JP2008240652A - Vane pump - Google Patents

Vane pump Download PDF

Info

Publication number
JP2008240652A
JP2008240652A JP2007083027A JP2007083027A JP2008240652A JP 2008240652 A JP2008240652 A JP 2008240652A JP 2007083027 A JP2007083027 A JP 2007083027A JP 2007083027 A JP2007083027 A JP 2007083027A JP 2008240652 A JP2008240652 A JP 2008240652A
Authority
JP
Japan
Prior art keywords
rotor
suction
suction port
pump chamber
vane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007083027A
Other languages
Japanese (ja)
Other versions
JP4821673B2 (en
Inventor
Etsuo Matsuki
悦夫 松木
Takeshi Kusakabe
毅 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2007083027A priority Critical patent/JP4821673B2/en
Publication of JP2008240652A publication Critical patent/JP2008240652A/en
Application granted granted Critical
Publication of JP4821673B2 publication Critical patent/JP4821673B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent abrasion of a vane, and to thin a casing, by efficiently sucking a working fluid by securing the contact area with an inner peripheral surface of a pump room of the vane. <P>SOLUTION: A suction port 20 communicating with an operation chamber 5 of a volume expanding process and a delivery port 21 communicating with the operation chamber 5 of a volume reducing process, are formed on the inner peripheral surface 2a of the pump room 2. The suction port 20 is arranged in a position dislocated from the respective vanes 4 in the thrust direction of a rotor 3. A suction passage 6 communicating with the suction port 20 and a delivery passage 7 communicating with the delivery port 21, are formed in the casing 10. The suction passage 6 and the delivery passage 7 are formed in a position overlapping with the pump room 2 when viewed from the radial direction of the rotor 3. A dimension in the thrust direction of the rotor 3 of the suction port 20, is set shorter than a diameter of an inlet part of the suction passage 6. A dimension in the direction along the inner peripheral surface 2a of the pump room 2 of the suction port 20, is set longer than the diameter of the inlet part of the suction passage 6. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明はベーンポンプに関する。   The present invention relates to a vane pump.

従来のベーンポンプ1は、図8のようにケーシング10に形成したポンプ室2の偏心位置にロータ3を収納し、ロータ3に放射状に伸びるベーン溝19を複数形成し、各ベーン溝19に先端がポンプ室2の内周面2aに摺接されるベーン4をロータ3のラジアル方向にスライド自在に設けている。またポンプ室2の内周面には吸入口20及び吐出口21を設けてあり、ケーシング10には吸入口20及び吐出口21に連通する吸入経路6及び吐出経路7を形成している。吸入経路6の入口部及び吐出経路7の出口部はケーシング10の外側面から突設した接続管部で構成してあり、図示しないホース等の管を接続可能としてある。なお、図中26はベーン溝19に設けたばね材である。   The conventional vane pump 1 houses the rotor 3 in an eccentric position of the pump chamber 2 formed in the casing 10 as shown in FIG. 8, and forms a plurality of vane grooves 19 extending radially in the rotor 3, and the tip of each vane groove 19 has a tip. A vane 4 slidably in contact with the inner peripheral surface 2 a of the pump chamber 2 is provided to be slidable in the radial direction of the rotor 3. Further, a suction port 20 and a discharge port 21 are provided on the inner peripheral surface of the pump chamber 2, and a suction path 6 and a discharge path 7 communicating with the suction port 20 and the discharge port 21 are formed in the casing 10. The inlet part of the suction path 6 and the outlet part of the discharge path 7 are constituted by a connecting pipe part protruding from the outer surface of the casing 10 so that a pipe such as a hose (not shown) can be connected. In the figure, reference numeral 26 denotes a spring material provided in the vane groove 19.

上記ロータ3を回転駆動すると、各ベーン4はロータ3の遠心力の作用でロータ3のラジアル方向の外側にスライドして各ベーン4の先端部はポンプ室2の内周面2aに摺接し、これによりポンプ室2の内面とロータ3の外周面とベーン4とで囲まれた作動室5の容積が大小変化し、この作動室5を介して吸入口20から作動流体を吸入すると共に吐出口21から作動流体を排出する。   When the rotor 3 is rotationally driven, each vane 4 slides outward in the radial direction of the rotor 3 due to the centrifugal force of the rotor 3, and the tip of each vane 4 is in sliding contact with the inner peripheral surface 2 a of the pump chamber 2. As a result, the volume of the working chamber 5 surrounded by the inner surface of the pump chamber 2, the outer peripheral surface of the rotor 3, and the vane 4 changes in size, and the working fluid is sucked from the suction port 20 through the working chamber 5 and the discharge port. The working fluid is discharged from 21.

ところで、上記吸入口20及び吐出口21はポンプ室2の内周面2aにおいてベーン4からロータ3のスラスト方向にずれた位置に形成することが好ましい。この理由は、ベーン4がポンプ室2の周方向において吸入口20及び吐出口21に対応する位置にある時に、ベーン4のポンプ室2の内周面2aに対する接触面積を確保して作動流体を効率良く吸引・吐出でき、またベーン4が摺動する内周面2aに吸込口20及び吐出口21がなく滑らかに形成できるためベーン4の磨耗を防止できるからである。   By the way, the suction port 20 and the discharge port 21 are preferably formed at positions displaced from the vane 4 in the thrust direction of the rotor 3 on the inner peripheral surface 2 a of the pump chamber 2. The reason for this is that when the vane 4 is in a position corresponding to the suction port 20 and the discharge port 21 in the circumferential direction of the pump chamber 2, the contact area of the vane 4 with respect to the inner peripheral surface 2a of the pump chamber 2 is secured. This is because the suction and discharge can be efficiently performed, and the inner peripheral surface 2a on which the vane 4 slides can be smoothly formed without the suction port 20 and the discharge port 21, thereby preventing the vane 4 from being worn.

また上記吸入経路6及び吐出経路7は流路抵抗を低減するために吸入口20及び吐出口21を含めた流れ方向における全長に亘る断面積を一定にする必要があり、従来では断面形状を流れ方向の全長に亘って同一断面形状にすることで断面積を一定にしていた。なおこの吸入口20を含めた吸入経路6及び吐出口21を含めた吐出経路7の夫々の断面形状は管が接続される入口部及び出口部の断面によって決定される。   Further, the suction path 6 and the discharge path 7 need to have a constant cross-sectional area over the entire length in the flow direction including the suction port 20 and the discharge port 21 in order to reduce flow path resistance. The cross-sectional area was made constant by having the same cross-sectional shape over the entire length in the direction. The cross-sectional shapes of the suction path 6 including the suction port 20 and the discharge path 7 including the discharge port 21 are determined by the cross-sections of the inlet portion and the outlet portion to which the pipe is connected.

