部132の幅Wm2を6.8μmとした。このWm2はWmの約57%となる。   The length L of the multimode optical waveguide 130 was 210 μm, and the width Wm was 12 μm. The length Lm1 of the first multimode optical waveguide part 131 was set to 200 μm, and the length Lm2 of the second multimode optical waveguide part 132 was set to 10 μm. At this time, Lm2 is about 4.8% of L. The width Wm2 of the second multimode optical waveguide portion 132 was set to 6.8 μm. This Wm2 is about 57% of Wm.

光導波路140、150の幅が狭い端部の幅Wss2を1.8μmとし、幅が広い端部の幅Wsl2を2.4μmとし、長さLs2を50μmとした。そして、光導波路140と光導波路150との間隙Wg2を2μmとした。   The width Wss2 of the narrow ends of the optical waveguides 140 and 150 is 1.8 μm, the width Wsl2 of the wide end is 2.4 μm, and the length Ls2 is 50 μm. The gap Wg2 between the optical waveguide 140 and the optical waveguide 150 was set to 2 μm.

シングルモード光導波路110、120、及び光導波路140、150の幅が狭い端部の幅Wss1、Wss2を1.8μmとしたのは、この位置を伝搬する光をシングルモードにするためである。   The reason why the widths Wss1 and Wss2 of the narrow ends of the single mode optical waveguides 110 and 120 and the optical waveguides 140 and 150 are set to 1.8 μm is to make the light propagating through these positions into a single mode.

上記のような寸法によって構成したMMI光カプラ100に入力光310を入力した場合に、光導波路140から出力される第1出力光320と、光導波路150から出力される第2出力光330との幅誤差dWに対する変化について、図4の(B)を参照して説明する。   When the input light 310 is input to the MMI optical coupler 100 configured as described above, the first output light 320 output from the optical waveguide 140 and the second output light 330 output from the optical waveguide 150 A change with respect to the width error dW will be described with reference to FIG.

図4の(B)から判るように、幅誤差dWが−0.3μmから0μmへと変化するにつれて、第1出力光320の強度は約0.4から約0.47へと増加している。そして、dWが0μmから0.3μmへと変化するにつれて、第1出力光320は、約0.47から0.4近傍まで減少する。一方、第2出力光330の強度は、dW=−0.3〜0.3μmの間、第1出力光320の強度とほぼ同じ値となっている。   As can be seen from FIG. 4B, the intensity of the first output light 320 increases from about 0.4 to about 0.47 as the width error dW changes from −0.3 μm to 0 μm. . As the dW changes from 0 μm to 0.3 μm, the first output light 320 decreases from about 0.47 to about 0.4. On the other hand, the intensity of the second output light 330 is substantially the same as the intensity of the first output light 320 during dW = −0.3 to 0.3 μm.

つまり、本実施形態に係るMMI光カプラ100は、第1出力光320と第2出力光330との強度比を、dWの変化にかかわらず約1:1にすることができる。そして、MMI光カプラ100によれば、dWの大きさ|dW|が大きくなった場合でも、第1出力光320及び第2出力光330の強度は、約0.4以上の高い値に維持されている。   That is, the MMI optical coupler 100 according to the present embodiment can set the intensity ratio of the first output light 320 and the second output light 330 to about 1: 1 regardless of the change in dW. According to the MMI optical coupler 100, even when the dW magnitude | dW | increases, the intensities of the first output light 320 and the second output light 330 are maintained at a high value of about 0.4 or more. ing.

次に、図4の(C)に示すように、上記のMMI光カプラ100を2つ使用してマッハツェンダ型光変調器400を構成したときの出力光について説明する。このマッハツェンダ型光変調器400は、2つのMMI光カプラ100に加えて、2つの連結導波路を有する。   Next, the output light when the Mach-Zehnder optical modulator 400 is configured using the two MMI optical couplers 100 as shown in FIG. 4C will be described. The Mach-Zehnder optical modulator 400 includes two coupled waveguides in addition to the two MMI optical couplers 100.

連結導波路の1つは、一方のMMI光カプラ100の光導波路140と、他方のMMI光カプラ100の光導波路140とを接続し、連結導波路の他の1つは、一方のMMI光カプラ100の光導波路150と、他方のMMI光カプラ100の光導波路150とを接続する。   One of the coupling waveguides connects the optical waveguide 140 of one MMI optical coupler 100 and the optical waveguide 140 of the other MMI optical coupler 100, and the other one of the coupling waveguides is one MMI optical coupler. The optical waveguide 150 of 100 and the optical waveguide 150 of the other MMI optical coupler 100 are connected.

この連結導波路は、例えば、曲線導波路210及び直線導波路220によって構成されてもよい。この場合、曲線導波路210及び直線導波路220は、例えば、基板上にMMI光カプラ100と共に一体に形成されてもよい。   This connection waveguide may be constituted by a curved waveguide 210 and a straight waveguide 220, for example. In this case, the curved waveguide 210 and the straight waveguide 220 may be integrally formed with the MMI optical coupler 100 on a substrate, for example.

そして、曲線導波路210及び直線導波路220の幅は、1.8μmとした。これは、伝搬する光をシングルモードにするためである。そして曲線導波路210の長さを100μmとし、直線導波路220の長さを300μmとすることで、各MMI光カプラ100の間の光路の長さを500μmとした。そして、各直線導波路220の間の距離は、15μmとした。曲線導波路210及び直線導波路220の導波層の屈折率は3.2であり、その外側の屈折率は1.5である。   The width of the curved waveguide 210 and the straight waveguide 220 was 1.8 μm. This is to make the propagating light a single mode. The length of the curved waveguide 210 was 100 μm and the length of the straight waveguide 220 was 300 μm, so that the length of the optical path between each MMI optical coupler 100 was 500 μm. And the distance between each linear waveguide 220 was 15 micrometers. The refractive index of the waveguide layer of the curved waveguide 210 and the straight waveguide 220 is 3.2, and the outer refractive index thereof is 1.5.

