JP2008241852A - Toner density detection device - Google Patents

Toner density detection device Download PDF

Info

Publication number
JP2008241852A
JP2008241852A JP2007078973A JP2007078973A JP2008241852A JP 2008241852 A JP2008241852 A JP 2008241852A JP 2007078973 A JP2007078973 A JP 2007078973A JP 2007078973 A JP2007078973 A JP 2007078973A JP 2008241852 A JP2008241852 A JP 2008241852A
Authority
JP
Japan
Prior art keywords
circuit
output
signal
resonance
waveform shaping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007078973A
Other languages
Japanese (ja)
Inventor
Katsumi Okada
克己 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Document Solutions Inc
Original Assignee
Kyocera Mita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Mita Corp filed Critical Kyocera Mita Corp
Priority to JP2007078973A priority Critical patent/JP2008241852A/en
Publication of JP2008241852A publication Critical patent/JP2008241852A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a toner density detection device which can correctly detect the toner density by absorbing the errors caused by the temperature characteristics of the sensor circuit or without influenced by those temperature characteristics. <P>SOLUTION: This toner density detection device has a reference coil L1 to be applied with exciting pulse signals, a first resonance circuit A of a first resonance frequency f1, a magnetic detection coil L2 coupled with the reference coil in the reverse polarity, a second resonance circuit B of a second resonance frequency f2 different from the first resonance frequency f1, an output waveform forming circuit C to convert the output signals of the second resonance circuit into pulse signals, and a phase difference detection circuit D to find the phase difference between the output signals from the output waveform forming circuit D and the exciting signals. It finds out the density of the toner contained in the magnetic powder from the phase difference changing as the inductance of the magnetic detection coil L2 changes and has a temperature compensation circuit F to correct the detection errors caused by the temperature characteristics of the output waveform forming circuit D. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、本発明は、磁性キャリアとトナーを含む二成分系現像剤のトナー濃度を検出するトナー濃度検出装置に関する。   The present invention relates to a toner concentration detection device for detecting the toner concentration of a two-component developer containing a magnetic carrier and toner.

特許文献1には、トナー濃度検出装置として差動トランスを用いてその中の駆動コイルを交流電圧で駆動し、現像剤に近接する検知コイルと現像剤の影響を受けない基準コイルとの差動出力に基づいてトナーの濃度を検知する差動トランス型のトナー濃度検出装置が提案されている。   In Patent Document 1, a differential transformer is used as a toner concentration detection device, and a drive coil therein is driven with an AC voltage, and a differential between a detection coil adjacent to the developer and a reference coil that is not affected by the developer. There has been proposed a differential transformer type toner concentration detection device that detects toner concentration based on an output.

しかし、差動トランス型のトナー濃度検出装置では、電源源に接続された駆動コイルの他に検知コイルと基準コイルの三種類のコイルを備え、これらを上下方向に積層する必要があり、形状が大きくなるという問題があった。また、磁気バランスをとるために、ねじ式のコアを手動で操作して調整する必要があり、その調整作業が煩雑であるという問題もあった。   However, the differential transformer type toner concentration detection device has three types of coils, a detection coil and a reference coil, in addition to a drive coil connected to a power source, and these need to be stacked in the vertical direction. There was a problem of getting bigger. In addition, in order to balance the magnetic force, it is necessary to manually adjust the screw-type core, and there is a problem that the adjustment work is complicated.

一方、差動トランスを設けることなく、基準発振コイルと検知コイルの接続点から取り出した検知信号と、基準信号との位相差からトナー濃度を検出する構成が特許文献2及び特許文献3に記載されている。   On the other hand, Patent Document 2 and Patent Document 3 describe a configuration in which a toner density is detected from a phase difference between a detection signal extracted from a connection point between a reference oscillation coil and a detection coil and a reference signal without providing a differential transformer. ing.

さらに特許文献4には、特許文献3に記載された検出回路に対して、装置の出力信号レベルを補正調整することにより、検知動作に使用される部品の電気特性のばらつきを適確に補償して、常に高精度の検知特性信号を出力する被検体の電磁気特性検知装置を提供することを目的として、以下の構成が開示されている。   Further, Patent Document 4 appropriately compensates for variations in the electrical characteristics of components used in the detection operation by correcting and adjusting the output signal level of the device with respect to the detection circuit described in Patent Document 3. In order to provide an electromagnetic characteristic detection apparatus for a subject that always outputs a detection characteristic signal with high accuracy, the following configuration is disclosed.

