JP2008241379A - Bearing for wheel with sensor - Google Patents

Bearing for wheel with sensor Download PDF

Info

Publication number
JP2008241379A
JP2008241379A JP2007080558A JP2007080558A JP2008241379A JP 2008241379 A JP2008241379 A JP 2008241379A JP 2007080558 A JP2007080558 A JP 2007080558A JP 2007080558 A JP2007080558 A JP 2007080558A JP 2008241379 A JP2008241379 A JP 2008241379A
Authority
JP
Japan
Prior art keywords
sensor
strain
sensor element
contact fixing
strain generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007080558A
Other languages
Japanese (ja)
Other versions
JP4942531B2 (en
Inventor
Takayuki Norimatsu
孝幸 乗松
Toru Takahashi
亨 高橋
Kazuo Komori
和雄 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2007080558A priority Critical patent/JP4942531B2/en
Priority to PCT/JP2008/000713 priority patent/WO2008117534A1/en
Priority to US12/450,442 priority patent/US8123411B2/en
Publication of JP2008241379A publication Critical patent/JP2008241379A/en
Priority to US13/349,934 priority patent/US8313242B2/en
Application granted granted Critical
Publication of JP4942531B2 publication Critical patent/JP4942531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing for a wheel with a sensor capable of installing a sensor for load detection compactly in a vehicle, preventing the influence of breakage, failure, and electromagnetic noise, and enabling sensitive detection of a load over a long time, and reducing the cost. <P>SOLUTION: The bearing for the wheel with the sensor comprises an outer member 1, an inner member 2, and a plurality of rows of rolling bodies 5 interposed in between rolling surfaces 3 and 4, and supports the wheel on a vehicle body rotatably, and distortion sensor 21 is attached to the outer member 1 as a fixed member, for example, of the outer member and inner member. The distortion sensor 21 is formed of a distortion generating member 22, and a sensor element 23 that is attached to the distortion generating member 22 and detects the distortion of the distortion generating member 22. An attachment surface 22ca of the sensor element 23 of the distortion generating part material 22 of the distortion sensor 21 is provided with a covering material 24 that covers at least the sensor element 23, in a sealed state and is made of over-molded resin or vulcanization adhered elastomer. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、車輪の軸受部にかかる荷重を検出する荷重センサを内蔵したセンサ付車輪用軸受に関する。   The present invention relates to a sensor-equipped wheel bearing with a built-in load sensor for detecting a load applied to a bearing portion of the wheel.

従来、自動車の安全走行のために、各車輪の回転速度を検出するセンサを車輪用軸受に設けたものがある。従来の一般的な自動車の走行安全性確保対策は、各部の車輪の回転速度を検出することで行われているが、車輪の回転速度だけでは十分でなく、その他のセンサ信号を用いてさらに安全面の制御が可能なことが求められている。   2. Description of the Related Art Conventionally, there is a wheel bearing provided with a sensor for detecting the rotational speed of each wheel for safe driving of an automobile. Conventional measures to ensure driving safety of general automobiles are performed by detecting the rotational speed of the wheels of each part, but the rotational speed of the wheels is not sufficient, and it is further safer by using other sensor signals. It is required that the surface can be controlled.

そこで、車両走行時に各車輪に作用する荷重から姿勢制御を図ることも考えられる。例えばコーナリングにおいては外側車輪に大きな荷重がかかり、また左右傾斜面走行では片側車輪に、ブレーキングにおいては前輪にそれぞれ荷重が片寄るなど、各車輪にかかる荷重は均等ではない。また、積載荷重不均等の場合にも各車輪にかかる荷重は不均等になる。このため、車輪にかかる荷重を随時検出できれば、その検出結果に基づき、事前にサスペンション等を制御することで、車両走行時の姿勢制御(コーナリング時のローリング防止、ブレーキング時の前輪沈み込み防止、積載荷重不均等による沈み込み防止等)を行うことが可能となる。しかし、車輪に作用する荷重を検出するセンサの適切な設置場所がなく、荷重検出による姿勢制御の実現が難しい。   Therefore, it is conceivable to control the posture from the load acting on each wheel during vehicle travel. For example, a large load is applied to the outer wheel in cornering, and the load applied to each wheel is not uniform. In addition, even when the load is uneven, the load applied to each wheel is uneven. For this reason, if the load applied to the wheel can be detected at any time, the suspension control etc. is controlled in advance based on the detection result, thereby controlling the attitude during vehicle travel (preventing rolling during cornering, preventing the front wheel from sinking during braking, It is possible to prevent subsidence due to uneven load capacity. However, there is no appropriate installation location of a sensor that detects a load acting on the wheel, and it is difficult to realize posture control by load detection.

また、今後ステアバイワイヤが導入されて、車軸とステアリングが機械的に結合しないシステムになってくると、車軸方向荷重を検出して運転手が握るハンドルに路面情報を伝達することが求められる。   In addition, when steer-by-wire is introduced in the future and the system becomes a system in which the axle and the steering are not mechanically coupled, it is required to detect the axle direction load and transmit the road surface information to the handle held by the driver.

このような要請に応えるものとして、車輪用軸受の外輪に歪みゲージを貼り付け、歪みを検出するようにした車輪用軸受が提案されている(例えば特許文献1)。
特表2003−530565号公報
As a response to such a demand, a wheel bearing has been proposed in which a strain gauge is attached to the outer ring of the wheel bearing to detect the strain (for example, Patent Document 1).
Special table 2003-530565 gazette

車輪用軸受の外輪は、転走面を有し、強度が求められる部品であって、塑性加工や、旋削加工、熱処理、研削加工などの複雑な工程を経て生産される軸受部品であるため、特許文献1のように外輪に歪みゲージを貼り付けるのでは、生産性が悪く、量産時のコストが高くなるという問題点がある。また、外輪の歪みを感度良く検出することが難しく、その検出結果を車両走行時の姿勢制御に利用した場合、制御の精度が問題となる。   The outer ring of the wheel bearing is a part that has a rolling surface and requires strength, and is a bearing part that is produced through complicated processes such as plastic working, turning, heat treatment, and grinding. When a strain gauge is attached to the outer ring as in Patent Document 1, there is a problem that productivity is poor and the cost for mass production is high. In addition, it is difficult to detect the distortion of the outer ring with high sensitivity, and when the detection result is used for attitude control during vehicle travel, the accuracy of control becomes a problem.

これらの課題を解決するために、歪み発生部材と、この歪み発生部材に取付けられて歪み発生部材の歪みを検出する歪みゲージ等のセンサ素子とで構成した歪みセンサを、車輪用軸受の固定輪である例えば外輪に取付けた構成が考えられる。この場合、前記歪み発生部材は、外輪の車体取付用フランジ面に固定する第1の接触固定部と、外輪の外周に固定する第2の接触固定部を有するものとする。
このような構成とした車輪用軸受では、車両走行に伴い回転側部材であるハブ輪に荷重が加わると、転動体を介して外輪が変形し、その変形が歪みセンサの歪み発生部材に伝えられ、歪み発生部材に取付けられたセンサ素子がその歪みを測定する。歪み発生部材の第1の接触固定部は外輪の車体取付用フランジ面に対して固定され、第2の接触固定部は外輪外周に対して固定されるため、第1および第2の接触固定部の径方向位置が異なり、外輪の歪みが歪み発生部材に拡大して現れやすくなる。この拡大された歪みをセンサ素子で測定するため、外輪の歪みを感度良く検出できる。
In order to solve these problems, a strain sensor comprising a strain generating member and a sensor element such as a strain gauge attached to the strain generating member and detecting the strain of the strain generating member is provided as a fixed ring of a wheel bearing. For example, the structure attached to the outer ring can be considered. In this case, the strain generating member includes a first contact fixing portion that is fixed to the body mounting flange surface of the outer ring, and a second contact fixing portion that is fixed to the outer periphery of the outer ring.
In the wheel bearing having such a configuration, when a load is applied to the hub wheel which is a rotation side member as the vehicle travels, the outer ring is deformed via the rolling elements, and the deformation is transmitted to the strain generating member of the strain sensor. The sensor element attached to the strain generating member measures the strain. Since the first contact fixing portion of the strain generating member is fixed to the body mounting flange surface of the outer ring, and the second contact fixing portion is fixed to the outer ring outer periphery, the first and second contact fixing portions The radial positions of the outer ring are different, and the distortion of the outer ring is likely to expand and appear on the distortion generating member. Since this enlarged distortion is measured by the sensor element, the distortion of the outer ring can be detected with high sensitivity.