次に、このような構成を有する本実施形態に係るマッハツェンダ型光変調器400の特性について、BPM等のシミュレーション方法によってシミュレーションを行うことにより算出した結果を、図4の(D)に示す。   Next, FIG. 4D shows a result calculated by simulating the characteristics of the Mach-Zehnder optical modulator 400 according to the present embodiment having such a configuration by a simulation method such as BPM.

図4の(D)は、マッハツェンダ型光変調器400の一方のシングルモード光導波路110に入力光310を入力した場合に、他方のシングルモード光導波路110から出力される第3出力光340と、シングルモード光導波路120から出力される第4出力光350との幅誤差dWに対する変化を示している。   4D shows a third output light 340 that is output from the other single mode optical waveguide 110 when the input light 310 is input to one single mode optical waveguide 110 of the Mach-Zehnder optical modulator 400. The change with respect to the width | variety error dW with the 4th output light 350 output from the single mode optical waveguide 120 is shown.

この場合、シングルモード光導波路110から入力された入力光310は、一方のMMI光カプラ100で分岐され、分岐された光は、曲線導波路210、直線導波路220を介して他方のMMI光カプラ100に伝搬する。そして、伝搬する光は、他方のMMI光カプラ100で結合されて、シングルモード光導波路110又はシングルモード光導波路120から出力される。   In this case, the input light 310 input from the single mode optical waveguide 110 is branched by one MMI optical coupler 100, and the branched light is passed through the curved waveguide 210 and the straight waveguide 220 to the other MMI optical coupler. Propagate to 100. The propagating light is coupled by the other MMI optical coupler 100 and output from the single mode optical waveguide 110 or the single mode optical waveguide 120.

図4の(D)から判るように、第3出力光340の強度は、dWの変化に対して0.1以下の小さな値に抑えられている。一方、第4出力光350の強度は、dW=−0.3μmにおいても0.6以上であったものが、dWが増加するに従って更に増加してから減少し、dW=0.28μm付近まで0.6以上となっている。そして、この第4出力光350は、dWが0.28μm以上では0.6以下となっている。つまり、MMI光カプラ100によれば、許容幅誤差は、約−0.3〜0.28μmの約0.6μmとなることが判る。   As can be seen from FIG. 4D, the intensity of the third output light 340 is suppressed to a small value of 0.1 or less with respect to the change in dW. On the other hand, the intensity of the fourth output light 350 is 0.6 or more even when dW = −0.3 μm, but further increases and decreases as dW increases, and reaches 0 until dW = 0.28 μm. .6 or more. The fourth output light 350 is 0.6 or less when the dW is 0.28 μm or more. That is, according to the MMI optical coupler 100, it is understood that the allowable width error is about −0.3 to 0.28 μm and about 0.6 μm.

(MMI光カプラの特性比較)
幅誤差dWに対する出力光の強度の変化について、このMMI光カプラ100と、前述した従来のMMI光カプラ500とを比較すると、従来のMMI光カプラ500によれば|dW|を大きくした場合、第1出力光620及び第2出力光630は、約0.3まで低下してしまうのに対して、本実施形態に係るMMI光カプラ100によれば|dW|を大きくしても第1出力光320及び第2出力光330の強度を約0.4以上の高い値に維持することができることが判る。
(Characteristic comparison of MMI optical coupler)
When the MMI optical coupler 100 is compared with the conventional MMI optical coupler 500 described above with respect to the change in the intensity of the output light with respect to the width error dW, according to the conventional MMI optical coupler 500, when | dW | While the first output light 620 and the second output light 630 are reduced to about 0.3, according to the MMI optical coupler 100 according to the present embodiment, the first output light is increased even when | dW | is increased. It can be seen that the intensity of 320 and the second output light 330 can be maintained at a high value of about 0.4 or more.

更に、従来のマッハツェンダ型光変調器700では許容幅誤差は、約−0.2〜0.1μmの約0.3μmに過ぎないが、本実施形態に係るマッハツェンダ型光変調器400によれば、この許容幅誤差を従来の許容幅誤差の約2倍の約−0.3〜0.28μmの約0.6μmにまで拡大することができることが判る。換言すれば、本実施形態によれば、許容幅誤差を80%以上も増加させることができる。   Further, in the conventional Mach-Zehnder type optical modulator 700, the allowable width error is only about 0.3 μm of about −0.2 to 0.1 μm, but according to the Mach-Zehnder type optical modulator 400 according to the present embodiment, It can be seen that this allowable width error can be expanded to about 0.6 μm, which is about −0.3 to 0.28 μm, which is about twice the conventional allowable width error. In other words, according to the present embodiment, the allowable width error can be increased by 80% or more.

そして、このように広い許容幅誤差を、従来のマッハツェンダ型光変調器700によって達成するためには、マルチモード光導波路530の幅を広げる必要があり、それに伴い長さを約400μmまで長くする必要がある。本実施形態に係るマルチモード光導波路130の長さLは210μmであるので、本実施形態によれば長さを約半分に短縮することができる。   In order to achieve such a wide tolerance error by the conventional Mach-Zehnder type optical modulator 700, it is necessary to increase the width of the multimode optical waveguide 530, and accordingly, it is necessary to increase the length to about 400 μm. There is. Since the length L of the multimode optical waveguide 130 according to the present embodiment is 210 μm, the length can be reduced to about half according to the present embodiment.