ここで吸入経路6及び吸入口20を共にロータ3のラジアル方向から見て重複する位置(即ちスラスト方向においてポンプ室2と同位置)に形成した場合にはケーシング10の薄型化に支障はないが、前述したように吸入口20をベーン4からロータ3のスラスト方向にずれた位置に配置した場合には、吸入口20の寸法分だけケーシング10が厚くなってしまい、特に流路抵抗を低減するために吸入口20を吸入経路6の入口部と同一断面形状に形成した場合には吸入経路6の入口部の径の分だけケーシング10が厚くなってしまい、ケーシング10の薄型化に支障をきたす。
実開昭59−154881号公報
Here, when the suction path 6 and the suction port 20 are formed at positions overlapping each other when viewed from the radial direction of the rotor 3 (that is, the same position as the pump chamber 2 in the thrust direction), there is no problem in reducing the thickness of the casing 10. As described above, when the suction port 20 is arranged at a position shifted from the vane 4 in the thrust direction of the rotor 3, the casing 10 becomes thicker by the dimension of the suction port 20, particularly reducing the flow path resistance. Therefore, when the suction port 20 is formed in the same cross-sectional shape as the inlet portion of the suction path 6, the casing 10 becomes thicker by the diameter of the inlet portion of the suction path 6, which hinders the thickness reduction of the casing 10. .
Japanese Utility Model Publication No.59-154881

本発明は上記従来の問題点に鑑みて発明したものであって、吸入口をポンプ室の内周面においてベーンからロータのスラスト方向にずれた位置に配置して、ベーンのポンプ室の内周面に対する接触面積を確保して作動流体を効率良く吸引でき、ベーンの磨耗を防止し、尚且つ、ケーシングを薄型化したベーンポンプを提供する。   The present invention has been invented in view of the above-described conventional problems, and the suction port is disposed on the inner peripheral surface of the pump chamber at a position shifted from the vane in the thrust direction of the rotor, so that the inner periphery of the pump chamber of the vane is provided. Provided is a vane pump capable of ensuring a contact area with a surface and efficiently sucking a working fluid, preventing wear of vanes, and having a thin casing.

上記課題を解決するために本発明に係るベーンポンプは、ケーシング10内に形成したポンプ室2と、ポンプ室2に収納したロータ3と、ロータ3の周方向に複数設けられて先端がポンプ室2の内周面2aに摺接するベーン4と、ポンプ室2の内面とロータ3の外周面とベーン4とで囲まれてロータ3の回転駆動によりその容積を大小変化させる作動室5を備え、ポンプ室2の内周面2aに容積拡大過程の作動室5に連通する吸入口20及び容積縮小過程の作動室5に連通する吐出口21を形成すると共に、吸入口20をロータ3のスラスト方向において各ベーン4とずれた位置に配置し、ケーシング10内に吸入口20に連通する吸入経路6と吐出口21に連通する吐出経路7を形成すると共に、これら吸入経路6及び吐出経路7をロータ3のラジアル方向から見てポンプ室2と重複する位置に形成し、吸入口20のロータ3のスラスト方向における寸法を吸入経路6の入口部の直径よりも短くすると共に該吸入口20のポンプ室2の内周面2aに沿った方向の寸法を吸入経路6の入口部の直径よりも長くして成ることを特徴とする。このように吸入口20をロータ3のスラスト方向において各ベーン4とずれた位置に配置することで、ベーン4がポンプ室2の周方向において吸入口20に対応する位置にある時において、ベーン4のポンプ室2の内周面2aに対する接触面積を確保して作動流体を効率良く吸引でき、またベーン4の磨耗を防止するといった効果が得られる。また吸入経路6及び吐出経路7をロータ3のラジアル方向から見てポンプ室2と重複する位置に形成し、吸入口20のロータ3のスラスト方向における寸法を吸入経路6の入口部の直径よりも短くすると共に該吸入口20のポンプ室2に内周面2aに沿った方向の寸法を吸入経路6の入口部の直径よりも長くすることで、ケーシング10の厚み寸法(ロータ3のスラスト方向の寸法)を短くでき、また吸入口20の断面積を充分に確保できる。   In order to solve the above problems, a vane pump according to the present invention includes a pump chamber 2 formed in a casing 10, a rotor 3 housed in the pump chamber 2, a plurality of circumferentially arranged rotors 3, and a tip of the pump chamber 2. And a working chamber 5 surrounded by the inner surface of the pump chamber 2, the inner surface of the pump chamber 2, the outer peripheral surface of the rotor 3, and the vane 4, the volume of which is changed by the rotational driving of the rotor 3. A suction port 20 communicating with the working chamber 5 in the volume expansion process and a discharge port 21 communicating with the working chamber 5 in the volume reduction process are formed on the inner peripheral surface 2 a of the chamber 2, and the suction port 20 is arranged in the thrust direction of the rotor 3. Disposed at a position shifted from each vane 4, a suction path 6 communicating with the suction port 20 and a discharge path 7 communicating with the discharge port 21 are formed in the casing 10, and the suction path 6 and the discharge path 7 are connected to the rotor. The suction chamber 20 is formed in a position overlapping the pump chamber 2 as viewed from the radial direction of the suction chamber 20, and the size of the suction port 20 in the thrust direction of the rotor 3 is made shorter than the diameter of the inlet portion of the suction passage 6. The dimension in the direction along the inner peripheral surface 2a is longer than the diameter of the inlet portion of the suction path 6. Thus, by disposing the suction port 20 at a position shifted from each vane 4 in the thrust direction of the rotor 3, when the vane 4 is at a position corresponding to the suction port 20 in the circumferential direction of the pump chamber 2, the vane 4. The contact area with respect to the inner peripheral surface 2a of the pump chamber 2 can be secured, the working fluid can be sucked efficiently, and the vane 4 can be prevented from being worn. Further, the suction path 6 and the discharge path 7 are formed at positions overlapping the pump chamber 2 when viewed from the radial direction of the rotor 3, and the dimension of the suction port 20 in the thrust direction of the rotor 3 is larger than the diameter of the inlet portion of the suction path 6. The thickness of the casing 10 (in the thrust direction of the rotor 3) is reduced by shortening the length of the suction chamber 20 in the direction along the inner peripheral surface 2a of the pump chamber 2 from the diameter of the inlet portion of the suction passage 6. Dimension) can be shortened, and a sufficient cross-sectional area of the suction port 20 can be secured.

また、作動室5のロータ3の回転方向における前側の端部が吐出口21に連通した状態にある時に、該作動室5が形成されるポンプ室2の領域を加圧領域とし、前記吸入口20をロータ3の回転方向において加圧領域の直前まで形成することが好ましい。吸入口20をロータ3の回転方向において加圧領域の直前まで形成することで、吸入口20のポンプ室2に内周面2aに沿った方向の寸法を長くでき、吸入口20の断面積を充分に確保しながらケーシング10の厚み寸法をさらに短くできる。   When the front end of the working chamber 5 in the rotation direction of the rotor 3 is in communication with the discharge port 21, the region of the pump chamber 2 in which the working chamber 5 is formed is a pressurizing region, and the suction port It is preferable to form 20 up to just before the pressure region in the rotation direction of the rotor 3. By forming the suction port 20 just before the pressurization region in the rotation direction of the rotor 3, the dimension of the suction port 20 in the direction along the inner peripheral surface 2a can be increased in the pump chamber 2, and the cross-sectional area of the suction port 20 can be increased. The thickness dimension of the casing 10 can be further shortened while ensuring sufficiently.

また、前記吸入経路6の下流側端部は吸入口20に対向する内側面40を備え、該内側面40と吸入口20との間の距離をロータ3の回転方向における前側に行く程徐々に短くすることが好ましい。内側面40により作動流体を吸入口20側に誘導できる。   The downstream end of the suction path 6 includes an inner surface 40 that faces the suction port 20, and the distance between the inner surface 40 and the suction port 20 gradually increases toward the front side in the rotation direction of the rotor 3. It is preferable to shorten it. The working fluid can be guided to the suction port 20 side by the inner side surface 40.