コイルとコンデンサからなる共振回路が、被検体の近傍に配設され、前記被検体の電磁気特性を検出し、対応する検知信号を出力する第1の回路と、該第1の回路から出力される検知信号を増幅し検知特性信号として出力する第2の回路と、該第2の回路に対して、前記電気部品の電気特性のばらつきに起因する前記検知特性信号の信号レベル変化を補正調整し、信号レベルが補正調整された検知特性信号を出力するように制御を行う信号レベル調整手段とを有する電磁気特性検知装置である。
特開平3−71068号公報 特開平6−3329号公報 特開平6−289717号公報 特開2005−91516号公報
A resonance circuit including a coil and a capacitor is disposed in the vicinity of the subject, detects a first electromagnetic circuit of the subject, and outputs a corresponding detection signal, and is output from the first circuit. A second circuit that amplifies the detection signal and outputs it as a detection characteristic signal, and for the second circuit, corrects and adjusts the signal level change of the detection characteristic signal caused by variations in the electric characteristics of the electrical components; It is an electromagnetic characteristic detection device having signal level adjustment means for performing control so as to output a detection characteristic signal whose signal level is corrected and adjusted.
JP-A-3-71068 JP-A-6-3329 JP-A-6-289717 JP 2005-91516 A

しかし、特許文献3に記載された発明では、基準発振コイルと検知コイルの接続点から検知信号を取り出す際にQの低下を防ぐために能動素子を用いた増幅器を設ける必要があり、このような能動素子は周囲温度の影響を受けて入力閾値電圧が変動するため、検出誤差の影響が大きいという問題があった。   However, in the invention described in Patent Document 3, it is necessary to provide an amplifier using an active element in order to prevent a decrease in Q when a detection signal is extracted from the connection point between the reference oscillation coil and the detection coil. Since the input threshold voltage fluctuates under the influence of the ambient temperature, the element has a problem that the influence of the detection error is large.

特許文献4には、電気部品の電気特性のばらつきに伴う検知電圧の変動を吸収するために、予め補正データを備えたマイクロコンピュータにより検知感度を補正する技術が提案されているが、温度特性の影響を解消するものではない。   Patent Document 4 proposes a technique for correcting detection sensitivity using a microcomputer provided with correction data in advance in order to absorb fluctuations in detection voltage caused by variations in electrical characteristics of electrical components. It does not eliminate the impact.

本発明の目的は、上述の問題点に鑑み、検出回路の温度特性による誤差を吸収し、或いは温度特性の影響を受けることなく、正確にトナー濃度を検出することができるトナー濃度検出装置を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide a toner concentration detection device that can accurately detect a toner concentration without absorbing an error due to the temperature characteristic of a detection circuit or being affected by the temperature characteristic. There is in point to do.

上述の目的を達成するため、本発明によるトナー濃度検出装置の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、パルス状の励磁信号が印加される基準コイルを備え、第一共振周波数f1の第一共振回路と、前記基準コイルと逆極性で結合される磁気検出コイルを備え、前記第一共振周波数f1とは異なる第二共振周波数f2の第二共振回路と、前記第二共振回路の出力信号をパルス信号に変換する出力波形成形回路と、前記出力波形成形回路からの出力信号と前記励磁信号との位相差を検出する位相差検出回路を備えて構成され、前記磁気検出コイルのインダクタンスの変化に起因して変動する前記位相差に基づいて磁性粉に含まれるトナー濃度を検出するトナー濃度検出装置であって、前記出力波形成形回路の温度特性による検出誤差を補償する温度補償回路を備えている点にある。   In order to achieve the above-mentioned object, the first characteristic configuration of the toner concentration detection device according to the present invention is a reference coil to which a pulsed excitation signal is applied, as described in claim 1 of the claims. A first resonance circuit having a first resonance frequency f1, a magnetic detection coil coupled with a polarity opposite to that of the reference coil, and a second resonance circuit having a second resonance frequency f2 different from the first resonance frequency f1 An output waveform shaping circuit that converts the output signal of the second resonance circuit into a pulse signal; and a phase difference detection circuit that detects a phase difference between the output signal from the output waveform shaping circuit and the excitation signal. A toner concentration detection device for detecting a toner concentration contained in magnetic powder based on the phase difference that varies due to a change in inductance of the magnetic detection coil, the temperature of the output waveform shaping circuit In that it includes a temperature compensation circuit for compensating for the detection error due to gender.

同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、前記温度補償回路は、前記出力波形成形回路の入力段に、前記出力信号のDCバイアスレベルを調整するピンダイオードと抵抗でなるDCバイアス調整回路により構成されている点にある。   According to the second characteristic configuration described in the second aspect, in addition to the first characteristic configuration described above, the temperature compensation circuit may include a DC bias level of the output signal at an input stage of the output waveform shaping circuit. This is because it is constituted by a DC bias adjusting circuit composed of a pin diode and a resistor.

