JP2008239371A - Silicon carbide single crystal substrate and method for manufacturing the same - Google Patents

Silicon carbide single crystal substrate and method for manufacturing the same Download PDF

Info

Publication number
JP2008239371A
JP2008239371A JP2007079500A JP2007079500A JP2008239371A JP 2008239371 A JP2008239371 A JP 2008239371A JP 2007079500 A JP2007079500 A JP 2007079500A JP 2007079500 A JP2007079500 A JP 2007079500A JP 2008239371 A JP2008239371 A JP 2008239371A
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
carbide single
crystal substrate
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007079500A
Other languages
Japanese (ja)
Other versions
JP4707148B2 (en
Inventor
Masanobu Yamazaki
昌信 山崎
Yusuke Mori
勇介 森
Takatomo Sasaki
孝友 佐々木
Shiro Kawamura
史朗 川村
Yasuo Kitaoka
康夫 北岡
Kan Imaide
完 今出
Takashi Ogura
隆史 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Osaka University NUC filed Critical Hitachi Metals Ltd
Priority to JP2007079500A priority Critical patent/JP4707148B2/en
Publication of JP2008239371A publication Critical patent/JP2008239371A/en
Application granted granted Critical
Publication of JP4707148B2 publication Critical patent/JP4707148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a substrate having a 2H silicon carbide single crystal in a thickness of 2 or more formed on a 4H or 6H silicon carbide single crystal substrate by an epitaxial growth method (LPE), and to provide a method for manufacturing the substrate. <P>SOLUTION: A melt 12 of silicon and carbon is prepared in a lithium flux in a crucible 3, and an LEP film of a 3H silicon carbide single crystal is grown to a the thickness of 30 μm or more on the C-plane [(000-1)] of a 4H silicon carbide single crystal or a 6H silicon carbide single crystal immersed as a seed crystal substrate 11 in the melt 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、特に光デバイスや電子デバイスの基板材料として好適な、炭化珪素(SiC
)単結晶基板とその製造方法に関する。
The present invention is particularly suitable for silicon carbide (SiC) as a substrate material for optical devices and electronic devices.
) A single crystal substrate and a method for manufacturing the same.

炭化珪素(SiC)単結晶は、熱的および化学的に非常に安定な半導体材料であり、珪
素(Si)に比べ、バンドギャップが2〜3倍、熱伝導率が約3倍、絶縁破壊電圧が約1
0倍、飽和電子速度が約2倍大きいという優れた特性を有している。このような優れた特
性から、炭化珪素単結晶はシリコンデバイスの限界を超えるパワーデバイスや、高温で動
作する耐環境デバイスの基板材料としての応用が期待されている。
Silicon carbide (SiC) single crystal is a thermally and chemically very stable semiconductor material, and has a band gap of 2 to 3 times, a thermal conductivity of about 3 times, and a dielectric breakdown voltage compared to silicon (Si). About 1
It has excellent characteristics of 0 times and saturation electron velocity about twice as large. Due to such excellent characteristics, silicon carbide single crystal is expected to be used as a substrate material for power devices exceeding the limits of silicon devices and environmental resistant devices operating at high temperatures.

炭化珪素は多くの結晶多形(ポリタイプ)が存在する。この結晶多形とは化学量論的に
は同じ組成でありながら原子の積層の周期が(C軸方向にのみ)異なる多くの結晶構造を
取るものである。代表的なポリタイプは2H,3C,4H,6H,15Rである。Hは六
方晶、Cは立方晶、Rは菱面体構造を表している。数字は積層方向(C軸方向)の一周期
中に含まれるSi−C単位層の数を意味する。現在、上市されている炭化珪素単結晶は3
Cと4H,6Hであり、なかでも4H炭化珪素単結晶は、バンドギャップと飽和電子速度
の特性が良いことから、光デバイスや電子デバイスの基板材料として実用化研究の中心的
な材料となっている。
Silicon carbide has many crystal polymorphs (polytypes). This crystal polymorph has many crystal structures having the same stoichiometric composition but different atomic period (only in the C-axis direction). Typical polytypes are 2H, 3C, 4H, 6H, 15R. H represents a hexagonal crystal, C represents a cubic crystal, and R represents a rhombohedral structure. The numbers mean the number of Si-C unit layers included in one cycle of the stacking direction (C-axis direction). There are currently 3 silicon carbide single crystals on the market.
C, 4H, and 6H. Among them, 4H silicon carbide single crystal has a good band gap and saturated electron velocity characteristics, and thus has become a central material for practical research as a substrate material for optical devices and electronic devices. Yes.

2H炭化珪素単結晶は、4H炭化珪素単結晶よりバンドギャップと飽和電子速度の特性
がより良いことが知られている。2H炭化珪素単結晶の基板材料を得ることができれば、
より高性能な光デバイスや電子デバイスが得られるものである。
It is known that 2H silicon carbide single crystal has better band gap and saturation electron velocity characteristics than 4H silicon carbide single crystal. If a substrate material of 2H silicon carbide single crystal can be obtained,
Higher performance optical devices and electronic devices can be obtained.

炭化珪素単結晶の成長方法としては、気相成長法の昇華法とCVD法、アチソン法、液
相成長法が知られている。気相成長法には昇華法とCVD法がある。昇華法は、閉ざされ
た黒鉛坩堝中で炭化珪素粉末を2000℃以上の高温下で昇華させ、坩堝の低温部に設置
した種結晶基板上に再結晶化させる方法である。現在、上市されている4Hと6H炭化珪
素単結晶基板の多くは、この昇華法で製造されている。しかし、昇華法で成長させた単結
晶にはマイクロパイプ欠陥や積層欠陥の発生、結晶多形ができ易いという問題がある。C
VD法は原料をシランガスと炭化水素系ガスで供給するため、原料供給量が少なく厚い膜
が得られない。そのため、光デバイスや電子デバイスの基板材料として要求される、バル
ク単結晶を得ることが難しい。
As a method for growing a silicon carbide single crystal, a vapor phase sublimation method, a CVD method, an atchison method, and a liquid phase growth method are known. The vapor phase growth method includes a sublimation method and a CVD method. The sublimation method is a method in which silicon carbide powder is sublimated at a high temperature of 2000 ° C. or higher in a closed graphite crucible and recrystallized on a seed crystal substrate placed in a low temperature portion of the crucible. Many of the 4H and 6H silicon carbide single crystal substrates currently on the market are manufactured by this sublimation method. However, single crystals grown by the sublimation method have problems that micropipe defects and stacking faults are easily generated, and that crystal polymorphism is easily formed. C
In the VD method, since raw materials are supplied by silane gas and hydrocarbon gas, the raw material supply amount is small and a thick film cannot be obtained. Therefore, it is difficult to obtain a bulk single crystal that is required as a substrate material for optical devices and electronic devices.

アチソン法は、容器内に設けられた黒鉛電極の周りに珪砂とコークスを詰めて、黒鉛電
極に通電し2000℃以上の高温とし、炭化珪素単結晶を得る方法である。アチソン法は
炭化珪素研磨材の製造技術として確立され産業に貢献している。しかし、光デバイスや電
子デバイスの基板材料としては、不純物が多く高純度品が得難いことと、大型の単結晶を
作ることができないという問題がある。
The Atchison method is a method in which silica graphite and coke are packed around a graphite electrode provided in a container, and the graphite electrode is energized to a high temperature of 2000 ° C. or higher to obtain a silicon carbide single crystal. The Atchison method has been established as a technology for manufacturing silicon carbide abrasives and contributes to the industry. However, as a substrate material for optical devices and electronic devices, there are problems that there are many impurities and it is difficult to obtain a high-purity product and that a large single crystal cannot be produced.

液相成長法は、黒鉛坩堝内で珪素もしくは珪素化合物を融解し、その融液中に黒鉛坩堝
から炭素を溶解させて炭化珪素単結晶を析出させる方法である。しかし、珪素融液中への
炭素の溶解量が小さいため大きな単結晶を得ることが困難であった。
The liquid phase growth method is a method in which silicon or a silicon compound is melted in a graphite crucible, and carbon is dissolved in the melt from the graphite crucible to precipitate a silicon carbide single crystal. However, since the amount of carbon dissolved in the silicon melt is small, it has been difficult to obtain a large single crystal.

前述した液相成長法の問題点を解決する方法として、珪素と炭素、少なくとも1種の遷
移金属を含む原料を黒鉛坩堝内で加熱溶融して融液を作り、この融液を冷却するか融液に
温度勾配を作り、種結晶基板上に炭化珪素単結晶を生成する方法が、特許文献1から3に
開示されている。特許文献1で得られているのは3C炭化珪素単結晶、特許文献2で得ら
れているのは6H炭化珪素単結晶である。融液を冷却する方法を温度降下法、融液に温度
勾配を作る方法を温度勾配法と称している。
As a method for solving the problems of the liquid phase growth method described above, a raw material containing silicon, carbon, and at least one transition metal is heated and melted in a graphite crucible to form a melt, and the melt is cooled or melted. Patent Documents 1 to 3 disclose a method for producing a silicon carbide single crystal on a seed crystal substrate by creating a temperature gradient in the liquid. Patent Document 1 obtains a 3C silicon carbide single crystal, and Patent Document 2 obtains a 6H silicon carbide single crystal. A method of cooling the melt is called a temperature drop method, and a method of creating a temperature gradient in the melt is called a temperature gradient method.

特開2000−264790号 公報JP 2000-264790 A 特開2002−356397号 公報Japanese Patent Laid-Open No. 2002-356397 特開2004−2173号 公報JP 2004-2173 A

高品質の炭化珪素単結晶を安定に、また低コストで製造するには低温で成長させること
が必要である。前述の特許文献1〜3の実施例でも、結晶成長に必要な温度は1450℃
以上である。特許文献4には、アルカリ金属[特にリチウム(Li)]フラックス中で珪
素と炭素の融液を作って反応させることで、600℃〜1400℃と低温で、2H炭化珪
素単結晶を成長させている。
In order to produce a high-quality silicon carbide single crystal stably and at low cost, it is necessary to grow it at a low temperature. Also in the above-described Examples of Patent Documents 1 to 3, the temperature necessary for crystal growth is 1450 ° C.
That's it. In Patent Document 4, a 2H silicon carbide single crystal is grown at a low temperature of 600 ° C. to 1400 ° C. by reacting a silicon and carbon melt in an alkali metal [especially lithium (Li)] flux. Yes.

国際公開番号WO 2006/070749 A1 公報International Publication Number WO 2006/070749 A1

非特許文献1と2に記載されている改良レーリー法(昇華法の一例)で得られる種結晶
面と成長結晶の関係は、6H種結晶のC面(000−1)では4Hもしくは6Hの成長結
晶、4HC面種結晶では4Hが支配的な成長結晶である。Si面(0001)では4Hと
6Hの何れも6Hの成長結晶であり、15Rがしばしば混在する。これらの関係から、4
H炭化珪素単結晶もしくは6H炭化珪素単結晶上に、2H炭化珪素単結晶を成長させるこ
とはできていなかった。
The relationship between the seed crystal plane obtained by the modified Rayleigh method (an example of the sublimation method) described in Non-Patent Documents 1 and 2 and the growth crystal is 4H or 6H growth on the C plane (000-1) of the 6H seed crystal. In crystal, 4HC plane seed crystal, 4H is the dominant growth crystal. On the Si plane (0001), both 4H and 6H are 6H growth crystals, and 15R is often mixed. From these relationships, 4
A 2H silicon carbide single crystal could not be grown on the H silicon carbide single crystal or the 6H silicon carbide single crystal.

松波弘之編著「半導体SiC技術と応用」日刊工業新聞社刊 21ページMatsunami Hiroyuki, “Semiconductor SiC Technology and Applications”, Nikkan Kogyo Shimbun, 21 pages 応用物理 第74巻 第2号(2005) 222〜223ページApplied Physics Vol.74 No.2 (2005) p.222-223

特許文献4には、6H−SiC結晶基板上もしくは4H−SiC結晶基板上に2H−S
iC単結晶を製造することが好ましいとの記載があるが、6H−SiC(4H−SiC)
結晶基板のどの結晶面に製造するかの詳細な記載がなく、また実施例にも記載はない。特
許文献4の実施例では、種結晶上に2H−SiCを成長させたものではなく、Liフラッ
クス中に珪素と炭素の融液を作って反応させたものである。2H炭化珪素単結晶基板(膜
)を電子デバイスや光デバイスに用いるには、良質で大面積が要求されるだけでなく厚み
も必要である。種結晶基板上に形成された2H炭化珪素単結晶膜に電子デバイスを形成す
る場合、少なくとも10μm程度の厚みは必要となってくる。30μm厚以上の2H炭化
珪素単結晶膜が得られれば、電子デバイス形成後種結晶基板を研磨等で除去した後、電子
デバイスに個片化することで、2H炭化珪素単結晶基板上に形成された電子デバイスを得
ることができる。そのため、大面積で厚みの厚い2H炭化珪素単結晶基板を、工業的によ
り効率的でより安定的により低コストで生産できる技術検討が必要である。
In Patent Document 4, 2H—S is formed on a 6H—SiC crystal substrate or a 4H—SiC crystal substrate.
Although it is described that it is preferable to produce an iC single crystal, 6H-SiC (4H-SiC)
There is no detailed description of which crystal plane of the crystal substrate is manufactured, and there is no description in the examples. In the example of Patent Document 4, 2H—SiC is not grown on a seed crystal, but a reaction is performed by forming a melt of silicon and carbon in a Li flux. In order to use a 2H silicon carbide single crystal substrate (film) for an electronic device or an optical device, not only high quality and a large area are required, but also a thickness is required. When an electronic device is formed on a 2H silicon carbide single crystal film formed on a seed crystal substrate, a thickness of at least about 10 μm is required. If a 2H silicon carbide single crystal film having a thickness of 30 μm or more is obtained, it is formed on the 2H silicon carbide single crystal substrate by removing the seed crystal substrate by polishing or the like after the formation of the electronic device and then separating it into electronic devices. Electronic devices can be obtained. Therefore, it is necessary to study the technology that can produce a 2H silicon carbide single crystal substrate having a large area and a large thickness, industrially more efficiently, more stably, and at a lower cost.

本願発明は、より安定的により効率的に、4Hもしくは6H炭化珪素単結晶基板上に2
H炭化珪素単結晶が形成された基板と、その製造方法を提供することを目的とする。
The present invention is more stable and more efficient on a 4H or 6H silicon carbide single crystal substrate.
It is an object of the present invention to provide a substrate on which an H silicon carbide single crystal is formed and a method for manufacturing the same.

本願発明の炭化珪素単結晶基板は、4H炭化珪素単結晶もしくは6H炭化珪素単結晶の
C面[(000−1)面]に、2H炭化珪素単結晶が形成されることが好ましい。
In the silicon carbide single crystal substrate of the present invention, a 2H silicon carbide single crystal is preferably formed on the C plane [(000-1) plane] of a 4H silicon carbide single crystal or a 6H silicon carbide single crystal.

リチウムフラックス中に珪素と炭素を溶解した融液に、種結晶基板となる4Hもしくは
6H炭化珪素単結晶のC面[(000−1)面]を浸漬させ、浸漬させた状態を所定の時
間保持した後に温度を降下させる温度降下法で、種結晶のC面[(000−1)面]上に
LPE(Liquid Phase Epitaxial)成長で、2H炭化珪素単結晶
を成長させる。融液に温度勾配を作る温度勾配法で、種結晶基板のC面[(000−1)
面]上に2H炭化珪素単結晶をLPE成長させることもできる。
A C-plane [(000-1) plane] of a 4H or 6H silicon carbide single crystal serving as a seed crystal substrate is immersed in a melt obtained by dissolving silicon and carbon in lithium flux, and the immersed state is maintained for a predetermined time. Then, a 2H silicon carbide single crystal is grown on the C-plane [(000-1) plane] of the seed crystal by LPE (Liquid Phase Epitaxial) growth by a temperature drop method in which the temperature is lowered. C-plane [(000-1) of seed crystal substrate by temperature gradient method to create temperature gradient in melt
2H silicon carbide single crystal can be grown on the surface].

融液の組成はモル比で、リチウム:珪素:炭素=1.0:0.1〜1.0:0.1〜1
.0とすることができる。炭素の供給形態は黒鉛容器から供給される炭素や純炭素を添加
することができる。また、炭化リチウムの使用やメタンやプロパンガスのような炭化水素
ガスで供給することもできる。
The composition of the melt is molar ratio: lithium: silicon: carbon = 1.0: 0.1 to 1.0: 0.1-1
. It can be set to zero. Carbon supplied from a graphite container or pure carbon can be added as a form of supplying carbon. Further, lithium carbide can be used or a hydrocarbon gas such as methane or propane gas can be supplied.

フラックスのリチウムには、ナトリウム(Na)やカリウム(K)等のアルカリ金属や
、マグネシウム(Mg)やカルシウム(Ca)等のアルカリ土類金属を不純物として含ん
でいても良いものである。これら不純物のアルカリ金属やアルカリ土類金属は、フラック
スとして機能するため含有量を特に規定する必要がない。リチウムに含まれる不純物のア
ルカリ金属やアルカリ土類金属を許容することで、安価なリチウムを使用することができ
、製造コストの低減が図れる。3N以上の純度を有する原料を用いることができる。
The lithium of the flux may contain an alkali metal such as sodium (Na) or potassium (K) or an alkaline earth metal such as magnesium (Mg) or calcium (Ca) as impurities. The content of these impurities, alkali metals and alkaline earth metals, does not need to be specified because they function as flux. By allowing the alkali metal or alkaline earth metal impurity contained in lithium, inexpensive lithium can be used, and the manufacturing cost can be reduced. A raw material having a purity of 3N or more can be used.

また、2H炭化珪素のLPE成長時にN型やP型元素をドープすることができる。2H
炭化珪素単結晶にドープするドーピング元素をフラックス中に含有させる事で、N型やP
型の2H炭化珪素単結晶を得ることができる。N型ドーピング材(元素)としては、窒素
(N)や燐(P)、P型ドーピング材としてはアルミニウム(Al)やホウ素(B)を選
択することができる。
Further, N-type or P-type elements can be doped during LPE growth of 2H silicon carbide. 2H
By adding a doping element to the silicon carbide single crystal in the flux, N-type and P
Type 2H silicon carbide single crystal can be obtained. Nitrogen (N) or phosphorus (P) can be selected as the N-type doping material (element), and aluminum (Al) or boron (B) can be selected as the P-type doping material.

本願発明の炭化珪素単結晶基板は、4H炭化珪素単結晶もしくは6H炭化珪素単結晶の
C面[(000−1)面]の傾きが、8度以下であることが好ましい。
In the silicon carbide single crystal substrate of the present invention, the inclination of the C plane [(000-1) plane] of 4H silicon carbide single crystal or 6H silicon carbide single crystal is preferably 8 degrees or less.

ジャスト(000−1)面であることが好ましいが、(000−1)面より8度以下の
オフアングル面であれば、ジャスト面と同等の物理特性を持つ2H炭化珪素単結晶が得ら
れる。8度以下のオフアングル面まで使用できるため、種単結晶基板の加工が容易となり
、製造コストの低減が図れる。
Although it is preferably the just (000-1) plane, if it is an off-angle plane of 8 degrees or less from the (000-1) plane, a 2H silicon carbide single crystal having physical properties equivalent to the just plane can be obtained. Since an off-angle surface of 8 degrees or less can be used, the seed single crystal substrate can be easily processed, and the manufacturing cost can be reduced.

本願発明の炭化珪素単結晶基板は、2H炭化珪素単結晶が液相中でエピタキシャル成長
したLPE膜であることが好ましい。
The silicon carbide single crystal substrate of the present invention is preferably an LPE film in which a 2H silicon carbide single crystal is epitaxially grown in a liquid phase.

リチウムフラックス中に珪素と炭素を溶解した融液中に、4Hもしくは6H炭化珪素単
結晶の種単結晶基板を浸漬させた状態で、所定時間保持した後温度を下げるか温度勾配を
設けて、種単結晶基板上に2H炭化珪素単結晶をLPE成長させる。融液中で種単結晶基
板の位置や保持角度を一定とするため、種結晶基板保持治具を用いていることが好ましい
。種結晶基板の位置が不安定であると、温度勾配法で所定の温度差に制御できないため、
LPE膜の成長速度等にばらつきが発生する危険性がある。種結晶基板のC面が坩堝の底
面と接触するような事になると、2H炭化珪素単結晶のLPE成長が阻害されることが考
えられる。
In a state in which a seed single crystal substrate of 4H or 6H silicon carbide single crystal is immersed in a melt obtained by dissolving silicon and carbon in lithium flux, the temperature is lowered or a temperature gradient is provided after holding for a predetermined time. A 2H silicon carbide single crystal is grown on a single crystal substrate by LPE. In order to make the position and holding angle of the seed single crystal substrate constant in the melt, it is preferable to use a seed crystal substrate holding jig. If the position of the seed crystal substrate is unstable, it cannot be controlled to a predetermined temperature difference by the temperature gradient method.
There is a risk of variations in the growth rate of the LPE film. If the C surface of the seed crystal substrate comes into contact with the bottom surface of the crucible, it is considered that LPE growth of the 2H silicon carbide single crystal is hindered.

種結晶基板保持治具は、融液と接触しているので、溶融リチウムに対し耐蝕性を有する
必要がある。タングステン(W)やタングステン基合金、モリブデン(Mo)基合金、炭
化珪素セラミックで製作することが好ましい。
Since the seed crystal substrate holding jig is in contact with the melt, it is necessary to have corrosion resistance against the molten lithium. It is preferable to manufacture with tungsten (W), tungsten base alloy, molybdenum (Mo) base alloy, or silicon carbide ceramic.

本願発明の炭化珪素単結晶基板は、2H炭化珪素単結晶の厚み(LPE膜厚)が30μ
m以上であることが好ましい。
The silicon carbide single crystal substrate of the present invention has a 2H silicon carbide single crystal thickness (LPE film thickness) of 30 μm.
It is preferable that it is m or more.

2H炭化珪素単結晶の厚み(LPE膜厚)が30μm以上あると、電子デバイスや光デ
バイスを2H炭化珪素単結晶基板面に形成した後、種結晶基板部を研磨等で除去した後、
電子デバイスに個片化することで、2H炭化珪素単結晶のみで形成された基板上に、電子
デバイスや光デバイスを設けることができ、高性能化が期待できる。電子デバイスや光デ
バイス等を形成する間には、フォトリソ工程や製膜工程、ミリング工程等で、基板搬送や
治具への着脱など、数多く基板を取扱うものである。これら取扱い時に、基板が破損しな
いように、種結晶基板の除去は後工程に行うのが好ましい。
When the thickness of the 2H silicon carbide single crystal (LPE film thickness) is 30 μm or more, after the electronic device or the optical device is formed on the 2H silicon carbide single crystal substrate surface, the seed crystal substrate portion is removed by polishing,
By separating into individual electronic devices, electronic devices and optical devices can be provided on a substrate formed of only 2H silicon carbide single crystal, and high performance can be expected. During the formation of electronic devices, optical devices, etc., a large number of substrates are handled, such as substrate transportation and attachment / detachment to jigs, in a photolithography process, a film forming process, a milling process, and the like. It is preferable to remove the seed crystal substrate in a subsequent process so that the substrate is not damaged during handling.

本願発明の炭化珪素単結晶基板の製造方法は、リチウムと珪素、炭素の原料を秤量する
工程、4H炭化珪素単結晶もしくは6H炭化珪素単結晶の種結晶基板を作製する工程、秤
量した原料と種結晶基板を坩堝に入れ、坩堝を密封容器に密封する工程、密封容器を加熱
しリチウムフラックス中で珪素と炭素の融液を作製する工程、種結晶基板のC面[(00
0−1)面]に2H炭化珪素単結晶をLPE成長させる工程、密封容器冷却後炭化珪素単
結晶基板取り出す工程を有することが好ましい。
The method for producing a silicon carbide single crystal substrate of the present invention includes a step of weighing lithium, silicon, and carbon raw materials, a step of preparing a seed crystal substrate of 4H silicon carbide single crystal or 6H silicon carbide single crystal, and a weighted raw material and seed. Placing the crystal substrate in a crucible and sealing the crucible in a sealed container; heating the sealed container to produce a melt of silicon and carbon in lithium flux; and C-plane [(00
It is preferable to include a step of LPE growing a 2H silicon carbide single crystal on the (0-1) plane] and a step of taking out the silicon carbide single crystal substrate after cooling the sealed container.

リチウムフラックス中で珪素と炭素の融液を作製する工程は、不活性ガス雰囲気のグロ
ーブボックス内で、種結晶基板保持治具に種結晶基板のC面が接触しない様に保持して坩
堝に入れる。次に、リチウムと珪素、炭素を秤量して坩堝に入れる。坩堝は、更に耐熱を
有する密封容器に入れ密封する。グローブボックスから密封容器を取り出し、電気炉を用
い加熱して融液を作る。加熱温度はリチウムの沸点(1347℃)以下とし、好ましくは
700℃〜1000℃である。電気炉で密封容器中の坩堝が加熱されると、リチウムが融
解してリチウムフラックスが形成され、次いでリチウムフラックス中に珪素と炭素が溶解
して、珪素と炭素の融液を得る。
The step of preparing a melt of silicon and carbon in a lithium flux is carried out in a crucible while holding the seed crystal substrate holding jig so that the C-plane of the seed crystal substrate does not contact in a glove box in an inert gas atmosphere. . Next, lithium, silicon, and carbon are weighed and put into a crucible. The crucible is further sealed in a sealed container having heat resistance. Remove the sealed container from the glove box and heat it using an electric furnace to make a melt. The heating temperature is not higher than the boiling point of lithium (1347 ° C.), preferably 700 ° C. to 1000 ° C. When the crucible in the sealed container is heated in an electric furnace, lithium is melted to form a lithium flux, and then silicon and carbon are dissolved in the lithium flux to obtain a silicon-carbon melt.

4H炭化珪素単結晶もしくは6H炭化珪素単結晶の種結晶基板を作製する工程は、2H
炭化珪素単結晶(膜)がLPE成長する種結晶基板の面を、C面[(000−1)面]か
ら8度以下の面となる様に加工するものである。
The step of fabricating a 4H silicon carbide single crystal or 6H silicon carbide single crystal seed substrate is 2H
The surface of the seed crystal substrate on which the silicon carbide single crystal (film) grows by LPE is processed so as to be a surface of 8 degrees or less from the C plane [(000-1) plane].

種結晶基板のC面に2H炭化珪素単結晶をLPE成長させる工程は、種結晶基板を融液
に浸漬させて保持する工程、融液の温度を下げて2H炭化珪素単結晶を析出成長させる(
温度降下法)、もしくは融液に高温領域と低温領域を作り2H炭化珪素単結晶を析出成長
させる(温度勾配法)工程からなる。種結晶基板のC面と融液との接触時間は1〜100
時間、好ましくは10〜50時間である。
The step of LPE growing the 2H silicon carbide single crystal on the C-plane of the seed crystal substrate is a step of immersing and holding the seed crystal substrate in the melt, and lowering the temperature of the melt to precipitate and grow the 2H silicon carbide single crystal (
A temperature drop method), or a step of forming a high temperature region and a low temperature region in the melt and precipitating and growing a 2H silicon carbide single crystal (temperature gradient method). The contact time between the C surface of the seed crystal substrate and the melt is 1 to 100.
Time, preferably 10 to 50 hours.

温度降下法で、種結晶基板のC面上に2H炭化珪素単結晶をLPE成長させるには、融
液温700〜1000℃で1〜100時間保持した後、時間当たり0.1〜100℃/H
rの一定速度で融液温を低下させる。600〜800℃まで融液温が下がったところで、
結晶成長を終了させる。その後、室温まで自然冷却して種結晶基板のC面に2H炭化珪素
単結晶が形成された炭化珪素単結晶基板を得る。成長初期段階で融液中の炭化珪素の過飽
和度を大きくして、種結晶基板が熔融するメルトバック現象を抑制するため、温度降下開
始時の融液温度の低下速度を大きくし、その後一定速度で融液温度を低下させるスーパー
冷却法(2段冷却法)を採用することもできる。
In order to grow 2H silicon carbide single crystal on the C-plane of the seed crystal substrate by the temperature drop method, the melt temperature is maintained at 700 to 1000 ° C. for 1 to 100 hours, and then 0.1 to 100 ° C./hour. H
The melt temperature is lowered at a constant rate of r. When the melt temperature falls to 600-800 ° C,
Terminate crystal growth. Thereafter, it is naturally cooled to room temperature to obtain a silicon carbide single crystal substrate having a 2H silicon carbide single crystal formed on the C-plane of the seed crystal substrate. In order to suppress the meltback phenomenon in which the seed crystal substrate melts by increasing the supersaturation degree of silicon carbide in the melt at the initial stage of growth, the rate of decrease in the melt temperature at the start of temperature drop is increased, and then a constant rate It is also possible to adopt a super cooling method (two-stage cooling method) that lowers the melt temperature.

温度勾配法で、種結晶基板のC面上に2H炭化珪素単結晶をLPE成長させるには、高
温領域の融液温度を800℃以上とし、低温領域の融液温度を700℃以上とし、高温領
域と低温領域の温度差を10〜500℃とする。坩堝の底部を高温領域に種結晶基板が融
液に接触する上部を低温領域とすることで、低温領域にある種結晶基板のC面に2H炭化
珪素単結晶を形成することができる。その後、室温まで自然冷却して種結晶基板のC面に
2H炭化珪素単結晶が形成された炭化珪素単結晶基板を得る。
In order to LPE grow a 2H silicon carbide single crystal on the C-plane of the seed crystal substrate by the temperature gradient method, the melt temperature in the high temperature region is set to 800 ° C. or higher, and the melt temperature in the low temperature region is set to 700 ° C. or higher. The temperature difference between the region and the low temperature region is 10 to 500 ° C. A 2H silicon carbide single crystal can be formed on the C-plane of the seed crystal substrate in the low temperature region by setting the bottom of the crucible to the high temperature region and the top where the seed crystal substrate contacts the melt as the low temperature region. Thereafter, it is naturally cooled to room temperature to obtain a silicon carbide single crystal substrate having a 2H silicon carbide single crystal formed on the C-plane of the seed crystal substrate.

冷却後炭化珪素単結晶基板取り出す工程は、密封容器を室温まで冷却した後電気炉から
密封容器を取り出し、次に密封容器から坩堝を取り出して、エタノールや水で残留リチウ
ム等を除去し、坩堝から2H炭化珪素単結晶が形成された種結晶基板とその他の珪素と炭
素の混合生成物を取り出す工程と、これら種結晶基板と混合生成物を塩酸で処理する工程
、X線回折装置等で生成された結晶を測定する工程を含むものである。
After cooling, the step of taking out the silicon carbide single crystal substrate is to cool the sealed container to room temperature, then remove the sealed container from the electric furnace, then remove the crucible from the sealed container, remove residual lithium etc. with ethanol or water, The seed crystal substrate on which the 2H silicon carbide single crystal is formed and the other step of taking out the mixed product of silicon and carbon, the step of treating the seed crystal substrate and the mixed product with hydrochloric acid, the X-ray diffractometer, etc. And a step of measuring the obtained crystals.

種結晶基板となる4Hもしくは6H炭化珪素単結晶のC面[(000−1)面]に、2
H炭化珪素単結晶を低温度で30μm以上の厚みでLPE成長させることができ、工業的
により効率的でより安定的により低コストで生産できるようになった。
On the C plane [(000-1) plane] of the 4H or 6H silicon carbide single crystal to be the seed crystal substrate, 2
The H silicon carbide single crystal can be grown by LPE at a low temperature at a thickness of 30 μm or more, and can be produced industrially more efficiently, more stably and at a lower cost.

以下本願発明を、図面を参照しながら実施例に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples with reference to the drawings.

図1に、用いた炭化珪素単結晶成長装置の概要で、抵抗加熱式の電気炉15にステンレ
ス製の密封容器14を設置した状態を示す。電気炉内で密封容器内の融液を加熱、保温、
冷却を行い炭化珪素単結晶を成長させた。
FIG. 1 shows an outline of the silicon carbide single crystal growth apparatus used, in which a stainless steel sealed container 14 is installed in a resistance heating type electric furnace 15. Heat and keep the melt in the sealed container in the electric furnace,
Cooling was performed to grow a silicon carbide single crystal.

アルゴンガス雰囲気下のグローブボックス内で、リチウム:珪素:炭素=0.163:
0.075:0.124のモル比で秤量し、総量約4.72(g)をタングステン製の坩
堝13に詰め、ステンレス製の密封容器14の内底面に配した。純度99.9%以上のリ
チウムと珪素、炭素を用いた。種結晶基板11は、約15mm×約10mm×約0.4m
m厚の大きさの6H炭化珪素単結晶で、種結晶基板保持治具16に取り付けた。融液と接
する面がC面[(000−1)面]のジャスト面とした。
In a glove box under an argon gas atmosphere, lithium: silicon: carbon = 0.163:
Weighed at a molar ratio of 0.075: 0.124, a total amount of 4.72 (g) was packed in a tungsten crucible 13 and placed on the inner bottom surface of a stainless steel sealed container 14. Lithium, silicon, and carbon having a purity of 99.9% or more were used. The seed crystal substrate 11 is about 15 mm × about 10 mm × about 0.4 m.
An m-thick 6H silicon carbide single crystal was attached to the seed crystal substrate holding jig 16. The surface in contact with the melt was the just surface of the C surface [(000-1) surface].

密封された密封容器14をグローブボックスより取り出し、電気炉15内に密封容器1
4を設置した。電気炉15の温度を上げ坩堝12を900℃としリチウムを融解させてリ
チウムフラックス作製した。リチウムフラックス中に珪素と炭素を熔解させるため900
℃で2時間保持し珪素と炭素の融液を得た後、700℃まで10℃/時間の速度で融液の
温度を下げ、6H炭化珪素単結晶のC面[(000−1)面]に2H炭化珪素単結晶を成
長させた。700℃から室温までは炉冷した。
The sealed container 14 is taken out from the glove box, and the sealed container 1 is placed in the electric furnace 15.
4 was installed. The temperature of the electric furnace 15 was raised, the crucible 12 was set to 900 ° C., and lithium was melted to produce a lithium flux. 900 for melting silicon and carbon in lithium flux
After obtaining a silicon and carbon melt at 2 ° C. for 2 hours, the melt temperature was lowered to 700 ° C. at a rate of 10 ° C./hour, and the C plane of the 6H silicon carbide single crystal [(000-1) plane] A 2H silicon carbide single crystal was grown. The furnace was cooled from 700 ° C. to room temperature.

室温迄冷却された密封容器14を開け、坩堝13を取り出した後エタノールと水を用い
て残留リチウムの除去処理を行い、坩堝から2H炭化珪素単結晶が形成された種結晶基板
とその他の珪素と炭素の混合生成物を取り出し、塩酸処理を行い炭化珪素単結晶基板を得
た。
The sealed container 14 cooled to room temperature is opened, the crucible 13 is taken out, the residual lithium is removed using ethanol and water, the seed crystal substrate on which the 2H silicon carbide single crystal is formed from the crucible, and other silicon and The mixed product of carbon was taken out and treated with hydrochloric acid to obtain a silicon carbide single crystal substrate.

得られた炭化珪素単結晶基板の評価結果を、図2から図4に示す。図2は基板の断面と
表面のSEM写真、図3に基板のX線回折結果、図4に基板以外の混合生成物のX線回折
結果を示す。
The evaluation results of the obtained silicon carbide single crystal substrate are shown in FIGS. 2 shows a cross-sectional and surface SEM photograph of the substrate, FIG. 3 shows the X-ray diffraction result of the substrate, and FIG. 4 shows the X-ray diffraction result of the mixed product other than the substrate.

図2a)は、種結晶基板(6H炭化珪素単結晶)のC面側の断面部のSEM写真である
。図2a)の写真で、下向きの矢印領域が種結晶基板の6H炭化珪素単結晶で、上向きと
左向きの矢印で囲まれる領域が本実施例で得られた、約33μm厚の2H炭化珪素単結晶
LPE膜である。上向きと右向きの矢印で囲まれる領域は、2H炭化珪素単結晶LPE膜
ではなく雑晶となっている。図2b)は表面部のSEM写真である。図2a)と図2b)
から、種結晶基板のC面側の一部分ではあるが、LPE成長した2H炭化珪素単結晶の薄
膜が形成されていることが確認できた。該部分をEDS(Energy Dispers
ive X−ray Specttroscopy)で分析した結果(データは省略)、
珪素(Si)と炭素(C)から形成されていることが確認できた。
FIG. 2 a) is an SEM photograph of the cross section on the C-plane side of the seed crystal substrate (6H silicon carbide single crystal). In the photograph of FIG. 2a), the downward arrow region is a 6H silicon carbide single crystal of the seed crystal substrate, and the region surrounded by the upward and leftward arrows is obtained in this example, and the 2H silicon carbide single crystal having a thickness of about 33 μm is obtained. LPE membrane. The region surrounded by the upward and rightward arrows is not a 2H silicon carbide single crystal LPE film but a miscellaneous crystal. FIG. 2b) is a SEM photograph of the surface portion. 2a) and 2b)
From this, it was confirmed that a thin film of 2H silicon carbide single crystal grown by LPE was formed, although it was a part of the C-plane side of the seed crystal substrate. The portion is divided into EDS (Energy Dispersers
ive X-ray Spectroscopy) (data not shown),
It was confirmed that the film was formed from silicon (Si) and carbon (C).

図3は、LPE成長薄膜のX線回折結果である。用いた単結晶X線回折装置は、リガク
製R−AXIS RAPID2(2はローマ数字)である。種結晶基板の6H炭化珪素単
結晶の回折ピークは35.724°で、LPE薄膜の回折ピークは35.643°と異な
った位置にあることが判る。
FIG. 3 is an X-ray diffraction result of the LPE grown thin film. The single crystal X-ray diffractometer used is R-AXIS RAPID2 (2 is a Roman numeral) manufactured by Rigaku. It can be seen that the diffraction peak of the 6H silicon carbide single crystal of the seed crystal substrate is 35.724 °, and the diffraction peak of the LPE thin film is at a position different from 35.643 °.

図4は、基板以外の混合生成物を、ω/2θでスキャンしたX線回折結果である。用い
た粉末X線回折装置は、リガク製RINT2000である。図4に示すように、強い2H
炭化珪素単結晶の回折ピークデータと、弱い3C炭化珪素単結晶の回折ピークデータが得
られた。
FIG. 4 is an X-ray diffraction result obtained by scanning a mixed product other than the substrate at ω / 2θ. The powder X-ray diffractometer used is RINT2000 manufactured by Rigaku. As shown in FIG. 4, strong 2H
Diffraction peak data of a silicon carbide single crystal and weak 3C silicon carbide single crystal were obtained.

図2から図4に示した結果から、種結晶基板である6H炭化珪素単結晶基板のC面に形
成されたLPE成長薄膜は、2H炭化珪素単結晶であると確認できた。
From the results shown in FIGS. 2 to 4, it was confirmed that the LPE grown thin film formed on the C-plane of the 6H silicon carbide single crystal substrate as the seed crystal substrate was a 2H silicon carbide single crystal.

本実施例は、融液の原料配合比と種結晶基板、炉内温度以外は実施例1と同じである。
アルゴンガス雰囲気下のグローブボックス内で、リチウム:珪素:炭素=0.140:0
.060:0.080のモル比で秤量し、総量約3.62(g)をタングステン製の坩堝
13に詰め、ステンレス製の密封容器14の内底面に配した。純度99.9%以上のリチ
ウムと珪素、炭素を用いた。種結晶基板11は、約15mm×約10mm×約0.4mm
厚の大きさの4H炭化珪素単結晶で、種結晶基板保持治具に取り付けた。融液と接する面
がC面[(000−1)面]のジャスト面とした。
This example is the same as Example 1 except for the raw material mixture ratio of the melt, the seed crystal substrate, and the furnace temperature.
In a glove box under an argon gas atmosphere, lithium: silicon: carbon = 0.140: 0
. A molar ratio of 060: 0.080 was weighed, and a total amount of 3.62 (g) was packed in a tungsten crucible 13 and placed on the inner bottom surface of a stainless steel sealed container 14. Lithium, silicon, and carbon having a purity of 99.9% or more were used. The seed crystal substrate 11 is about 15 mm × about 10 mm × about 0.4 mm.
A 4H silicon carbide single crystal having a large thickness was attached to a seed crystal substrate holding jig. The surface in contact with the melt was the just surface of the C surface [(000-1) surface].

密封容器14を電気炉15内に設置し、電気炉15の温度を上げ坩堝13を925℃に
加熱して、リチウムを融解させリチウムフラックスを作製した。リチウムフラックス中に
珪素と炭素を熔解させるため925℃で2時間保持し珪素と炭素の融液を得た。925℃
から900℃までは10℃/時間の速度で融液の温度を下げ、900℃から750℃まで
は3℃/時間の速度で融液の温度を下げた後、700℃から室温までは炉冷した。
The sealed container 14 was installed in the electric furnace 15, the temperature of the electric furnace 15 was raised, the crucible 13 was heated to 925 ° C., and lithium was melted to produce a lithium flux. In order to melt silicon and carbon in the lithium flux, it was kept at 925 ° C. for 2 hours to obtain a silicon-carbon melt. 925 ° C
From 900 ° C. to 900 ° C., the temperature of the melt is lowered at a rate of 10 ° C./hour, from 900 ° C. to 750 ° C., the temperature of the melt is lowered at a rate of 3 ° C./hour, and then from 700 ° C. to room temperature is cooled in the furnace. did.

得られた炭化珪素単結晶基板の評価結果を、図5に示す。図5a)は種結晶基板(4H
炭化珪素単結晶)のC面側の断面部を45度の角度から観察したSEM写真である。図5
a)の写真で、下向きの矢印領域が種結晶基板の4H炭化珪素単結晶で、上向きの矢印領
域が本実施例で得られた約33μm厚の2H炭化珪素単結晶である。図5b)は表面部の
SEM写真である。実施例1と同様に、LPE成長薄膜が形成されていることが判る。デ
ータは省略するが、X線回折結果からLPE成長薄膜は2H炭化珪素単結晶であることが
確認できた。
The evaluation result of the obtained silicon carbide single crystal substrate is shown in FIG. FIG. 5a) shows a seed crystal substrate (4H).
It is the SEM photograph which observed the cross-section part by the side of C side of (silicon carbide single crystal) from a 45-degree angle. FIG.
In the photograph a), the downward arrow region is a 4H silicon carbide single crystal of a seed crystal substrate, and the upward arrow region is a 2H silicon carbide single crystal of about 33 μm thickness obtained in this example. FIG. 5b) is an SEM photograph of the surface portion. It can be seen that an LPE-grown thin film is formed as in Example 1. Although the data is omitted, it was confirmed from the X-ray diffraction results that the LPE-grown thin film was a 2H silicon carbide single crystal.

本実施例は、種結晶基板のC面が8度のオフアングル面である以外は、実施例2と同じ
である。データは省略するが、種結晶基板のC面から8度のオフアングル面上に形成され
た、約50μm厚のLPE成長薄膜は2H炭化珪素単結晶であることが確認できた。
This example is the same as Example 2 except that the C-plane of the seed crystal substrate is an off-angle plane of 8 degrees. Although data is omitted, it was confirmed that the LPE grown thin film of about 50 μm thickness formed on the off-angle plane of 8 degrees from the C plane of the seed crystal substrate was a 2H silicon carbide single crystal.

本実施例は、種結晶基板のC面角度と融液の原料配合比、炉内温度の冷却速度を変えた
ものである。アルゴンガス雰囲気下のグローブボックス内で、リチウム:珪素:炭素=0
.35:0.20:0.20のモル比で秤量し、総量約10.4(g)をタングステン製
の坩堝13に詰め、ステンレス製の密封容器14の内底面に配した。純度99.9%以上
のリチウムと珪素、炭素を用いた。種結晶基板11は、約15mm×約10mm×約0.
4mm厚の大きさの4H炭化珪素単結晶で、種結晶基板保持治具に取り付けた。融液と接
する面がC面[(000−1)面]のジャスト面とした。密封容器14を電気炉15内に
設置し、電気炉15の温度を上げ坩堝13を925℃に加熱して、リチウムを融解させリ
チウムフラックスを作製した。リチウムフラックス中に珪素と炭素を熔解させるため92
5℃で2時間保持し珪素と炭素の融液を得た。925℃から900℃までは5℃/時間の
速度で融液の温度を下げ、900℃から750℃までは3℃/時間の速度で融液の温度を
下げた後、700℃から室温までは炉冷した。データは省略するが、種結晶基板のC面上
に形成された、約70μm厚のLPE成長薄膜は2H炭化珪素単結晶であることが確認で
きた。
In the present embodiment, the C-plane angle of the seed crystal substrate, the raw material blending ratio of the melt, and the cooling rate of the furnace temperature are changed. Lithium: silicon: carbon = 0 in a glove box under an argon gas atmosphere
. A molar ratio of 35: 0.20: 0.20 was weighed, and a total amount of about 10.4 (g) was packed in a tungsten crucible 13 and placed on the inner bottom surface of a stainless steel sealed container 14. Lithium, silicon, and carbon having a purity of 99.9% or more were used. The seed crystal substrate 11 is about 15 mm × about 10 mm × about 0.00 mm.
A 4H silicon carbide single crystal having a thickness of 4 mm was attached to a seed crystal substrate holding jig. The surface in contact with the melt was the just surface of the C surface [(000-1) surface]. The sealed container 14 was installed in the electric furnace 15, the temperature of the electric furnace 15 was raised, the crucible 13 was heated to 925 ° C., and lithium was melted to produce a lithium flux. 92 for melting silicon and carbon in lithium flux
The mixture was kept at 5 ° C. for 2 hours to obtain a silicon-carbon melt. The temperature of the melt is lowered at a rate of 5 ° C./hour from 925 ° C. to 900 ° C., the temperature of the melt is lowered at a rate of 3 ° C./hour from 900 ° C. to 750 ° C., and then from 700 ° C. to room temperature. The furnace was cooled. Although data is omitted, it was confirmed that the LPE grown thin film with a thickness of about 70 μm formed on the C-plane of the seed crystal substrate was a 2H silicon carbide single crystal.

密封容器を電気炉に設置した状態を示す概念図である。It is a conceptual diagram which shows the state which installed the sealed container in the electric furnace. 実施例1で形成した基板の断面と表面のSEM写真である。2 is a SEM photograph of a cross section and a surface of a substrate formed in Example 1. 実施例1で形成した基板LPE成長薄膜のX線回折結果である。3 is an X-ray diffraction result of a substrate LPE grown thin film formed in Example 1. FIG. 実施例1で形成した基板以外の混合生成物を、ω/2θでスキャンしたX線回折結果である。It is the X-ray-diffraction result which scanned mixed products other than the board | substrate formed in Example 1 by (omega) / 2 (theta). 実施例2で形成した基板の断面と表面のSEM写真である。4 is a SEM photograph of a cross section and a surface of a substrate formed in Example 2.

符号の説明Explanation of symbols

11 種結晶基板、12 融液、
13 坩堝、14 密封容器、
15 電気炉、16 種結晶基板保持治具。
11 seed crystal substrate, 12 melt,
13 crucibles, 14 sealed containers,
15 Electric furnace, 16 seed crystal substrate holding jig.

Claims (5)

4H炭化珪素単結晶もしくは6H炭化珪素単結晶のC面[(000−1)面]に、2H
炭化珪素単結晶が形成されたことを特徴とする炭化珪素単結晶基板。
2H silicon carbide single crystal or 6H silicon carbide single crystal C plane [(000-1) plane]
A silicon carbide single crystal substrate in which a silicon carbide single crystal is formed.
4H炭化珪素単結晶もしくは6H炭化珪素単結晶のC面[(000−1)面]の傾きが
、8度以下であることを特徴とする請求項1に記載の炭化珪素単結晶基板。
2. The silicon carbide single crystal substrate according to claim 1, wherein the inclination of the C plane [(000-1) plane] of the 4H silicon carbide single crystal or 6H silicon carbide single crystal is 8 degrees or less.
2H炭化珪素単結晶が液相中でエピタキシャル成長したLPE膜であることを特徴とす
る請求項1に記載の炭化珪素単結晶基板。
2. The silicon carbide single crystal substrate according to claim 1, wherein the 2H silicon carbide single crystal is an LPE film epitaxially grown in a liquid phase.
2H炭化珪素単結晶の厚み(LPE膜厚)が30μm以上であることを特徴とする請求
項1もしくは3に記載の炭化珪素単結晶基板。
4. The silicon carbide single crystal substrate according to claim 1, wherein the 2H silicon carbide single crystal has a thickness (LPE film thickness) of 30 μm or more. 5.
リチウムと珪素、炭素の原料を秤量する工程、4H炭化珪素単結晶もしくは6H炭化珪
素単結晶の種結晶基板を作製する工程、秤量した原料と種結晶基板を坩堝に入れ、坩堝を
密封容器に密封する工程、密封容器を加熱しリチウムフラックス中で珪素と炭素の融液を
作製する工程、種結晶基板のC面[(000−1)面]に2H炭化珪素単結晶をLPE成
長させる工程、密封容器冷却後炭化珪素単結晶基板取り出す工程を有することを特徴とす
る炭化珪素単結晶基板の製造方法。
A step of weighing lithium, silicon, and carbon raw materials, a step of preparing a 4H silicon carbide single crystal or 6H silicon carbide single crystal seed crystal substrate, placing the weighed raw material and seed crystal substrate in a crucible, and sealing the crucible in a sealed container A step of heating a sealed container to produce a silicon-carbon melt in lithium flux, a step of LPE growing a 2H silicon carbide single crystal on the C-plane [(000-1) plane] of the seed crystal substrate, sealing A method for producing a silicon carbide single crystal substrate comprising a step of taking out a silicon carbide single crystal substrate after cooling the container.
JP2007079500A 2007-03-26 2007-03-26 Silicon carbide single crystal substrate and method for manufacturing the same Active JP4707148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079500A JP4707148B2 (en) 2007-03-26 2007-03-26 Silicon carbide single crystal substrate and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079500A JP4707148B2 (en) 2007-03-26 2007-03-26 Silicon carbide single crystal substrate and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2008239371A true JP2008239371A (en) 2008-10-09
JP4707148B2 JP4707148B2 (en) 2011-06-22

Family

ID=39911158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079500A Active JP4707148B2 (en) 2007-03-26 2007-03-26 Silicon carbide single crystal substrate and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4707148B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265133A (en) * 2009-05-13 2010-11-25 Hitachi Metals Ltd Method for manufacturing 2h silicon carbide single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001398A (en) * 1998-06-09 2000-01-07 Fuji Electric Co Ltd Production of silicon carbide semiconductor substrate
JP2003282451A (en) * 2002-03-22 2003-10-03 National Institute Of Advanced Industrial & Technology METHOD OF FORMATION SiC MONOCRYSTALLINE THIN FILM
WO2006070749A1 (en) * 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. METHOD FOR PRODUCING SILICON CARBIDE (SiC) SINGLE CRYSTAL AND SILICON CARBIDE (SiC) SINGLE CRYSTAL OBTAINED BY SUCH METHOD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001398A (en) * 1998-06-09 2000-01-07 Fuji Electric Co Ltd Production of silicon carbide semiconductor substrate
JP2003282451A (en) * 2002-03-22 2003-10-03 National Institute Of Advanced Industrial & Technology METHOD OF FORMATION SiC MONOCRYSTALLINE THIN FILM
WO2006070749A1 (en) * 2004-12-28 2006-07-06 Matsushita Electric Industrial Co., Ltd. METHOD FOR PRODUCING SILICON CARBIDE (SiC) SINGLE CRYSTAL AND SILICON CARBIDE (SiC) SINGLE CRYSTAL OBTAINED BY SUCH METHOD

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010265133A (en) * 2009-05-13 2010-11-25 Hitachi Metals Ltd Method for manufacturing 2h silicon carbide single crystal

Also Published As

Publication number Publication date
JP4707148B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4419937B2 (en) Method for producing silicon carbide single crystal
EP2881499B1 (en) Method for growing silicon carbide crystal
KR101235772B1 (en) Method for growing silicon carbide single crystal
KR100806999B1 (en) METHOD FOR PRODUCING SILICON CARBIDESiC SINGLE CRYSTAL AND SILICON CARBIDESiC SINGLE CRYSTAL OBTAINED BY SUCH METHOD
JP5483216B2 (en) SiC single crystal and method for producing the same
JP4277926B1 (en) Growth method of silicon carbide single crystal
JP2004002173A (en) Silicon carbide single crystal and its manufacturing method
JP2006321681A (en) Method for producing silicon carbide single crystal
US20050183657A1 (en) Silicon carbide single crystal and a method for its production
JP5244007B2 (en) Method for producing 3C-SiC single crystal
EP2940196A1 (en) METHOD FOR PRODUCING n-TYPE SiC SINGLE CRYSTAL
US8702864B2 (en) Method for growing silicon carbide single crystal
KR20180037204A (en) Manufacturing method of SiC single crystal
JP2007197274A (en) Method for manufacturing silicon carbide single crystal
JP5167947B2 (en) Method for producing silicon carbide single crystal thin film
JP4466293B2 (en) Method for producing silicon carbide single crystal
JP4707148B2 (en) Silicon carbide single crystal substrate and method for manufacturing the same
Bickermann et al. Vapor transport growth of wide bandgap materials
EP1498518B1 (en) Method for the production of silicon carbide single crystal
JP2009107873A (en) Method for manufacturing 2h silicon carbide single crystal and 2h silicon carbide single crystal manufactured thereby
JP5218271B2 (en) Method for producing 2H silicon carbide single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R150 Certificate of patent or registration of utility model

Ref document number: 4707148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250