また、前記吸入経路6の下流側端部は吸入口20に対向する内側面40を備え、該吸入経路6の下流側端部の底面を、吸入口20側に行く程底が深くなる傾斜面41とすることも好ましい。傾斜面41により作動流体を吸入口20側に誘導できる。   The downstream end portion of the suction path 6 includes an inner surface 40 that faces the suction port 20, and the bottom surface of the downstream end portion of the suction path 6 is inclined so that the bottom becomes deeper toward the suction port 20 side. 41 is also preferable. The inclined surface 41 can guide the working fluid to the suction port 20 side.

請求項1に係る発明では、吸入口をロータのスラスト方向において各ベーンとずれた位置に配置することで、作動流体を効率良く吸引できるといった効果が得られ、またケーシングを薄型化でき、尚且つ吸入口の断面積を充分に確保して吸入口における流路抵抗を低減でき、これにより吸入経路を流れる作動流体をポンプ室にスムーズに導入できる。   In the invention according to claim 1, by arranging the suction port at a position shifted from each vane in the thrust direction of the rotor, an effect that the working fluid can be sucked efficiently can be obtained, and the casing can be thinned, and Sufficient cross-sectional area of the suction port can be secured to reduce the flow resistance at the suction port, whereby the working fluid flowing through the suction path can be smoothly introduced into the pump chamber.

また請求項2に係る発明では、請求項1に係る発明の効果に加えて、吸入口のポンプ室に内周面に沿った方向の寸法を長くでき、吸入口の断面積を充分に確保しながらケーシングの更なる薄型化を実現できる。   Further, in the invention according to claim 2, in addition to the effect of the invention according to claim 1, the pump chamber of the suction port can be lengthened in the direction along the inner peripheral surface, and the cross-sectional area of the suction port can be sufficiently secured. However, the casing can be made thinner.

また請求項3に係る発明では、請求項1又は請求項2に係る発明の効果に加えて、吸入経路の下流側端部の内側面により、作動流体を吸入口側に誘導でき、一層スムーズに作動流体をポンプ室に導入できる。   Further, in the invention according to claim 3, in addition to the effect of the invention according to claim 1 or 2, the working fluid can be guided to the suction port side by the inner surface of the downstream end portion of the suction path, so that smoother. The working fluid can be introduced into the pump chamber.

また請求項4に係る発明では、請求項1乃至請求項3のいずれか一項に係る発明の効果に加えて、吸入経路の下流側端部の底面により、作動流体を吸入口側に誘導でき、一層スムーズに作動流体をポンプ室に導入できる。   In the invention according to claim 4, in addition to the effect of the invention according to any one of claims 1 to 3, the working fluid can be guided to the suction port side by the bottom surface of the downstream end portion of the suction path. The working fluid can be introduced into the pump chamber more smoothly.

以下、本発明を添付図面に示す実施形態に基づいて説明する。図1乃至図7に示す本実施形態の一例のベーンポンプ1は、ケーシング10内に形成したポンプ室2にロータ3を偏心させて収納し、先端がポンプ室2の内周面2aに摺接される複数のベーン4をロータ3に設け、ロータ3をステータ23により回転駆動することでポンプ室2の内面とロータ3の外周面とベーン4とで囲まれた作動室5の容積を大小変化させ、これにより作動室5を介して吸入口20からの作動流体を吐出口21から排出するものである。なお以下ではロータ3のスラスト方向(ロータ3の軸方向)の一方を上方、反対側の他方を下方として説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings. A vane pump 1 according to an example of the present embodiment shown in FIGS. 1 to 7 stores a rotor 3 eccentrically in a pump chamber 2 formed in a casing 10, and a tip is slidably contacted with an inner peripheral surface 2 a of the pump chamber 2. A plurality of vanes 4 are provided on the rotor 3, and the volume of the working chamber 5 surrounded by the inner surface of the pump chamber 2, the outer peripheral surface of the rotor 3, and the vanes 4 is changed in size by rotating the rotor 3 by the stator 23. Thus, the working fluid from the suction port 20 is discharged from the discharge port 21 through the working chamber 5. In the following description, it is assumed that one side in the thrust direction of the rotor 3 (the axial direction of the rotor 3) is the upper side and the other side is the lower side.

図3に示すように、ロータ3を収納するケーシング10は平面視略矩形状であり、上方に位置する上ケース11と下方に位置する下ケース12を合わせることで形成されている。なお図中14は上ケース11と下ケース12を締結させる締結具用の孔である。   As shown in FIG. 3, the casing 10 that accommodates the rotor 3 has a substantially rectangular shape in plan view, and is formed by combining an upper case 11 positioned above and a lower case 12 positioned below. In the figure, reference numeral 14 denotes a fastener hole for fastening the upper case 11 and the lower case 12 together.

上ケース11には下ケース12との合わせ面から上方に凹没した上凹所15を形成してあり、下ケース12には上ケース11との合わせ面から下方に凹没して上凹所15に連通する下凹所16を形成してある。上凹所15の底面の中央部には嵌込部24を突設してあり、嵌込部24の外周部の周方向に180度離れた二箇所には切欠24aを形成している。上凹所15には円環状のリング材17を嵌入してあり、このリング材17の中央孔17aの上端部には前記嵌込部24が嵌入される。このようにリング材17を嵌入した上凹所15と下凹所16を合わせることでロータ3を収納するポンプ室2を形成しており、即ちポンプ室2は、嵌込部24の下面を含む上凹所15の底面と、リング材17の内周面と、下凹所16の内面とで構成される。   The upper case 11 is formed with an upper recess 15 that is recessed upward from the mating surface with the lower case 12, and the upper case 11 is recessed downward from the mating surface with the upper case 11. A lower recess 16 communicating with 15 is formed. A fitting portion 24 projects from the central portion of the bottom surface of the upper recess 15, and notches 24 a are formed at two locations 180 degrees apart in the circumferential direction of the outer peripheral portion of the fitting portion 24. An annular ring member 17 is fitted into the upper recess 15, and the fitting portion 24 is fitted into the upper end portion of the central hole 17 a of the ring member 17. Thus, the pump chamber 2 which accommodates the rotor 3 is formed by combining the upper recess 15 and the lower recess 16 into which the ring material 17 is inserted, that is, the pump chamber 2 includes the lower surface of the fitting portion 24. The bottom surface of the upper recess 15, the inner peripheral surface of the ring material 17, and the inner surface of the lower recess 16 are configured.

ロータ3は平面視円形に形成してあり、上部のロータ本体8と下部の永久磁石からなるマグネット部22(図7参照)で構成してある。図1に示すようにロータ3は、ロータ本体8の外周面8aがポンプ室2の内周面2a(リング材17の内周面)に対向し、且つ一方のスラスト面となるロータ本体8の上面がポンプ室2の内底面(即ち嵌込部24を含む上凹所15の底面)に対向するようポンプ室2に収納される。   The rotor 3 is formed in a circular shape in plan view, and is composed of an upper rotor body 8 and a magnet portion 22 (see FIG. 7) composed of a lower permanent magnet. As shown in FIG. 1, the rotor 3 has an outer peripheral surface 8 a of the rotor main body 8 that faces the inner peripheral surface 2 a of the pump chamber 2 (the inner peripheral surface of the ring member 17), and serves as one thrust surface of the rotor main body 8. The upper surface is accommodated in the pump chamber 2 so as to face the inner bottom surface of the pump chamber 2 (that is, the bottom surface of the upper recess 15 including the fitting portion 24).