同第三の特徴構成は、同請求項3に記載した通り、上述の第一特徴構成に加えて、前記温度補償回路は、前記出力波形成形回路と温度特性が等しく、前記励磁信号と周波数の等しい正弦波信号をパルス信号に波形成形する入力波形整形回路と、前記入力波形成形回路の出力をDCレベルに変換する積分回路を備え、前記積分回路の出力により前記バリキャップダイオードの容量を調整するように構成されている点にある。   In the third feature configuration, as described in claim 3, in addition to the first feature configuration described above, the temperature compensation circuit is equal in temperature characteristic to the output waveform shaping circuit, and the excitation signal and frequency An input waveform shaping circuit for shaping an equal sine wave signal into a pulse signal, and an integration circuit for converting the output of the input waveform shaping circuit to a DC level, and adjusting the capacitance of the varicap diode by the output of the integration circuit It is in the point comprised as follows.

本発明によれば、検出回路の温度特性による誤差を吸収し、或いは温度特性の影響を受けることなく、正確にトナー濃度を検出することができるトナー濃度検出装置を提供することができるようになった。   According to the present invention, it is possible to provide a toner concentration detection device that can accurately detect the toner concentration without absorbing an error due to the temperature characteristic of the detection circuit or being affected by the temperature characteristic. It was.

以下、本発明によるトナー濃度検出装置について説明する。図5に示すように、トナー濃度検出装置1は、磁性粉キャリアとトナーの二成分現像剤が収容された現像槽4に面して配置される検出部と、検出部で検出された信号を処理する信号処理部3で構成され、信号処理部3は樹脂製ケーシングに収容されている。   Hereinafter, a toner concentration detection device according to the present invention will be described. As shown in FIG. 5, the toner concentration detection device 1 includes a detection unit disposed facing the developing tank 4 containing a two-component developer of magnetic powder carrier and toner, and a signal detected by the detection unit. The signal processing unit 3 is configured to be processed, and the signal processing unit 3 is accommodated in a resin casing.

検出部は、中空のボビン2の現像槽4側に巻回された磁気検出コイルL2と、現像槽4に対して離隔側に巻回された基準コイルL1を備え、磁気検出コイルL2は基準コイルL1と逆極性で結合されている。   The detection unit includes a magnetic detection coil L2 wound on the side of the developing tank 4 of the hollow bobbin 2, and a reference coil L1 wound on the separation side with respect to the developing tank 4, and the magnetic detection coil L2 is a reference coil. It is connected to L1 with the opposite polarity.

磁気検出コイルL2は、現像槽4内のトナー濃度の変化により密度が変化するキャリアの透磁率の影響を受けてそのインダクタンスが変化する位置に近接配置され、基準コイルL1はキャリアの透磁率の影響を受けないように離隔した位置に配置されている。   The magnetic detection coil L2 is disposed close to the position where the inductance changes due to the influence of the magnetic permeability of the carrier whose density changes due to the change in the toner density in the developing tank 4, and the reference coil L1 is affected by the magnetic permeability of the carrier. So that they are not separated from each other.

図1に示すように、上述のトナー濃度検出装置は、パルス状の励磁信号が印加される基準コイルL1を備え、第一共振周波数f1の第一共振回路Aと、基準コイルL1と逆極性で結合される磁気検出コイルL2を備え、第一共振周波数f1とは異なる第二共振周波数f2の第二共振回路Bと、第二共振回路Bの出力信号をパルス信号に変換する出力波形成形回路Cと、出力波形成形回路Cからの出力信号と励磁信号との位相差を検出する位相差検出回路Dと、位相差検出回路Dの出力を直流電圧に変換する直流変換回路Eを備えている。   As shown in FIG. 1, the above-described toner concentration detection apparatus includes a reference coil L1 to which a pulsed excitation signal is applied, and has a first resonance circuit A having a first resonance frequency f1 and a polarity opposite to that of the reference coil L1. A magnetic resonance coil L2 coupled to the second resonance circuit B having a second resonance frequency f2 different from the first resonance frequency f1, and an output waveform shaping circuit C for converting an output signal of the second resonance circuit B into a pulse signal. And a phase difference detection circuit D for detecting the phase difference between the output signal from the output waveform shaping circuit C and the excitation signal, and a DC conversion circuit E for converting the output of the phase difference detection circuit D into a DC voltage.

第一共振回路AはコンデンサC1と基準コイルL1を備え、第一共振周波数f1が4MHzに設定されており、第二共振回路BはコンデンサC2,C3,バリキャップダイオードVD,磁気検出コイルL2を備え、第二共振周波数f2が第一共振周波数f1よりやや高い4.1MHzに設定されている。   The first resonance circuit A includes a capacitor C1 and a reference coil L1, the first resonance frequency f1 is set to 4 MHz, and the second resonance circuit B includes capacitors C2, C3, a varicap diode VD, and a magnetic detection coil L2. The second resonance frequency f2 is set to 4.1 MHz, which is slightly higher than the first resonance frequency f1.