しかし、上記構成の場合、車輪用軸受の外側に歪みセンサが露出するため、外部環境(泥水浸入、異物衝突等)により、歪みセンサが破損または故障してしまうおそれがあり、正確な歪み検出を長期にわたり行うことができない。また、歪みセンサにおけるセンサ素子は電子部品であるため、外部からの電磁ノイズの影響を受けやすく、上記した露出状態では検出結果の信頼性が低下することにもなる。   However, in the case of the above configuration, since the strain sensor is exposed outside the wheel bearing, the strain sensor may be damaged or broken down due to the external environment (intrusion of muddy water, collision of foreign matter, etc.), and accurate strain detection is possible. It cannot be done for a long time. Further, since the sensor element in the strain sensor is an electronic component, it is easily affected by external electromagnetic noise, and the reliability of the detection result is lowered in the above-described exposed state.

この発明の目的は、車両にコンパクトに荷重検出用のセンサを設置でき、外部環境による破損・故障や外部からの電磁ノイズの影響を防止して、長期にわたり車輪にかかる荷重を感度良く検出でき、量産時のコストも安価となるセンサ付車輪用軸受を提供することである。   The object of the present invention is to install a load detection sensor in a compact vehicle, prevent damage or failure due to the external environment and the influence of electromagnetic noise from the outside, can detect the load applied to the wheel over a long period of time, The object is to provide a sensor-equipped wheel bearing that is inexpensive in mass production.

この発明のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、 車体に対して車輪を回転自在に支持する車輪用軸受において、
歪み発生部材およびこの歪み発生部材に取付けられて前記歪み発生部材の歪みを検出するセンサ素子からなる歪みセンサを、前記外方部材および内方部材のうちの固定側部材に取付け、この歪みセンサの前記歪み発生部材の前記センサ素子の取付面に、少なくとも前記センサ素子を密封状態に覆って、オーバーモールドされた樹脂または加硫接着されたエラストマからなる覆い材を設けたことを特徴とする。
The sensor-equipped wheel bearing according to the present invention includes an outer member having a double row rolling surface formed on the inner periphery, an inner member having a rolling surface facing the rolling surface of the outer member, In a wheel bearing comprising a double row rolling element interposed between both rolling surfaces, and rotatably supporting the wheel with respect to the vehicle body,
A strain sensor comprising a strain generating member and a sensor element that is attached to the strain generating member and detects the strain of the strain generating member is attached to a fixed side member of the outer member and the inner member. The mounting surface of the sensor element of the strain generating member is provided with a covering material made of overmolded resin or vulcanized elastomer so as to cover at least the sensor element in a sealed state.

車両走行に伴い回転側部材に荷重が加わると、転動体を介して固定側部材が変形し、その変形は歪み発生部材に歪みをもたらす。歪み発生部材に取付けられたセンサ素子は、歪み発生部材の歪みを検出する。歪みと荷重の関係を予め実験やシュミレーションで求めておけば、センサ素子の出力から車輪にかかる荷重を検出することができる。
この車輪用軸受は、歪み発生部材およびこの歪み発生部材に取付けられたセンサ素子からなる歪みセンサを固定側部材に取付ける構成としたため、荷重検出用のセンサを車両にコンパクトに設置できる。歪み発生部材は固定側部材に取付けられる簡易な部品であるため、これにセンサ素子を取付けることで、量産性に優れたものとでき、コスト低下が図れる。
とくに、歪み発生部材のセンサ素子の取付面に、オーバーモールドされた樹脂または加硫接着されたエラストマからなる覆い材を設けて、少なくともセンサ素子をこの覆い材で密封状態に覆うようにしているので、外部環境により、汚水浸入や異物衝突等でセンサ素子が破損または故障してしまうのを防止できる。その結果、精度の高い歪み検出が長期にわたり可能となる。また、外部からの電磁ノイズの影響がセンサ素子に及ぶのを防止することもできるので、より精度の高い歪み測定が可能となる。
When a load is applied to the rotation side member as the vehicle travels, the fixed side member is deformed via the rolling elements, and the deformation causes distortion of the strain generating member. The sensor element attached to the strain generating member detects the strain of the strain generating member. If the relationship between strain and load is obtained in advance through experiments and simulations, the load applied to the wheel can be detected from the output of the sensor element.
Since the wheel bearing has a configuration in which a strain sensor including a strain generating member and a sensor element attached to the strain generating member is attached to the fixed member, the load detection sensor can be compactly installed in the vehicle. Since the strain generating member is a simple part that can be attached to the fixed member, attaching the sensor element to the member can provide excellent mass productivity and reduce the cost.
In particular, a cover material made of overmolded resin or vulcanized elastomer is provided on the mounting surface of the sensor element of the strain generating member, and at least the sensor element is sealed with this cover material in a sealed state. It is possible to prevent the sensor element from being damaged or broken due to intrusion of sewage or collision of foreign matter depending on the external environment. As a result, highly accurate distortion detection is possible over a long period of time. In addition, since it is possible to prevent the influence of external electromagnetic noise from affecting the sensor element, it is possible to measure distortion with higher accuracy.

前記歪み発生部材は、固定側部材に対して2箇所の接触固定部を有し、前記接触固定部のうち第1の接触固定部は前記固定側部材に設けられたフランジ面に対する固定部であり、第2の接触固定部は前記固定側部材の周面に対する固定部であっても良い。
このように、歪み発生部材が2箇所の接触固定部を有し、第1の接触固定部が前記固定側部材に設けられたフランジ面であり、第2の接触固定部が前記固定側部材の周面である場合は、第1および第2の接触固定部の径方向位置が異なり、固定側部材の歪みが歪み発生部材に転写かつ拡大して現れ易くなる。この転写かつ拡大された歪みをセンサ素子で測定するため、固定側部材の歪みを感度良く検出でき、荷重の測定精度が高くなる。
The strain generating member has two contact fixing portions with respect to the fixed side member, and the first contact fixing portion of the contact fixing portions is a fixing portion for a flange surface provided on the fixed side member. The second contact fixing portion may be a fixing portion with respect to the peripheral surface of the fixed side member.
Thus, the strain generating member has two contact fixing portions, the first contact fixing portion is a flange surface provided on the fixing side member, and the second contact fixing portion is the fixing side member. In the case of the peripheral surface, the radial positions of the first and second contact fixing portions are different, and the distortion of the fixing-side member is easily transferred and enlarged to the distortion generating member. Since this transferred and enlarged strain is measured by the sensor element, the strain of the fixed member can be detected with high sensitivity, and the load measurement accuracy is increased.