(本実施形態の効果)
以上説明したように、本実施形態に係るMMI光カプラ100によれば、作製時に生じる誤差、特に幅誤差dWによって出力光の強度の分配特性が変化してしまうことを防ぐことができる。さらに、本実施形態に係るマッハツェンダ型光変調器400によれば、許容することができる幅誤差dWを約2倍近くまで広げることができる。つまり、実用上充分な約±0.3μmの許容幅誤差を確保することができる。換言すれば、MMI光カプラ100の長さを、この許容幅誤差の範囲を有する従来のMMI光カプラ500に対して約半分の長さにまで短縮することができる。
(Effect of this embodiment)
As described above, according to the MMI optical coupler 100 according to the present embodiment, it is possible to prevent the intensity distribution characteristic of the output light from being changed due to an error that occurs during manufacturing, particularly the width error dW. Furthermore, according to the Mach-Zehnder optical modulator 400 according to the present embodiment, the allowable width error dW can be increased to about twice. That is, an allowable width error of about ± 0.3 μm sufficient for practical use can be ensured. In other words, the length of the MMI optical coupler 100 can be shortened to about half that of the conventional MMI optical coupler 500 having the allowable error range.

この様に、出力強度を幅誤差dWに対して変動することなく高い値に維持することができるので、製品としての均一性を向上することができる。更に製品品質を向上することにより、その後の使用上での微調整等の必要性を低減することができるため、使用上の便宜を向上することができる。つまり、同様の特性を有するMMI光カプラを作製する際に、作製装置等に要求される精度を低減することができるため、MMI光カプラの作製を容易にすることができる。   In this way, the output intensity can be maintained at a high value without changing with respect to the width error dW, so that the uniformity as a product can be improved. Further, by improving the product quality, it is possible to reduce the necessity for fine adjustment in the subsequent use, so that the convenience in use can be improved. That is, when an MMI optical coupler having similar characteristics is manufactured, the accuracy required for a manufacturing apparatus or the like can be reduced, so that the MMI optical coupler can be easily manufactured.

(各部材の寸法による許容幅誤差の変化)
以上、本実施形態に係るMMI光カプラ100及びマッハツェンダ型光変調器400の構成及び効果等について説明した。以下では、このMMI光カプラ100の各部材の寸法による特性の変化、つまり、MMI光カプラ100の各部材の寸法を変更した場合に、そのMMI光カプラ100を使用してマッハツェンダ型光変調器400を構成した場合の許容幅誤差の変化について説明する。
(Change in allowable width error due to the size of each member)
The configurations and effects of the MMI optical coupler 100 and the Mach-Zehnder optical modulator 400 according to the present embodiment have been described above. In the following, when a change in characteristics due to the size of each member of the MMI optical coupler 100, that is, when the size of each member of the MMI optical coupler 100 is changed, the MMI-Zehnder optical modulator 400 using the MMI optical coupler 100 is used. A description will be given of a change in the allowable width error when configured.

そこで、以下では、上記の寸法を有する本実施形態に係るMMI光カプラ100を基本に、一部の構成部材の寸法のみを変更した場合について説明する。従って、以下では、変更した寸法のみを示し、他の寸法については上記のMMI光カプラ100の寸法と同様である。   Therefore, hereinafter, a case will be described in which only the dimensions of some of the constituent members are changed based on the MMI optical coupler 100 according to the present embodiment having the above dimensions. Accordingly, only the changed dimensions are shown below, and the other dimensions are the same as those of the MMI optical coupler 100 described above.

(第2マルチモード光導波路部132の幅Wm2)
まず、図5を参照して、第2マルチモード光導波路部132の幅Wm2を変化させた場合の許容幅誤差の変化について説明する。図5は、本実施形態に係るMMI光カプラ100における第2マルチモード光導波路部132の幅Wm2の変化に対する特性の変化を示す図面である。
(Width Wm2 of the second multimode optical waveguide part 132)
First, with reference to FIG. 5, the change in the allowable width error when the width Wm2 of the second multimode optical waveguide section 132 is changed will be described. FIG. 5 is a diagram showing a change in characteristics with respect to a change in the width Wm2 of the second multimode optical waveguide section 132 in the MMI optical coupler 100 according to the present embodiment.

(A)は、Wm2=7.3μmにした場合のMMI光カプラ100を示し、この場合の第3出力光340及び第4出力光350の強度を(B)のグラフに示す。また、(C)は、Wm2=7.2μmにした場合のMMI光カプラ100を示し、この場合の第3出力光340及び第4出力光350の強度を(D)のグラフに示す。(E)は、Wm2=6.0μmにした場合のMMI光カプラ100を示し、この場合の第3出力光340及び第4出力光350の強度を(F)のグラフに示す。   (A) shows the MMI optical coupler 100 when Wm2 = 7.3 μm, and the graphs (B) show the intensities of the third output light 340 and the fourth output light 350 in this case. (C) shows the MMI optical coupler 100 when Wm2 = 7.2 μm, and the intensities of the third output light 340 and the fourth output light 350 in this case are shown in the graph of (D). (E) shows the MMI optical coupler 100 when Wm2 = 6.0 μm, and the intensity of the third output light 340 and the fourth output light 350 in this case is shown in the graph of (F).

尚、(C)に示すように、Wm2=7.2μmの場合、光導波路140、150の外側面140a、150bがそれぞれ、第2マルチモード光導波路部132の側面132a、132bと連続して形成されるように、光導波路140、150の幅が広い端部の幅Wsl2を2.6μmとした。そして、(E)に示すように、Wm2=6.0μmの場合、光導波路140と光導波路150との間隙Wg2を2μm確保するために、光導波路140、150の幅が広い端部の幅Wsl2を2.0μmとした。   As shown in (C), when Wm2 = 7.2 μm, the outer side surfaces 140a and 150b of the optical waveguides 140 and 150 are formed continuously with the side surfaces 132a and 132b of the second multimode optical waveguide part 132, respectively. As described above, the width Wsl2 of the wide end portions of the optical waveguides 140 and 150 is set to 2.6 μm. As shown in (E), when Wm2 = 6.0 μm, the width Wsl2 of the wide end portions of the optical waveguides 140 and 150 is secured in order to secure 2 μm of the gap Wg2 between the optical waveguide 140 and the optical waveguide 150. Was 2.0 μm.

(B)に示すように、Wm2=7.3μmのときの許容幅誤差は、約−0.22〜0.26μmとなる。このWm2=7.3μmは、マルチモード光導波路130の幅Wmの約61%にあたり、光導波路140、150の中心軸141、151とマルチモード光導波路130の中心軸133との間の距離P2は、マルチモード光導波路130の幅Wmの約1/5.5倍となる。この許容幅誤差は、従来のMMI光カプラの許容幅誤差(約−0.2〜0.1μm)よりも広くなっている。Wm2をWmの60%より長くすると、許容幅誤差は、狭くなり従来の許容幅誤差に近づく。   As shown in (B), the allowable width error when Wm2 = 7.3 μm is about −0.22 to 0.26 μm. This Wm2 = 7.3 μm corresponds to about 61% of the width Wm of the multimode optical waveguide 130, and the distance P2 between the central axes 141, 151 of the optical waveguides 140, 150 and the central axis 133 of the multimode optical waveguide 130 is This is about 1 / 5.5 times the width Wm of the multimode optical waveguide 130. This allowable width error is wider than the allowable width error (about −0.2 to 0.1 μm) of the conventional MMI optical coupler. When Wm2 is longer than 60% of Wm, the allowable width error becomes narrow and approaches the conventional allowable width error.

(D)に示すように、Wm2=7.2μmのときの許容幅誤差は、約−0.24〜0.18μmとなる。この場合、距離P2は、Wmの約1/5.2倍となる。この許容幅誤差も、従来の許容幅誤差(約−0.2〜0.1μm)よりも広くなっている。更に距離P2を大きくすると、許容幅誤差は、従来の許容幅誤差に近づく。従って、P2をWmの約1/5倍よりも大きくすると、許容幅誤差は狭くなり従来の許容幅誤差に近づく。   As shown in (D), the allowable width error when Wm2 = 7.2 μm is about −0.24 to 0.18 μm. In this case, the distance P2 is about 1 / 5.2 times Wm. This allowable width error is also wider than the conventional allowable width error (about −0.2 to 0.1 μm). When the distance P2 is further increased, the allowable width error approaches the conventional allowable width error. Therefore, when P2 is made larger than about 1/5 times Wm, the allowable width error becomes narrow and approaches the conventional allowable width error.

(E)に示すように、Wm2=6.0μmの場合、幅誤差dWの変化によって第4出力光350の強度は波立つような変化をし、許容幅誤差は−0.2近傍のみとなる。このWm2はWmの約50%にあたり、距離P2は幅Wmの約1/6倍となる。この距離P2をより小さくすると、第4出力光350の強度は更に多く波立つこととなる。この様に出力光の強度が波立つように変化すると、作製誤差による出力変動が不確定になり製品品質が低下する恐れがある。   As shown in (E), when Wm2 = 6.0 μm, the intensity of the fourth output light 350 changes as a result of a change in the width error dW, and the allowable width error is only around −0.2. . This Wm2 is about 50% of Wm, and the distance P2 is about 1/6 times the width Wm. When the distance P2 is further reduced, the intensity of the fourth output light 350 is further increased. If the intensity of the output light changes in such a manner, the output fluctuation due to the manufacturing error becomes uncertain and the product quality may be deteriorated.

以上から判るように、本実施形態においては、光導波路140、150の中心軸141、151とマルチモード光導波路130の中心軸133との間の距離P2を、マルチモード光導波路130の幅Wmの約1/6〜1/5倍にすることにより、出力強度の波立ちを抑えつつ、許容幅誤差を広くすることができ、MMI光カプラ100の特性を向上させることができる。そして、第2マルチモード光導波路部132の幅Wm2を、マルチモード光導波路130の幅Wmの約50%〜60%にすることにより、出力強度の波立ちを抑えつつ、許容幅誤差を広くすることができ、MMI光カプラ100の特性を向上させることができる。   As can be seen from the above, in this embodiment, the distance P2 between the central axes 141 and 151 of the optical waveguides 140 and 150 and the central axis 133 of the multimode optical waveguide 130 is set to the width Wm of the multimode optical waveguide 130. By setting the frequency to about 1/6 to 1/5, the tolerance error can be widened while suppressing the ripple of the output intensity, and the characteristics of the MMI optical coupler 100 can be improved. Then, by setting the width Wm2 of the second multimode optical waveguide portion 132 to about 50% to 60% of the width Wm of the multimode optical waveguide 130, the allowable width error is widened while suppressing the output intensity ripple. And the characteristics of the MMI optical coupler 100 can be improved.

(第2マルチモード光導波路部132の長さLm2)
次に、図6を参照して、図6の(A)に示すように第2マルチモード光導波路部132の長さLm2を変化させた場合の許容幅誤差の変化について説明する。図6は、本実施形態に係るMMI光カプラ100における第2マルチモード光導波路部132の長さLm2の変化に対する特性の変化を示す図面である。
(Length Lm2 of the second multimode optical waveguide portion 132)
Next, with reference to FIG. 6, a description will be given of a change in the allowable width error when the length Lm2 of the second multimode optical waveguide section 132 is changed as shown in FIG. FIG. 6 is a diagram showing a change in characteristics with respect to a change in the length Lm2 of the second multimode optical waveguide section 132 in the MMI optical coupler 100 according to the present embodiment.

(B)は、Lm2=5μmにした場合の第3出力光340及び第4出力光350の強度を示したグラフで、(C)は、Lm2=10μmにした場合の第3出力光340及び第4出力光350の強度を示したグラフで、(D)は、Lm2=15μmにした場合の第3出力光340及び第4出力光350の強度を示したグラフである。尚、マルチモード光導波路130の長さLを210μmに固定しているため、Lm2によって第1マルチモード光導波路部131の長さLm1は変化する。   (B) is a graph showing the intensities of the third output light 340 and the fourth output light 350 when Lm2 = 5 μm, and (C) is the third output light 340 and the fourth output light 340 when Lm2 = 10 μm. (D) is a graph showing the intensity of the third output light 340 and the fourth output light 350 when Lm2 = 15 μm. In addition, since the length L of the multimode optical waveguide 130 is fixed to 210 μm, the length Lm1 of the first multimode optical waveguide portion 131 changes depending on Lm2.

(C)に示すLm2=10μmの場合は、上述したMMI光カプラ100の場合であり、その許容幅誤差は、約−0.3〜0.28μmであった。それに対して(B)に示すように、Lm2を短くし5μmとしたときの許容幅誤差は狭くなり約−0.28〜0.25μmとなる。しかし、この許容幅誤差もMMI光カプラ500の許容幅誤差(約−0.2〜0.1μm)より広くなっている。この場合Lm2は、Lの約2.3%にあたる。更に、このLm2を短くした場合、許容幅誤差は更に狭くなる。   The case of Lm2 = 10 μm shown in (C) is the case of the MMI optical coupler 100 described above, and the allowable width error is about −0.3 to 0.28 μm. On the other hand, as shown in (B), the tolerance error when Lm2 is shortened to 5 μm is narrowed to about −0.28 to 0.25 μm. However, this allowable width error is also wider than the allowable width error (about −0.2 to 0.1 μm) of the MMI optical coupler 500. In this case, Lm2 corresponds to about 2.3% of L. Further, when this Lm2 is shortened, the allowable width error is further narrowed.

そして、(D)に示すように、Lm2を10μmよりも長くして15μmとした場合、第4出力光350の強度は減少して0.6近傍で波立つように変化した。この場合Lm2は、Lの約7.1%にあたる。更に、このLm2を長くした場合、第4出力光350の強度は減少する。特に、Lm2をLの約10%以上にした場合、第4出力光350の強度が更に減少し、必要な強度を得ることができなくなる。   And as shown in (D), when Lm2 was made longer than 10 μm to 15 μm, the intensity of the fourth output light 350 decreased and changed so as to wave around 0.6. In this case, Lm2 corresponds to about 7.1% of L. Furthermore, when this Lm2 is lengthened, the intensity of the fourth output light 350 decreases. In particular, when Lm2 is about 10% or more of L, the intensity of the fourth output light 350 is further reduced, and the required intensity cannot be obtained.

以上から判るように、本実施形態においては、第2マルチモード光導波路部132の長さLm2をマルチモード光導波路130の長さLの約2〜10%にすることにより、許容幅誤差を広くすることができ、MMI光カプラ100の特性を向上させることができる。   As can be seen from the above, in the present embodiment, by setting the length Lm2 of the second multimode optical waveguide section 132 to about 2 to 10% of the length L of the multimode optical waveguide 130, the allowable width error is widened. And the characteristics of the MMI optical coupler 100 can be improved.

(シングルモード光導波路110、120の幅が狭い端部の幅Wsl1)
図7を参照して、図7の(A)に示すようにシングルモード光導波路110、120の幅が狭い端部の幅Wsl1を変化させた場合の許容幅誤差の変化について説明する。図7は、本実施形態に係るMMI光カプラ100におけるシングルモード光導波路110、120の幅が狭い端部の幅Wsl1の変化に対する特性の変化を示す図面である。
(Width Wsl1 of the narrow end portion of the single mode optical waveguides 110 and 120)
With reference to FIG. 7, the change in the allowable width error when the width Wsl1 of the narrow end portion of the single mode optical waveguides 110 and 120 is changed as shown in FIG. FIG. 7 is a diagram illustrating a change in characteristics with respect to a change in the width Wsl1 of the narrow end portions of the single mode optical waveguides 110 and 120 in the MMI optical coupler 100 according to the present embodiment.

(B)は、Wsl1=2μmとした場合の第3出力光340及び第4出力光350の強度を示したグラフで、(C)は、Wsl1=2.3μmとした場合の第3出力光340及び第4出力光350の強度を示したグラフで、(D)は、Wsl1=2.6μmとした場合の第3出力光340及び第4出力光350の強度を示したグラフで、(E)は、Wsl1=2.9μmとした場合の第3出力光340及び第4出力光350の強度を示したグラフである。   (B) is a graph showing the intensities of the third output light 340 and the fourth output light 350 when Wsl1 = 2 μm, and (C) is the third output light 340 when Wsl1 = 2.3 μm. And (D) is a graph showing the intensities of the third output light 340 and the fourth output light 350 when Wsl1 = 2.6 μm, and (E). These are graphs showing the intensities of the third output light 340 and the fourth output light 350 when Wsl1 = 2.9 μm.

(B)に示すように、Wsl1=2μmのときの許容幅誤差は約−0.27〜0.26μmとなり、(C)に示すように、Wsl1=2.3μmのときの許容幅誤差は約−0.29〜0.27μmとなり、(D)に示すように、Wsl1=2.6μmのときの許容幅誤差は約−0.3〜0.28μmとなり、(E)に示すように、Wsl1=2.9μmのときの許容幅誤差は約−0.3〜0.27μmとなる。   As shown in (B), the allowable width error when Wsl1 = 2 μm is about −0.27 to 0.26 μm, and as shown in (C), the allowable width error when Wsl1 = 2.3 μm is about −0.29 to 0.27 μm, and as shown in (D), the allowable width error when Wsl1 = 2.6 μm is about −0.3 to 0.28 μm, and as shown in (E), Wsl1 The allowable width error when = 2.9 μm is about −0.3 to 0.27 μm.

従って、許容幅誤差のWsl1依存性はそれほど大きくはないが、Wsl1=2.6μmとすることにより許容幅誤差を更に広くすることができることが判る。そして、Wsl1を長くすることによって、第4出力光350の全体の強度が大きくなることが判る。   Therefore, it is understood that the allowable width error can be further widened by setting Wsl1 = 2.6 μm, although the dependency of the allowable width error on Wsl1 is not so large. It can be seen that the overall intensity of the fourth output light 350 is increased by increasing Wsl1.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to the example which concerns. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば、上記実施形態では、MMI光カプラ100は、第2入出力光導波路として、図1に示すように2つの光導波路140、150を備えるとしたが、本発明はかかる例に限定されない。例えば、MMI光カプラ100は、3つ以上の第2入出力光導波路を備えてもよい。複数の第2入出力光導波路が備えられる場合、各第2入出力光導波路は、幅方向に並設されてもよい。   For example, in the above embodiment, the MMI optical coupler 100 includes the two optical waveguides 140 and 150 as the second input / output optical waveguide as shown in FIG. 1, but the present invention is not limited to such an example. For example, the MMI optical coupler 100 may include three or more second input / output optical waveguides. When a plurality of second input / output optical waveguides are provided, the second input / output optical waveguides may be arranged in parallel in the width direction.

本発明の一実施形態に係るMMI光カプラの構成を示す説明図である。It is explanatory drawing which shows the structure of the MMI optical coupler which concerns on one Embodiment of this invention. 同実施形態に係るMMI光カプラの構成を示す断面図である。It is sectional drawing which shows the structure of the MMI optical coupler which concerns on the same embodiment. 同実施形態に係るMMI光カプラの構成を示す平面図である。It is a top view which shows the structure of the MMI optical coupler which concerns on the same embodiment. 同実施形態に係るMMI光カプラの特性を説明するための説明図である。FIG. 6 is an explanatory diagram for explaining characteristics of the MMI optical coupler according to the embodiment. 同実施形態に係るMMI光カプラにおける第2マルチモード光導波路の幅の変化に対する特性の変化を示す図面である。4 is a diagram illustrating a change in characteristics with respect to a change in width of a second multimode optical waveguide in the MMI optical coupler according to the embodiment. 同実施形態に係るMMI光カプラにおける第2マルチモード光導波路部の長さの変化に対する特性の変化を示す図面である。6 is a diagram illustrating a change in characteristics with respect to a change in length of a second multimode optical waveguide portion in the MMI optical coupler according to the embodiment. 同実施形態に係るMMI光カプラにおけるシングルモード光導波路の幅が狭い端部の幅の変化に対する特性の変化を示す図面である。5 is a diagram showing a change in characteristics with respect to a change in width of an end portion of a single mode optical waveguide having a narrow width in the MMI optical coupler according to the same embodiment. 従来のMMI光カプラを説明するための説明図である。It is explanatory drawing for demonstrating the conventional MMI optical coupler.

符号の説明Explanation of symbols

10 基板
20 リッジ導波路
20A 下部クラッド
20B 光導波層
20C 上部クラッド
100 MMI光カプラ
110、120 シングルモード光導波路
111、121 中心軸
130 マルチモード光導波路
131 第1マルチモード光導波路部
132 第2マルチモード光導波路部
132a、132b 側面
133 中心軸
140、150 光導波路
140a、150b 外側面
141、151 中心軸
210 曲線導波路
220 直線導波路
310 入力光
320 第1出力光
330 第2出力光
340 第3出力光
350 第4出力光
400 マッハツェンダ型光変調器
500 MMI光カプラ
510、520 シングルモード光導波路
530 マルチモード光導波路
540、550 シングルモード光導波路
610 入力光
620 第1出力光
630 第2出力光
640 第3出力光
650 第4出力光
700 マッハツェンダ型光変調器
DESCRIPTION OF SYMBOLS 10 Substrate 20 Ridge waveguide 20A Lower clad 20B Optical waveguide layer 20C Upper clad 100 MMI optical coupler 110, 120 Single mode optical waveguide 111, 121 Central axis 130 Multimode optical waveguide 131 First multimode optical waveguide section 132 Second multimode Optical waveguide part 132a, 132b Side surface 133 Central axis 140, 150 Optical waveguide 140a, 150b Outer side surface 141, 151 Central axis 210 Curved waveguide 220 Linear waveguide 310 Input light 320 First output light 330 Second output light 340 Third output Light 350 Fourth output light 400 Mach-Zehnder optical modulator 500 MMI optical coupler 510, 520 Single mode optical waveguide 530 Multimode optical waveguide 540, 550 Single mode optical waveguide 610 Input light 620 First output light 6 0 second output light 640 third output light 650 fourth output light 700 Mach-Zehnder type optical modulator

Claims (8)

第1入出力光導波路と、相隣接する少なくとも2つの第2入出力光導波路と、前記第1入出力光導波路と前記第2入出力光導波路との間に設けられマルチモード導波光を伝搬するマルチモード光導波路と、を有するマルチモード干渉光カプラであって、
前記マルチモード光導波路は、
前記第1入出力光導波路が接続される第1マルチモード光導波路部と、
前記第2入出力光導波路が接続され、前記マルチモード導波光の伝搬方向に垂直な方向の幅が前記第1マルチモード光導波路部より狭い第2マルチモード光導波路部と、
から構成されることを特徴とする、マルチモード干渉光カプラ。
A first input / output optical waveguide, at least two second input / output optical waveguides adjacent to each other, and the multimode waveguide light propagated between the first input / output optical waveguide and the second input / output optical waveguide. A multimode interference optical coupler having a multimode optical waveguide,
The multi-mode optical waveguide is
A first multimode optical waveguide section to which the first input / output optical waveguide is connected;
A second multimode optical waveguide section connected to the second input / output optical waveguide and having a width in a direction perpendicular to a propagation direction of the multimode waveguide light that is narrower than the first multimode optical waveguide section;
A multi-mode interference optical coupler comprising:
前記第1入出力光導波路は、前記マルチモード導波光の伝搬方向と平行な前記マルチモード光導波路の中心軸から、前記マルチモード光導波路の幅の約1/6の距離離隔して配置されることを特徴とする、請求項1に記載のマルチモード干渉光カプラ。   The first input / output optical waveguide is disposed at a distance of about 1/6 of the width of the multimode optical waveguide from the central axis of the multimode optical waveguide parallel to the propagation direction of the multimode optical waveguide. The multimode interference optical coupler according to claim 1, wherein: 前記伝搬方向と平行な前記第2マルチモード光導波路部の側面と、前記各第2入出力光導波路の外側面とが段差なく接合されることを特徴とする、請求項1又は2に記載のマルチモード干渉光カプラ。   The side surface of the second multimode optical waveguide portion parallel to the propagation direction and the outer surface of each second input / output optical waveguide are joined without any step. Multimode interference optical coupler. 前記第1入出力光導波路及び前記第2入出力光導波路の少なくともいずれか一方は、前記マルチモード光導波路に接近するに従ってテーパ状に拡大する幅を有することを特徴とする、請求項1〜3のいずれかに記載のマルチモード干渉光カプラ。   The at least one of the first input / output optical waveguide and the second input / output optical waveguide has a width that expands in a tapered shape as it approaches the multimode optical waveguide. The multimode interference optical coupler according to any one of the above. 前記第2入出力光導波路は、前記マルチモード導波光の伝搬方向と平行な前記マルチモード光導波路の中心軸から、前記マルチモード光導波路の幅の1/6〜1/5の距離だけ離隔して配置されることを特徴とする、請求項1〜4のいずれかに記載のマルチモード干渉光カプラ。   The second input / output optical waveguide is separated from the central axis of the multimode optical waveguide parallel to the propagation direction of the multimode optical waveguide by a distance of 1/6 to 1/5 of the width of the multimode optical waveguide. The multimode interference optical coupler according to any one of claims 1 to 4, wherein the multimode interference optical coupler is arranged in a manner described above. 前記第2マルチモード光導波路部の幅は、前記第1マルチモード光導波路部の幅の50%〜60%であることを特徴とする、請求項1〜5のいずれかに記載のマルチモード干渉光カプラ。   The multimode interference according to any one of claims 1 to 5, wherein the width of the second multimode optical waveguide part is 50% to 60% of the width of the first multimode optical waveguide part. Optical coupler. 前記第2マルチモード光導波路部の長さは、前記マルチモード光導波路の長さの2%〜10%であることを特徴とする、請求項1〜6のいずれかに記載のマルチモード干渉光カプラ。   The multimode interference light according to claim 1, wherein a length of the second multimode optical waveguide portion is 2% to 10% of a length of the multimode optical waveguide. Coupler. 第1入出力光導波路と、相隣接する少なくとも2つの第2入出力光導波路と、前記第1入出力光導波路と前記第2入出力光導波路との間に設けられマルチモード導波光を伝搬するマルチモード光導波路と、を有し、前記マルチモード光導波路は、前記第1入出力光導波路が接続される第1マルチモード光導波路部と、前記第2入出力光導波路が接続され、前記第1マルチモード光導波路部より前記マルチモード導波光の伝搬方向に垂直な方向の幅が狭い第2マルチモード光導波路部と、から構成されるマルチモード干渉光カプラを2つ有し、
一の前記マルチモード干渉光カプラの前記第2入出力光導波路と、他の前記マルチモード干渉光カプラの前記第2入出力光導波路とが連結導波路で連結されることを特徴とする、マッハツェンダ型光変調器。
A first input / output optical waveguide, at least two second input / output optical waveguides adjacent to each other, and the multimode waveguide light propagated between the first input / output optical waveguide and the second input / output optical waveguide. A multimode optical waveguide, wherein the multimode optical waveguide is connected to the first multimode optical waveguide portion to which the first input / output optical waveguide is connected, and to the second input / output optical waveguide. Two multimode interference optical couplers each including a second multimode optical waveguide section whose width in the direction perpendicular to the propagation direction of the multimode waveguide light is narrower than one multimode optical waveguide section;
The Mach-Zehnder characterized in that the second input / output optical waveguide of one multimode interference optical coupler and the second input / output optical waveguide of another multimode interference optical coupler are connected by a connection waveguide. Type optical modulator.
JP2007080209A 2007-03-26 2007-03-26 Multimode interference optical coupler and mach-zehnder optical modulator Pending JP2008241937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080209A JP2008241937A (en) 2007-03-26 2007-03-26 Multimode interference optical coupler and mach-zehnder optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080209A JP2008241937A (en) 2007-03-26 2007-03-26 Multimode interference optical coupler and mach-zehnder optical modulator

Publications (1)

Publication Number Publication Date
JP2008241937A true JP2008241937A (en) 2008-10-09

Family

ID=39913402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080209A Pending JP2008241937A (en) 2007-03-26 2007-03-26 Multimode interference optical coupler and mach-zehnder optical modulator

Country Status (1)

Country Link
JP (1) JP2008241937A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256761A (en) * 2009-04-28 2010-11-11 Nec Corp Semiconductor mach-zehnder optical modulator and manufacturing method of the same, and semiconductor optical integrated element and manufacturing method of the same
JP2010256760A (en) * 2009-04-28 2010-11-11 Nec Corp Semiconductor mach-zehnder optical modulator and manufacturing method of the same, and semiconductor optical integrated element and manufacturing method of the same
JP2012053233A (en) * 2010-08-31 2012-03-15 Nippon Telegr & Teleph Corp <Ntt> Three-dimensional optical circuit
WO2014017154A1 (en) * 2012-07-26 2014-01-30 国立大学法人横浜国立大学 Multimode interference coupler
JP2014514596A (en) * 2011-03-15 2014-06-19 アルカテル−ルーセント Monolithic optical integrated circuit
US8824836B2 (en) 2010-06-10 2014-09-02 Fujitsu Optical Components Limited Optical waveguide, optical modulator and optical coupler
JP6716029B1 (en) * 2018-10-10 2020-07-01 三菱電機株式会社 Multimode interference type optical waveguide device and optical integrated circuit
US11971579B2 (en) 2018-10-10 2024-04-30 Mitsubishi Electric Corporation Multi-mode interferometric optical waveguide device and photonic integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162454A (en) * 1998-09-25 2000-06-16 Hitachi Cable Ltd Optical coupler, and mach-zehnder optical coupler and divider using same
WO2005116703A1 (en) * 2004-05-28 2005-12-08 Hitachi Chemical Company, Ltd. Optical system including optical waveguide
JP2006284791A (en) * 2005-03-31 2006-10-19 Oki Electric Ind Co Ltd Multimode interference optical coupler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162454A (en) * 1998-09-25 2000-06-16 Hitachi Cable Ltd Optical coupler, and mach-zehnder optical coupler and divider using same
WO2005116703A1 (en) * 2004-05-28 2005-12-08 Hitachi Chemical Company, Ltd. Optical system including optical waveguide
JP2006284791A (en) * 2005-03-31 2006-10-19 Oki Electric Ind Co Ltd Multimode interference optical coupler

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256761A (en) * 2009-04-28 2010-11-11 Nec Corp Semiconductor mach-zehnder optical modulator and manufacturing method of the same, and semiconductor optical integrated element and manufacturing method of the same
JP2010256760A (en) * 2009-04-28 2010-11-11 Nec Corp Semiconductor mach-zehnder optical modulator and manufacturing method of the same, and semiconductor optical integrated element and manufacturing method of the same
US8824836B2 (en) 2010-06-10 2014-09-02 Fujitsu Optical Components Limited Optical waveguide, optical modulator and optical coupler
JP2012053233A (en) * 2010-08-31 2012-03-15 Nippon Telegr & Teleph Corp <Ntt> Three-dimensional optical circuit
JP2014514596A (en) * 2011-03-15 2014-06-19 アルカテル−ルーセント Monolithic optical integrated circuit
WO2014017154A1 (en) * 2012-07-26 2014-01-30 国立大学法人横浜国立大学 Multimode interference coupler
JPWO2014017154A1 (en) * 2012-07-26 2016-07-07 国立大学法人横浜国立大学 Multimode interference optical coupler
JP6716029B1 (en) * 2018-10-10 2020-07-01 三菱電機株式会社 Multimode interference type optical waveguide device and optical integrated circuit
US11971579B2 (en) 2018-10-10 2024-04-30 Mitsubishi Electric Corporation Multi-mode interferometric optical waveguide device and photonic integrated circuit

Similar Documents

Publication Publication Date Title
US9851504B2 (en) Planar optical waveguide device, DP-QPSK modulator, coherent receiver, and polarization diversity
US10649144B2 (en) Optical multiplexing circuit
JP4942429B2 (en) Semiconductor tunable laser
JP5998183B2 (en) Substrate type optical waveguide device
US7302137B2 (en) Optical coupler apparatus and method
US9008476B2 (en) Polarization conversion device
JP2008241937A (en) Multimode interference optical coupler and mach-zehnder optical modulator
JP6047527B2 (en) Substrate type optical waveguide device
JP5357214B2 (en) Optical integrated circuit
JP6130290B2 (en) Mode coupler
WO2012074134A1 (en) Optical branching element, optical waveguide device using optical branching element, and method of manufacturing optical branching element, method of manufacturing optical waveguide device
JP2006284791A (en) Multimode interference optical coupler
US6553164B1 (en) Y-branch waveguide
JP2001318253A (en) Optical waveguide-type directional coupler and optical waveguide circuit using the optical waveguide type directional coupler
JP3841969B2 (en) Y branch optical waveguide and optical integrated circuit
JP2007148290A (en) Directional optical coupler
JP2007233294A (en) Optical coupler
JP2002286952A (en) Waveguide type optical coupler and optical multiplexer/ demultiplexer using the coupler
US10859769B2 (en) Compact photonic devices
JP2021148965A (en) 90-degree optical hybrid
JPH07174929A (en) Light branching device and optical parts
JP3827127B2 (en) Optical directional coupler
JP2015069205A (en) Multimode interference device and method for operating optical signal
EP3577500B1 (en) An optical waveguide crosspoint
JP2010164504A (en) Optical gyrosensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108