さらに、電源電圧Vdcから抵抗R1,可変抵抗VR1及び抵抗R2による分圧回路が設けられ、可変抵抗VR1を調整することによりバリキャップダイオードVDの容量が調整され、基準トナー濃度の現像剤に対して、基準コイルL1と磁気検出コイルL2のバランスを調整することができるように構成されている。   Further, a voltage dividing circuit is provided from the power supply voltage Vdc by the resistor R1, the variable resistor VR1, and the resistor R2, and the capacitance of the varicap diode VD is adjusted by adjusting the variable resistor VR1, so that the developer of the reference toner density is adjusted. The balance between the reference coil L1 and the magnetic detection coil L2 can be adjusted.

排他的論理和回路(以下、「XOR回路」と記す。)IC1と発振子Xと抵抗を備えた周波数4MHzの発振回路が設けられ、パルス状の励磁信号が基準コイルL1に印加されて、第一共振回路Aが共振状態に維持される。   An exclusive OR circuit (hereinafter referred to as “XOR circuit”) is provided with an oscillation circuit having a frequency of 4 MHz comprising an IC1, an oscillator X, and a resistor, and a pulsed excitation signal is applied to the reference coil L1, One resonance circuit A is maintained in a resonance state.

相互インダクタンスにより第二共振回路Bに電圧が誘起されるが、基準トナー濃度では共振周波数が異なるため共振状態には至らず僅かな電圧が出力される状態となる。この状態でトナー濃度が低下すると磁気検出コイルL2近傍のキャリア密度が高くなり、その影響でインダクタンスが変化して第二共振周波数が第一共振周波数に近づき、次第に出力が高くなり共振するようになる。   A voltage is induced in the second resonance circuit B by the mutual inductance. However, since the resonance frequency is different at the reference toner concentration, the resonance state is not reached and a slight voltage is output. When the toner concentration is lowered in this state, the carrier density in the vicinity of the magnetic detection coil L2 is increased. Due to the influence, the inductance changes, the second resonance frequency approaches the first resonance frequency, and the output gradually increases to resonate. .

第二共振回路Bの出力端子がDCバイアス回路Fを介して出力波形成形回路Cに接続されている。出力波形成形回路Cは一方の入力端子が電源に接続されたXOR回路IC2で構成され、他方の入力端子にDCバイアス回路Fによりレベルシフトされた交流信号が入力され、当該XOR回路IC2では入力閾値電圧を基準として、交流信号がハイレベルまたはローレベルの何れかに識別されて、XOR演算により波形成形されたパルス信号が出力される。第二共振回路Bの出力信号とは位相が反転したパルス信号が出力されるのである。   The output terminal of the second resonance circuit B is connected to the output waveform shaping circuit C via the DC bias circuit F. The output waveform shaping circuit C is composed of an XOR circuit IC2 having one input terminal connected to a power supply, and an AC signal level-shifted by the DC bias circuit F is input to the other input terminal. The XOR circuit IC2 has an input threshold value. With the voltage as a reference, the AC signal is identified as either a high level or a low level, and a pulse signal having a waveform formed by an XOR operation is output. The output signal of the second resonance circuit B is a pulse signal whose phase is inverted.

出力波形成形回路Cの出力信号は位相差検出回路Dに入力されて、励磁信号との位相差が検出される。位相差検出回路DはXOR回路IC3で構成され、波形成形回路Cの出力信号と励磁信号とのXOR演算処理行なわれてその結果が位相差として出力される。   The output signal of the output waveform shaping circuit C is input to the phase difference detection circuit D, and the phase difference from the excitation signal is detected. The phase difference detection circuit D is composed of an XOR circuit IC3, which performs an XOR operation process on the output signal of the waveform shaping circuit C and the excitation signal and outputs the result as a phase difference.

出力波形成形回路Cの出力信号と励磁信号との位相差は最大でπ/2に設定され、トナー濃度が低下するに連れて位相差がπ/2に近づくように設定されている。   The phase difference between the output signal of the output waveform shaping circuit C and the excitation signal is set to π / 2 at the maximum, and the phase difference is set to approach π / 2 as the toner density decreases.

位相差検出回路Dの出力が直流変換回路Eに入力されて、位相差が直流電圧に変換されて出力される。直流変換回路EはオペアンプIC4と抵抗及びコンデンサを備えた積分回路で構成されている。   The output of the phase difference detection circuit D is input to the DC conversion circuit E, and the phase difference is converted into a DC voltage and output. The DC conversion circuit E is composed of an operational amplifier IC4 and an integrating circuit including a resistor and a capacitor.

トナー濃度が設定濃度付近にあるときには、図2(a)に示すように、デューティ比50%、4MHzの励磁信号(図1中、P1点の電圧V(P1))に対して、出力波形成形回路Cから位相差Δφのパルス信号(図1中、P2点の電圧V(P2))が出力され、位相差検出回路Dから位相差に対応するパルス信号(図1中、P3点の電圧V(P3))が出力される。   When the toner density is in the vicinity of the set density, as shown in FIG. 2A, the output waveform shaping is performed with respect to the excitation signal of 50% duty ratio and 4 MHz excitation signal (voltage V (P1) at point P1 in FIG. 1). A pulse signal having a phase difference Δφ (a voltage V (P2) at point P2 in FIG. 1) is output from the circuit C, and a pulse signal corresponding to the phase difference from the phase difference detection circuit D (a voltage V at a point P3 in FIG. 1). (P3)) is output.

トナー濃度が低下したときには、図2(b)に示すように、励磁信号(図1中、P1点の電圧V(P1))に対して、出力波形成形回路Cから位相差Δφが最大でπ/2のパルス信号(図1中、P2点の電圧V(P2))が出力され、位相差検出回路Dから位相差に対応するパルス信号(図1中、P3点の電圧V(P3))が出力される。   When the toner density decreases, as shown in FIG. 2B, the phase difference Δφ from the output waveform shaping circuit C is π at the maximum with respect to the excitation signal (voltage V (P1) at point P1 in FIG. 1). / 2 pulse signal (voltage V (P2) at point P2 in FIG. 1) is output, and the pulse signal corresponding to the phase difference from the phase difference detection circuit D (voltage V (P3) at point P3 in FIG. 1). Is output.

図3に示すように、位相差検出回路Dの出力信号を直流変換回路Eで直流レベルに変換することにより、現像剤のトナー濃度が求まるのである。   As shown in FIG. 3, by converting the output signal of the phase difference detection circuit D to a direct current level by the direct current conversion circuit E, the toner density of the developer can be obtained.

しかし、DCバイアス回路Fが単に抵抗分圧回路で構成される場合には、レベルシフトされたアナログの交流信号を出力波形成形回路Cを構成するXOR回路IC2で波形成形する際に、XOR回路IC2の入力閾値電圧が温度変動により変動すると、同じ交流信号であってもその出力が変動する。   However, in the case where the DC bias circuit F is simply constituted by a resistance voltage dividing circuit, the XOR circuit IC2 is used for waveform shaping of the level-shifted analog AC signal by the XOR circuit IC2 constituting the output waveform shaping circuit C. When the input threshold voltage fluctuates due to temperature fluctuation, the output fluctuates even with the same AC signal.

図4(c)に示すように、XOR回路IC2の入力閾値がVth0からVth1に変化すると、図4(d)に示す入力閾値がVth0のときの出力信号V(P2)から図4(e)に示す入力閾値がVth1のときの出力信号V´(P2)に変化して、パルス幅W0がW1(<W0)に狭くなる。その結果、直流変換回路Eの出力が低くなり、本来のトナー濃度より低く検出される不都合が生じる。尚、図中、Vb0はDCバイアス回路Fにより与えられるバイアス電圧を示している。   As shown in FIG. 4C, when the input threshold value of the XOR circuit IC2 changes from Vth0 to Vth1, the output signal V (P2) when the input threshold value shown in FIG. Changes to the output signal V ′ (P2) when the input threshold value is Vth1, and the pulse width W0 becomes narrower to W1 (<W0). As a result, the output of the DC conversion circuit E becomes low, and there is a problem that it is detected lower than the original toner density. In the figure, Vb0 indicates a bias voltage applied by the DC bias circuit F.

そこで、本発明によるトナー濃度検出装置は、出力波形成形回路Cの温度特性による検出誤差を補償する温度補償回路を備えている。   Therefore, the toner concentration detection apparatus according to the present invention includes a temperature compensation circuit that compensates for a detection error due to the temperature characteristic of the output waveform shaping circuit C.

出力波形成形回路Cの入力段に設けられたDCバイアス回路Fを出力信号のDCバイアスレベルを調整するピンダイオードPINと抵抗Rで構成することにより温度補償回路を実現している。   A temperature compensation circuit is realized by configuring the DC bias circuit F provided at the input stage of the output waveform shaping circuit C with a pin diode PIN and a resistor R for adjusting the DC bias level of the output signal.

ピンダイオードPINは、順バイアス時に低インピーダンス特性を示し、逆バイアス時に高インピーダンス特性を示す。従って、トナー濃度が次第に低下して第二共振回路Bの共振が大きくなると、その出力信号の波高値が高くなり、順バイアス状態となったピンダイオードPINのインピーダンスが低下するため、抵抗R4とで生成される分圧レベルが上昇し、高いバイアス電圧が付加されるようになる。また、その出力信号はピンダイオードPINによりクランプされる。   The pin diode PIN exhibits a low impedance characteristic during forward bias, and exhibits a high impedance characteristic during reverse bias. Accordingly, when the toner density gradually decreases and the resonance of the second resonance circuit B increases, the peak value of the output signal increases, and the impedance of the pin diode PIN that is in the forward bias state decreases. The generated voltage division level is increased and a high bias voltage is applied. The output signal is clamped by the pin diode PIN.

このような構成により、第二共振回路Bの出力電圧に高いバイアス電圧が付加されることにより、出力波形成形回路Cの入力閾値電圧の温度変動による影響を極めて低く抑えることができるのである。   With such a configuration, a high bias voltage is added to the output voltage of the second resonance circuit B, so that the influence due to temperature fluctuations of the input threshold voltage of the output waveform shaping circuit C can be suppressed extremely low.

図4(f)は、抵抗分圧によるDCバイアス回路FでVb0のDCバイアスが付加されるのに対して、本発明によるDCバイアス回路FでVb1のDCバイアスが付加され、温度変動による出力波形成形回路Cの入力閾値電圧Vth1の影響が軽減される様子を示すものである。   FIG. 4 (f) shows an output waveform due to temperature fluctuations when a DC bias of Vb0 is added by the DC bias circuit F by resistance voltage division, whereas a DC bias of Vb1 is added by the DC bias circuit F according to the present invention. This shows how the influence of the input threshold voltage Vth1 of the forming circuit C is reduced.

次に、温度補償回路の別実施形態を説明する。図6に示すように、温度補償回路Gは、出力波形成形回路Cと温度特性が等しく、励磁信号と周波数の等しい正弦波信号をパルス信号に波形成形する入力波形整形回路G1と、入力波形成形回路G1の出力をDCレベルに変換する積分回路G2を備え、積分回路G2の出力によりバリキャップダイオードVDの容量を調整するように構成されている。   Next, another embodiment of the temperature compensation circuit will be described. As shown in FIG. 6, the temperature compensation circuit G has an input waveform shaping circuit G1 for shaping a sine wave signal having a temperature characteristic equal to that of the output waveform shaping circuit C and having the same frequency as the excitation signal into a pulse signal, and an input waveform shaping. An integration circuit G2 for converting the output of the circuit G1 to a DC level is provided, and the capacitance of the varicap diode VD is adjusted by the output of the integration circuit G2.

発振回路HのP01点の信号波形は図4(a)に示すような正弦波である。入力波形整形回路G1は、出力波形成形回路Cと温度特性が等しいXOR回路IC5で構成されている。XOR回路IC5の一方の端子は電源側に接続され、他方の端子に抵抗R6,R7による分圧回路による分圧が付加された正弦波が入力される。従って、XOR回路IC5から正弦波の位相が反転したパルス信号が出力される。   The signal waveform at point P01 of the oscillation circuit H is a sine wave as shown in FIG. The input waveform shaping circuit G1 is composed of an XOR circuit IC5 having the same temperature characteristics as the output waveform shaping circuit C. One terminal of the XOR circuit IC5 is connected to the power supply side, and a sine wave to which voltage division by a voltage dividing circuit using resistors R6 and R7 is added is input to the other terminal. Accordingly, the XOR circuit IC5 outputs a pulse signal with the phase of the sine wave inverted.

抵抗R6,R7の値は等しく、入力波形整形回路G1は電源電圧の1/2の電圧がバイアス電圧として付加されるように構成されている。尚、DCバイアス回路Fを構成する抵抗R3,R4による分圧回路と同じバイアス電圧の値に設定される。   The values of the resistors R6 and R7 are equal, and the input waveform shaping circuit G1 is configured so that a voltage that is ½ of the power supply voltage is added as a bias voltage. The bias voltage is set to the same value as that of the voltage dividing circuit formed by the resistors R3 and R4 constituting the DC bias circuit F.

XOR回路IC5の入力閾値電圧が温度により変動すると、そのパルス幅がデューティ比50%から変動した出力信号が積分回路G2により積分される。従って、積分回路G2の出力電圧により入力閾値電圧の変動をモニタすることができる。   When the input threshold voltage of the XOR circuit IC5 varies with temperature, an output signal whose pulse width varies from a duty ratio of 50% is integrated by the integrating circuit G2. Therefore, the fluctuation of the input threshold voltage can be monitored by the output voltage of the integrating circuit G2.

積分回路G2の出力が第二共振回路Bのバリキャップダイオードに接続されており、XOR回路IC5の入力閾値電圧の変動により第二共振回路Bの共振周波数が補正されるように構成されている。   The output of the integration circuit G2 is connected to the varicap diode of the second resonance circuit B, and the resonance frequency of the second resonance circuit B is corrected by the fluctuation of the input threshold voltage of the XOR circuit IC5.

つまり、XOR回路IC5の入力閾値電圧が変動すると、出力波形成形回路Cの入力閾値電圧もほぼ同じだけ変動すると想定し、その場合に第二共振回路Bの共振周波数を調整するのである。例えば、入力閾値電圧が上昇する場合には、第二共振回路Bの共振周波数を下げて、より共振するように構成することにより、第二共振回路Bからの出力信号の周波数を下げるとともに波高値を上昇させて、入力閾値電圧の上昇による影響を低下させ、入力閾値電圧が下降する場合には、第二共振回路Bの共振周波数を上げて、共振の程度を下げるように構成することにより、第二共振回路Bからの出力信号の周波数を上げるとともに波高値を下降させて、入力閾値電圧の下降による影響を低下させるのである。   That is, when the input threshold voltage of the XOR circuit IC5 varies, the input threshold voltage of the output waveform shaping circuit C is assumed to vary by substantially the same amount, and in this case, the resonance frequency of the second resonance circuit B is adjusted. For example, when the input threshold voltage increases, the resonance frequency of the second resonance circuit B is lowered to make it more resonant, thereby lowering the frequency of the output signal from the second resonance circuit B and increasing the peak value. To increase the resonance frequency of the second resonance circuit B and decrease the degree of resonance when the input threshold voltage decreases. The frequency of the output signal from the second resonance circuit B is increased and the peak value is decreased to reduce the influence of the decrease in the input threshold voltage.

尚、本発明を採用するに当り、共振周波数は上述した値に限るものではなく、適宜設定されるものである。また、本発明による作用効果を奏する範囲で各回路ブロックの具体的構成は適宜変更設計できることはいうまでもない。   In adopting the present invention, the resonance frequency is not limited to the above-described value, but is appropriately set. In addition, it goes without saying that the specific configuration of each circuit block can be changed and designed as appropriate within the scope of the effects of the present invention.

本発明によるトナー濃度検出装置の回路図Circuit diagram of toner concentration detection device according to the present invention トナー濃度検出装置の動作を示す波形説明図Waveform explanatory diagram showing the operation of the toner concentration detection device 本発明によるトナー濃度検出装置のトナー濃度検出特性図Toner concentration detection characteristic diagram of toner concentration detection device according to the present invention 本発明によるトナー濃度検出装置の動作を示す波形説明図Waveform explanatory diagram showing the operation of the toner concentration detection device according to the present invention 本発明によるトナー濃度検出装置の構成図Configuration diagram of a toner concentration detection device according to the present invention. 別実施形態を示すトナー濃度検出装置の回路図Circuit diagram of toner concentration detection device showing another embodiment

符号の説明Explanation of symbols

1:トナー濃度検出装置
2:ボビン
3:信号処理部
4:現像槽
L1:基準コイル
L2:磁気検出コイル
A:第一共振回路
B:第二共振回路
C:出力波形成形回路
D:位相差検出回路
E:直流変換回路
F:DCバイアス回路
G:温度補償回路
1: toner density detection device 2: bobbin 3: signal processing unit 4: developing tank L1: reference coil L2: magnetic detection coil A: first resonance circuit B: second resonance circuit C: output waveform shaping circuit D: phase difference detection Circuit E: DC conversion circuit F: DC bias circuit G: Temperature compensation circuit

Claims (3)

パルス状の励磁信号が印加される基準コイルを備え、第一共振周波数f1の第一共振回路と、前記基準コイルと逆極性で結合される磁気検出コイルを備え、前記第一共振周波数f1とは異なる第二共振周波数f2の第二共振回路と、前記第二共振回路の出力信号をパルス信号に変換する出力波形成形回路と、前記出力波形成形回路からの出力信号と前記励磁信号との位相差を検出する位相差検出回路を備えて構成され、前記磁気検出コイルのインダクタンスの変化に起因して変動する前記位相差に基づいて磁性粉に含まれるトナー濃度を検出するトナー濃度検出装置であって、
前記出力波形成形回路の温度特性による検出誤差を補償する温度補償回路を備えているトナー濃度検出装置。
A reference coil to which a pulsed excitation signal is applied; a first resonance circuit having a first resonance frequency f1; and a magnetic detection coil coupled with a polarity opposite to the reference coil, the first resonance frequency f1 being A second resonance circuit having a different second resonance frequency f2, an output waveform shaping circuit that converts an output signal of the second resonance circuit into a pulse signal, and a phase difference between the output signal from the output waveform shaping circuit and the excitation signal A toner concentration detection device configured to detect a toner concentration contained in magnetic powder based on the phase difference that varies due to a change in inductance of the magnetic detection coil. ,
A toner concentration detection apparatus comprising a temperature compensation circuit for compensating for a detection error due to temperature characteristics of the output waveform shaping circuit.
前記温度補償回路は、前記出力波形成形回路の入力段に、前記出力信号のDCバイアスレベルを調整するピンダイオードと抵抗でなるDCバイアス調整回路により構成されている請求項1記載のトナー濃度検出装置。   2. The toner concentration detection device according to claim 1, wherein the temperature compensation circuit is configured by a DC bias adjustment circuit including a pin diode and a resistor for adjusting a DC bias level of the output signal at an input stage of the output waveform shaping circuit. . 前記温度補償回路は、前記出力波形成形回路と温度特性が等しく、前記励磁信号と周波数の等しい正弦波信号をパルス信号に波形成形する入力波形整形回路と、前記入力波形成形回路の出力をDCレベルに変換する積分回路を備え、前記積分回路の出力により前記バリキャップダイオードの容量を調整するように構成されている請求項1記載のトナー濃度検出装置。   The temperature compensation circuit has a temperature characteristic equal to that of the output waveform shaping circuit, an input waveform shaping circuit for shaping a sine wave signal having the same frequency as the excitation signal into a pulse signal, and an output of the input waveform shaping circuit at a DC level. The toner density detection device according to claim 1, further comprising: an integration circuit that converts the capacitance of the varicap diode according to an output of the integration circuit.
JP2007078973A 2007-03-26 2007-03-26 Toner density detection device Pending JP2008241852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078973A JP2008241852A (en) 2007-03-26 2007-03-26 Toner density detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078973A JP2008241852A (en) 2007-03-26 2007-03-26 Toner density detection device

Publications (1)

Publication Number Publication Date
JP2008241852A true JP2008241852A (en) 2008-10-09

Family

ID=39913329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078973A Pending JP2008241852A (en) 2007-03-26 2007-03-26 Toner density detection device

Country Status (1)

Country Link
JP (1) JP2008241852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076098A (en) * 2015-10-16 2017-04-20 京セラドキュメントソリューションズ株式会社 Toner amount detection device, image forming apparatus, and method of adjusting toner amount detection device
JP2017076096A (en) * 2015-10-16 2017-04-20 京セラドキュメントソリューションズ株式会社 Toner amount detection device and image forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017076098A (en) * 2015-10-16 2017-04-20 京セラドキュメントソリューションズ株式会社 Toner amount detection device, image forming apparatus, and method of adjusting toner amount detection device
JP2017076096A (en) * 2015-10-16 2017-04-20 京セラドキュメントソリューションズ株式会社 Toner amount detection device and image forming apparatus

Similar Documents

Publication Publication Date Title
JP6672259B2 (en) Current converter with fluxgate detector
US9088261B2 (en) Resonant impedance sensing based on controlled negative impedance
KR101645729B1 (en) Voltage regulator
US9473150B2 (en) Peak detectors for amplitude control of oscillators
JP5390932B2 (en) Power circuit
JP2017521675A5 (en)
KR101333403B1 (en) Position sensor
US10371159B2 (en) Magnetic bearing device, and vacuum pump having same
US8653901B2 (en) Oscillator and control circuit thereof
JP2012008009A (en) Current sensor
JP5804318B2 (en) Current sensor
KR20170067167A (en) Displacement sensor
JP5069997B2 (en) Geomagnetic sensor device
JP2008241852A (en) Toner density detection device
US9638651B2 (en) Method and circuit for evaluating a physical quantity detected by a sensor
US10193557B2 (en) Oscillation control apparatus and oscillation apparatus
JP5447336B2 (en) Permeability sensor
JP2009122240A (en) Magnetic detection apparatus
JP6339252B2 (en) Oscillation control device and oscillation device
JP2005091516A (en) Electromagnetic characteristic detection device
JP6380850B2 (en) Toner amount detection device, image forming apparatus, and toner amount detection device adjustment method
JP6406620B2 (en) Toner amount detection device and image forming apparatus
JP5202032B2 (en) Magnetic body detection apparatus and image forming apparatus
JP3784225B2 (en) Image forming apparatus
JP6057133B2 (en) Ultrasonic motor drive circuit