平面視円形のロータ本体8の上面にはロータ3のラジアル方向に伸びるベーン溝19を周方向に等間隔で複数条(本例では4条)放射状に形成してあり、各ベーン溝19はロータ本体8の外周面8aから開口している。各ベーン溝19には直方体形状のベーン4をロータ3のラジアル方向に摺動自在に収納してあり、これにより各ベーン4の先部はロータ本体8の外周面8aから出入自在となっている。なお各ベーン4の上面は上凹所15の底面に対向する。   A plurality of vane grooves 19 extending radially in the circumferential direction (four in this example) are radially formed on the upper surface of the rotor body 8 having a circular shape in plan view at equal intervals in the circumferential direction. It opens from the outer peripheral surface 8 a of the main body 8. In each vane groove 19, a rectangular parallelepiped vane 4 is accommodated so as to be slidable in the radial direction of the rotor 3, so that the front portion of each vane 4 can be moved in and out of the outer peripheral surface 8 a of the rotor body 8. . The top surface of each vane 4 faces the bottom surface of the upper recess 15.

ロータ本体8の外周面にはロータ3のラジアル方向の外側に突出する歯部25を周方向に多数並設してあり、これら歯部25は吐出時における作動室内の圧力を高める役割を果たす。またロータ本体8の下端部には歯部25よりもロータ3のラジアル方向の外側に突出するフランジ部27を周設してあり、フランジ部27の外周部は図7(a)に示すようにリング材17の内周面よりも外側に突出してリング材17の下面に対向する。またマグネット部22は下凹所16に収納されている。下凹所16の底面からは上方に軸32を突出しており、軸32はロータ3の中心に挿入されてロータ3を回転自在に支持している。   A large number of teeth 25 projecting outward in the radial direction of the rotor 3 are juxtaposed in the circumferential direction on the outer peripheral surface of the rotor body 8, and these teeth 25 serve to increase the pressure in the working chamber during discharge. Further, a flange portion 27 is provided at the lower end portion of the rotor body 8 so as to protrude outward in the radial direction of the rotor 3 from the tooth portion 25. The outer peripheral portion of the flange portion 27 is as shown in FIG. It protrudes outward from the inner peripheral surface of the ring member 17 and faces the lower surface of the ring member 17. The magnet portion 22 is housed in the lower recess 16. A shaft 32 protrudes upward from the bottom surface of the lower recess 16, and the shaft 32 is inserted into the center of the rotor 3 to rotatably support the rotor 3.

リング材17の内周面で構成されたポンプ室2の内周面2aの上端部には作動流体を作動室5に引き込む吸入口20と作動流体を作動室5から排出する吐出口21を形成している。吸入口20及び吐出口21はポンプ室2の内周面2aにおいて互いに対向する位置に形成してあり、前記嵌込部24に形成した各切欠24aに対向して連通している。また吸入口20及び吐出口21は同レベルに位置し、且つロータ3に設けた各ベーン4よりも上方に位置している。これによりベーン4がポンプ室2の周方向において吸入口20及び吐出口21に対応する位置にある時において、ベーン4のポンプ室2の内周面2aに対する接触面積を確保して作動流体を効率良く吸引・吐出でき、またベーン4の磨耗を防止できるといった効果がある。またケーシング10内には吸入口20及び吐出口21の夫々に連通する吸入経路6及び吐出経路7を形成している。   A suction port 20 for drawing the working fluid into the working chamber 5 and a discharge port 21 for discharging the working fluid from the working chamber 5 are formed at the upper end of the inner circumferential surface 2 a of the pump chamber 2 constituted by the inner circumferential surface of the ring material 17. is doing. The suction port 20 and the discharge port 21 are formed at positions facing each other on the inner peripheral surface 2 a of the pump chamber 2, and communicate with each notch 24 a formed in the fitting portion 24. The suction port 20 and the discharge port 21 are located at the same level and are located above the vanes 4 provided in the rotor 3. As a result, when the vane 4 is in a position corresponding to the suction port 20 and the discharge port 21 in the circumferential direction of the pump chamber 2, the contact area of the vane 4 with respect to the inner peripheral surface 2a of the pump chamber 2 is ensured and the working fluid is efficiently used. Suction / discharge can be performed well and wear of the vanes 4 can be prevented. Further, a suction path 6 and a discharge path 7 communicating with the suction port 20 and the discharge port 21 are formed in the casing 10.

図2のように下ケース12の下面にはステータ収納凹所34を形成してあり、ステータ収納凹所34にはステータ23を配設している。そして、このポンプ室2外に配置したステータ23の電磁力によりケーシング10を介してマグネット部22を回動することで、ポンプ室2内のロータ3を軸32を中心に図1の矢印aに示す方向に回転駆動できるようになっている。   As shown in FIG. 2, a stator housing recess 34 is formed on the lower surface of the lower case 12, and the stator 23 is disposed in the stator housing recess 34. Then, by rotating the magnet portion 22 through the casing 10 by the electromagnetic force of the stator 23 arranged outside the pump chamber 2, the rotor 3 in the pump chamber 2 is moved to the arrow a in FIG. It can be rotated in the direction shown.

ロータ3をステータ23にて回転駆動させた際には、各ベーン4はロータ3が回転することによる遠心力の作用を受けてロータ本体8の外周面8aから外方へ突出し、その先端をポンプ室2の内周面2aに摺接させる。この時、ポンプ室2には、ポンプ室2の内面(内周面2a及び内底面)とロータ本体8の外周面8a及びフランジ部27とベーン4とで囲まれた作動室5が複数形成される。ロータ本体8はリング材17の内側に形成されるポンプ室2の偏心位置にあるから、ポンプ室2の内周面2a(リング材17の内周面)とロータ本体8の外周面8aとの距離はロータ3の回転位置に応じて異なると共にベーン4のロータ3からの突出量もロータ3の回転位置に応じて異なり、ロータ3を回転駆動させることで各作動室5はロータ3の回転方向に移動しながらその容積を大小に変化させる。即ち、各作動室5は吸入口20に連通する位置にある時にはロータ3の回転に伴い容積が増大し、吐出口21に連通する位置にある時にはロータ3の回転に伴い容積が減少するようにされる。これにより、ロータ3を回転駆動すれば、作動流体が吸入経路6を介して吸入口20からこれに連通する作動室5内に流入し、この作動室5内で圧縮された後に吐出口21から吐出経路7を介して吐出され、ポンプとして機能する。   When the rotor 3 is rotationally driven by the stator 23, each vane 4 receives an action of centrifugal force due to the rotation of the rotor 3 and projects outward from the outer peripheral surface 8 a of the rotor body 8, and its tip is pumped The inner surface 2 a of the chamber 2 is slidably contacted. At this time, the pump chamber 2 is formed with a plurality of working chambers 5 surrounded by the inner surface (the inner peripheral surface 2a and the inner bottom surface) of the pump chamber 2, the outer peripheral surface 8a of the rotor body 8, the flange portion 27, and the vane 4. The Since the rotor main body 8 is in an eccentric position of the pump chamber 2 formed inside the ring material 17, the inner peripheral surface 2 a of the pump chamber 2 (the inner peripheral surface of the ring material 17) and the outer peripheral surface 8 a of the rotor main body 8. The distance varies depending on the rotational position of the rotor 3 and the amount of protrusion of the vane 4 from the rotor 3 also varies depending on the rotational position of the rotor 3. By rotating the rotor 3, each working chamber 5 rotates in the rotational direction of the rotor 3. The volume is changed to large or small while moving to. That is, the volume of each working chamber 5 increases with the rotation of the rotor 3 when it is in a position communicating with the suction port 20, and the volume decreases with the rotation of the rotor 3 when it is in a position communicating with the discharge port 21. Is done. Accordingly, when the rotor 3 is driven to rotate, the working fluid flows into the working chamber 5 communicating with the working fluid from the suction port 20 via the suction path 6, and is compressed from the discharge port 21 after being compressed in the working chamber 5. It is discharged through the discharge path 7 and functions as a pump.

以下、吸入口20及び吐出口21と、これに連通する吸入経路6及び吐出経路7について詳述する。   Hereinafter, the suction port 20 and the discharge port 21, and the suction path 6 and the discharge path 7 communicating with the suction port 20 and the discharge port 21 will be described in detail.

吸入口20は、リング材17の上面の内周縁部に沿って形成されてリング材17の内周面から開口した弧状凹所26と、弧状凹所26の上方を閉塞する上凹所15の底面とで構成してある。吸入口20はリング材17の周方向の約1/4の範囲に形成されて平面視弧状であり、またポンプ室2側から見て横長の長方形状に形成されている。吐出口21は、リング材17の上面に形成した吐出側流路溝28のポンプ室2側の開口縁部と、同部の上方を閉塞する上凹所15の底面とで構成してある。吐出口21はリング材17の周方向の約1/4の範囲に形成されて平面視弧状であり、またポンプ室2側から見て横長の長方形状に形成されている。なお吸入口20及び吐出口21のリング材17の内周面に沿った幅方向の寸法は、リング材17の内周面に沿った方向におけるベーン4の先端間の距離よりも短くしてある。   The suction port 20 is formed along an inner peripheral edge portion of the upper surface of the ring member 17 and has an arc-shaped recess 26 opened from the inner peripheral surface of the ring member 17, and an upper recess 15 blocking the upper portion of the arc-shaped recess 26. It consists of a bottom. The suction port 20 is formed in a range of about ¼ of the circumferential direction of the ring member 17 and has an arc shape in plan view, and is formed in a horizontally long rectangular shape when viewed from the pump chamber 2 side. The discharge port 21 includes an opening edge portion on the pump chamber 2 side of the discharge-side flow channel 28 formed on the upper surface of the ring material 17 and a bottom surface of the upper recess 15 that closes the upper portion of the discharge port 21. The discharge port 21 is formed in a range of about ¼ of the circumferential direction of the ring member 17 and has an arc shape in plan view, and is formed in a horizontally long rectangular shape when viewed from the pump chamber 2 side. The width direction dimension of the suction port 20 and the discharge port 21 along the inner peripheral surface of the ring member 17 is shorter than the distance between the tips of the vanes 4 in the direction along the inner peripheral surface of the ring member 17. .

吸入経路6及び吐出経路7は吸入口20よりも吐出口21に近い位置にある上ケース11の同一側面からロータ3側に向かって水平に伸び、吸入口20及び吐出口21の夫々に連通している。吸入経路6及び吐出経路7は共にロータ3のラジアル方向から見てポンプ室2と重複する位置に形成されている。   The suction path 6 and the discharge path 7 extend horizontally from the same side surface of the upper case 11 located closer to the discharge port 21 than the suction port 20 toward the rotor 3, and communicate with the suction port 20 and the discharge port 21. ing. Both the suction path 6 and the discharge path 7 are formed at positions overlapping the pump chamber 2 when viewed from the radial direction of the rotor 3.

吸入経路6は吸入側上流部6a及び吸入側下流部6bからなる。上流側の吸入側上流部6aは上ケース11に形成した孔からなり、上ケース11の外側面から上凹所15の内周面に至っている。下流側の吸入側下流部6bは、リング材17の上面に形成したリング材17の外周面から内周面に至る吸入側流路溝29と、吸入側流路溝29の上開口を閉塞する上凹所15の底面とからなる。吸入経路6の上流側端部となる入口部は上ケース11の外側面から突出した吸入側接続管部35の断面円形の内面で構成してあり、該吸入側接続管部35にはホース等の吸入側の管が接続される。   The suction path 6 includes a suction side upstream portion 6a and a suction side downstream portion 6b. The upstream suction side upstream portion 6 a is a hole formed in the upper case 11, and extends from the outer surface of the upper case 11 to the inner peripheral surface of the upper recess 15. The downstream suction side downstream portion 6 b closes the suction side flow channel 29 formed on the upper surface of the ring material 17 from the outer peripheral surface to the inner peripheral surface and the upper opening of the suction side flow channel 29. It consists of the bottom surface of the upper recess 15. An inlet portion which is an upstream end portion of the suction path 6 is configured by a circular inner surface of the suction side connection pipe portion 35 protruding from the outer surface of the upper case 11, and the suction side connection pipe portion 35 includes a hose or the like. The pipe on the suction side is connected.

図3(b)に示すように吸入口20は吸入側上流部6aの上端部と同レベルに位置している。吸入口20の断面形状は吸入経路6の入口部の断面形状と異なっている。具体的には、吸入口20の断面は、ロータ3のスラスト方向における上下寸法(図3(b)中eで示す寸法)が吸入経路6の入口部の直径(図1のfで示す寸法)よりも短く、またポンプ室2に内周面2aに沿った方向の幅方向の寸法(図1のdで示す寸法)が吸入経路6の入口部の直径よりも長い長方形状である。なお図示例の吸入口20の図1のdで示す幅方向の寸法は吸入経路6の入口部の半径をrとすると、π×rよりも長い。   As shown in FIG. 3B, the suction port 20 is located at the same level as the upper end portion of the suction side upstream portion 6a. The cross-sectional shape of the suction port 20 is different from the cross-sectional shape of the inlet portion of the suction path 6. Specifically, the cross-section of the suction port 20 is such that the vertical dimension in the thrust direction of the rotor 3 (the dimension indicated by e in FIG. 3B) is the diameter of the inlet portion of the suction path 6 (the dimension indicated by f in FIG. 1). The pump chamber 2 has a rectangular shape in which the dimension in the width direction in the direction along the inner peripheral surface 2a (the dimension indicated by d in FIG. 1) is longer than the diameter of the inlet portion of the suction path 6. Note that the dimension of the suction port 20 in the illustrated example in the width direction indicated by d in FIG. 1 is longer than π × r, where r is the radius of the inlet portion of the suction path 6.

このように吸入口20の上下寸法を吸入経路6の入口部の直径よりも短くしてあるので、ポンプ室2の内周面に吸入口20を形成したにも拘わらずケーシング10の上下寸法を抑えることができる。また吸入口20の幅方向の寸法は吸入経路6の入口部の直径よりも長くしてあるので、吸入口20の断面積を吸入経路6の入口部と略同じとすることができ、吸入口20における流路抵抗を低減し、吸入経路6を流れる作動流体を吸入口20を介してポンプ室2にスムーズに導入できる。   Since the vertical dimension of the suction port 20 is made shorter than the diameter of the inlet portion of the suction path 6 in this way, the vertical dimension of the casing 10 is reduced despite the formation of the suction port 20 on the inner peripheral surface of the pump chamber 2. Can be suppressed. In addition, since the dimension in the width direction of the suction port 20 is longer than the diameter of the inlet portion of the suction path 6, the cross-sectional area of the suction port 20 can be made substantially the same as the inlet portion of the suction path 6. Accordingly, the flow resistance at 20 can be reduced, and the working fluid flowing through the suction path 6 can be smoothly introduced into the pump chamber 2 via the suction port 20.

また作動室5のロータ3の回転方向における前側の端部が吐出口21に連通した状態にある時に、該作動室5が形成されるポンプ室2の領域(即ち図1中矢印bに示す範囲に形成される領域で、作動室5内の作動流体が加圧される領域)を加圧領域とすると、吸入口20はロータ3の回転方向において加圧領域の直前まで形成してある。なお吸入口20は、減圧領域、即ち作動室5のロータ3の回転方向における後側の端部が吸入口20に連通した状態にある時に、該作動室5が形成されるポンプ室2の領域の直後から形成してある。このように吸入口20をロータ3の回転方向において加圧領域の直前まで形成することで、吸入口20のポンプ室2に内周面2aに沿った方向の寸法を長くでき、吸入口20の断面積を充分に確保しながらケーシング10の厚み寸法をさらに短くできる。   When the front end of the working chamber 5 in the rotational direction of the rotor 3 is in communication with the discharge port 21, the region of the pump chamber 2 in which the working chamber 5 is formed (that is, the range indicated by the arrow b in FIG. 1). The region where the working fluid in the working chamber 5 is pressurized) is defined as the pressurized region, and the suction port 20 is formed up to just before the pressurized region in the rotation direction of the rotor 3. The suction port 20 is a decompression region, that is, a region of the pump chamber 2 in which the working chamber 5 is formed when the rear end of the working chamber 5 in the rotation direction of the rotor 3 is in communication with the suction port 20. It is formed immediately after. Thus, by forming the suction port 20 just before the pressure region in the rotation direction of the rotor 3, the dimension of the suction port 20 in the direction along the inner peripheral surface 2 a can be increased in the pump chamber 2. The thickness dimension of the casing 10 can be further shortened while ensuring a sufficient cross-sectional area.

吸入側下流部6bは、吸入側上流部6aと同様に平面視直線状に形成された上流側の直線状流路部37と、吸入口20に沿った平面視弧状に形成された下流側の弧状流路部38とで構成してあり、弧状流路部38はその上端部が吸入口20に対向して連通している。図3に示すように弧状流路部38の底面のロータ3の回転方向の前側端部(即ち下流側端部)は吸入口20の底面と同レベルに位置している。吸入側下流部6bの底面は下流側に行く程徐々に上り傾斜した上りスロープ30となっており、この吸入経路6に形成した上りスロープ30を介して弧状流路部38の下流側端部とこれよりも下方に位置する吸入側上流部6aの底面とが滑らかに連続している。   The suction-side downstream portion 6b includes an upstream-side linear flow path portion 37 formed in a straight line shape in plan view and a downstream-side formed in an arc shape in plan view along the suction port 20 in the same manner as the suction-side upstream portion 6a. The arc-shaped channel portion 38 communicates with the upper end portion thereof facing the suction port 20. As shown in FIG. 3, the front end (that is, the downstream end) in the rotation direction of the rotor 3 on the bottom surface of the arc-shaped channel portion 38 is located at the same level as the bottom surface of the suction port 20. The bottom surface of the suction side downstream portion 6b has an upward slope 30 that gradually slopes upward toward the downstream side, and the downstream end portion of the arcuate flow path portion 38 via the upward slope 30 formed in the suction path 6 The bottom surface of the suction-side upstream portion 6a located below is smoothly continuous.

図1に示すように吸入経路6の下流側端部を構成する弧状流路部38は吸入口20に対向する内側面40を備えているが、該内側面40は内側面40と吸入口20との間の距離(図1中gに示す寸法)がロータ3の回転方向における前側に行く程徐々に短くなるよう傾斜している。さらには吸入側下流部6bの前記上りスロープ30で構成される底面は図7(a)及び図7(b)に示すように内側面40側から吸入口20側に行く程徐々に底が深くなる傾斜面となっている。これにより弧状流路部38の内側面40及び傾斜面41よりなる底面で、弧状流路部38に流れてきた作動流体を吸入口20側に誘導でき、加えて吸入側下流部6bの弧状流路部38よりも上流側の部分の傾斜面41よりなる底面で、一層スムーズに作動流体をポンプ室2に導入できる。   As shown in FIG. 1, the arc-shaped flow path portion 38 that constitutes the downstream end portion of the suction path 6 includes an inner side surface 40 that faces the suction port 20, and the inner side surface 40 includes the inner side surface 40 and the suction port 20. Is inclined such that the distance (the dimension indicated by g in FIG. 1) gradually decreases toward the front side in the rotation direction of the rotor 3. Further, the bottom surface of the suction side downstream portion 6b constituted by the upward slope 30 gradually becomes deeper as it goes from the inner surface 40 side to the suction port 20 side as shown in FIGS. 7 (a) and 7 (b). It becomes an inclined surface. As a result, the working fluid flowing through the arc-shaped channel portion 38 can be guided to the suction port 20 side at the bottom surface formed by the inner side surface 40 and the inclined surface 41 of the arc-shaped channel portion 38, and in addition, the arc-shaped flow of the suction-side downstream portion 6b The working fluid can be introduced into the pump chamber 2 more smoothly at the bottom surface formed by the inclined surface 41 at the upstream side of the passage portion 38.

一方、吐出経路7は吐出側上流部7a及び吐出側下流部7bからなる。上流側の吐出側上流部7aは、リング材17の内周面から外周面に至る前記吐出側流路溝28と、吐出側流路溝28の上開口を閉塞する上凹所15の底面とからなる。下流側の吐出側下流部7bは上ケース11に形成した孔からなる。吐出経路7の下流側端部となる出口部は上ケース11の吸入側接続管部35を形成した外側面から突出した吐出側接続管部36の断面円形の内面で構成してあり、吐出側接続管部36にはホース等の吐出側の管が接続される。なお、吐出経路7の出口部の断面積は吸入経路6の入口部の断面積よりも小さくなっているが、ロータ3のスラスト方向において吐出経路7の出口部と吸入経路6の入口部の中心位置は同じ位置にあり、ずれていない。また吸入側接続管部35及び吐出側接続管部36は共に上ケース11のロータ3のラジアル方向の外側に位置する同一外側面から垂直に突出している。   On the other hand, the discharge path 7 includes a discharge side upstream portion 7a and a discharge side downstream portion 7b. The upstream discharge side upstream portion 7a includes the discharge side flow channel 28 extending from the inner peripheral surface of the ring member 17 to the outer peripheral surface, and the bottom surface of the upper recess 15 that closes the upper opening of the discharge side flow channel 28. Consists of. The downstream discharge side downstream portion 7 b is formed by a hole formed in the upper case 11. The outlet portion serving as the downstream end portion of the discharge path 7 is constituted by an inner surface having a circular cross section of the discharge side connection pipe portion 36 protruding from the outer surface on which the suction side connection pipe portion 35 of the upper case 11 is formed. A discharge side pipe such as a hose is connected to the connection pipe portion 36. The cross-sectional area of the outlet portion of the discharge path 7 is smaller than the cross-sectional area of the inlet portion of the suction path 6, but the center of the outlet portion of the discharge path 7 and the inlet portion of the suction path 6 in the thrust direction of the rotor 3. The position is in the same position and not shifted. Further, both the suction-side connecting pipe part 35 and the discharge-side connecting pipe part 36 project vertically from the same outer surface located outside the rotor 3 of the upper case 11 in the radial direction.

図2に示すように吐出口21は吐出側下流部7bの上端部と同レベルに位置している。吐出口21の断面形状は吐出経路7の出口部の断面形状と異なっている。具体的には、吐出口21の断面は、ロータ3のスラスト方向における寸法(図2中hで示す高さ寸法)が吐出経路7の出口部の直径(図2のiで示す寸法)よりも短く、またポンプ室2に内周面2aに沿った方向の寸法(図1のjで示す幅寸法)が吐出経路7の出口部の直径よりも長い長方形状である。なお図示例の吐出口21の図1のjで示す幅寸法は吐出経路7の出口部の半径をrとすると、π×rよりも長い。   As shown in FIG. 2, the discharge port 21 is located at the same level as the upper end portion of the discharge-side downstream portion 7b. The cross-sectional shape of the discharge port 21 is different from the cross-sectional shape of the outlet portion of the discharge path 7. Specifically, the cross section of the discharge port 21 is such that the dimension in the thrust direction of the rotor 3 (height dimension indicated by h in FIG. 2) is larger than the diameter of the outlet portion of the discharge path 7 (dimension indicated by i in FIG. 2). The pump chamber 2 has a rectangular shape in which the dimension in the direction along the inner peripheral surface 2 a (width dimension indicated by j in FIG. 1) is longer than the diameter of the outlet portion of the discharge path 7. The width dimension indicated by j in FIG. 1 of the discharge port 21 in the illustrated example is longer than π × r, where r is the radius of the outlet portion of the discharge path 7.

このように本例では吐出口21の上下寸法を吐出経路7の出口部の直径よりも短くしてあるので、ポンプ室2の内周面に吐出口21を形成したにも拘わらずケーシング10の上下寸法を抑えることができる。また吐出口21の幅方向の寸法は吐出経路7の出口部の直径よりも長くしてあるので、吐出口21の断面積を吐出経路7の出口部と同じとすることができ、吐出口21における流路抵抗を低減し、ポンプ室2内の作動流体を吐出口21を介してスムーズに導出できる。   Thus, in this example, since the vertical dimension of the discharge port 21 is made shorter than the diameter of the outlet part of the discharge path 7, the discharge port 21 is formed on the inner peripheral surface of the pump chamber 2, but the casing 10 The vertical dimension can be suppressed. In addition, since the dimension in the width direction of the discharge port 21 is longer than the diameter of the outlet portion of the discharge path 7, the cross-sectional area of the discharge port 21 can be made the same as the outlet portion of the discharge path 7. Thus, the working fluid in the pump chamber 2 can be smoothly led out through the discharge port 21.

図2に示すように吐出側上流部7aの底面は下流側に行く程徐々に下り傾斜した下りスロープ42となっており、該吐出経路7に形成した下りスロープ42を介して吐出口21の底面とこれよりも下方に位置する吐出側上流部7aの底面とが滑らかに連続している。また図6(a)及び図6(b)に示すように吐出口21及び吐出側上流部7aで構成される流路は、ロータ3のスラスト方向から見た幅方向の寸法(図中kで示す寸法)が下流側に行く程徐々に短くなっており、これにより吐出口21及び吐出側上流部7aで構成される流路の断面積を作動流体の流れ方向の全長に亘って一定とし且つ吐出経路7の出口部の断面積と同一としている。つまり吐出経路7及び吐出口21からなる流路の断面積は作動流体の流れ方向の全長に亘って一定となっている。従ってポンプ室2内の作動流体をより一層スムーズに導出できる。   As shown in FIG. 2, the bottom surface of the discharge-side upstream portion 7 a has a downward slope 42 that gradually slopes downward toward the downstream side, and the bottom surface of the discharge port 21 through the downward slope 42 formed in the discharge path 7. And the bottom surface of the discharge-side upstream portion 7a located below is smoothly continuous. Further, as shown in FIGS. 6A and 6B, the flow path constituted by the discharge port 21 and the discharge-side upstream portion 7a has a dimension in the width direction as seen from the thrust direction of the rotor 3 (in the figure, k). The dimension shown in the drawing is gradually shortened toward the downstream side, whereby the cross-sectional area of the flow path constituted by the discharge port 21 and the discharge side upstream portion 7a is made constant over the entire length in the flow direction of the working fluid; The cross-sectional area of the outlet portion of the discharge path 7 is the same. That is, the cross-sectional area of the flow path including the discharge path 7 and the discharge port 21 is constant over the entire length in the flow direction of the working fluid. Therefore, the working fluid in the pump chamber 2 can be derived more smoothly.

さらには吐出経路7の上流側を構成する吐出側上流部7aは吐出口21に対向する内側面43を備えているが、該内側面43は内側面43と吐出口21との間の距離(図1中Mに示す寸法)がロータ3の回転方向における前側に行く程徐々に短くなるよう傾斜している。また内側面43は平面視で吐出口21のロータ3の回転方向における後端を通過するリング材17の内周面の接線上に位置し、リング材17の内周面と滑らかに連続している。これにより吐出経路7に流れてきた作動流体を一層スムーズにポンプ室2から導出できる。   Furthermore, the discharge-side upstream portion 7a constituting the upstream side of the discharge path 7 includes an inner side surface 43 that faces the discharge port 21. The inner side surface 43 is a distance between the inner side surface 43 and the discharge port 21 ( 1 is inclined so as to gradually become shorter toward the front side in the rotation direction of the rotor 3. Further, the inner side surface 43 is located on a tangent line of the inner peripheral surface of the ring member 17 passing through the rear end in the rotation direction of the rotor 3 of the discharge port 21 in plan view, and is smoothly continuous with the inner peripheral surface of the ring member 17. Yes. As a result, the working fluid flowing into the discharge path 7 can be led out from the pump chamber 2 more smoothly.

なお上記各例のベーンポンプ1の作動流体は、例えば水やアルコール、不凍液等の液体とするが、その他の液体であっても良い。   The working fluid of the vane pump 1 in each of the above examples is a liquid such as water, alcohol, or antifreeze, but may be other liquids.

本発明の実施の形態の一例を示し、ベーンポンプの水平断面図である。It is an example of an embodiment of the invention and is a horizontal sectional view of a vane pump. 図1のA−Aで一部破断した側面図である。FIG. 2 is a side view partially cut away at A-A in FIG. 1. (a)はベーンポンプの一部破断した斜視図であり、(b)は(a)と同様に一部破断したベーンポンプの側面図である。(A) is the partially broken perspective view of a vane pump, (b) is a side view of the vane pump partially broken like (a). 同上のベーンポンプの上ケース及びリング材の斜視図である。It is a perspective view of the upper case and ring material of a vane pump same as the above. 同上の上ケースの下側から見た斜視図である。It is the perspective view seen from the lower side of the upper case same as the above. (a)は図1のD−D断面図であり、(b)は図1のC−C断面図であり、(c)は図1のB−B断面図である。(A) is DD sectional drawing of FIG. 1, (b) is CC sectional drawing of FIG. 1, (c) is BB sectional drawing of FIG. (a)は図1のF−F断面図であり、(b)は図1のE−E断面図である。(A) is FF sectional drawing of FIG. 1, (b) is EE sectional drawing of FIG. 従来のベーンポンプの断面図である。It is sectional drawing of the conventional vane pump.

符号の説明Explanation of symbols

1 ベーンポンプ
2 ポンプ室
2a 内周面
3 ロータ
4 ベーン
5 作動室
6 吸入経路
7 吐出経路
10 ケーシング
20 吸入口
21 吐出口
DESCRIPTION OF SYMBOLS 1 Vane pump 2 Pump chamber 2a Inner peripheral surface 3 Rotor 4 Vane 5 Actuation chamber 6 Suction path 7 Discharge path 10 Casing 20 Suction port 21 Discharge port

Claims (4)

ケーシング内に形成したポンプ室と、ポンプ室に収納したロータと、ロータの周方向に複数設けられて先端がポンプ室の内周面に摺接するベーンと、ポンプ室の内面とロータの外周面とベーンとで囲まれてロータの回転駆動によりその容積を大小変化させる作動室を備え、ポンプ室の内周面に容積拡大過程の作動室に連通する吸入口及び容積縮小過程の作動室に連通する吐出口を形成すると共に、吸入口をロータのスラスト方向において各ベーンとずれた位置に配置し、ケーシング内に吸入口に連通する吸入経路と吐出口に連通する吐出経路を形成すると共に、これら吸入経路及び吐出経路をロータのラジアル方向から見てポンプ室と重複する位置に形成し、吸入口のロータのスラスト方向における寸法を吸入経路の入口部の直径よりも短くすると共に該吸入口のポンプ室の内周面に沿った方向の寸法を吸入経路の入口部の直径よりも長くして成ることを特徴とするベーンポンプ。   A pump chamber formed in the casing, a rotor housed in the pump chamber, a plurality of vanes provided in the circumferential direction of the rotor and having tips slidably contacting the inner peripheral surface of the pump chamber, an inner surface of the pump chamber, and an outer peripheral surface of the rotor A working chamber that is surrounded by a vane and that changes its volume by rotational driving of the rotor is provided, and is connected to an inner peripheral surface of the pump chamber to a working chamber in the volume expansion process and to a working chamber in the volume reduction process. In addition to forming the discharge port, the suction port is disposed at a position shifted from each vane in the thrust direction of the rotor, and forms a suction path that communicates with the suction port and a discharge path that communicates with the discharge port in the casing. The passage and the discharge passage are formed at a position overlapping the pump chamber when viewed from the radial direction of the rotor, and the dimension of the suction port in the thrust direction of the rotor is shorter than the diameter of the inlet portion of the suction passage. Vane pump, characterized by comprising a dimension along the inner peripheral surface of Rutotomoni suction inlet of the pump chamber is made longer than the diameter of the inlet portion of the suction passage. 作動室のロータの回転方向における前側の端部が吐出口に連通した状態にある時に、該作動室が形成されるポンプ室の領域を加圧領域とし、前記吸入口をロータの回転方向において加圧領域の直前まで形成して成ることを特徴とする請求項1に記載のベーンポンプ。   When the front end of the working chamber in the rotational direction of the rotor is in communication with the discharge port, the region of the pump chamber in which the working chamber is formed is a pressurizing region, and the suction port is added in the rotational direction of the rotor. The vane pump according to claim 1, wherein the vane pump is formed up to just before the pressure region. 前記吸入経路の下流側端部は吸入口に対向する内側面を備え、該内側面と吸入口との間の距離をロータの回転方向における前側に行く程徐々に短くして成ることを特徴とする請求項1又は請求項2に記載のベーンポンプ。   The downstream end portion of the suction path has an inner surface facing the suction port, and the distance between the inner surface and the suction port is gradually shortened toward the front side in the rotation direction of the rotor, The vane pump according to claim 1 or 2. 前記吸入経路の下流側端部は吸入口に対向する内側面を備え、該吸入経路の下流側端部の底面を、吸入口側に行く程底が深くなる傾斜面として成ることを特徴とする請求項1乃至3のいずれか1項に記載のベーンポンプ。   The downstream end portion of the suction path has an inner surface facing the suction port, and the bottom surface of the downstream end portion of the suction path is formed as an inclined surface that becomes deeper toward the suction port side. The vane pump according to any one of claims 1 to 3.
JP2007083027A 2007-03-27 2007-03-27 Vane pump Expired - Fee Related JP4821673B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083027A JP4821673B2 (en) 2007-03-27 2007-03-27 Vane pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083027A JP4821673B2 (en) 2007-03-27 2007-03-27 Vane pump

Publications (2)

Publication Number Publication Date
JP2008240652A true JP2008240652A (en) 2008-10-09
JP4821673B2 JP4821673B2 (en) 2011-11-24

Family

ID=39912295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083027A Expired - Fee Related JP4821673B2 (en) 2007-03-27 2007-03-27 Vane pump

Country Status (1)

Country Link
JP (1) JP4821673B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049853A1 (en) * 2012-09-28 2014-04-03 三菱電機株式会社 Vane pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137705A (en) * 1976-05-13 1977-11-17 Misae Isaki Vane pumps
JPS5829185U (en) * 1981-08-20 1983-02-25 株式会社島津製作所 High speed vane pump
JPS59116589U (en) * 1983-01-27 1984-08-06 三菱電機株式会社 rotary positive displacement pump
JPH094569A (en) * 1995-06-16 1997-01-07 Toyooki Kogyo Co Ltd Internal gear pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52137705A (en) * 1976-05-13 1977-11-17 Misae Isaki Vane pumps
JPS5829185U (en) * 1981-08-20 1983-02-25 株式会社島津製作所 High speed vane pump
JPS59116589U (en) * 1983-01-27 1984-08-06 三菱電機株式会社 rotary positive displacement pump
JPH094569A (en) * 1995-06-16 1997-01-07 Toyooki Kogyo Co Ltd Internal gear pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049853A1 (en) * 2012-09-28 2014-04-03 三菱電機株式会社 Vane pump
JP5933732B2 (en) * 2012-09-28 2016-06-15 三菱電機株式会社 Vane pump
US9518581B2 (en) 2012-09-28 2016-12-13 Mitsubishi Electric Corporation Vane pump including shaft fitting concave not to be penetrated

Also Published As

Publication number Publication date
JP4821673B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
HK1114654A1 (en) A rotary displacement pump
JP4811496B2 (en) Fuel pump
JP2008128116A (en) Vane pump
JP2015045327A (en) Oil pump
KR20080047295A (en) Vane pump
JP2015140701A (en) self-priming pump
KR100593208B1 (en) Rotor structure of volumetric rotary pump
US7566212B2 (en) Vane pump with blade base members
JP4821673B2 (en) Vane pump
JP4966157B2 (en) Vane pump
JP4821672B2 (en) Vane pump
JP2008151113A (en) Vane pump
JP5001696B2 (en) Vane pump
KR101230044B1 (en) Gerotor pump
WO2020026338A1 (en) Vane pump device
JP4802996B2 (en) Vane pump
JP2008128199A (en) Vane pump
JP4811243B2 (en) Vane pump
JP5766461B2 (en) Pump device
JP2008128203A (en) Vane pump
KR101056663B1 (en) Vane Fluid Machine
JP4858262B2 (en) Vane pump
JPS6022086A (en) Rotary pump
JP2008231955A (en) Vane pump
JP2008223731A (en) Vane pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090312

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees