JP2008239941A - Process for producing fatty acid methyl ester using slag as catalyst - Google Patents

Process for producing fatty acid methyl ester using slag as catalyst Download PDF

Info

Publication number
JP2008239941A
JP2008239941A JP2007110977A JP2007110977A JP2008239941A JP 2008239941 A JP2008239941 A JP 2008239941A JP 2007110977 A JP2007110977 A JP 2007110977A JP 2007110977 A JP2007110977 A JP 2007110977A JP 2008239941 A JP2008239941 A JP 2008239941A
Authority
JP
Japan
Prior art keywords
slag
fatty acid
catalyst
acid methyl
methyl ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007110977A
Other languages
Japanese (ja)
Other versions
JP5736569B2 (en
Inventor
Yoshiaki Kashiwatani
悦章 柏谷
Keigo Toishi
圭吾 外石
Yuichi Kaneki
裕一 金木
Yukiyasu Yamakoshi
幸康 山越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIELD TECHNOLOGY KENKYUSHITSU
FIELD TECHNOLOGY KENKYUSHITSU KK
Hokkaido University NUC
Hokkaido Prefecture
Original Assignee
FIELD TECHNOLOGY KENKYUSHITSU
FIELD TECHNOLOGY KENKYUSHITSU KK
Hokkaido University NUC
Hokkaido Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIELD TECHNOLOGY KENKYUSHITSU, FIELD TECHNOLOGY KENKYUSHITSU KK, Hokkaido University NUC, Hokkaido Prefecture filed Critical FIELD TECHNOLOGY KENKYUSHITSU
Priority to JP2007110977A priority Critical patent/JP5736569B2/en
Publication of JP2008239941A publication Critical patent/JP2008239941A/en
Application granted granted Critical
Publication of JP5736569B2 publication Critical patent/JP5736569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fats And Perfumes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a process for producing a fatty acid methyl ester as a biodiesel fuel that can solve such problems as the danger to a man in handling each of catalysts used in the production of a fatty acid methyl ester, the decrease in a yield due to the production of a surface active component and a high cost of the catalyst. <P>SOLUTION: The fatty acid methyl ester as a biodiesel fuel is produced by using various kinds of slag discharged from an ironworks as a catalyst and subjecting fats and oils to transesterification with methanol. In addition, the activity of slag as a catalyst can be increased and the reaction efficiency can also be increased by subjecting various kinds of steel slag to high temperature treatment in an inert gas or to dry quenching without using water. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、製鉄所から排出されるスラグを触媒として用い、油脂(トリグリセライド)をメタノールでエステル交換し、バイオディーゼル燃料の脂肪酸メチルエステルを生成する方法に関する。  The present invention relates to a method for producing fatty acid methyl ester of biodiesel fuel by transesterifying oil (triglyceride) with methanol using slag discharged from a steel mill as a catalyst.

日本の製鉄業では、年間約3800万トンのスラグが製鉄過程の副産物として排出されている。このスラグは製造プロセスにより、主に高炉(BF)スラグ、転炉(LD)スラグ、電炉(EAF)スラグに分類され、それぞれの年間排出量は約2500万トン、約950万トン、約350万トンとなっている(平成18年度,鐵鋼スラグ協会,鉄鋼スラグ統計年報)。  In the Japanese steel industry, about 38 million tons of slag is discharged as a by-product of the iron making process annually. This slag is mainly classified into blast furnace (BF) slag, converter (LD) slag, and electric furnace (EAF) slag according to the manufacturing process, and the annual emissions are about 25 million tons, about 9.5 million tons, and about 3.5 million. (2006, Steel Slag Association, Steel Slag Statistics Annual Report).

高炉スラグはさらに、その冷却方法により徐冷スラグと水砕スラグに分けられる。徐冷スラグは、排出された高炉スラグを冷却ヤードに流し込み、自然放冷と適度の散水によって冷却することにより得られる結晶質の岩石状のスラグである。この徐冷処理は転炉、電炉の両スラグについても採用されている。水砕スラグは、排出された高炉スラグに加圧水を噴射すると同時に水流の中に投入し、急激に冷却することにより得られるため、ガラス質(非晶質)の粒状スラグとなる。また高炉スラグは製銑工程で排出され、銑鉄1トン当たり約290kg生成されている。  The blast furnace slag is further divided into slowly cooled slag and granulated slag according to the cooling method. Slow cooling slag is crystalline rock-like slag obtained by pouring discharged blast furnace slag into a cooling yard and cooling it by natural cooling and moderate watering. This slow cooling treatment is also used for both slags in converters and electric furnaces. Since the granulated slag is obtained by injecting pressurized water into the discharged blast furnace slag and simultaneously putting it into the water flow and rapidly cooling it, it becomes a vitreous (amorphous) granular slag. Blast furnace slag is discharged in the iron making process, and about 290 kg is produced per ton of pig iron.

転炉スラグおよび電炉スラグは製鋼工程で排出され、粗鋼1トン当たりそれぞれ約121kgおよび約123kg生成されている。これら鉄鋼スラグは現在、そのほとんどがそれぞれの特性を生かし、様々な用途で再資源化されている。例として、高炉スラグは天然の岩石に類似した成分を有しており、非アルカリ骨材反応を示すためコンクリート用骨材として用いられ、また水砕スラグには強い潜在水硬性があるのでセメントの原料に用いられている。転炉および電炉スラグは硬質で耐摩耗性にも優れているのでアスファルトコンクリート用骨材に用いられて、内部摩擦が大きいため土工用材や地盤改良用材として用いられている。さらに、これらのスラグは共通してCaOやSiO2などの肥料成分を含有しているので、肥料や土壌改良材などにも用いられている。  Converter slag and electric furnace slag are discharged in the steelmaking process, and about 121 kg and about 123 kg are produced per ton of crude steel, respectively. Currently, most of these steel slags are recycled for various purposes, taking advantage of their characteristics. As an example, blast furnace slag has components similar to natural rocks and is used as a concrete aggregate to show non-alkaline aggregate reaction, and granulated slag has strong latent hydraulic properties, so Used as a raw material. Since converters and electric furnace slag are hard and have excellent wear resistance, they are used in aggregates for asphalt concrete and are used as earthwork materials and ground improvement materials because of their high internal friction. Furthermore, since these slags commonly contain fertilizer components such as CaO and SiO2, they are also used for fertilizers and soil improvement materials.

このように、様々な用途を開発しているにもかかわらず、鉄鋼スラグは常に供給過剰となっているのが現状であり、今後さらなる用途の開発を期待されている。  In this way, despite the development of various applications, steel slag is always in excessive supply, and further development of applications is expected in the future.

また、近年、温室効果ガスの排出量増大による地球温暖化が危惧されている。そのため、カーボンニュートラルの考え方から温室効果ガスの排出量が化石燃料より低いバイオマス燃料の生産量が増大している。  In recent years, global warming due to an increase in greenhouse gas emissions is feared. For this reason, the production amount of biomass fuel, which emits less greenhouse gases than fossil fuels, is increasing from the carbon neutral point of view.

化石燃料である軽油の代替燃料として脂肪酸メチルエステルを主成分としたバイオディーゼル燃料が、世界各国で生産され、その生産量も年々増加している。ドイツ、オーストリアは、ナタネ油を原料として水酸化カリウム、水酸化ナトリウムを触媒とし、脂肪酸メチルエステルをエステル交換で生成させている。アメリカは、大豆油を原料として水酸化カリウム、水酸化ナトリウムを触媒とし、脂肪酸メチルエステルをエステル交換で生成させている。  Biodiesel fuels mainly composed of fatty acid methyl esters are produced around the world as an alternative to light oil, a fossil fuel, and the production volume is increasing year by year. In Germany and Austria, rapeseed oil is used as a raw material, and potassium hydroxide and sodium hydroxide are used as catalysts to produce fatty acid methyl esters by transesterification. In the United States, soybean oil is used as a raw material, and potassium hydroxide and sodium hydroxide are used as catalysts to produce fatty acid methyl esters by transesterification.

しかし、脂肪酸メチルエステルを生成させる触媒としての水酸化カリウムと水酸化ナトリウムは、人間に対し危険性を持った物質でその取り扱いに注意を要するという問題点がある。  However, potassium hydroxide and sodium hydroxide as catalysts for producing fatty acid methyl esters are dangerous substances for humans and have a problem in that they need to be handled with care.

また、水酸化カリウムまたは水酸化ナトリウムは、油脂のメタノールによるエステル交換反応中に、油脂に含まれる遊離脂肪酸と反応し、界面活性物質である脂肪酸カリウムまたは脂肪酸ナトリウムと水を生成することにより、さらに、油脂自体からも、脂肪酸カリウムまたは脂肪酸ナトリウムを生成し、脂肪酸メチルエステル生成を抑制するため、歩留まりを低下させる問題点がある。  In addition, potassium hydroxide or sodium hydroxide reacts with free fatty acids contained in fats and oils during transesterification of fats and oils with methanol to produce surface active substances such as fatty acid potassium or fatty acid sodium and water. Also, since the fatty acid itself produces fatty acid potassium or fatty acid sodium and suppresses fatty acid methyl ester production, there is a problem of lowering the yield.

そのため、水酸化カリウムまたは水酸化ナトリウムなどのアルカリ触媒を使用せずに、油脂を全て、遊離脂肪酸に分解後、亜臨界反応条件下でメチルエステル化し脂肪酸メチルエステルを生成させる方法(特許文献1)が開発され、触媒の人間への取り扱いに関する危険性や歩留まり低下を回避できた。しかし、亜臨界の反応装置は、高温高圧に耐える必要があるため、反応装置が高価である。そのため、装置の設備コストが高いために、脂肪酸メチルエステルの生成コストが高くなる問題点がある。  Therefore, without using an alkali catalyst such as potassium hydroxide or sodium hydroxide, all fats and oils are decomposed into free fatty acids and then methyl esterified under subcritical reaction conditions to produce fatty acid methyl esters (Patent Document 1). Has been developed to avoid the dangers associated with handling the catalyst to humans and to reduce yields. However, since a subcritical reactor needs to withstand high temperature and pressure, the reactor is expensive. Therefore, since the equipment cost of an apparatus is high, there exists a problem that the production cost of fatty acid methyl ester becomes high.

また、触媒を使用しても、触媒を人間が取り扱う危険性や歩留まり低下を回避できる脂肪酸メチルエステルを生成する方法として、イオン交換樹脂を触媒として用いた脂肪酸メチルエステルの生成方法(特許文献2)やペロブスカイト型構造を有する複合金属酸化物を含む触媒として用いた脂肪酸メチルエステルの生成方法(特許文献3)が開発されているが、触媒の製造コストが高く、脂肪酸メチルエステルの生成コストが高くなる問題点がある。  Moreover, even if it uses a catalyst, as a method of producing | generating the fatty acid methyl ester which can avoid the danger that a catalyst handles a human, and a yield fall, the production | generation method of the fatty acid methyl ester using an ion exchange resin as a catalyst (patent document 2) A method for producing a fatty acid methyl ester (Patent Document 3) used as a catalyst containing a composite metal oxide having a perovskite structure has been developed, but the production cost of the catalyst is high and the production cost of the fatty acid methyl ester is high. There is a problem.

特開2007−9017公報JP 2007-9017 A 特開2007−14871公報JP 2007-14871 A 特開2002−294277公報JP 2002-294277 A

油脂のメタノールによるエステル交換反応による脂肪酸メチルエステル生成するためには、酸性触媒または塩基性触媒を用いることによって、それぞれの反応に併せた最適条件設定を必要とする。しかし、鉄鋼スラグは、酸性触媒成分のSiO2・Al2O3と塩基性触媒成分のCaOが共存しており、性質の異なる触媒共存下での油脂のメタノールによるエステル交換反応による脂肪酸メチルエステル生成する方法は提供されていなかった。よって、本発明は、脂肪酸メチルエステル生成における触媒を人が取り扱う上での危険性、界面活性成分生成による歩留まりの低下、触媒の高コストの課題を解決することにある。また、本発明により、供給過剰状態にある鉄鋼スラグの新たな用途を提供するものである。  In order to produce fatty acid methyl esters by transesterification of fats and oils with methanol, it is necessary to set optimum conditions for each reaction by using an acidic catalyst or a basic catalyst. However, in steel slag, the acidic catalyst component SiO2 · Al2O3 and the basic catalyst component CaO coexist, and a method to produce fatty acid methyl esters by transesterification of fats and oils with methanol in the presence of catalysts with different properties is provided Was not. Therefore, the present invention is to solve the problem of human handling of the catalyst in the production of fatty acid methyl ester, the reduction in yield due to the production of surface active components, and the high cost of the catalyst. In addition, the present invention provides a new application of steel slag in an excessive supply state.

本発明は、製鉄所から排出される各種スラグを触媒として用い、油脂をメタノールでエステル交換して、バイオディーゼル燃料となる脂肪酸メチルエステルを生成させる方法を提供する。加えて、不活性ガス中で高温処理または水を使わない乾式冷却をすることにより、触媒スラグの活性度を上げ、脂肪酸メチルエステルの生成方法の反応効率上げる方法も提供する。  The present invention provides a method for producing fatty acid methyl ester as a biodiesel fuel by using various slag discharged from steelworks as a catalyst and transesterifying fats and oils with methanol. In addition, the present invention also provides a method for increasing the activity of the catalyst slag and increasing the reaction efficiency of the method for producing fatty acid methyl ester by performing high-temperature treatment in an inert gas or dry cooling without using water.

製鉄所で排出される塩基度1以上のスラグが、油脂とメタノールをエステル交換させる触媒として働き、脂肪酸メチルエステルを生成する。  The slag having a basicity of 1 or more discharged at the steel works as a catalyst for transesterification of fats and oils and produces fatty acid methyl esters.

触媒としての鉄鋼スラグは、水酸化カリウム、水酸化ナトリウム、イオン交換樹脂など比較し、格段に低価格である。そのため、スラグを触媒として用いることによって、バイオディーゼル燃料としての脂肪酸メチルエステルの生成の触媒コストが低減でき、結果として、バイオディーゼル燃料としての脂肪酸メチルエステルの製造コストを低下する効果があり、供給過剰となっている鉄鋼スラグの用途を提供できる効果もある。  Steel slag as a catalyst is much less expensive than potassium hydroxide, sodium hydroxide, ion exchange resins, and the like. Therefore, by using slag as a catalyst, the catalyst cost of producing fatty acid methyl ester as biodiesel fuel can be reduced, and as a result, the production cost of fatty acid methyl ester as biodiesel fuel can be reduced, resulting in excessive supply. There is also an effect that can provide the use of steel slag.

触媒として用いるスラグは、塩基度(酸化カルシウム/酸化ケイ素の比)が3以上であることが好ましいが、高炉スラグのような塩基度約1前後のスラグでも、請求項2に示す不活性ガス中で高温処理または水を使わない乾式冷却をすることにより、触媒スラグの活性度を上げ、脂肪酸メチルエステルの生成方法の反応効率上げる処理によって、ある程度脂肪酸メチルエステルを生成可能である(図1、BF slag1:水砕スラグ、BF slag2:乾式冷却スラグ)。  The slag used as the catalyst preferably has a basicity (calcium oxide / silicon oxide ratio) of 3 or more, but even a slag having a basicity of about 1 such as a blast furnace slag is contained in the inert gas shown in claim 2. Fatty acid methyl ester can be produced to some extent by increasing the activity of the catalyst slag and increasing the reaction efficiency of the fatty acid methyl ester production method by high-temperature treatment or dry cooling without using water (FIG. 1, BF). slag1: granulated slag, BF slag2: dry cooling slag).

塩基度3前後の製鋼スラグ(LD slag)であっても、請求項2に記載の熱処理無しでは、触媒効果を示さない(図1 LD slag 1)。しかし、約1000℃で熱処理すると、6時間のメチルエステル交換反応時間で56%の生成率となる(LD slag 2)。さらに、不活性ガス(Ar)中で熱処理したスラグ(LD slag 3)を用いて、メチルエステル交換反応時間を9時間まで各1時間毎にサンプリングした結果を、図1に示した。9時間で82%の生成率となる。また、比較的新しい製鋼スラグ(LD slag 4)塊を粉砕し、空気中で熱処理すると、メチルエステル交換反応時間6時間でも、92%の生成率であることから、スラグの保存方法が重要である。  Even a steelmaking slag having a basicity of around 3 (LD slag) does not show a catalytic effect without the heat treatment according to claim 2 (FIG. 1 LD slag 1). However, when heat treatment is performed at about 1000 ° C., a yield of 56% is obtained with a methyl transesterification time of 6 hours (LD slag 2). Furthermore, the result of having sampled the methyl transesterification reaction time every 1 hour to 9 hours using slag (LD slag 3) heat-processed in inert gas (Ar) was shown in FIG. The production rate is 82% in 9 hours. In addition, when a relatively new steel slag (LD slag 4) lump is pulverized and heat-treated in air, the production rate is 92% even when the methyl transesterification reaction time is 6 hours, so the slag storage method is important. .

油脂は、遊離脂肪酸含有量が低い植物油または動物油が好ましい。しかし、遊離脂肪酸を含有しても、触媒としてのスラグの添加量を増加させることによって、油脂とメタノールによるエステル交換反応を進行させ、脂肪酸メチルエステルを生成させることは可能である。  The oil or fat is preferably vegetable oil or animal oil having a low free fatty acid content. However, even if a free fatty acid is contained, it is possible to produce a fatty acid methyl ester by increasing the amount of slag added as a catalyst to advance the transesterification reaction with oil and methanol.

油脂とメタノールのメチルエステル交換は、反応温度として60℃が最適であるが、40〜100℃の範囲で温度が高いほどまた、反応時間を長くすることによって、脂肪酸メチルエステルを生成できる。  For the transesterification of fats and oils with methanol, the reaction temperature is optimally 60 ° C., but the higher the temperature is in the range of 40 to 100 ° C., the longer the reaction time can be, and the fatty acid methyl ester can be produced.

油脂に添加するメタノール量は、400g/油脂kgが最適であるが、200g/油脂kg〜400g/油脂kgの範囲であれば、エステル交換反応は進行し、脂肪酸メチルエステルを生成できる。  The amount of methanol to be added to the fat / oil is optimally 400 g / kg of fat / oil, but transesterification proceeds to produce a fatty acid methyl ester in the range of 200 g / kg of fat / oil to 400 g / kg of fat / oil.

油脂とメタノールのエステル交換において、反応温度は、60℃が望ましいが、20〜90℃の範囲で、メタノール添加量400g/油脂kg以上、反応時間は、4時間以上が好ましい。  In the transesterification of oil and methanol, the reaction temperature is preferably 60 ° C., but in the range of 20 to 90 ° C., the amount of methanol added is 400 g / kg of oil or fat, and the reaction time is preferably 4 hours or more.

触媒スラグの量は、500g/油脂kg以上が望ましいが、50〜500g/油脂kgの範囲で、メチルエステルは生成可能である。この場合、反応時間を長く、温度を高くすることが望ましい。  The amount of catalyst slag is preferably 500 g / kg of oil or fat, but methyl ester can be produced in the range of 50 to 500 g / kg of fat. In this case, it is desirable to increase the reaction time and the temperature.

高炉スラグを触媒とした脂肪酸メチルエステルの生成
図1のBF slag 1およびBF slag 2は、それぞれ高炉水砕スラグおよび高炉スラグを乾式急冷したものである。表1は、高炉スラグを使用した場合の油脂100gに対するメチルエステル交換反応条件を示す。BF slag 2は、乾式急冷によって、マーウィナイト(Merwinite)およびゲーレナイト(Gehlenite)の結晶相が混在した形となり、これらがメチルエステル生成の触媒機能を有するものと考えられる。

Figure 2008239941
Production of Fatty Acid Methyl Ester Using Blast Furnace Slag as Catalyst BF slag 1 and BF slag 2 in FIG. 1 are obtained by dry-cooling blast furnace granulated slag and blast furnace slag, respectively. Table 1 shows the methyl ester exchange reaction conditions for 100 g of fats and oils when blast furnace slag is used. The BF slag 2 is considered to have a form in which crystalline phases of Merwinite and Gehlenite are mixed by dry quenching, and these have a catalytic function of methyl ester formation.
Figure 2008239941

製鋼スラグ(LD slag)を触媒とした脂肪酸メチルエステルの生成
図1のLD slag 1およびLD slag 2は、製鋼スラグをそれぞれ、未処理のまま

Figure 2008239941
用した場合の油脂100gに対するメチルエステル交換反応条件を示す。製鋼スラグを焼成することにより(LD slag 2)、スラグ中CaOが再生され(大気中で放置したため、Ca(OH)2またはCaCO3となっていたためと考えられる)、メチルエステル含有率は、6時間、60℃の反応条件で、56%に上昇した。
Figure 2008239941
Formation of fatty acid methyl ester using steel slag (LD slag) as a catalyst LD slag 1 and LD slag 2 in FIG.
Figure 2008239941
The methyl transesterification reaction conditions with respect to 100 g of fats and oils when used are shown. By firing steelmaking slag (LD slag 2), CaO in the slag was regenerated (considered to have been Ca (OH) 2 or CaCO 3 because it was left in the atmosphere), and the methyl ester content was 6 hours. It increased to 56% under the reaction conditions of 60 ° C.
Figure 2008239941

製鋼スラグ(LD slag)を触媒とした場合の脂肪酸メチルエステルの生成量と時間の関係

Figure 2008239941
の油脂100gに対するメチルエステル生成量の時間変化を示している。また、表3にメチルエステル交換反応条件を示す。LD slag2と同じ、製鋼スラグをAr中で焼成することにより(LD slag 3)、メチルエステル交換反応時間9時間で、82.4%に上昇することがわかる。
Figure 2008239941
Relation between amount of fatty acid methyl ester and time when steel slag (LD slag) is used as a catalyst
Figure 2008239941
The time change of the amount of methyl ester production with respect to 100 g of oil and fat is shown. Table 3 shows methyl ester exchange reaction conditions. It can be seen that the same steelmaking slag as LD slag 2 is fired in Ar (LD slag 3), and the methyl ester exchange reaction time increases to 82.4% in 9 hours.
Figure 2008239941

出滓後1ヶ月以内で、乾燥条件に保存した製鋼スラグ塊(LD slag 4)を、粉砕後直ぐ触媒として利用した場合の脂肪酸メチルエステルの生成
図1のLD slag 4は、出滓後1ヶ月以内で、乾燥条件に保存した製鋼スラグ塊を、10

Figure 2008239941
油脂100gに対するメチルエステル交換反応条件を示す。製鋼スラグ塊を、粉砕、熱処理した、LD slag 4では、メチルエステル含有率は、6時間、60℃の反応条件で、96%に上昇した。LD slag 3の6時間、59.4%に比較してかなりの反応率の上昇が得られた。
Figure 2008239941
Formation of fatty acid methyl ester when steelmaking slag lump (LD slag 4) stored under dry conditions is used as a catalyst immediately after grinding within 1 month after brewing LD slag 4 in FIG. The steelmaking slag lump stored in the dry condition within 10
Figure 2008239941
The methyl ester exchange reaction conditions for 100 g of fats and oils are shown. In LD slag 4, which was pulverized and heat-treated, a steelmaking slag lump, the methyl ester content increased to 96% under the reaction conditions of 60 ° C. for 6 hours. A considerable increase in the reaction rate was obtained compared to 59.4% for 6 hours of LD slag 3.
Figure 2008239941

本発明は、バイオディーゼル燃料としての脂肪酸メチルエステル製造に利用でき、鉄鋼スラグを触媒として使用することにより、触媒コスト低減に有効である。また、セメント原料や路盤材や土壌改良材など用途があっても供給過剰な鉄鋼スラグの用途を提供でき、鉄鋼スラグの利用可能性を広げるものである。さらに、植物油を原料としたバイオディーゼル燃料としての脂肪酸メチルエステル製造に本発明を用いることによって、地球温暖化の原因物質である温室効果ガスの二酸化炭素排出量を軽減でき、地球温暖化防止に利用できる。  INDUSTRIAL APPLICABILITY The present invention can be used for production of fatty acid methyl esters as biodiesel fuel, and is effective in reducing catalyst costs by using steel slag as a catalyst. In addition, even if there are uses such as cement raw materials, roadbed materials, and soil improvement materials, it is possible to provide uses of excessively supplied steel slag, and to expand the availability of steel slag. Furthermore, by using the present invention for the production of fatty acid methyl esters as biodiesel fuel using vegetable oil as a raw material, it is possible to reduce carbon dioxide emissions of greenhouse gases, which are the cause of global warming, and to use for the prevention of global warming it can.

各種スラグの脂肪酸メチルエステル化に対する触媒特性Catalytic properties for fatty acid methyl esterification of various slags

Claims (2)

製鉄所から排出される各種スラグを触媒として用い、油脂をメタノールでエステル交換して、バイオディーゼル燃料となる脂肪酸メチルエステルを生成させる方法。  A method of producing fatty acid methyl ester as biodiesel fuel by transesterifying oil and fat with methanol using various slag discharged from steelworks as a catalyst. 不活性ガス中で高温処理または水を使わない乾式冷却をすることにより、触媒スラグの活性度を上げ、反応効率上げる請求項1に記載の脂肪酸メチルエステル生成方法。  The method for producing a fatty acid methyl ester according to claim 1, wherein the activity of the catalyst slag is increased and the reaction efficiency is increased by performing high-temperature treatment in an inert gas or dry cooling without using water.
JP2007110977A 2007-03-25 2007-03-25 Production method of fatty acid methyl ester using slag as catalyst Active JP5736569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007110977A JP5736569B2 (en) 2007-03-25 2007-03-25 Production method of fatty acid methyl ester using slag as catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007110977A JP5736569B2 (en) 2007-03-25 2007-03-25 Production method of fatty acid methyl ester using slag as catalyst

Publications (2)

Publication Number Publication Date
JP2008239941A true JP2008239941A (en) 2008-10-09
JP5736569B2 JP5736569B2 (en) 2015-06-17

Family

ID=39911657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007110977A Active JP5736569B2 (en) 2007-03-25 2007-03-25 Production method of fatty acid methyl ester using slag as catalyst

Country Status (1)

Country Link
JP (1) JP5736569B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265417A (en) * 2009-05-15 2010-11-25 Mizusawa Ind Chem Ltd Method for producing biofuel
WO2011028831A3 (en) * 2009-09-01 2011-06-23 Catilin, Inc. Systems and processes for biodiesel production
KR101312514B1 (en) * 2011-03-31 2013-10-01 재단법인 포항산업과학연구원 Method for manufacturing bio-diesel using slag-catalyst
TWI495720B (en) * 2013-01-16 2015-08-11 Univ Nat Ilan Method of biodiesel production
JP2017088779A (en) * 2015-11-13 2017-05-25 Jfe環境株式会社 Production method of biodiesel fuel and production apparatus of biodiesel fuel
CN112264052A (en) * 2020-10-20 2021-01-26 华北理工大学 Catalyst and method for preparing biodiesel by using same
CN117983266A (en) * 2024-04-03 2024-05-07 华北理工大学 Catalyst and method for preparing biodiesel by using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256173A (en) * 1998-03-09 1999-09-21 Kawasaki Heavy Ind Ltd Refuse solid fuel suitable for solidification of burned ash, its production, burning treatment and burning treatment apparatus of the refuse solid fuel
JP2004270394A (en) * 2003-03-12 2004-09-30 Kankyo Kogaku Kk Road structure and wall body for road wall
WO2006134845A1 (en) * 2005-06-13 2006-12-21 The Doshisha Solid base catalyst for producing biodiesel fuel and method of producing the same, reactor and apparatus for producing biodiesel fuel, and method of producing biodiesel fuel by using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256173A (en) * 1998-03-09 1999-09-21 Kawasaki Heavy Ind Ltd Refuse solid fuel suitable for solidification of burned ash, its production, burning treatment and burning treatment apparatus of the refuse solid fuel
JP2004270394A (en) * 2003-03-12 2004-09-30 Kankyo Kogaku Kk Road structure and wall body for road wall
WO2006134845A1 (en) * 2005-06-13 2006-12-21 The Doshisha Solid base catalyst for producing biodiesel fuel and method of producing the same, reactor and apparatus for producing biodiesel fuel, and method of producing biodiesel fuel by using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265417A (en) * 2009-05-15 2010-11-25 Mizusawa Ind Chem Ltd Method for producing biofuel
WO2011028831A3 (en) * 2009-09-01 2011-06-23 Catilin, Inc. Systems and processes for biodiesel production
KR101312514B1 (en) * 2011-03-31 2013-10-01 재단법인 포항산업과학연구원 Method for manufacturing bio-diesel using slag-catalyst
TWI495720B (en) * 2013-01-16 2015-08-11 Univ Nat Ilan Method of biodiesel production
JP2017088779A (en) * 2015-11-13 2017-05-25 Jfe環境株式会社 Production method of biodiesel fuel and production apparatus of biodiesel fuel
CN112264052A (en) * 2020-10-20 2021-01-26 华北理工大学 Catalyst and method for preparing biodiesel by using same
CN117983266A (en) * 2024-04-03 2024-05-07 华北理工大学 Catalyst and method for preparing biodiesel by using same
CN117983266B (en) * 2024-04-03 2024-07-16 华北理工大学 Catalyst and method for preparing biodiesel by using same

Also Published As

Publication number Publication date
JP5736569B2 (en) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5736569B2 (en) Production method of fatty acid methyl ester using slag as catalyst
CN103571983B (en) Converter steel slag autoclaving process modified technique and application thereof
JP5573403B2 (en) Method for recycling steelmaking slag and raw material for phosphate fertilizer
CN101703886B (en) Desulfuration method by directly utilizing magnesium slags in circulating fluidized bed boiler
KR20160047101A (en) Binder composition
KR101530246B1 (en) Concreat admixture composition
CN109593909A (en) The method that converter is repaired using waste magnesia carbon bricks
KR20140092699A (en) Sludge solidified agent and menufacturing method of artificial soil usign the same
CN104611088B (en) Fire coal desulfurization agent and preparation method thereof
CN104060009A (en) Adding method of desulfurizer in blast furnace ironmaking process and application
KR101535909B1 (en) Mamufacturing method for soil solidified agent
CN104789732A (en) Method for slagging in semisteel steelmaking converter
CN103966389A (en) Method of utilizing semisteel to smelt high-carbon steel
CN102864272B (en) Calcite converter steel making method
CN1683238A (en) Method for simultaneously producing yellow phosphorous and cement clinker or calcium carbide
CN1186290C (en) Method for making brick with slag form smelting magnesium by pidgeon process
JP6467856B2 (en) Recycling method of fly ash and non-calcined agglomerated mineral
JP5294970B2 (en) Method and system for producing biodiesel fuel
CN100360648C (en) Environmental protection and coal-saving combustion supporting agent
CN102268311A (en) Coal-burning sulfur-fixing catalytic combustion compound additive and preparation method thereof
JP2017008395A (en) Method for generating foamed slag in arc furnace steel making
CN114195411A (en) Industrial waste residue soft soil curing agent and application thereof
CN103710064B (en) Sludge-lignite molded fuel and preparation method thereof
CN102652991A (en) Method for preparing steel ladle or tundish covering agent by using boron slurry
WO2010050648A1 (en) Refuse derived fuel using pulverized coal and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100324

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150321

R150 Certificate of patent or registration of utility model

Ref document number: 5736569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250