この発明において、前記歪みセンサにおける前記センサ素子のケーブルを、前記歪み発生部材における前記固定側部材の周面に対する接触固定部の近傍から、前記固定側部材の周方向に引き出しても良い。
この場合、センサ素子のケーブルを固定側部材の周面に沿って配線できるので、固定側部材のフランジに沿って配線する場合よりもケーブルが邪魔にならず、センサ素子の出力信号への電磁ノイズの影響をより一層低減できる。
In this invention, you may pull out the cable of the said sensor element in the said strain sensor from the vicinity of the contact fixing | fixed part with respect to the surrounding surface of the said fixed side member in the said strain generation member in the circumferential direction of the said fixed side member.
In this case, the cable of the sensor element can be routed along the peripheral surface of the fixed side member, so that the cable does not get in the way compared to the case of wiring along the flange of the fixed side member, and the electromagnetic noise to the output signal of the sensor element Can be further reduced.

この発明の他のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、 車体に対して車輪を回転自在に支持する車輪用軸受において、歪み発生部材およびこの歪み発生部材に取付けられて前記歪み発生部材の歪みを検出するセンサ素子からなる歪みセンサを、前記外方部材および内方部材のうちの固定側部材に取付け、前記歪み発生部材は、固定側部材に対して2箇所の接触固定部を有し、前記接触固定部のうち第1の接触固定部は前記固定側部材に設けられたフランジ面であり、第2の接触固定部は前記固定側部材の周面であり、前記歪みセンサにおける前記センサ素子のケーブルを、前記歪み発生部材における前記固定側部材の周面に対する接触固定部の近傍から、前記固定側部材の周方向に引き出したことを特徴とする。
この構成によると、センサ素子のケーブルを固定側部材の周面に沿って配線できるため、固定側部材のフランジに沿って配線する場合よりもケーブルが邪魔にならず、センサ素子の出力信号への電磁ノイズの影響も低減できる。
Another sensor-equipped wheel bearing according to the present invention includes an outer member in which double-row rolling surfaces are formed on the inner periphery, and an inner member in which a rolling surface facing the rolling surface of the outer member is formed. And a double-row rolling element interposed between both rolling surfaces, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body, the distortion generating member and the distortion generating member attached to the distortion generating member A strain sensor comprising a sensor element for detecting the strain of the member is attached to the fixed side member of the outer member and the inner member, and the strain generating member has two contact fixing portions with respect to the fixed side member. A first contact fixing portion of the contact fixing portion is a flange surface provided on the fixing side member, and a second contact fixing portion is a peripheral surface of the fixing side member, in the strain sensor The cable of the sensor element is connected to the strain generating member. It is characterized in that it is pulled out in the circumferential direction of the fixed side member from the vicinity of the contact fixing portion with respect to the peripheral surface of the fixed side member.
According to this configuration, since the cable of the sensor element can be wired along the peripheral surface of the fixed side member, the cable does not get in the way compared to the case of wiring along the flange of the fixed side member, and the output signal of the sensor element is not disturbed. The influence of electromagnetic noise can also be reduced.

上記のように、歪みセンサにおける前記センサ素子のケーブルを、前記歪み発生部材における前記固定側部材の周面に対する接触固定部の近傍から、前記固定側部材の周方向に引き出した場合に、前記ケーブルを前記固定側部材の周面に固定するフェライト付きのクランプ部材を設けても良い。
この構成の場合、ケーブルを、フェライトコア付きのクランプ部材で固定側部材の周面に固定するので、センサ素子から信号処理回路までの信号経路のノイズ耐性を向上させることができる。しかも、電磁ノイズのような周波数の高い成分を効果的に減衰させる機能を持つフェライトコアを、このようにクランプ部材に付加することで、フェライトコアのための設置スペースを別途設ける必要がなくなり、またフェライトコアの固定も容易となる。
As described above, when the cable of the sensor element in the strain sensor is pulled out in the circumferential direction of the fixed side member from the vicinity of the contact fixing portion with respect to the peripheral surface of the fixed side member in the strain generating member, the cable It is also possible to provide a clamp member with a ferrite that fixes to the peripheral surface of the fixed side member.
In the case of this configuration, since the cable is fixed to the peripheral surface of the fixed side member by the clamp member with the ferrite core, the noise resistance of the signal path from the sensor element to the signal processing circuit can be improved. Moreover, by adding a ferrite core having a function of effectively attenuating high frequency components such as electromagnetic noise to the clamp member in this way, it is not necessary to provide a separate installation space for the ferrite core. The ferrite core can be easily fixed.

この発明のセンサ付き車輪用軸受は、複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、 車体に対して車輪を回転自在に支持する車輪用軸受において、歪み発生部材およびこの歪み発生部材に取付けられて前記歪み発生部材の歪みを検出するセンサ素子からなる歪みセンサを、前記外方部材および内方部材のうちの固定側部材に取付け、この歪みセンサの前記歪み発生部材の前記センサ素子の取付面に、少なくとも前記センサ素子を密封状態に覆って、オーバーモールドされた樹脂または加硫接着されたエラストマからなる覆い材を設けたため、車両にコンパクトに荷重検出用のセンサを設置でき、外部環境による破損・故障や外部からの電磁ノイズの影響を防止して、長期にわたり車輪にかかる荷重を感度良く検出でき、量産時のコストも安価となる。
前記歪み発生部材が、固定側部材に対して2箇所の接触固定部を有し、前記接触固定部のうち第1の接触固定部は前記固定側部材に設けられたフランジ面に対する固定部であり、第2の接触固定部は前記固定側部材の周面に対する固定部である場合は、固定側部材の歪みを感度良く検出でき、より一層荷重の測定精度が高くなる。
この発明の他のセンサ付車輪用軸受は、複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、 車体に対して車輪を回転自在に支持する車輪用軸受において、歪み発生部材およびこの歪み発生部材に取付けられて前記歪み発生部材の歪みを検出するセンサ素子からなる歪みセンサを、前記外方部材および内方部材のうちの固定側部材に取付け、前記歪み発生部材は、固定側部材に対して2箇所の接触固定部を有し、前記接触固定部のうち第1の接触固定部は前記固定側部材に設けられたフランジ面であり、第2の接触固定部は前記固定側部材の周面であり、前記歪みセンサにおける前記センサ素子のケーブルを、前記歪み発生部材における前記固定側部材の周面に対する接触固定部の近傍から、前記固定側部材の周方向に引き出したため、車両にコンパクトに荷重検出用のセンサを設置でき、外部環境による破損・故障や外部からの電磁ノイズの影響を防止して、長期にわたり車輪にかかる荷重を感度良く検出でき、量産時のコストも安価となる。
The wheel bearing with sensor of the present invention is an outer member in which double-row rolling surfaces are formed on the inner periphery, and an inner member that forms a rolling surface facing the rolling surface of the outer member, A double-row rolling element interposed between both rolling surfaces, and a wheel bearing for rotatably supporting a wheel with respect to a vehicle body. A strain sensor composed of a sensor element for detecting strain is attached to a fixed side member of the outer member and the inner member, and at least the sensor element is mounted on a mounting surface of the strain element of the strain sensor. The cover is made of overmolded resin or vulcanized elastomer, so that the load detection sensor can be installed compactly in the vehicle. The effect of these electromagnetic noises can be prevented, the load on the wheel can be detected with high sensitivity over a long period of time, and the cost for mass production is also low.
The strain generating member has two contact fixing portions with respect to the fixed side member, and the first contact fixing portion of the contact fixing portions is a fixing portion for a flange surface provided on the fixed side member. When the second contact fixing part is a fixing part with respect to the peripheral surface of the fixed side member, the distortion of the fixed side member can be detected with high sensitivity, and the measurement accuracy of the load is further increased.
Another sensor-equipped wheel bearing according to the present invention includes an outer member having a double-row rolling surface formed on the inner periphery, and an inner member having a rolling surface facing the rolling surface of the outer member. And a double-row rolling element interposed between both rolling surfaces, and a wheel bearing for rotatably supporting the wheel with respect to the vehicle body, the distortion generating member and the distortion generating member attached to the distortion generating member A strain sensor comprising a sensor element for detecting the strain of the member is attached to the fixed side member of the outer member and the inner member, and the strain generating member has two contact fixing portions with respect to the fixed side member. A first contact fixing portion of the contact fixing portion is a flange surface provided on the fixing side member; a second contact fixing portion is a peripheral surface of the fixing side member; The cable of the sensor element is connected to the strain generating member. Since it is pulled out in the circumferential direction of the fixed side member from the vicinity of the contact fixing portion with respect to the peripheral surface of the fixed side member, a load detection sensor can be installed in the vehicle in a compact manner. The effects of noise can be prevented, the load applied to the wheel over a long period of time can be detected with high sensitivity, and the cost for mass production is also low.

この発明の一実施形態を図1ないし図3と共に説明する。この実施形態は、第3世代型の内輪回転タイプで、駆動輪支持用の車輪用軸受に適用したものである。なお、この明細書において、車両に取付けた状態で車両の車幅方向の外側寄りとなる側をアウトボード側と呼び、車両の中央寄りとなる側をインボード側と呼ぶ。
このセンサ付車輪用軸受における軸受は、図1に断面図で示すように、内周に複列の転走面3を形成した外方部材1と、これら各転走面3に対向する転走面4を形成した内方部材2と、これら外方部材1および内方部材2の転走面3,4間に介在した複列の転動体5とで構成される。この車輪用軸受は、複列のアンギュラ玉軸受型とされていて、転動体5はボールからなり、各列毎に保持器6で保持されている。上記転走面3,4は断面円弧状であり、各転走面3,4は接触角が背面合わせとなるように形成されている。外方部材1と内方部材2との間の軸受空間の両端は、一対のシール7,8によってそれぞれ密封されている。
An embodiment of the present invention will be described with reference to FIGS. This embodiment is a third generation inner ring rotating type and is applied to a wheel bearing for driving wheel support. In this specification, the side closer to the outer side in the vehicle width direction of the vehicle when attached to the vehicle is referred to as the outboard side, and the side closer to the center of the vehicle is referred to as the inboard side.
As shown in the sectional view of FIG. 1, the bearing for this sensor-equipped wheel bearing includes an outer member 1 in which a double row rolling surface 3 is formed on the inner periphery, and rolling facing each of these rolling surfaces 3. The inner member 2 formed with the surface 4 and the double row rolling elements 5 interposed between the outer member 1 and the rolling surfaces 3 and 4 of the inner member 2 are constituted. This wheel bearing is a double-row angular ball bearing type, and the rolling elements 5 are made of balls and are held by a cage 6 for each row. The rolling surfaces 3 and 4 have a circular arc shape in cross section, and the rolling surfaces 3 and 4 are formed so that the contact angles are aligned with the back surface. Both ends of the bearing space between the outer member 1 and the inner member 2 are sealed by a pair of seals 7 and 8, respectively.

外方部材1は固定側部材となるものであって、車体の懸架装置(図示せず)におけるナックルに取付ける車体取付用のフランジ1aを外周に有し、全体が一体の部品とされている。フランジ1aには、周方向の複数箇所に車体取付用のボルト孔14が設けられている。
内方部材2は回転側部材となるものであって、車輪取付用のハブフランジ9aを有するハブ輪9と、このハブ輪9の軸部9bのインボード側端の外周に嵌合した内輪10とでなる。これらハブ輪9および内輪10に、前記各列の転走面4が形成されている。ハブ輪9のインボード側端の外周には段差を持って小径となる内輪嵌合面12が設けられ、この内輪嵌合面12に内輪10が嵌合している。ハブ輪9の中心には貫通孔11が設けられている。ハブフランジ9aには、周方向複数箇所にハブボルト15の圧入孔16が設けられている。ハブ輪9のハブフランジ9aの根元部付近には、車輪および制動部品(図示せず)を案内する円筒状のパイロット部13がアウトボード側に突出している。
The outer member 1 is a fixed-side member, and has a flange 1a for mounting a vehicle body attached to a knuckle in a suspension device (not shown) of the vehicle body on the outer periphery, and the whole is an integral part. Bolt holes 14 for mounting the vehicle body are provided in the flange 1a at a plurality of locations in the circumferential direction.
The inner member 2 is a rotating side member, and includes a hub wheel 9 having a hub flange 9a for wheel mounting, and an inner ring 10 fitted to the outer periphery of the end portion on the inboard side of the shaft portion 9b of the hub wheel 9. And become. The hub wheel 9 and the inner ring 10 are formed with the rolling surfaces 4 of the respective rows. An inner ring fitting surface 12 having a small diameter with a step is provided on the outer periphery of the inboard side end of the hub wheel 9, and the inner ring 10 is fitted to the inner ring fitting surface 12. A through hole 11 is provided at the center of the hub wheel 9. The hub flange 9a is provided with press-fit holes 16 for hub bolts 15 at a plurality of locations in the circumferential direction. In the vicinity of the base portion of the hub flange 9a of the hub wheel 9, a cylindrical pilot portion 13 for guiding a wheel and a braking component (not shown) protrudes toward the outboard side.

外方部材1の外周部には、図3に示す歪みセンサ21が設けられている。歪みセンサ21は、歪み発生部材22に、この歪み発生部材22の歪みを検出するセンサ素子23を取付けたものである。歪み発生部材22は、外方部材1の車体取付用のフランジ1aにおけアウトボード側に向くフランジ面1aaのボルト孔14の近傍に接触固定される第1の接触固定部22aと、外方部材1の外周面1bに接触固定される第2の接触固定部22bとを有している。また、歪み発生部材22は、前記第1の接触固定部22aを含む径方向に沿った径方向部位22cと、前記第2の接触固定部22bを含む軸方向に沿った軸方向部位22dとでL字の形状に構成されており、径方向部位22cの中間部が前記第1の接触固定部22aとされ、軸方向部位22dの先端部が前記第2の接触固定部22bとされている。ここでは、歪み発生部材22の径方向部位22cおよび軸方向部位22dが一体品とされ、この一体品に対して別体品である第1および第2の接触固定部22a,22bが固定されているが、歪み発生部材22の全体を一体品としても良い。   A strain sensor 21 shown in FIG. 3 is provided on the outer peripheral portion of the outer member 1. The strain sensor 21 is obtained by attaching a sensor element 23 that detects the strain of the strain generating member 22 to the strain generating member 22. The distortion generating member 22 includes a first contact fixing portion 22a which is fixed in contact with the vicinity of the bolt hole 14 of the flange surface 1aa facing the outboard side in the flange 1a for mounting the vehicle body of the outer member 1, and the outer member. And a second contact fixing portion 22b fixed to the outer peripheral surface 1b. The strain generating member 22 includes a radial portion 22c along the radial direction including the first contact fixing portion 22a and an axial portion 22d along the axial direction including the second contact fixing portion 22b. The intermediate portion of the radial portion 22c is the first contact fixing portion 22a, and the tip of the axial portion 22d is the second contact fixing portion 22b. Here, the radial portion 22c and the axial portion 22d of the strain generating member 22 are integrated, and the first and second contact fixing portions 22a and 22b, which are separate products, are fixed to the integrated product. However, the entire strain generating member 22 may be integrated.

センサ素子23は、歪み発生部材22における径方向部位22cのインボード側の面であるセンサ取付面22caの第1の接触固定部22aよりも径方向内側の位置に配置されている。センサ素子23は例えば接着剤による接着により前記径方向部位22cに固定される。センサ素子23が配置される径方向部位22cは、軸方向部位22dに比べ、剛性が低くなるように肉厚を薄くするのが望ましい。   The sensor element 23 is disposed at a position radially inward of the first contact fixing portion 22a of the sensor mounting surface 22ca that is a surface on the inboard side of the radial portion 22c in the strain generating member 22. The sensor element 23 is fixed to the radial direction portion 22c, for example, by bonding with an adhesive. As for radial direction part 22c where sensor element 23 is arranged, it is desirable to make thickness thin so that rigidity may become low compared with axial direction part 22d.

歪み発生部材22には、前記センサ取付面22caから軸方向部位22dの外方部材外周面1bに対向する面22daにわたって、少なくともセンサ素子23を密封状態に覆う覆い材24が設けられている。なお、覆い部材24は歪み発生部材22の全面を覆うものであっても良い。この覆い材24は、例えば前記面域にオーバーモールドされた樹脂、または加硫接着されたエラストマ(NBR,H−NBR,アクリル等)からなる。オーバーモールド樹脂としては、例えば
・ボリアミド系樹脂:66ナイロン,PPA(ポリフタルミド)等
・特殊エーテル系合成樹脂:PPS等
・これらの材質にガラスファイバーを添加したもの
などが好適である。
The strain generating member 22 is provided with a covering material 24 covering at least the sensor element 23 in a sealed state from the sensor mounting surface 22ca to a surface 22da facing the outer member outer peripheral surface 1b of the axial portion 22d. The covering member 24 may cover the entire surface of the strain generating member 22. The covering member 24 is made of, for example, a resin overmolded on the surface area, or an elastomer (NBR, H-NBR, acrylic, or the like) vulcanized and bonded. As the overmold resin, for example: • Polyamide resin: 66 nylon, PPA (polyphthalimide), etc. • Special ether synthetic resin: PPS, etc. • Those obtained by adding glass fiber to these materials are suitable.

上記歪みセンサ21は、図1および図2に示すように、歪み発生部材22の第1および第2の接触固定部22a,22bにより、両接触固定部22a,22bが外方部材1の周方向に対して同位相の位置となるように、外方部材1の外周部に固定される。第1および第2の接触固定部22a,22bを周方向において同位相とすると、歪み発生部材22の長さを短くすることができるため、歪みセンサ21の設置が容易である。   As shown in FIGS. 1 and 2, the strain sensor 21 includes the first and second contact fixing portions 22 a and 22 b of the strain generating member 22 so that both contact fixing portions 22 a and 22 b are in the circumferential direction of the outer member 1. Are fixed to the outer peripheral portion of the outer member 1 so as to be in the same phase. When the first and second contact fixing portions 22a and 22b are in the same phase in the circumferential direction, the strain generating member 22 can be shortened, so that the strain sensor 21 can be easily installed.

歪みセンサ21の外方部材1への取付構造は以下の通りである。図3のように、歪み発生部材22の第1および第2の接触固定部22a,22bには、軸方向および径方向に貫通するボルト挿通孔25,26が形成されている。一方、外方部材1のフランジ面1aaと外周面1bには、前記各ボルト挿通孔25,26に対応する位置にボルト孔27,28が形成されている。第1の接触固定部22aのボルト挿通孔25にアウトボード側から挿通したボルト29を外方部材1のフランジ面1aaのボルト孔27に螺着させ、また第2の接触固定部22bのボルト挿通孔26に外周側から挿通したボルト30を外方部材1の外周面1bのボルト孔28に螺着させることにより、歪みセンサ21が外方部材1に固定される。   The attachment structure of the strain sensor 21 to the outer member 1 is as follows. As shown in FIG. 3, bolt insertion holes 25 and 26 penetrating in the axial direction and the radial direction are formed in the first and second contact fixing portions 22 a and 22 b of the strain generating member 22. On the other hand, bolt holes 27 and 28 are formed on the flange surface 1aa and the outer peripheral surface 1b of the outer member 1 at positions corresponding to the bolt insertion holes 25 and 26, respectively. The bolt 29 inserted from the outboard side into the bolt insertion hole 25 of the first contact fixing portion 22a is screwed into the bolt hole 27 of the flange surface 1aa of the outer member 1, and the bolt insertion of the second contact fixing portion 22b is inserted. The strain sensor 21 is fixed to the outer member 1 by screwing the bolt 30 inserted into the hole 26 from the outer peripheral side into the bolt hole 28 of the outer peripheral surface 1 b of the outer member 1.

歪み発生部材22は、外方部材1への固定により塑性変形を起こさない形状や材質とされている。また、歪み発生部材22は、車輪用軸受に予想される最大の荷重が印加された場合でも、塑性変形を起こさない形状とする必要がある。上記の想定される最大の力は、車両故障につながらない走行において想定される最大の力である。歪み発生部材22に塑性変形が生じると、外方部材1の変形が歪み発生部材22に正確に伝わらず、歪みの測定に影響を及ぼすためである。   The strain generating member 22 has a shape or material that does not cause plastic deformation by being fixed to the outer member 1. Further, the strain generating member 22 needs to have a shape that does not cause plastic deformation even when the maximum load expected for the wheel bearing is applied. The above assumed maximum force is the maximum force assumed in traveling that does not lead to vehicle failure. This is because, when plastic deformation occurs in the strain generating member 22, the deformation of the outer member 1 is not accurately transmitted to the strain generating member 22 and affects the measurement of strain.

センサ素子23としては、種々のものを使用することができる。例えば、センサ素子23は、金属箔ストレインゲージ、または半導体ストレインゲージであっても良く、また厚膜式センサであっても良い。   Various sensors can be used as the sensor element 23. For example, the sensor element 23 may be a metal foil strain gauge, a semiconductor strain gauge, or a thick film sensor.

図1に示すように、歪みセンサ21のセンサ素子23は推定手段31に接続される。推定手段31は、センサ素子23の出力信号により、車輪のタイヤと路面間の作用力を推定する手段である。推定手段31は、車輪のタイヤと路面間の作用力とセンサ素子23の出力信号との関係を演算式またはテーブル等により設定した関係設定手段(図示せず)を有し、入力された出力信号から前記関係設定手段を用いて作用力を出力する。前記関係設定手段の設定内容は、予め試験やシュミレーションで求めておいて設定する。   As shown in FIG. 1, the sensor element 23 of the strain sensor 21 is connected to the estimation means 31. The estimation means 31 is a means for estimating the acting force between the wheel tire and the road surface based on the output signal of the sensor element 23. The estimation means 31 has a relation setting means (not shown) in which the relation between the acting force between the wheel tire and the road surface and the output signal of the sensor element 23 is set by an arithmetic expression or a table, etc., and the input output signal The action force is output using the relationship setting means. The setting contents of the relationship setting means are obtained by testing and simulation in advance.

図2のように、外方部材1の外周面1bには、前記推定手段31等を有する回路ボックス32が取付けられている。歪みセンサ21におけるセンサ素子23から引き出されたケーブル33は、外方部材1のフランジ1aに沿って配線され、前記回路ボックス32内においてフェライトコア34を経て推定手段31に接続される。センサ素子23の出力信号がフェライトコア34を経て推定手段31に入力されることにより、センサ素子23の出力信号への電磁ノイズの影響が防止される。   As shown in FIG. 2, a circuit box 32 having the estimation means 31 and the like is attached to the outer peripheral surface 1 b of the outer member 1. A cable 33 drawn from the sensor element 23 in the strain sensor 21 is wired along the flange 1a of the outer member 1 and connected to the estimation means 31 through the ferrite core 34 in the circuit box 32. Since the output signal of the sensor element 23 is input to the estimation means 31 via the ferrite core 34, the influence of electromagnetic noise on the output signal of the sensor element 23 is prevented.

一般的には、車輪用軸受に設けられた歪みセンサ21の出力を処理する回路部を内蔵する回路ボックス32は自動車の電気制御ユニット(ECU)に設けられるが、この実施形態のように、車輪用軸受における歪みセンサ21の近傍に回路ボックス32を設けることで、歪みセンサ21から回路ボックス32への配線の手間が簡略化でき、また車輪用軸受以外の場所に回路ボックス32を設ける場合よりも、回路ボックス32をコンパクトに設置できる。   Generally, a circuit box 32 having a circuit unit for processing the output of the strain sensor 21 provided in a wheel bearing is provided in an electric control unit (ECU) of an automobile. By providing the circuit box 32 in the vicinity of the strain sensor 21 in the bearing for the vehicle, labor for wiring from the strain sensor 21 to the circuit box 32 can be simplified, and more than in the case where the circuit box 32 is provided in a place other than the wheel bearing. The circuit box 32 can be installed in a compact manner.

上記構成のセンサ付車輪用軸受の作用を説明する。車両走行に伴いハブ輪9に荷重が印加されると、転動体5を介して外方部材1が変形し、その変形は外方部材1に取付けられた歪み発生部材22に伝わり、歪み発生部材22が変形する。その歪み発生部材22の歪みをセンサ素子23により測定する。この際、歪み発生部材22の径方向部位22cは外方部材1のフランジ1aの変形に従って変形する。この実施形態の場合、外方部材1と比べ前記径方向部位22cは剛性が低く、この径方向部位22cとこの径方向部位22cよりも剛性の高い軸方向部位22dとでL字形をなすように歪み発生部材22が構成されているため、径方向部位22cと軸方向部位22dの間である径方向部位22c側の角部付近に歪みが集中し、外方部材1よりも大きな歪みとなって現れる。すなわち、径方向部位22cと軸方向部位22dとの間で発生する歪みは、フランジ1aの基端のR部の歪みを転写かつ拡大したものとなる。この歪みをセンサ素子23で測定するため、外方部材1の歪みを感度良く検出でき、歪み測定精度が高くなる。   The operation of the sensor-equipped wheel bearing with the above configuration will be described. When a load is applied to the hub wheel 9 as the vehicle travels, the outer member 1 is deformed via the rolling elements 5, and the deformation is transmitted to the strain generating member 22 attached to the outer member 1. 22 is deformed. The strain of the strain generating member 22 is measured by the sensor element 23. At this time, the radial portion 22 c of the strain generating member 22 is deformed according to the deformation of the flange 1 a of the outer member 1. In the case of this embodiment, the radial portion 22c is less rigid than the outer member 1, and the radial portion 22c and the axial portion 22d having higher rigidity than the radial portion 22c form an L shape. Since the strain generating member 22 is configured, the strain concentrates near the corner on the radial portion 22c side between the radial portion 22c and the axial portion 22d, resulting in a strain larger than that of the outer member 1. appear. That is, the distortion generated between the radial portion 22c and the axial portion 22d is a transfer and expansion of the distortion of the R portion at the proximal end of the flange 1a. Since this distortion is measured by the sensor element 23, the distortion of the outer member 1 can be detected with high sensitivity, and the distortion measurement accuracy is increased.

荷重の方向や大きさによって歪みの変化が異なるため、予め歪みと荷重の関係を実験やシミュレーションにて求めておけば、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を算出することができる。前記推定手段31は、このように実験やシミュレーションにより予め求めて設定しておいた歪みと荷重の関係から、センサ素子23の出力により、車輪用軸受に作用する外力、またはタイヤと路面間の作用力を算出する。また、リアルタイムで車輪用軸受に作用する外力、またはタイヤと路面間の作用力を出力すると、よりきめ細かな車両制御が可能となる。   Since the strain changes depending on the direction and magnitude of the load, if the relationship between the strain and the load is obtained in advance through experiments and simulations, the external force acting on the wheel bearing or the acting force between the tire and the road surface is calculated. be able to. The estimation means 31 is based on the relationship between the strain and the load obtained and set in advance through experiments and simulations, and the external force acting on the wheel bearing or the action between the tire and the road surface by the output of the sensor element 23. Calculate the force. In addition, when an external force acting on the wheel bearing in real time or an acting force between the tire and the road surface is output, finer vehicle control becomes possible.

とくに、この実施形態では、歪みセンサ21における歪み発生部材22のセンサ取付面22caに、オーバーモールドされた樹脂または加硫接着されたエラストマからなる覆い材24を設けて、少なくともセンサ素子23をこの覆い材24で密封状態に覆うようにしているので、外部環境(汚水浸入、異物衝突等)によりセンサ素子23が破損または故障してしまうのを防止できる。その結果、精度の高い歪み検出が長期にわたり可能となる。また、外部からの電磁ノイズの影響がセンサ素子23に及ぶのを防止することもできるので、より精度の高い歪み測定が可能となる。   In particular, in this embodiment, a covering material 24 made of overmolded resin or vulcanized elastomer is provided on the sensor mounting surface 22ca of the strain generating member 22 in the strain sensor 21, and at least the sensor element 23 is covered. Since the material 24 is covered in a sealed state, it is possible to prevent the sensor element 23 from being damaged or broken due to the external environment (intrusion of dirty water, collision of foreign matter, etc.). As a result, highly accurate distortion detection is possible over a long period of time. In addition, since it is possible to prevent the influence of external electromagnetic noise from affecting the sensor element 23, it is possible to measure distortion with higher accuracy.

図4は、上記実施形態における歪みセンサ21のセンサ素子23から引き出されるケーブル33の他の配線構成例を示す。この配線構成例では、センサ素子23のケーブル33を、歪み発生部材22の軸方向部位22dにおける底面、つまり外方部材1の外周面1bに対向する面22daにおける第2の接触固定部22bの近傍から、外方部材1の外周面1bに沿って周方向に引き出して、回路ボックス32内の推定手段31に接続している。この場合、ケーブル33の外方部材1の外周面1bに沿う部分は、フェライトコア34付きのクランプ部材35により外方部材1の外周面1bに固定される。
このフェライトコア34付きのクランプ部材35は、例えば、図5(A)に示すように、中心部にケーブル33を挿通させる厚肉円筒状であって、取付フランジ35aが突出したものとされる。取付フランジ35aの孔41に挿通したボルトで外方部材1に固定される。なお、このクランプ部材35は、互いに重なるフランジ部材35aをそれぞれ有する2つの半円筒状片を重ねたものであってもよい。
FIG. 4 shows another wiring configuration example of the cable 33 drawn from the sensor element 23 of the strain sensor 21 in the above embodiment. In this wiring configuration example, the cable 33 of the sensor element 23 is connected to the bottom surface in the axial portion 22d of the strain generating member 22, that is, in the vicinity of the second contact fixing portion 22b on the surface 22da facing the outer peripheral surface 1b of the outer member 1. From the outer circumferential surface 1 b of the outer member 1, the outer member 1 is pulled out in the circumferential direction and connected to the estimating means 31 in the circuit box 32. In this case, a portion along the outer peripheral surface 1 b of the outer member 1 of the cable 33 is fixed to the outer peripheral surface 1 b of the outer member 1 by a clamp member 35 with a ferrite core 34.
For example, as shown in FIG. 5A, the clamp member 35 with the ferrite core 34 has a thick cylindrical shape through which the cable 33 is inserted, and the mounting flange 35a protrudes. It is fixed to the outer member 1 with a bolt inserted through the hole 41 of the mounting flange 35a. The clamp member 35 may be a stack of two semi-cylindrical pieces each having a flange member 35a overlapping each other.

この配線構成例の場合、センサ素子23のケーブル33を外方部材1の外周面1bに沿って配線できるため、フランジ1aに沿って配線する場合よりもケーブル33が邪魔にならず、センサ素子23の出力信号への電磁ノイズの影響も低減できる。
また、ケーブル33を、フェライトコア34付きのクランプ部材35で外方部材1の外周面1bに固定するので、センサ素子23から回路ボックス32内の推定手段31までの信号経路のノイズ耐性を向上させることができる。しかも、電磁ノイズのような周波数の高い成分を効果的に減衰させる機能を持つフェライトコア34を、このようにクランプ部材35に付加することで、フェライトコア34のための設置スペースを別途設ける必要がなくなり、またフェライトコア34の固定も容易となる。
なお、クランプ部材35は、図5(B)のように、電磁波吸収シートからなるかまたは電磁波吸着シートが表面に貼られたサドル状等のものであってもよい。この場合のクランプ部材35は、ケーブル33の両側に貫通して設けられた孔に挿通したボルトにより、外方部材1の表面に固定され、ケーブル33を外方部材33の表面に挿し付け状態に固定する。
In the case of this wiring configuration example, since the cable 33 of the sensor element 23 can be wired along the outer peripheral surface 1b of the outer member 1, the cable 33 does not get in the way compared to the case of wiring along the flange 1a. The influence of electromagnetic noise on the output signal can be reduced.
Further, since the cable 33 is fixed to the outer peripheral surface 1b of the outer member 1 by the clamp member 35 with the ferrite core 34, the noise resistance of the signal path from the sensor element 23 to the estimating means 31 in the circuit box 32 is improved. be able to. In addition, by adding the ferrite core 34 having a function of effectively attenuating a high-frequency component such as electromagnetic noise to the clamp member 35 as described above, it is necessary to separately provide an installation space for the ferrite core 34. In addition, the ferrite core 34 can be easily fixed.
As shown in FIG. 5B, the clamp member 35 may be made of an electromagnetic wave absorbing sheet, or may be a saddle with an electromagnetic wave adsorbing sheet attached to the surface. In this case, the clamp member 35 is fixed to the surface of the outer member 1 by bolts inserted through holes provided on both sides of the cable 33, and the cable 33 is inserted into the surface of the outer member 33. Fix it.

なお、この実施形態での歪みセンサ21は、歪み発生部材22にセンサ素子23を1個だけ取付けた構成としているが、歪み発生部材22にセンサ素子23を複数個取付けた構成としても良い。歪み発生部材22にセンサ素子23を複数個取付けると、より一層精度の高い荷重の検出が可能となる。   In addition, although the strain sensor 21 in this embodiment has a configuration in which only one sensor element 23 is attached to the strain generating member 22, a configuration in which a plurality of sensor elements 23 are attached to the strain generating member 22 may be employed. When a plurality of sensor elements 23 are attached to the strain generating member 22, it is possible to detect a load with higher accuracy.

また、この実施形態では、歪みセンサ21を外方部材1の1箇所にだけ設けた構成としているが、歪みセンサ21を2箇所以上に設けた構成としても良い。歪みセンサ21を2箇所以上に設けると、より一層精度の高い荷重の検出が可能となる。   In this embodiment, the strain sensor 21 is provided at only one place on the outer member 1. However, the strain sensor 21 may be provided at two or more places. When the strain sensors 21 are provided at two or more locations, it becomes possible to detect a load with higher accuracy.

また、この実施形態では、外方部材1が固定側部材である場合につき説明したが、この発明は、内方部材が固定側部材である車輪用軸受にも適用することができ、その場合、歪みセンサ21は内方部材2の内周となる周面に設ける。
また、この実施形態では第3世代型の車輪用軸受に適用した場合につき説明したが、この発明は、軸受部分とハブとが互いに独立した部品となる第1または第2世代型の車輪用軸受や、内方部材の一部が等速ジョイントの外輪で構成される第4世代型の車輪用軸受にも適用することができる。また、このセンサ付車輪用軸受は、従動輪用の車輪用軸受にも適用でき、さらに各世代形式のテーパころタイプの車輪用軸受にも適用することができる。
Moreover, although this embodiment demonstrated about the case where the outer member 1 is a stationary member, this invention can be applied also to the wheel bearing in which an inner member is a stationary member, in that case, The strain sensor 21 is provided on the peripheral surface that is the inner periphery of the inner member 2.
Further, in this embodiment, the case where the present invention is applied to a third generation type wheel bearing has been described. However, the present invention relates to a first or second generation type wheel bearing in which the bearing portion and the hub are independent parts. In addition, the present invention can also be applied to a fourth generation type wheel bearing in which a part of the inner member is composed of an outer ring of a constant velocity joint. Further, this sensor-equipped wheel bearing can be applied to a wheel bearing for a driven wheel, and can also be applied to a tapered roller type wheel bearing of each generation type.

この発明の一実施形態にかかるセンサ付車輪用軸受の断面図である。It is sectional drawing of the bearing for wheels with a sensor concerning one Embodiment of this invention. 同センサ付車輪用軸受の外方部材をアウトボード側から見た正面図である。It is the front view which looked at the outer member of the wheel bearing with a sensor from the outboard side. 同センサ付車輪用軸受の歪みセンサの取付構造を示す拡大断面図である。It is an expanded sectional view which shows the attachment structure of the distortion sensor of the wheel bearing with a sensor. 同センサ付車輪用軸受のケーブル配線構成の他の例を示す斜視図である。It is a perspective view which shows the other example of a cable wiring structure of the wheel bearing with a sensor. クランプ部材の各例に示す斜視図である。It is a perspective view shown in each example of a clamp member.

符号の説明Explanation of symbols

1…外方部材
1a…フランジ
1aa…フランジ面
1b…外周面
2…内方部材
3,4…転走面
5…転動体
21…歪みセンサ
22…歪み発生部材
22a…第1の接触固定部
22b…第2の接触固定部
22ca…センサ取付面
23…センサ素子
24…覆い材
33…ケーブル
34…フェライトコア
35…クランプ部材
DESCRIPTION OF SYMBOLS 1 ... Outer member 1a ... Flange 1aa ... Flange surface 1b ... Outer peripheral surface 2 ... Inner member 3, 4 ... Rolling surface 5 ... Rolling body 21 ... Strain sensor 22 ... Strain generating member 22a ... 1st contact fixing | fixed part 22b ... 2nd contact fixing | fixed part 22ca ... Sensor mounting surface 23 ... Sensor element 24 ... Cover material 33 ... Cable 34 ... Ferrite core 35 ... Clamp member

Claims (5)

複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、 車体に対して車輪を回転自在に支持する車輪用軸受において、
歪み発生部材およびこの歪み発生部材に取付けられて前記歪み発生部材の歪みを検出するセンサ素子からなる歪みセンサを、前記外方部材および内方部材のうちの固定側部材に取付け、この歪みセンサの前記歪み発生部材の前記センサ素子の取付面に、少なくとも前記センサ素子を密封状態に覆って、オーバーモールドされた樹脂または加硫接着されたエラストマからなる覆い材を設けたことを特徴とするセンサ付車輪用軸受。
An outer member in which a double row rolling surface is formed on the inner periphery, an inner member having a rolling surface opposite to the rolling surface of the outer member, and a double row interposed between both rolling surfaces In the wheel bearing for supporting the wheel rotatably with respect to the vehicle body,
A strain sensor comprising a strain generating member and a sensor element that is attached to the strain generating member and detects the strain of the strain generating member is attached to a fixed side member of the outer member and the inner member. A sensor-attached surface comprising a cover member made of an overmolded resin or a vulcanized elastomer covering at least the sensor element in a sealed state on a mounting surface of the sensor element of the strain generating member. Wheel bearing.
請求項1において、前記歪み発生部材は、固定側部材に対して2箇所の接触固定部を有し、前記接触固定部のうち第1の接触固定部は前記固定側部材に設けられたフランジ面に対する固定部であり、第2の接触固定部は前記固定側部材の周面に対する固定部であるセンサ付車輪用軸受。   2. The strain generating member according to claim 1, wherein the strain generating member has two contact fixing portions with respect to the fixed side member, and the first contact fixing portion of the contact fixing portions is a flange surface provided on the fixed side member. A sensor-equipped wheel bearing, wherein the second contact fixing portion is a fixing portion for the peripheral surface of the fixed-side member. 請求項1または請求項2において、前記歪みセンサにおける前記センサ素子のケーブルを、前記歪み発生部材における前記固定側部材の周面に対する接触固定部の近傍から、前記固定側部材の周方向に引き出したセンサ付車輪用軸受。   3. The cable of the sensor element in the strain sensor according to claim 1, wherein the cable of the sensor element is pulled out in the circumferential direction of the fixed member from the vicinity of the contact fixing portion with respect to the peripheral surface of the fixed member in the strain generating member. Wheel bearing with sensor. 複列の転走面が内周に形成された外方部材と、この外方部材の転走面と対向する転走面を形成した内方部材と、両転走面間に介在した複列の転動体とを備え、 車体に対して車輪を回転自在に支持する車輪用軸受において、
歪み発生部材およびこの歪み発生部材に取付けられて前記歪み発生部材の歪みを検出するセンサ素子からなる歪みセンサを、前記外方部材および内方部材のうちの固定側部材に取付け、前記歪み発生部材は、固定側部材に対して2箇所の接触固定部を有し、前記接触固定部のうち第1の接触固定部は前記固定側部材に設けられたフランジ面であり、第2の接触固定部は前記固定側部材の周面であり、前記歪みセンサにおける前記センサ素子のケーブルを、前記歪み発生部材における前記固定側部材の周面に対する接触固定部の近傍から、前記固定側部材の周方向に引き出したことを特徴とするセンサ付車輪用軸受。
An outer member in which a double row rolling surface is formed on the inner periphery, an inner member having a rolling surface opposite to the rolling surface of the outer member, and a double row interposed between both rolling surfaces In the wheel bearing for supporting the wheel rotatably with respect to the vehicle body,
A strain sensor comprising a strain generating member and a sensor element that is attached to the strain generating member and detects the strain of the strain generating member is attached to a fixed member of the outer member and the inner member, and the strain generating member Has two contact fixing portions with respect to the fixed side member, and the first contact fixing portion of the contact fixing portions is a flange surface provided on the fixed side member, and the second contact fixing portion. Is a peripheral surface of the fixed side member, and the cable of the sensor element in the strain sensor is arranged in the circumferential direction of the fixed side member from the vicinity of the contact fixing portion with respect to the peripheral surface of the fixed side member in the strain generating member. A wheel bearing with sensor characterized by being pulled out.
請求項3または請求項4において、前記ケーブルを前記固定側部材の周面に固定するフェライト付きのクランプ部材を設けたセンサ付車輪用軸受。   5. The sensor-equipped wheel bearing according to claim 3 or 4, wherein a ferrite clamp member for fixing the cable to the peripheral surface of the stationary member is provided.
JP2007080558A 2007-03-27 2007-03-27 Wheel bearing with sensor Expired - Fee Related JP4942531B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007080558A JP4942531B2 (en) 2007-03-27 2007-03-27 Wheel bearing with sensor
PCT/JP2008/000713 WO2008117534A1 (en) 2007-03-27 2008-03-25 Sensor-equipped bearing for wheel
US12/450,442 US8123411B2 (en) 2007-03-27 2008-03-25 Sensor-equipped bearing for wheel
US13/349,934 US8313242B2 (en) 2007-03-27 2012-01-13 Sensor-equipped bearing for wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080558A JP4942531B2 (en) 2007-03-27 2007-03-27 Wheel bearing with sensor

Publications (2)

Publication Number Publication Date
JP2008241379A true JP2008241379A (en) 2008-10-09
JP4942531B2 JP4942531B2 (en) 2012-05-30

Family

ID=39912922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080558A Expired - Fee Related JP4942531B2 (en) 2007-03-27 2007-03-27 Wheel bearing with sensor

Country Status (1)

Country Link
JP (1) JP4942531B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657006B2 (en) * 1995-07-21 2005-06-08 エス エヌ エール ルルマン Dynamic force detection device and detection method for rolling bearings
WO2007029512A1 (en) * 2005-09-06 2007-03-15 Ntn Corporation Sensor-equipped bearing for wheel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657006B2 (en) * 1995-07-21 2005-06-08 エス エヌ エール ルルマン Dynamic force detection device and detection method for rolling bearings
WO2007029512A1 (en) * 2005-09-06 2007-03-15 Ntn Corporation Sensor-equipped bearing for wheel

Also Published As

Publication number Publication date
JP4942531B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP2008190707A (en) Wheel bearing with sensor
WO2007066482A1 (en) Sensor-equipped bearing for wheel
JP2007057299A (en) Wheel bearing with sensor
JP2007046635A (en) Bearing for wheel with sensor
JP2007071280A (en) Wheel bearing with sensor
JP2007155079A (en) Wheel bearing with sensor
JP5424565B2 (en) Wheel bearing with sensor
JP2007057300A (en) Wheel bearing with sensor
JP2007057302A (en) Wheel bearing with sensor
JP2007078615A (en) Bearing with sensor for wheel
JP2007057258A (en) Wheel bearing with sensor
JP5094457B2 (en) Wheel bearing with sensor
JP2008051283A (en) Wheel bearing with sensor
JP4942531B2 (en) Wheel bearing with sensor
JP5355042B2 (en) Wheel bearing with sensor
JP2007057257A (en) Wheel bearing with sensor
JP2008051239A (en) Wheel bearing with sensor
JP4911967B2 (en) Wheel bearing with sensor
JP5334370B2 (en) Wheel bearing with sensor
JP2010144888A (en) Wheel bearing with sensor
JP2008303892A (en) Wheel bearing with sensor
JP2007292231A (en) Wheel bearing with sensor
JP5235306B2 (en) Wheel bearing with sensor
JP4936931B2 (en) Wheel bearing with sensor
JP2007292233A (en) Wheel bearing with sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120228

R150 Certificate of patent or registration of utility model

Ref document number: 4942531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees