JP2008238632A - Electrooptical device, image forming apparatus, and method for manufacturing electrooptical device - Google Patents

Electrooptical device, image forming apparatus, and method for manufacturing electrooptical device Download PDF

Info

Publication number
JP2008238632A
JP2008238632A JP2007083691A JP2007083691A JP2008238632A JP 2008238632 A JP2008238632 A JP 2008238632A JP 2007083691 A JP2007083691 A JP 2007083691A JP 2007083691 A JP2007083691 A JP 2007083691A JP 2008238632 A JP2008238632 A JP 2008238632A
Authority
JP
Japan
Prior art keywords
light
electro
lens array
brightness
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007083691A
Other languages
Japanese (ja)
Other versions
JP4320681B2 (en
Inventor
Tsugio Gomi
二夫 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007083691A priority Critical patent/JP4320681B2/en
Priority to US11/848,949 priority patent/US7697022B2/en
Priority to TW096136424A priority patent/TW200821780A/en
Priority to KR1020070097754A priority patent/KR20080029873A/en
Priority to CN2007101532994A priority patent/CN101153696B/en
Publication of JP2008238632A publication Critical patent/JP2008238632A/en
Application granted granted Critical
Publication of JP4320681B2 publication Critical patent/JP4320681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate variation in brightness of a light emitting element and variation in density of an image caused by the variation in brightness in an electrooptical device equipped with an electrooptical panel having electrooptical elements arranged therein, for example, light emitting elements such as EL elements or light bulb elements, and an image forming apparatus using the electrooptical device. <P>SOLUTION: This electrooptical device comprises the electrooptical panel 2 having the plurality of electrooptical elements 21 each emitting light, a focusing lens array 4 having refraction index distribution type lenses 41 capable of imaging an upright image with respect to an image on the electrooptical panel 2 by transmitting the light emitted from the electrooptical panel 2, and a light transmissive member 3 which is interposed between the electrooptical panel 2 and the focusing lens array 4 and is adapted to guide the light emitted from the electrooptical panel 2 to the focusing lens array 4. The transmission factors of the light transmissive member 3 in the optical axis direction of the lenses 41 are differed from each other in the arrangement direction of the lenses 41. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えばEL素子等の発光素子またはライトバルブ素子のような電気光学素子
が配列された電気光学パネルを備えた電気光学装置およびそれを用いた画像形成装置なら
びに電気光学装置の製造方法に関する。
The present invention relates to an electro-optical device including an electro-optical panel in which electro-optical elements such as light-emitting elements such as EL elements or light valve elements are arranged, an image forming apparatus using the same, and a method for manufacturing the electro-optical device. .

従来たとえば電子写真方式の画像形成装置における感光体ドラム等の像担持体上に静電
潜像を形成するために、エレクトロルミネセント素子(以下、EL素子という)等の発光
素子を複数個、例えばライン状に配列させて設けた発光素子アレイ(EL素子アレイ)等
の発光パネルを使用する技術が開発されている。このような技術では、一般的に、発光パ
ネルと像担持体との間に集束性レンズアレイが配置される。又このような配置において、
上記発光パネルから発せられた光の損失を低減するために、下記特許文献1のように発光
パネルと集束性レンズアレイとの間に光透過部材を配置することが提案されている。
Conventionally, in order to form an electrostatic latent image on an image carrier such as a photosensitive drum in an electrophotographic image forming apparatus, a plurality of light emitting elements such as electroluminescent elements (hereinafter referred to as EL elements), for example, A technique using a light emitting panel such as a light emitting element array (EL element array) arranged in a line has been developed. In such a technique, a converging lens array is generally disposed between a light emitting panel and an image carrier. In such an arrangement,
In order to reduce the loss of light emitted from the light-emitting panel, it has been proposed to dispose a light transmission member between the light-emitting panel and the converging lens array as described in Patent Document 1 below.

図9は従来の画像形成装置の一部の概略を示す斜視図、図10はその側面図である。本
例の画像形成装置1では、EL素子アレイ等の発光パネル2と感光体ドラム等の像担持体
10との間に、集束性レンズアレイ4が配置され、発光パネル2と収束性レンズアレイ4
との間に光透過部材3が配置されている。収束性レンズアレイ4としては、例えば日本板
硝子株式会社から入手可能なSLA(セルフォック・レンズ・アレイ)がある。(セルフ
ォック、SELFOCは日本板硝子株式会社の登録商標)。
FIG. 9 is a perspective view schematically showing a part of a conventional image forming apparatus, and FIG. 10 is a side view thereof. In the image forming apparatus 1 of this example, a converging lens array 4 is disposed between a light emitting panel 2 such as an EL element array and an image carrier 10 such as a photosensitive drum, and the light emitting panel 2 and the converging lens array 4.
The light transmission member 3 is disposed between the two. As the convergent lens array 4, for example, there is an SLA (selfoc lens array) available from Nippon Sheet Glass Co., Ltd. (Selfoc and SELFOC are registered trademarks of Nippon Sheet Glass Co., Ltd.).

図11は収束性レンズアレイ4の概略構成を示す斜視図である。この収束性レンズアレ
イ4は、一方向(図でX方向)に千鳥状に配列させた複数の屈折率分布型レンズ41を有
する。その屈折率分布型レンズ41としては、例えば中心軸での屈折率が低く、中心軸か
ら離れるほど屈折率が高くなるように構成されたグレーデッドインデックス光ファイバ等
が用いられ、前記発光パネル2から入射した光を透過させて該パネル2上に形成される像
に対する正立像を像担持体10上に結像する構成である。これらの複数の屈折率分布型レ
ンズ41で得られた像は像担持体10上で1つの連続した像を構成する。
FIG. 11 is a perspective view showing a schematic configuration of the convergent lens array 4. The convergent lens array 4 has a plurality of gradient index lenses 41 arranged in a zigzag pattern in one direction (X direction in the figure). As the gradient index lens 41, for example, a graded index optical fiber configured such that the refractive index at the central axis is low and the refractive index increases as the distance from the central axis increases is used. In this configuration, the incident light is transmitted and an erect image corresponding to the image formed on the panel 2 is formed on the image carrier 10. The images obtained by the plurality of gradient index lenses 41 constitute one continuous image on the image carrier 10.

ところが、上記発光パネル2を構成するEL素子等の発光素子には、例えば図12に示
すように明るさ(輝度やパワー)のバラツキがある。図中のA1は発光素子から射出され
る光の明るさ、A1’は像担持体等の結像面での明るさを表す。上記のバラツキは発光素
子の製造バラツキなどが原因である。このような発光素子の明るさにバラツキがある状態
で静電潜像を形成すると、最終的に現像した画像に濃淡の差や濃淡ムラ等が出てしまい綺
麗な画像を得ることができない。そこで、上記のような発光素子の明るさのバラツキを無
くすために、下記特許文献2のようにドライバIC等の駆動回路上に上記のバラツキを補
正する機能(例えば電流・電圧の調整、発光時間の調整など)を設けることが提案されて
いる。
However, light emitting elements such as EL elements constituting the light emitting panel 2 have variations in brightness (brightness and power) as shown in FIG. 12, for example. In the figure, A1 represents the brightness of light emitted from the light emitting element, and A1 ′ represents the brightness on the imaging surface of the image carrier or the like. The above variations are caused by manufacturing variations of light emitting elements. If an electrostatic latent image is formed in a state where the brightness of such light emitting elements varies, a difference in density, density unevenness, etc. appear in the finally developed image, and a beautiful image cannot be obtained. Therefore, in order to eliminate the brightness variation of the light emitting element as described above, a function for correcting the above variation on a drive circuit such as a driver IC (for example, adjustment of current / voltage, light emission time, etc.) Etc.) are proposed.

特開2006−218848号公報JP 2006-218848 A 特開2006−289721号公報JP 2006-289721 A

しかしながら、駆動回路上に上記のような機能を設けると、駆動回路が大型化して発光
パネルの小型化に不利となるだけでなく、コストが嵩む等の不具合がある。また発光素子
の明るさのバラツキを補正するには、発光素子の明るさの測定と、電流・電圧または発光
時間の調整とを繰り返し行わなければならないので多大な労力と時間を要し、非能率的で
製作コストが増大する等の不具合がある。
However, providing the above-described function on the drive circuit not only disadvantageously increases the size of the drive circuit and reduces the size of the light-emitting panel, but also has a disadvantage of increasing costs. In addition, to correct variations in brightness of light-emitting elements, it is necessary to repeatedly measure the brightness of the light-emitting elements and adjust the current, voltage, or light emission time. There is a problem that the manufacturing cost increases.

本発明は上記の問題点に鑑みて提案されたもので、発光素子の明るさのバラツキ、及び
それに起因する画像の濃淡ムラ等の不具合を容易に解消することのできる電気光学装置お
よびそれを用いた画像形成装置ならびに電気光学装置の製造方法を提供することを目的と
する。
The present invention has been proposed in view of the above-described problems, and an electro-optical device that can easily eliminate problems such as variations in brightness of light-emitting elements and unevenness in image density due to the variations, and use thereof. It is an object of the present invention to provide an image forming apparatus and a method for manufacturing an electro-optical device.

上記の目的を達成するために本発明による電気光学装置およびその製造方法ならびに電
気光学装置の製造方法は、以下の構成としたものである。すなわち、本発明による電気光
学装置は、与えられた電気エネルギーにより発光特性または光の透過特性が変化する複数
の電気光学素子を有し、前記複数の電気光学素子の各々からの光を射出する電気光学パネ
ルと、前記電気光学パネルから射出する光を透過させて前記電気光学パネル上の像に対す
る正立像を結像可能な屈折率分布型レンズが該レンズの光軸方向と直角方向に複数配列さ
れ、その複数のレンズで得られた像が1つの連続した像を構成する集束性レンズアレイと
、前記電気光学パネルと前記集束性レンズアレイとの間に介在され、前記電気光学パネル
から射出する光を前記集束性レンズアレイに導く光透過部材とを備え、前記光透過部材の
光透過率を、前記レンズの配列方向において異ならせたことを特徴とする。
In order to achieve the above object, an electro-optical device, a manufacturing method thereof, and a manufacturing method of an electro-optical device according to the present invention are configured as follows. In other words, the electro-optical device according to the present invention includes a plurality of electro-optical elements whose light emission characteristics or light transmission characteristics are changed by given electric energy, and which emits light from each of the plurality of electro-optical elements. An optical panel and a plurality of gradient index lenses that transmit light emitted from the electro-optical panel and can form an erect image with respect to the image on the electro-optical panel are arranged in a direction perpendicular to the optical axis direction of the lens. A converging lens array in which images obtained by the plurality of lenses constitute one continuous image, and light emitted from the electro-optical panel interposed between the electro-optical panel and the converging lens array And a light transmissive member for guiding the light to the converging lens array, and the light transmittance of the light transmissive member is made different in the arrangement direction of the lenses.

上記のように光透過部材の光透過率を、前記レンズの配列方向において異ならせたこと
によって、複数の電気光学素子の明るさのバラツキ等に起因する画像の濃淡ムラ等の不具
合を容易に解消することが可能となる。
As described above, by making the light transmittance of the light transmitting member different in the lens arrangement direction, it is possible to easily eliminate problems such as unevenness in image density due to variations in brightness of a plurality of electro-optical elements. It becomes possible to do.

前記光透過部材は、例えば前記レンズの光軸方向に一層または複数層積層した構成とし
、その少なくとも1つの層の光透過部材の光透過率を、前記レンズの配列方向において異
ならせるようにしてもよい。このようにすると、光透過部材を構成する少なくとも1層の
光透過部材の光透過率を変化させるだけで、複数の電気光学素子の明るさのバラツキ等に
起因する画像の濃淡ムラ等の不具合を容易に解消することが可能となる。
For example, the light transmissive member may have a structure in which one or more layers are laminated in the optical axis direction of the lens, and the light transmittance of the light transmissive member of at least one layer may be different in the arrangement direction of the lenses. Good. In this way, it is possible to eliminate defects such as unevenness of image density due to variations in brightness of the plurality of electro-optical elements, etc., only by changing the light transmittance of at least one light transmitting member constituting the light transmitting member. It can be easily solved.

具体的には、例えば前記光透過部材の光透過率を、前記複数の電気光学素子から射出さ
れる光の明るさ、又は前記複数の電気光学素子から射出され前記集束性レンズアレイを透
過した光の明るさに応じて異ならせるもので、より好ましくは上記の明るさに、ほぼ反比
例して異ならせるようにすればよい。そのようにすると、複数の電気光学素子から射出さ
れる光の明るさ、又は複数の電気光学素子から前記集束性レンズアレイを透過して射出さ
れる光の明るさが、明るいほど光透過部材の光透過率が低く設定され、逆に上記の明るさ
が低下するほど光透過部材の光透過率が高く設定される。それによって、前記複数の電気
光学素子と集束性レンズアレイとの間に光透過部材を介在させたときの明るさや光透過率
を、前記レンズの配列方向において均一化させることができる。
Specifically, for example, the light transmittance of the light transmitting member is set to the brightness of light emitted from the plurality of electro-optical elements, or the light emitted from the plurality of electro-optical elements and transmitted through the converging lens array. The brightness may be varied according to the brightness of the light source, and more preferably, the brightness may be varied substantially in inverse proportion to the brightness. As a result, the brightness of the light emitted from the plurality of electro-optical elements or the brightness of the light emitted from the plurality of electro-optical elements through the converging lens array becomes brighter. The light transmittance is set to be low, and conversely, the light transmittance of the light transmissive member is set to be high as the above-described brightness decreases. Accordingly, it is possible to make the brightness and light transmittance uniform when the light transmitting member is interposed between the plurality of electro-optical elements and the converging lens array in the lens arrangement direction.

また本発明による画像形成装置は、像担持体と、前記像担持体を帯電する帯電器と、前
記電気光学パネルから進行して前記集束性レンズアレイを透過する光を、前記像担持体の
帯電された面に照射して潜像を形成する前記の電気光学装置と、前記潜像にトナーを付着
させることにより前記像担持体に顕像を形成する現像器と、前記像担持体から前記顕像を
他の物体に転写する転写器とを備えたことを特徴とする。このように本発明による画像形
成装置は、前記のように構成された電気光学装置を用いて潜像形成を行うことで、バラツ
キやムラの無い潜像形成が可能となり、高品質な画像形成を行うことができる。
The image forming apparatus according to the present invention also includes an image carrier, a charger that charges the image carrier, and light that travels from the electro-optical panel and passes through the converging lens array. The electro-optical device that forms a latent image by irradiating the surface, a developing unit that forms a visible image on the image carrier by attaching toner to the latent image, and the developer from the image carrier. And a transfer device for transferring an image to another object. As described above, the image forming apparatus according to the present invention performs latent image formation using the electro-optical device configured as described above, thereby enabling formation of a latent image without variation and unevenness, and high-quality image formation. It can be carried out.

さらに本発明による電気光学装置の製造方法は、前記の電気光学装置を製造する方法で
あって、前記複数の電気光学素子から射出される光の明るさ、又は前記複数の電気光学素
子から前記集束性レンズアレイを透過して射出される光の明るさを前記レンズの配列方向
に沿って順に測定する明度測定工程と、前記明度測定工程で得られた測定結果に基づいて
前記光透過部材の光透過率を、前記レンズの配列方向において段階的もしくは連続的に異
なるように設定する光透過率設定工程とを有し、その光透過率設定工程で設定された光透
過率を有する光透過部材を、前記電気光学パネルと前記集束性レンズアレイとの間に介在
させた状態に組み付ける組付工程とを有することを特徴とする。このような電気光学装置
の製造方法によれば、前記複数の電気光学素子の明るさのバラツキ等に起因する画像の濃
淡ムラ等の不具合を解消して高品質な電気光学装置を容易・安価に提供するすることが可
能となる。
Furthermore, a method for manufacturing an electro-optical device according to the present invention is a method for manufacturing the electro-optical device, the brightness of light emitted from the plurality of electro-optical elements, or the focusing from the plurality of electro-optical elements. A lightness measurement step of measuring the brightness of light emitted through the transparent lens array in order along the lens arrangement direction, and light of the light transmitting member based on the measurement result obtained in the lightness measurement step A light transmittance setting step for setting the transmittance so as to vary stepwise or continuously in the lens arrangement direction, and a light transmissive member having the light transmittance set in the light transmittance setting step. And an assembling step for assembling the electro-optical panel and the converging lens array. According to such a method of manufacturing an electro-optical device, it is possible to easily and inexpensively produce a high-quality electro-optical device by eliminating problems such as unevenness in the density of an image caused by variations in brightness of the plurality of electro-optical elements. It becomes possible to provide.

以下、本発明による電気光学装置および画像形成装置ならびに電気光学装置の製造方法
を、図に示す実施形態に基づいて具体的に説明する。なお、以下の各図においては、各部
の寸法の比率は実際のものとは適宜に異ならせてある。また以下の各実施形態における電
気光学装置としては、それぞれ電子写真方式を利用した画像形成装置における感光体ドラ
ム等の像担持体上に静電潜像を形成するためのライン型の光ヘッドとして用いられる場合
を例にして説明する。
Hereinafter, an electro-optical device, an image forming apparatus, and a method of manufacturing the electro-optical device according to the present invention will be specifically described based on the embodiments shown in the drawings. In the following drawings, the ratio of the dimensions of each part is appropriately changed from the actual one. In addition, as an electro-optical device in each of the following embodiments, it is used as a line-type optical head for forming an electrostatic latent image on an image carrier such as a photosensitive drum in an image forming apparatus using an electrophotographic method. This will be described as an example.

<第1の実施形態>
〔電気光学装置〕
図1は本発明による電気光学装置の一実施形態を示す平面図であり、図2はその電気光
学装置の側面図である。図示例の電気光学装置1は、発光パネル(電気光学パネル)2と
、集束性レンズアレイ4と、その発光パネルと集束性レンズアレイ4との間に介在させた
光透過部材3とを有する。上記発光パネル2は、光透過性の素子基板(アレイ基板)22
と、素子基板22上に形成された複数の電気光学素子としての発光素子21と、これらの
発光素子21を覆う封止体23とを有し、各発光素子21からの光を素子基板22の光出
射面(図で上面)S3から射出する構成である。
<First Embodiment>
Electro-optical device
FIG. 1 is a plan view showing an embodiment of an electro-optical device according to the present invention, and FIG. 2 is a side view of the electro-optical device. The electro-optical device 1 in the illustrated example includes a light-emitting panel (electro-optical panel) 2, a converging lens array 4, and a light transmission member 3 interposed between the light-emitting panel and the converging lens array 4. The light emitting panel 2 includes a light transmissive element substrate (array substrate) 22.
A light emitting element 21 as a plurality of electro-optical elements formed on the element substrate 22, and a sealing body 23 covering these light emitting elements 21. Light from each light emitting element 21 is transmitted to the element substrate 22. In this configuration, the light exits from the light exit surface (upper surface in the figure) S3.

上記各発光素子21は、与えられた電気エネルギーにより発光特性が変化する電気光学
素子であり、具体的には注入されたキャリヤの再結合によって励起して発光する発光層と
、この発光層を挟む一対の電極を有し、これら一対の電極間に印加された電圧に応じて発
光する有機EL素子である。これら一対の電極のうち、素子基板22側の電極は、ITO
(Indium Tin oxide)等の透明電極である。発光パネル2には、各発光素子21へ駆動電
圧を与えるための配線が設けられている。なお、発光パネル2に、各発光素子21へ駆動
電圧を与えるための回路素子(例えばTFT(薄膜トランジスタ))を設けてもよい。
Each of the light emitting elements 21 is an electro-optical element whose light emission characteristics are changed by applied electric energy. Specifically, the light emitting element 21 is excited by recombination of injected carriers and sandwiches the light emitting layer. The organic EL element has a pair of electrodes and emits light according to a voltage applied between the pair of electrodes. Of these pair of electrodes, the electrode on the element substrate 22 side is ITO.
It is a transparent electrode such as (Indium Tin oxide). The light emitting panel 2 is provided with wiring for applying a driving voltage to each light emitting element 21. The light emitting panel 2 may be provided with a circuit element (for example, TFT (thin film transistor)) for applying a driving voltage to each light emitting element 21.

素子基板22は、ガラスや透明なプラスチックなどの光透過性の材料で形成された平板
であり、この素子基板22上に発光素子21が一方向に千鳥状に配列されており、これら
の発光素子21を通る平面が発光面Qとなっている。封止体23は、素子基板22に取り
付けられており、素子基板22と協働して、発光素子21を外気、特に水分および酸素か
ら隔離してその劣化を抑制する。
The element substrate 22 is a flat plate made of a light-transmitting material such as glass or transparent plastic, and the light emitting elements 21 are arranged in a staggered pattern in one direction on the element substrate 22. A plane passing through 21 is a light emitting surface Q. The sealing body 23 is attached to the element substrate 22, and cooperates with the element substrate 22 to isolate the light emitting element 21 from the outside air, particularly moisture and oxygen, and suppress the deterioration thereof.

集束性レンズアレイ4は、その光入射面S2に入射した光の一部を透過させてその光出
射面S1から射出するものであり、発光パネル2から進行する光を透過させて発光面Qの
像(発光パネル2上の像)に対する正立像を結像可能な複数の屈折率分布型レンズ41を
有する。集束性レンズアレイ4の光入射面S2と発光パネル2の光出射面S3とは互いに
対向しており、発光面Qと光出射面S3との間隔は、素子基板22の厚みと光透過部材3
の厚みの和に略一致している。上記のような電気光学装置1においては、光出射面S1と
結像面Pとの間隔が、集束性レンズアレイ4の像側の作動距離に合致するように配置され
る。
The converging lens array 4 transmits a part of the light incident on the light incident surface S2 and emits the light from the light emitting surface S1, and transmits the light traveling from the light emitting panel 2 so as to pass through the light emitting surface Q. A plurality of gradient index lenses 41 capable of forming an erect image with respect to an image (an image on the light emitting panel 2) are provided. The light incident surface S2 of the converging lens array 4 and the light emitting surface S3 of the light emitting panel 2 are opposed to each other, and the distance between the light emitting surface Q and the light emitting surface S3 depends on the thickness of the element substrate 22 and the light transmitting member 3.
It is approximately equal to the sum of the thicknesses. In the electro-optical device 1 as described above, the distance between the light emitting surface S1 and the imaging surface P is arranged so as to match the working distance on the image side of the converging lens array 4.

上記各屈折率分布型レンズ41は、図1に示すように一方向(X方向)に千鳥状に配列
されており、発光パネル2の発光素子21が形成された領域に重なっている。複数の屈折
率分布型レンズ41で得られた像は、1つの連続した像を構成する。なお、発光素子21
および屈折率分布型レンズ41の配列パターンは、それぞれ、図示の形態に限定されず、
単列または三列以上でもよいし他の適切なパターンで配列されていてもよい。
Each of the gradient index lenses 41 is arranged in a zigzag pattern in one direction (X direction) as shown in FIG. 1 and overlaps the region where the light emitting elements 21 of the light emitting panel 2 are formed. The images obtained by the plurality of gradient index lenses 41 constitute one continuous image. The light emitting element 21
And the arrangement pattern of the gradient index lens 41 is not limited to the illustrated form,
It may be a single row or three or more rows, or may be arranged in another suitable pattern.

光透過部材3は、発光パネル2と集束性レンズアレイ4との間に介在されて両者の間隔
を一定に保つと共に、発光パネル2からの光を集束性レンズアレイ4に導く構成であり、
上記レンズ1の光軸方向に1つまたは複数個の層として構成される。また上記光透過部材
3は、各屈折率分布型レンズ41の光軸を横切って延在し、本実施形態においてはガラス
または透明なプラスチックで形成されたX方向に長い全体ほぼ直方体状に形成され、発光
パネル2から射出する光を透過させて集束性レンズアレイ4に導く。上記発光パネル2の
面のうち、発光パネル2側の面の全域は発光パネル2の光出射面S3に接し、集束性レン
ズアレイ4側の面には集束性レンズアレイ4の光入射面S2の全域が接している。
The light transmitting member 3 is interposed between the light emitting panel 2 and the converging lens array 4 to keep the distance between them constant, and guides the light from the light emitting panel 2 to the converging lens array 4.
The lens 1 is configured as one or a plurality of layers in the optical axis direction. The light transmitting member 3 extends across the optical axis of each gradient index lens 41, and in the present embodiment, is formed in a substantially rectangular parallelepiped shape that is long in the X direction and is made of glass or transparent plastic. Then, the light emitted from the light emitting panel 2 is transmitted and guided to the converging lens array 4. Of the surface of the light emitting panel 2, the entire surface on the light emitting panel 2 side is in contact with the light emitting surface S3 of the light emitting panel 2, and the surface on the converging lens array 4 side is the surface of the light incident surface S2 of the converging lens array 4. The whole area touches.

そして本発明は上記光透過部材3の光透過率、より詳しくは前記レンズ41の光軸方向
における光透過率を、前記レンズ41および発光素子21の配列方向(図1,図2におけ
るX方向)において異ならせるようにしたもので、図の実施形態においては上記光透過部
材3を1つの層として構成し、その1つの層からなる光透過部材3を長手方向(上記X方
向)に複数個の部分30a〜30cに分けて、その各部分30a〜30cの光透過率を異
ならせたものである。それによって、複数の電気光学素子としての前記発光素子21また
は、その素子21と集束性レンズアレイ4と合わせた明るさのバラツキを解消することが
可能となるものである。
In the present invention, the light transmittance of the light transmitting member 3, more specifically, the light transmittance in the optical axis direction of the lens 41, and the arrangement direction of the lens 41 and the light emitting element 21 (X direction in FIGS. 1 and 2). In the embodiment shown in the figure, the light transmitting member 3 is configured as one layer, and the light transmitting member 3 composed of the one layer has a plurality of longitudinal directions (the X direction). The portions 30a to 30c are divided into portions 30a to 30c having different light transmittances. Accordingly, it is possible to eliminate variations in brightness of the light emitting element 21 as a plurality of electro-optical elements or the combination of the element 21 and the converging lens array 4.

具体的には、例えば前記複数の発光素子21から射出される光の明るさが、図3のA1
のように発光素子21やレンズ41の配列方向(図3で左右方向)すなわち前記X方向に
バラツキがある場合に、その明るさにほぼ反比例して光透過部材3の光透過率を設定する
ようにしたもので、本実施形態においては図3に示すように発光素子21の配列方向中央
部が明るく、両端部の明るさが中央部よりも低下するので、それに応じて光透過部材3の
両端部分30a,30cの光透過率を比較的高い光透過率a1とし、中央部分30bの光
透過率を、それよりも低い光透過率a2となるようにしたものである。
Specifically, for example, the brightness of light emitted from the light emitting elements 21 is A1 in FIG.
When there is a variation in the arrangement direction of the light emitting element 21 and the lens 41 (left and right direction in FIG. 3), that is, the X direction, the light transmittance of the light transmitting member 3 is set almost inversely proportional to the brightness. In this embodiment, as shown in FIG. 3, the central portion of the light emitting element 21 in the arrangement direction is bright and the brightness of both ends is lower than that of the central portion. The light transmittances of the portions 30a and 30c are set to a relatively high light transmittance a1, and the light transmittance of the central portion 30b is set to a light transmittance a2 lower than that.

それによって、図2において光の明るさIX1の発光素子21からの光が素子基板22
と光透過部材3の部分30aおよび集束性レンズアレイ4を透過して像担持体10等の結
像面に投影結像される光の明るさIY1と、光の明るさIX2の発光素子21からの光が
素子基板22と光透過部材3の部分30aおよび集束性レンズアレイ4を透過して像担持
体10等の結像面に投影結像される光の明るさIY2とを、ほぼ等しくすることができる
ものである。その関係を下記(1)〜(3)式に示す。なお、下記式中のbは素子基板2
1の光透過率、sは集束性レンズアレイの光利用率を表す。
Thereby, the light from the light emitting element 21 having the light brightness I X1 in FIG.
And a light-emitting element having a light brightness I Y1 and a light brightness I X2 that are transmitted through the portion 30a of the light transmitting member 3 and the converging lens array 4 and projected onto the image forming surface of the image carrier 10 or the like. The brightness I Y2 of the light projected from the element substrate 22, the portion 30a of the light transmitting member 3 and the converging lens array 4 and projected onto the imaging surface of the image carrier 10 or the like, It can be made almost equal. The relationship is shown in the following formulas (1) to (3). In the following formula, b is the element substrate 2
The light transmittance of 1 and s represent the light utilization rate of the converging lens array.

Figure 2008238632
Figure 2008238632

上記のように本発明によれば、光透過部材3の光透過率を、前記レンズ41の配列方向
において異ならせることで、発光素子21の明るさのバラツキを補正することが可能とな
る。特に、上記実施形態のように発光素子21の明るさに応じて光透過部材3のレンズ4
1の配列方向における光透過率を段階的に異ならせる(変化させる)ことで前記図3のA
1のような発光素子の明るさのバラツキを補正できるもので、同図のA2は補正後の明る
さ、すなわち図2のように発光パネル2と集束性レンズアレイ4との間に光透過部材3を
介在させた状態での結像面P上での明るさを表す。A1に比べA2の明るさのバラツキが
少ないことが分かる。
As described above, according to the present invention, by varying the light transmittance of the light transmissive member 3 in the arrangement direction of the lenses 41, it is possible to correct variations in brightness of the light emitting elements 21. In particular, the lens 4 of the light transmitting member 3 according to the brightness of the light emitting element 21 as in the above embodiment.
3 by changing (changing) the light transmittance in the arrangement direction of 1 stepwise.
1 can correct the brightness variation of the light-emitting element, and A2 in FIG. 2 is the corrected brightness, that is, a light transmitting member between the light-emitting panel 2 and the converging lens array 4 as shown in FIG. 3 represents the brightness on the imaging plane P with 3 interposed. It can be seen that there is less variation in brightness of A2 than A1.

なお、上記実施形態は光透過部材3の光透過率を段階的に異ならせたが、連続的に変化
させるようにしてもよい。また上記実施形態は、発光素子21の明るさのバラツキを補正
したが、集束性レンズアレイ4にも透過率や明るさのバラツキがある場合には、発光素子
21と集束性レンズアレイ4とを合わせた明るさのバラツキに応じて光透過部材3の光透
過率を異ならせるようにしてもよい。さらに上記光透過部材3として、なるべく光透過率
の高いものを使用すると、補正後の明るさを、より明るくすることができる。
In the above embodiment, the light transmittance of the light transmissive member 3 is changed stepwise, but may be changed continuously. Moreover, although the said embodiment corrected the variation in the brightness of the light emitting element 21, when the convergence lens array 4 also has the transmittance | permeability and the brightness variation, the light emitting element 21 and the convergent lens array 4 are used. You may make it vary the light transmittance of the light transmissive member 3 according to the variation in the brightness combined. Furthermore, when the light transmitting member 3 having a light transmittance as high as possible is used, the corrected brightness can be further increased.

以上説明したように、上記の電気光学装置1は、複数の電気光学素子としての発光素子
21を有する電気光学パネルとしての発光パネル2と、発光パネル2から射出する光を透
過させて発光パネル2上の像に対する正立像を結像可能な屈折率分布型レンズ41が一方
向に複数配列され、複数の屈折率分布型レンズ41で得られた像が1つの連続した像を構
成する集束性レンズアレイ4と、上記発光パネル2と集束性レンズアレイ4との間に配置
され、発光パネル2から射出した光を集束性レンズアレイ4に導く光透過部材3とを備え
、その光透過部材3の光透過率を、上記レンズ41の配列方向において異ならせることに
よって、上記発光素子21の明るさ若しくは集束性レンズアレイ4を含めた上記素子21
の明るさのバラツキを容易に補正することが可能となるものである。
As described above, the electro-optical device 1 includes the light-emitting panel 2 as the electro-optical panel having the light-emitting elements 21 as the plurality of electro-optical elements, and the light-emitting panel 2 that transmits light emitted from the light-emitting panel 2. A converging lens in which a plurality of gradient index lenses 41 capable of forming an erect image with respect to the upper image are arranged in one direction, and images obtained by the plurality of gradient index lenses 41 constitute one continuous image. An array 4 and a light transmitting member 3 disposed between the light emitting panel 2 and the converging lens array 4 and guiding the light emitted from the light emitting panel 2 to the converging lens array 4. By varying the light transmittance in the arrangement direction of the lenses 41, the brightness of the light-emitting elements 21 or the elements 21 including the converging lens array 4 is obtained.
Therefore, it is possible to easily correct variations in brightness.

〔電気光学装置の製造方法〕
次に、上記実施形態の電気光学装置を例にして本発明による電気光学装置の製造方法を
具体的に説明する。上記実施形態の電気光学装置1の製造方法としては多種の方法が考え
られるが、ここでは製造方法1と製造方法2の2つの方法を例示する。
[Method of manufacturing electro-optical device]
Next, the method for manufacturing the electro-optical device according to the present invention will be specifically described by taking the electro-optical device of the above embodiment as an example. Various methods are conceivable as a method for manufacturing the electro-optical device 1 according to the above embodiment. Here, two methods of the manufacturing method 1 and the manufacturing method 2 are illustrated.

<製造方法1>
製造方法1では、まず、発光パネル2および光透過部材3を製造する。発光パネル2の
製造では、光透過性の平板を素子基板22として用い、この平板上に図1に示すように複
数のEL素子よりなる発光素子21を一方向(前記X方向)に千鳥状に配列する。一方、
光透過部材3を製造するに当たっては、先ず、上記複数の発光素子21から射出される光
の明るさ、または上記複数の発光素子21から射出され集束性レンズアレイ4を透過した
光の明るさを測定する。これらの測定では、発光素子21や集束性レンズアレイ4のレン
ズ41の配列方向(前記X方向)に沿って順に若しくは一括して測定する。
<Manufacturing method 1>
In the manufacturing method 1, the light emission panel 2 and the light transmissive member 3 are manufactured first. In the manufacture of the light-emitting panel 2, a light-transmitting flat plate is used as the element substrate 22, and the light-emitting elements 21 made up of a plurality of EL elements are staggered in one direction (the X direction) as shown in FIG. Arrange. on the other hand,
In manufacturing the light transmitting member 3, first, the brightness of the light emitted from the plurality of light emitting elements 21 or the brightness of the light emitted from the plurality of light emitting elements 21 and transmitted through the converging lens array 4 is determined. taking measurement. In these measurements, measurement is performed sequentially or collectively along the arrangement direction (the X direction) of the light emitting elements 21 and the lenses 41 of the converging lens array 4.

なお、上記複数の発光素子21から射出される光の明るさを測定する場合には、複数の
発光素子21から射出された光が、発光パネル2を構成する部材(上記実施形態において
は素子基板22)を透過した後の明るさを測定すればよい。また上記複数の発光素子21
から射出され集束性レンズアレイ4を透過した光の明るさを測定する場合には、上記発光
素子21と集束性レンズアレイ4を所定の組立て状態に配置するか、若しくは両者が上記
レンズ41の光軸方向に重なるように配置した状態で測定する。或いは複数の発光素子2
1から射出される光の明るさの測定と、集束性レンズアレイ4を透過する光の明るさや透
過率もしくは光減衰率を別々に測定し、その測定結果に基づいて上記複数の発光素子21
から集束性レンズアレイ4を透過した光の明るさを計算により求めるようにしてもよい。
When measuring the brightness of light emitted from the plurality of light emitting elements 21, the light emitted from the plurality of light emitting elements 21 is a member constituting the light emitting panel 2 (in the above embodiment, the element substrate). What is necessary is just to measure the brightness after passing 22). The plurality of light emitting elements 21
When measuring the brightness of the light emitted from the light and transmitted through the converging lens array 4, the light emitting element 21 and the converging lens array 4 are arranged in a predetermined assembly state, or both of them are the light of the lens 41. Measure in a state where they are arranged so as to overlap in the axial direction. Or a plurality of light emitting elements 2
The brightness of light emitted from 1 and the brightness, transmittance, or light attenuation rate of light transmitted through the converging lens array 4 are measured separately, and the plurality of light emitting elements 21 are based on the measurement results.
The brightness of the light transmitted through the converging lens array 4 may be obtained by calculation.

次いで、上記の測定結果に基づいて上記の明るさに前記X方向におけるバラツキがある
場合には、それに応じて光透過部材3の光透過率を異ならせるもので、前記図2のように
光透過部材3を1つの層として構成し、その光透過率を、その長手方向(前記X方向)に
段階的に異ならせる場合には、光透過部材3を上記長手方向に複数個の部分30a〜30
cに分けて、各部分30a〜30cの長さ寸法と光透過率とをそれぞれ決定して、それに
応じた光透過率を有する各部分を繋ぎあわせて光透過部材3を形成すればよい。本実施形
態においては図4(a)に示すように光透過率a2の透光性材料で形成した中央部分30
bの両側に、光透過率a1の透光性材料で形成した両端部分30a、30cを一体的に固
着してなる光透過部材3を形成する。
Next, when there is a variation in the X direction in the brightness based on the measurement result, the light transmittance of the light transmitting member 3 is made different accordingly, and the light transmission is performed as shown in FIG. When the member 3 is configured as one layer and its light transmittance is varied stepwise in the longitudinal direction (the X direction), the light transmitting member 3 is divided into a plurality of portions 30a-30 in the longitudinal direction.
Dividing into c, the length dimension and the light transmittance of each part 30a-30c are each determined, and each part which has the light transmittance according to it may be connected, and the light transmissive member 3 may be formed. In the present embodiment, as shown in FIG. 4A, a central portion 30 formed of a translucent material having a light transmittance a2.
On both sides of b, a light transmitting member 3 is formed by integrally fixing both end portions 30a and 30c formed of a light transmitting material having a light transmittance a1.

次に、上記光透過部材3を図4(a)のように発光パネル2に接合する。この接合は、
光透過部材3の一方の最広面(図の下面)の全域が発光パネル2の光出射面S3に接し、
発光パネル2の発光素子21が形成された領域の全域が上記の最広面に重なり、上記光透
過部材3の長手方向と発光素子21の配列方向とが一致するように行われる。次いで、図
4(b)のように光透過部材3の他方(発光パネル2と反対側)の最広面(図で上面)に
集束性レンズアレイ4を接合する。この接合は、集束性レンズアレイ4の光入射面S2の
全域が光透過部材3の上記他方の最広面に接し、集束性レンズアレイ4の屈折率分布型レ
ンズ41の配列方向(X方向)と上記光透過部材3の長手方向とが一致し、各屈折率分布
型レンズ41が発光パネル2の発光素子21が形成された領域に重なるように行われる。
Next, the light transmitting member 3 is joined to the light emitting panel 2 as shown in FIG. This joint is
The entire area of one widest surface (lower surface in the figure) of the light transmitting member 3 is in contact with the light emitting surface S3 of the light emitting panel 2,
The entire region of the light emitting panel 2 in which the light emitting elements 21 are formed overlaps with the widest surface, and the longitudinal direction of the light transmitting member 3 and the arrangement direction of the light emitting elements 21 are matched. Next, as shown in FIG. 4B, the converging lens array 4 is joined to the widest surface (upper surface in the drawing) of the other light transmission member 3 (the side opposite to the light emitting panel 2). In this joining, the entire area of the light incident surface S2 of the converging lens array 4 is in contact with the other widest surface of the light transmitting member 3, and the arrangement direction (X direction) of the gradient index lens 41 of the converging lens array 4 This is performed so that the longitudinal direction of the light transmitting member 3 coincides with each other and each gradient index lens 41 overlaps the region where the light emitting element 21 of the light emitting panel 2 is formed.

そして最後に、上記発光パネル2と光透過部材3および集束性レンズアレイ4との相対
位置を固定化する。この固定化の方法は任意であり、例えば、光透過部材3の側面(上下
面)を発光パネル2および集束性レンズアレイ4に接着してもよいし、発光パネル2およ
び集束性レンズアレイ4を光透過部材3側に付勢するケースに、発光パネル2、光透過部
材3および集束性レンズアレイ4を収容してもよい。
Finally, the relative positions of the light emitting panel 2, the light transmitting member 3, and the converging lens array 4 are fixed. The fixing method is arbitrary. For example, the side surfaces (upper and lower surfaces) of the light transmitting member 3 may be bonded to the light emitting panel 2 and the converging lens array 4, or the light emitting panel 2 and the converging lens array 4 may be bonded. The light emitting panel 2, the light transmitting member 3, and the converging lens array 4 may be accommodated in a case that is biased toward the light transmitting member 3.

<製造方法2>
製造方法2では、発光パネル2の製造と、前記のバラツキの測定は、製造方法1と同様
であり、その測定結果に基づいて光透過部材3の光透過率を異ならせる点も同様である。
特に、前記のように1つの層よりなる光透過部材3を長手方向に複数に分割し、その各部
分の長さ寸法と光透過率を決定する点は前記と同様である。そして、当該製造方法2にお
いては、先ず中央部分30bを光透過率a2の透光性材料で形成するもので、その透光性
材料を発光パネル2上に直接載せて上記中央部分30bを形成するか、或いは別途形成し
たものを発光パネル2上に載せてもよい。
<Manufacturing method 2>
In the manufacturing method 2, the manufacture of the light-emitting panel 2 and the measurement of the variation are the same as those in the manufacturing method 1, and the light transmittance of the light transmitting member 3 is also different based on the measurement result.
In particular, as described above, the light transmitting member 3 composed of one layer is divided into a plurality of parts in the longitudinal direction, and the length dimension and light transmittance of each part are determined in the same manner as described above. And in the said manufacturing method 2, the center part 30b is first formed with the translucent material of the light transmittance a2, and the said translucent material is directly mounted on the light emission panel 2, and the said center part 30b is formed. Alternatively, a separately formed one may be placed on the light emitting panel 2.

図5(a)は予め略直方体状に形成した光透過率a2の中央部分30bを発光パネル2
上に載せ、その上に集束性レンズアレイ4を載置したものである。上記部分30aと発光
パネル2及び集束性レンズアレイ4とは互いに密着した状態に接合させる。次いで、図5
(b)のように上記部分30bの両側の発光パネル2と集束性レンズアレイ4との間に、
接着材を兼ねる光透過率a1の透明な透光性材料を注入し、これを硬化させて部分30a
および30cを形成する。なお、流動性のある上記透光性材料の流出を防止すると共に、
上記部分30a、30cを所望の形状に成形するためにガイド枠等を用いてもよい。
In FIG. 5A, the central portion 30b of the light transmittance a2 formed in a substantially rectangular parallelepiped shape in advance is shown in the light emitting panel 2.
The converging lens array 4 is placed thereon and placed thereon. The portion 30a, the light emitting panel 2, and the converging lens array 4 are joined in a state of being in close contact with each other. Next, FIG.
As shown in (b), between the light emitting panel 2 and the converging lens array 4 on both sides of the portion 30b,
A transparent light-transmitting material having a light transmittance a1 that also serves as an adhesive is injected and cured to form a portion 30a.
And 30c are formed. In addition, while preventing outflow of the fluid translucent material,
A guide frame or the like may be used to shape the portions 30a and 30c into a desired shape.

<第2の実施形態>
次に、本発明の第2の実施形態に係る電気光学装置について説明する。本実施形態の電
気光学装置1では、光透過部材を前記レンズの光軸方向に複数の積層した多層構造に構成
し、これらの層の少なくとも1つ、本実施形態においては2つの層の光透過率を異ならせ
たものである。以下、前記第1の実施形態と異なる点を中心に詳細に説明する。
<Second Embodiment>
Next, an electro-optical device according to a second embodiment of the invention will be described. In the electro-optical device 1 of the present embodiment, the light transmission member is configured in a multilayer structure in which a plurality of layers are stacked in the optical axis direction of the lens, and light transmission of at least one of these layers, that is, two layers in the present embodiment. The rate is different. Hereinafter, the difference from the first embodiment will be mainly described in detail.

〔電気光学装置〕
図6は本発明による第2の実施形態の電気光学装置の側面図(立面図)である。本実施
形態の電気光学装置1が前記図2の実施形態と異なる点は、前記の光透過部材3が1つの
層で構成されているのに対し、本実施形態の光透過部材3は複数の層で構成されている点
であり、図の場合は3つの層31〜33で構成されている。その光透過部材3は、発光パ
ネル2と集束性レンズアレイ4の間に充填されて両者の間隔を一様とする部材であり、各
屈折率分布型レンズ41の光軸を横切って延在する光透過性の複数の層31〜33で構成
され、発光パネル2から進行する光を透過させる。
Electro-optical device
FIG. 6 is a side view (elevated view) of the electro-optical device according to the second embodiment of the present invention. The electro-optical device 1 of the present embodiment is different from the embodiment of FIG. 2 in that the light transmission member 3 is composed of one layer, whereas the light transmission member 3 of the present embodiment has a plurality of layers. It is a point comprised by the layer, and in the case of a figure, it is comprised by the three layers 31-33. The light transmissive member 3 is a member that is filled between the light emitting panel 2 and the converging lens array 4 so as to have a uniform distance therebetween, and extends across the optical axis of each gradient index lens 41. It is composed of a plurality of light-transmitting layers 31 to 33 and transmits light traveling from the light emitting panel 2.

層31は、層32と層33に介在された等厚の中間層であり、本実施形態においてはガ
ラスまたは透明なプラスチックで形成され、その層31の光透過率はa3で全長にわたっ
て一定に保たれている。上記層31の発光パネル2側の面の全面は、層32の集束性レン
ズアレイ4側の面の全面に接合しており、層31の集束性レンズアレイ4側の面の全面は
、層33の発光パネル2側の面の全面に接合している。
The layer 31 is an intermediate layer having an equal thickness interposed between the layer 32 and the layer 33. In this embodiment, the layer 31 is formed of glass or transparent plastic, and the light transmittance of the layer 31 is a3 and is kept constant over the entire length. I'm leaning. The entire surface of the layer 31 on the light emitting panel 2 side is bonded to the entire surface of the layer 32 on the side of the converging lens array 4, and the entire surface of the layer 31 on the side of the converging lens array 4 is bonded to the layer 33. Are joined to the entire surface of the light emitting panel 2 side.

層32は層31と発光パネル2に挟まれた等厚の接着材を兼ねる層であり、X方向に連
なる直方体状の複数の部分32a〜32cで構成されている。部分32bは光透過率がa
5の透明な接着材を兼ねる透光性材料で形成されており、部分32aおよび32cは、そ
れぞれ光透過率がa4の透明な接着材を兼ねる透光性材料で形成されている。
The layer 32 serves as an adhesive having an equal thickness sandwiched between the layer 31 and the light emitting panel 2, and includes a plurality of rectangular parallelepiped portions 32 a to 32 c that are continuous in the X direction. The portion 32b has a light transmittance of a.
5 is formed of a translucent material that also serves as a transparent adhesive, and the portions 32a and 32c are each formed of a translucent material that also serves as a transparent adhesive having a light transmittance of a4.

層33は層31と集束性レンズアレイ4に挟まれた等厚の接着材を兼ねる層であり、X
方向に連なる直方体状の複数の部分33a〜33bで構成されている。部分33aは光透
過率がa6の透明な接着材を兼ねる透光性材料で形成されており、部分33bは、光透過
率がa7の透明な接着材を兼ねる透光性材料で形成されている。
The layer 33 is also a layer serving as an adhesive of equal thickness sandwiched between the layer 31 and the converging lens array 4.
It is composed of a plurality of rectangular parallelepiped portions 33a to 33b that are continuous in the direction. The portion 33a is formed of a translucent material that also serves as a transparent adhesive having a light transmittance of a6, and the portion 33b is formed of a translucent material that also serves as a transparent adhesive having a light transmittance of a7. .

上記層32と層33の上記各部分32a〜32c,33a〜33bのX方向の長さ及び
光透過率は、前記と同様に複数の発光素子21の明るさ、または該発光素子21と集束性
レンズアレイ4とをあわせた明るさに応じて適宜設定し、それによって発光パネル2と光
透過部材3および集束性レンズアレイ4とを図6のように組付けた状態での明るさがX方
向においてほぼ一定になるようにしたものである。
The lengths and light transmittances in the X direction of the portions 32a to 32c and 33a to 33b of the layer 32 and the layer 33 are the brightness of the plurality of light emitting elements 21 or the convergence property of the light emitting elements 21 as described above. The brightness in the state where the light emitting panel 2, the light transmissive member 3, and the converging lens array 4 are assembled as shown in FIG. 6 is set as appropriate according to the combined brightness of the lens array 4. Is made almost constant.

その関係を数式を用いて説明すると、図6において所定の明るさIを有する発光素子
21から射出された光が、素子基板22と複数層の光透過部材3および集束性レンズアレ
イ4を透過して結像面に結像される際の光の明るさをIとすると、そのIは、下記式
(4)のように表すことができる。なお、式中のa、b、c、d‥‥は、上記発光素子2
1からの光が順に透過する部材の光透過率であり、sは集束性レンズアレイ4の光利用率
を表す。
The relationship will be described using mathematical formulas. Light emitted from the light emitting element 21 having a predetermined brightness IX in FIG. 6 is transmitted through the element substrate 22, the multiple layers of the light transmitting member 3 and the converging lens array 4. Assuming that the brightness of light when imaged on the imaging surface is I Y , the I Y can be expressed as the following formula (4). In the formula, a, b, c, d,...
1 is a light transmittance of a member through which light from 1 is sequentially transmitted, and s represents a light utilization rate of the converging lens array 4.

Figure 2008238632
Figure 2008238632

なお、上記式(4)中の光透過率aは、下記式(5)のように表すことができる。その
式(5)中のαは吸収係数で物質固有の値であり、そのαは下記式(6)のように表すこ
とができる。式(6)中のkは消衰係数で物質固有の値であり、λは光の波長を表す。他
の光透過率b、c、d・・についても同様である。
In addition, the light transmittance a in the above formula (4) can be expressed as the following formula (5). Α in the equation (5) is an absorption coefficient and is a value unique to the substance, and the α can be expressed as the following equation (6). In Equation (6), k is an extinction coefficient and is a value unique to the substance, and λ represents the wavelength of light. The same applies to the other light transmittances b, c, d.

Figure 2008238632
Figure 2008238632

そして、本実施形態においては、光透過部材3の層32と層33の光透過率を部分的に
異ならせることで、全ての発光素子21から射出されて結像面に結像される際の光の明る
さIがほぼ一定になるようにしたものである。それによって、前記各発光素子21また
は集束性レンズアレイ4をも含めた発光素子21からの光の明るさにバラツキがある場合
でも、前記X方向における明るさをほぼ一定にすることができるものである。
In the present embodiment, the light transmittance of the layer 32 and the layer 33 of the light transmitting member 3 is partially made different so that the light is emitted from all the light emitting elements 21 and imaged on the imaging surface. The light brightness I Y is made to be substantially constant. Thereby, even when the brightness of light from the light emitting elements 21 including the light emitting elements 21 or the converging lens array 4 varies, the brightness in the X direction can be made substantially constant. is there.

以上の説明から明らかなように、本実施形態においても前記第1の実施形態と同様の作
用効果が得られる。また本実施形態のように光透過部材3を複数の層31〜33で形成す
ると共に、その2以上の層を複数の部分に分割して各部分の光透過率を異ならせると、よ
り多くの種類の光透過率分布を得ることが可能となり、前記の明るさのバラツキを、より
きめ細かく補正することができるものである。
As is clear from the above description, the same effects as those of the first embodiment can be obtained in this embodiment. Further, when the light transmissive member 3 is formed of a plurality of layers 31 to 33 as in the present embodiment, and when the two or more layers are divided into a plurality of portions and the light transmittance of each portion is made different, more It is possible to obtain various types of light transmittance distributions, and to correct the variation in brightness more finely.

なお、上記実施形態は、複数の発光素子21から射出される光の明るさ、又は複数の電
発光素子21から射出され集束性レンズアレイ4を透過した光の明るさに応じて2つの層
32と33の光透過率の分布を異ならせるようにしたが、そのいずれか一方のみ若しくは
3つ以上の層の光透過率分布を異ならせてもよい。また上記複数の電発光素子21から射
出され集束性レンズアレイ4を透過した光の明るさに応じて光透過部材3の光透過率を異
ならせる場合、複数の電発光素子21から射出される光の明るさのバラツキはいずれかの
層(例えば層33)で補正し、集束性レンズアレイ4の明るさや光透過率もしくは光吸収
率のバラツキは他の層(例えば層32)で補正することもできる。さらに上記層の数や分
割する層の数および分割する部分の個数は適宜変更可能である。
In the above embodiment, the two layers 32 depend on the brightness of light emitted from the plurality of light emitting elements 21 or the brightness of light emitted from the plurality of electroluminescent elements 21 and transmitted through the converging lens array 4. However, only one of them or three or more layers may have different light transmittance distributions. Further, when the light transmittance of the light transmitting member 3 is made different according to the brightness of the light emitted from the plurality of electroluminescent elements 21 and transmitted through the converging lens array 4, the light emitted from the plurality of electroluminescent elements 21. The brightness variation of the focusing lens array 4 is corrected by any layer (for example, the layer 33), and the brightness, light transmittance or light absorption rate variation of the converging lens array 4 may be corrected by another layer (for example, the layer 32). it can. Further, the number of layers, the number of layers to be divided, and the number of parts to be divided can be changed as appropriate.

〔電気光学装置の製造方法〕
次に、上記第2の実施形態における電気光学装置1を例にして光透過部材3を複数の層
で形成する場合の製造方法について説明する。上記第2の実施形態における電気光学装置
の製造方法についても多種の方法が考えられるが、ここでは1つの製造方法を例示する。
[Method of manufacturing electro-optical device]
Next, a manufacturing method in the case where the light transmissive member 3 is formed of a plurality of layers will be described by taking the electro-optical device 1 in the second embodiment as an example. Various methods can be considered for the method of manufacturing the electro-optical device in the second embodiment, but one manufacturing method is illustrated here.

まず、発光パネル2および層31を製造する。その層31は例えばガラスや透明なプラ
スチックなどの透光性材料で所定の大きさ形状に形成する。その透光性材料としては前記
の明るさが低下しないようになるべく光透過率が高いものを用いるとよく、本実施形態に
おいて前述のように光透過率がa3で全長にわたって一定になるように構成されている。
First, the light emitting panel 2 and the layer 31 are manufactured. The layer 31 is formed in a predetermined size with a translucent material such as glass or transparent plastic. As the light-transmitting material, it is preferable to use a material having as high a light transmittance as possible so that the brightness does not decrease. In this embodiment, the light transmittance is a3 and constant over the entire length as described above. Has been.

そして、図7(a)に示すように、発光パネル2の光出射面S3上の部分32bの設置
位置に、光透過率がa5の透明な接着材を兼ねる透光性材料をコートし、その透光性材料
を、発光パネル2と層31との間に挟んで所定の厚さになるまで圧縮する。その状態で硬
化させることによって、同図(b)のように部分32bを形成すると共に、その部分32
bを介して発光パネル2と層31とを接着させる。次いで、同図(b)のように、上記部
分32bの両側の発光パネル2と層31との間に光透過率がa4の透明な接着材を兼ねる
透光性材料を注入し、それを硬化させて図7(c)に示すように部分32aと部分32c
とを形成する。
Then, as shown in FIG. 7 (a), the translucent material that also serves as a transparent adhesive having a light transmittance of a5 is coated on the installation position of the portion 32b on the light emitting surface S3 of the light emitting panel 2, The translucent material is sandwiched between the light emitting panel 2 and the layer 31 and compressed until a predetermined thickness is obtained. By curing in this state, a portion 32b is formed as shown in FIG.
The light emitting panel 2 and the layer 31 are bonded via b. Next, as shown in FIG. 4B, a light-transmitting material that also serves as a transparent adhesive having a light transmittance of a4 is injected between the light-emitting panel 2 and the layer 31 on both sides of the portion 32b, and cured. Let the portion 32a and the portion 32c as shown in FIG.
And form.

次に、図7(c)に示すように、層31の発光パネル2と反対側の面(上面)に、部分
33bを形成するための光透過率がa7の透明な接着材を兼ねる透光性材料をコートし、
その透光性材料を、層31と集束性レンズアレイ4との間に挟んで所定の厚さになるまで
圧縮する。その状態で硬化させることによって、同図(d)のように部分33bを形成す
ると共に、その部分33bを介して層31と集束性レンズアレイ4とを接着する。次いで
、上記部分33bの側方の層31と集束性レンズアレイ4との間に光透過率がa6の透明
な接着材を兼ねる透光性材料を注入し、それを硬化させて部分33aを形成すればよい。
Next, as shown in FIG. 7C, the light transmission for forming the portion 33b on the surface (upper surface) opposite to the light emitting panel 2 of the layer 31 also serves as a transparent adhesive having a7. Coated with sex material,
The translucent material is sandwiched between the layer 31 and the converging lens array 4 and compressed to a predetermined thickness. By curing in this state, a portion 33b is formed as shown in FIG. 4D, and the layer 31 and the converging lens array 4 are bonded via the portion 33b. Next, a translucent material serving as a transparent adhesive having a light transmittance of a6 is injected between the layer 31 on the side of the portion 33b and the converging lens array 4, and the portion is cured to form the portion 33a. do it.

なお、上記の接着材を兼ねる透光性材料をコートまたは注入する工程では、流動性のあ
る硬化前の透光性材料の流出を防止すると共に、透光性材料で形成される前記部分を所定
の形状に形成するためにガイド枠等を用いてもよい。また、透光性材料を圧縮して上記部
分を形成する際、その部分が所定の厚さに精度よく形成されるように所定の径を有するボ
ール状その他所望形状のギャップ確保材を、上記透光性材料を圧縮する部材間に介在させ
るか、或いは上記透光性材料中に混入させてもよい。なお、上記のギャップ確保材として
は、透光性を有し、かつ上記透光性材料とほぼ同等の光透過率を有するものが好ましい。
In the step of coating or injecting the translucent material also serving as the adhesive, the flowable translucent material is prevented from flowing out and the portion formed of the translucent material is predetermined. A guide frame or the like may be used to form the shape. In addition, when forming the portion by compressing the translucent material, a ball-shaped or other desired shape gap securing material having a predetermined diameter is used so that the portion is accurately formed to a predetermined thickness. The light-transmitting material may be interposed between the members to be compressed, or may be mixed in the light-transmitting material. In addition, as said gap ensuring material, what has a translucency and has a light transmittance substantially equivalent to the said translucent material is preferable.

上記のようにして発光パネル2と集束性レンズアレイ4との間に、複数層31〜33の
光透過部材3を介在させることで前記図6に示すような電気光学装置を簡単・確実に製造
することができるものである。なお、前述のように光透過部材3の層の数や光透過率が異
なる層の数および部分の配置構成等を変更する場合には、それに併せて前記のプロセスを
適宜変更すればよい。
As described above, the electro-optical device as shown in FIG. 6 is easily and reliably manufactured by interposing the light transmitting member 3 of the plurality of layers 31 to 33 between the light emitting panel 2 and the converging lens array 4. Is something that can be done. In addition, when changing the number of layers of the light transmissive member 3, the number of layers having different light transmittances, the arrangement of parts, and the like as described above, the above-described process may be appropriately changed accordingly.

〔画像形成装置〕
本発明による上記各実施形態に係る電気光学装置は、それぞれ、電子写真方式を利用し
た画像形成装置における像担持体に潜像を書き込むためのライン型の光ヘッドとして用い
ることが可能である。そのような画像形成装置の例としては、プリンタ、複写機の印刷部
分およびファクシミリの印刷部分等がある。
[Image forming apparatus]
The electro-optical device according to each of the embodiments of the present invention can be used as a line-type optical head for writing a latent image on an image carrier in an image forming apparatus using an electrophotographic method. Examples of such an image forming apparatus include a printer, a printing part of a copying machine, and a printing part of a facsimile.

図8は本発明の実施形態に係る画像形成装置の縦断面図である。この画像形成装置は、
ベルト中間転写体方式を利用したタンデム型のフルカラー画像形成装置である。この画像
形成装置では、同様な構成の4個の光ヘッド10K,10C,10M,10Yが、同様な
構成である4個の感光体ドラム(像担持体)110K,110C,110M,110Yの
露光位置にそれぞれ配置されている。光ヘッド10K,10C,10M,10Yは、本発
明の実施形態に係る電気光学装置が用いられている。
FIG. 8 is a longitudinal sectional view of the image forming apparatus according to the embodiment of the present invention. This image forming apparatus
This is a tandem type full-color image forming apparatus using a belt intermediate transfer body system. In this image forming apparatus, four optical heads 10K, 10C, 10M, and 10Y having the same configuration are exposed positions of four photosensitive drums (image carriers) 110K, 110C, 110M, and 110Y having the same configuration. Respectively. The optical heads 10K, 10C, 10M, and 10Y use the electro-optical device according to the embodiment of the present invention.

図に示すように、この画像形成装置には、駆動ローラ121と従動ローラ122が設け
られ、その両ローラ121,122に無端状の中間転写ベルト120が巻回されている。
その中間転写ベルト120は、上記駆動ローラ121の回転で図中矢印の方向に所定の速
度で回動駆動される。なお、図示しないが、上記中間転写ベルト120に張力を付与する
テンションローラ等の張力付与手段を適宜設けるようにしてもよい。
As shown in the figure, this image forming apparatus is provided with a driving roller 121 and a driven roller 122, and an endless intermediate transfer belt 120 is wound around the rollers 121 and 122.
The intermediate transfer belt 120 is rotationally driven at a predetermined speed in the direction of the arrow in the drawing by the rotation of the driving roller 121. Although not shown, tension applying means such as a tension roller for applying tension to the intermediate transfer belt 120 may be provided as appropriate.

上記中間転写ベルト120の周囲には、外周面に感光層を有する4つの感光体ドラム1
10K,110C,110M,110Yが互いに所定間隔をおいて配置され、その各感光
体ドラム110K,110C,110M,110Yは、中間転写ベルト120の駆動と同
期して回転駆動される。なお、上記感光体ドラムの符号の添え字K,C,M,Yは、それ
ぞれ黒、シアン、マゼンタ、イエローの画像を形成するために使用されることを意味して
いる。以下、上記のような符号を共通項で括って「110(K,C,M,Y)」のように
表記する。後述する他の機器や部材についても同様である。
Around the intermediate transfer belt 120, there are four photosensitive drums 1 having photosensitive layers on the outer peripheral surface.
10K, 110C, 110M, and 110Y are arranged at a predetermined interval from each other, and each of the photosensitive drums 110K, 110C, 110M, and 110Y is rotationally driven in synchronization with the driving of the intermediate transfer belt 120. Note that the subscripts K, C, M, and Y of the symbol of the photosensitive drum mean that they are used to form black, cyan, magenta, and yellow images, respectively. In the following, the above codes are expressed as “110 (K, C, M, Y)” by enclosing them in common terms. The same applies to other devices and members described later.

上記各感光体ドラム110(K,C,M,Y)の周囲には、コロナ帯電器111(K,
C,M,Y)と、光ヘッド10(K,C,M,Y)と、現像器114(K,C,M,Y)
が配置されている。コロナ帯電器111(K,C,M,Y)は、対応する感光体ドラム1
10(K,C,M,Y)の外周面を一様に帯電させる。光ヘッド10(K,C,M,Y)
は、感光体ドラムの帯電させられた外周面に静電潜像を書き込む。各光ヘッド10(K,
C,M,Y)は、複数の発光素子21の配列方向が感光体ドラム110(K,C,M,Y
)の母線(主走査方向)に沿うように設置される。静電潜像の書き込みは、上記の複数の
発光素子21により光を感光体ドラムに照射することにより行う。現像器114(K,C
,M,Y)は、静電潜像に現像剤としてのトナーを付着させることにより感光体ドラムに
顕像すなわち可視像を形成する。
Around each of the photosensitive drums 110 (K, C, M, Y), a corona charger 111 (K,
C, M, Y), optical head 10 (K, C, M, Y), and developer 114 (K, C, M, Y)
Is arranged. Corona charger 111 (K, C, M, Y) corresponds to the corresponding photosensitive drum 1.
The outer peripheral surface of 10 (K, C, M, Y) is uniformly charged. Optical head 10 (K, C, M, Y)
Writes an electrostatic latent image on the charged outer peripheral surface of the photosensitive drum. Each optical head 10 (K,
C, M, Y) indicates that the arrangement direction of the plurality of light emitting elements 21 is the photosensitive drum 110 (K, C, M, Y).
) Along the bus (in the main scanning direction). The electrostatic latent image is written by irradiating the photosensitive drum with light by the plurality of light emitting elements 21 described above. Developer 114 (K, C
, M, Y) forms a visible image, ie, a visible image, on the photosensitive drum by attaching toner as a developer to the electrostatic latent image.

このような4色の単色顕像形成ステーションにより形成された黒、シアン、マゼンタ、
イエローの各顕像は、中間転写ベルト120上に順次一次転写されることにより、中間転
写ベルト120上で重ね合わされて、この結果フルカラーの顕像が得られる。中間転写ベ
ルト120の内側には、4つの一次転写コロトロン(転写器)112(K,C,M,Y)
が配置されている。一次転写コロトロン112(K,C,M,Y)は、感光体ドラム11
0(K,C,M,Y)の近傍にそれぞれ配置されており、感光体ドラム110(K,C,
M,Y)から顕像を静電的に吸引することにより、感光体ドラムと一次転写コロトロンの
間を通過する中間転写ベルト120に顕像を転写する。
Black, cyan, magenta, and black formed by such a four-color single color image forming station
The yellow visible images are sequentially primary-transferred onto the intermediate transfer belt 120 to be superimposed on the intermediate transfer belt 120, and as a result, a full-color visible image is obtained. Inside the intermediate transfer belt 120, four primary transfer corotrons (transfer units) 112 (K, C, M, Y) are provided.
Is arranged. The primary transfer corotron 112 (K, C, M, Y) is connected to the photosensitive drum 11.
0 (K, C, M, Y) are arranged in the vicinity of the photosensitive drum 110 (K, C,
The visible image is electrostatically attracted from (M, Y) to transfer the visible image to the intermediate transfer belt 120 passing between the photosensitive drum and the primary transfer corotron.

最終的に画像を形成する対象としての紙等のシート102は、ピックアップローラ10
3によって、給紙カセット101から1枚ずつ給送されて、駆動ローラ121に接した
中間転写ベルト120と二次転写ローラ126の間のニップに送られる。中間転写ベルト
120上のフルカラーの顕像は、二次転写ローラ126によってシート102の片面に一
括して二次転写され、定着部である定着ローラ対127を通ることでシート102上に定
着される。この後、シート102は、排紙ローラ対128によって、装置上部に形成され
た排紙カセット上へ排出される。上述した各画像形成装置によれば、光ヘッドとして、本
発明の実施形態に係る電気光学装置を用いているから、高い品質の画像を形成することが
できる。
A sheet 102 such as paper as a target for finally forming an image is picked up by the pickup roller 10.
3, the sheet is fed one by one from the sheet feeding cassette 101 and is fed to the nip between the intermediate transfer belt 120 and the secondary transfer roller 126 in contact with the driving roller 121. The full-color visible image on the intermediate transfer belt 120 is secondarily transferred to one side of the sheet 102 by the secondary transfer roller 126 and fixed on the sheet 102 through the fixing roller pair 127 as a fixing unit. . Thereafter, the sheet 102 is discharged onto a paper discharge cassette formed in the upper part of the apparatus by a paper discharge roller pair 128. According to each of the image forming apparatuses described above, since the electro-optical device according to the embodiment of the present invention is used as the optical head, a high quality image can be formed.

以上、本発明の前記各実施形態に係る電気光学装置を応用可能な画像形成装置を例示し
たが、前記各実施形態に係る電気光学装置は上記以外の他の電子写真方式の画像形成装置
にも適用できる。例えば、ベルト中間転写体方式を利用したロータリ現像式のフルカラー
画像形成装置や、中間転写ベルトを使用せずに感光体ドラムから直接シートに顕像を転写
するタイプの画像形成装置、さらにモノクロの画像を形成する画像形成装置等にも適用可
能である。
The image forming apparatus to which the electro-optical device according to each of the embodiments of the invention can be applied has been described above. However, the electro-optical device according to each of the embodiments may be applied to other electrophotographic image forming apparatuses other than the above. Applicable. For example, a rotary development type full-color image forming apparatus that uses a belt intermediate transfer body method, an image forming apparatus that directly transfers a visible image from a photosensitive drum to a sheet without using an intermediate transfer belt, and a monochrome image The present invention can also be applied to an image forming apparatus that forms the image.

なお、上述した各実施形態では、各発光素子21から発せられた光が素子基板22を透
過して発光パネル2から出射するボトムエミッションタイプの発光パネル2を用いるよう
にしたが、これとは逆の方向に光が出射するトップエミッションタイプの発光パネルを用
いるようにしてもよい。つまり、複数の電気光学素子(発光素子)から進行する光を透過
させる物体は、封止体23であってもよい。この場合には、各発光素子から発して封止体
側へ進行する光が遮られないように、各部の材質としては透光性を有するものを用いる。
In each of the above-described embodiments, the bottom emission type light emitting panel 2 in which light emitted from each light emitting element 21 passes through the element substrate 22 and is emitted from the light emitting panel 2 is used. A top emission type light-emitting panel that emits light in the direction may be used. That is, the sealing body 23 may be an object that transmits light traveling from a plurality of electro-optical elements (light emitting elements). In this case, a material having translucency is used as a material of each part so that light emitted from each light emitting element and traveling to the sealing body side is not blocked.

また、上述した各実施形態では、与えられた電気エネルギーにより発光特性または光の
透過特性が変化する複数の電気光学素子として、キャリヤの再結合による励起を必須とす
る有機EL素子を採用したが、キャリヤの再結合を必須としない発光素子(例えば無機E
L素子)や、励起を必須としない発光素子(例えば無機LED)、与えられた電気エネル
ギーにより光の透過特性が変化するライトバルブ素子(例えば液晶素子)等を採用しても
よい。
In each of the above-described embodiments, an organic EL element that requires excitation by recombination of carriers is employed as the plurality of electro-optical elements whose light emission characteristics or light transmission characteristics change depending on applied electric energy. Light-emitting elements that do not require recombination of carriers (for example, inorganic E
L element), a light emitting element that does not require excitation (for example, an inorganic LED), a light valve element (for example, a liquid crystal element) whose light transmission characteristics are changed by applied electric energy, and the like may be employed.

本発明による電気光学装置の一実施形態を示す平面図。FIG. 2 is a plan view showing an embodiment of an electro-optical device according to the invention. 上記電気光学装置の側面図。FIG. 3 is a side view of the electro-optical device. 発光素子の配列方向と明るさとの関係を示すグラフ。The graph which shows the relationship between the arrangement direction of a light emitting element, and a brightness. 上記電気光学装置の製造プロセスの一例を示す説明図。Explanatory drawing which shows an example of the manufacturing process of the said electro-optical apparatus. 上記電気光学装置の製造プロセスの他の例を示す説明図。Explanatory drawing which shows the other example of the manufacturing process of the said electro-optical apparatus. 本発明による電気光学装置の他の実施形態を示す側面図。FIG. 6 is a side view showing another embodiment of the electro-optical device according to the invention. 上記電気光学装置の製造プロセスの一例を示す説明図。Explanatory drawing which shows an example of the manufacturing process of the said electro-optical apparatus. 本発明による画像形成装置の一実施形態を示す縦断面図。1 is a longitudinal sectional view showing an embodiment of an image forming apparatus according to the present invention. 画像形成装置に適用した従来の電気光学装置の斜視図。1 is a perspective view of a conventional electro-optical device applied to an image forming apparatus. 従来の電気光学装置の側面図。The side view of the conventional electro-optical apparatus. 収束性レンズアレイの概略構成を示す斜視図。The perspective view which shows schematic structure of a convergent lens array. 従来の電気光学装置における発光素子と明るさとの関係を示すグラフ。6 is a graph showing a relationship between a light emitting element and brightness in a conventional electro-optical device.

符号の説明Explanation of symbols

1…電気光学装置、2発光パネル(電気光学パネル)、21…発光素子(電気光学素子
)、22…素子基板、23…封止体、3…光透過部材、30〜33…層、4…収束性レン
ズアレイ、41…屈折率分布型レンズ、10、110…像担持体(感光体ドラム)。
DESCRIPTION OF SYMBOLS 1 ... Electro-optical apparatus, 2 light emission panel (electro-optical panel), 21 ... Light emitting element (electro-optical element), 22 ... Element board | substrate, 23 ... Sealing body, 3 ... Light transmission member, 30-33 ... Layer, 4 ... Convergent lens array, 41... Gradient index lens, 10, 110... Image carrier (photosensitive drum).

Claims (6)

与えられた電気エネルギーにより発光特性または光の透過特性が変化する複数の電気光
学素子を有し、前記複数の電気光学素子の各々からの光を射出する電気光学パネルと、
前記電気光学パネルから射出する光を透過させて前記電気光学パネル上の像に対する正
立像を結像可能な屈折率分布型レンズが該レンズの光軸方向と直角方向に複数配列され、
その複数のレンズで得られた像が1つの連続した像を構成する集束性レンズアレイと、
前記電気光学パネルと前記集束性レンズアレイとの間に介在され、前記電気光学パネル
から射出する光を前記集束性レンズアレイに導く光透過部材とを備え、
前記光透過部材の光透過率を、前記レンズの配列方向において異ならせたことを特徴と
する電気光学装置。
An electro-optical panel having a plurality of electro-optical elements whose light emission characteristics or light transmission characteristics are changed by given electric energy, and emitting light from each of the plurality of electro-optical elements;
A plurality of gradient index lenses that transmit light emitted from the electro-optical panel and can form an erect image with respect to the image on the electro-optical panel are arranged in a direction perpendicular to the optical axis direction of the lens,
A converging lens array in which images obtained by the plurality of lenses constitute one continuous image;
A light transmissive member interposed between the electro-optical panel and the converging lens array and guiding light emitted from the electro-optical panel to the converging lens array;
An electro-optical device, wherein the light transmittance of the light transmissive member is varied in the lens arrangement direction.
前記光透過部材は、前記レンズの光軸方向に一層または複数層積層した構成とし、その
少なくとも1つの層の光透過部材の光透過率を、前記レンズの配列方向において異ならせ
てなる請求項1に記載の電気光学装置。
2. The light transmissive member has a structure in which one or more layers are laminated in the optical axis direction of the lens, and the light transmittance of the light transmissive member of at least one layer is made different in the arrangement direction of the lenses. The electro-optical device according to 1.
前記光透過部材の光透過率を、前記複数の電気光学素子から射出される光の明るさ、又
は前記複数の電気光学素子から射出され前記集束性レンズアレイを透過した光の明るさに
応じて異ならせてなる請求項1または2に記載の電気光学装置。
The light transmittance of the light transmissive member depends on the brightness of light emitted from the plurality of electro-optic elements or the brightness of light emitted from the plurality of electro-optic elements and transmitted through the converging lens array. The electro-optical device according to claim 1, wherein the electro-optical device is made different.
前記光透過部材の光透過率を、前記複数の電気光学素子から射出される光の明るさ、又
は前記複数の電気光学素子から射出され前記集束性レンズアレイを透過した光の明るさに
、ほぼ反比例して異ならせてなる請求項1〜3のいずれかに記載の電気光学装置。
The light transmittance of the light transmitting member is approximately equal to the brightness of light emitted from the plurality of electro-optic elements, or the brightness of light emitted from the plurality of electro-optic elements and transmitted through the converging lens array. The electro-optical device according to claim 1, wherein the electro-optical device is varied in inverse proportion.
像担持体と、
前記像担持体を帯電する帯電器と、
前記電気光学パネルから進行して前記集束性レンズアレイを透過する光を、前記像担持
体の帯電された面に照射して潜像を形成する請求項1〜4のいずれかに記載の電気光学装
置と、
前記潜像にトナーを付着させることにより前記像担持体に顕像を形成する現像器と、
前記像担持体から前記顕像を他の物体に転写する転写器と
を備える画像形成装置。
An image carrier;
A charger for charging the image carrier;
The electro-optical device according to claim 1, wherein light that travels from the electro-optical panel and passes through the converging lens array is irradiated onto a charged surface of the image carrier to form a latent image. Equipment,
A developing unit that forms a visible image on the image carrier by attaching toner to the latent image; and
An image forming apparatus comprising: a transfer unit that transfers the visible image from the image carrier to another object.
請求項1〜4のいずれかに記載の電気光学装置を製造する方法であって、
前記複数の電気光学素子から射出される光の明るさ、又は前記複数の電気光学素子から
前記集束性レンズアレイを透過して射出される光の明るさを前記レンズの配列方向に沿っ
て順に測定する明度測定工程と、
前記明度測定工程で得られた測定結果に基づいて前記光透過部材の光透過率を、前記レ
ンズの配列方向において段階的もしくは連続的に異なるように設定する光透過率設定工程
とを有し、
その光透過率設定工程で設定された光透過率を有する光透過部材を、前記電気光学パネ
ルと前記集束性レンズアレイとの間に介在させた状態に組み付ける組付工程と
を有することを特徴とする電気光学装置の製造方法。
A method for manufacturing the electro-optical device according to claim 1,
The brightness of light emitted from the plurality of electro-optic elements or the brightness of light emitted from the plurality of electro-optic elements through the converging lens array is sequentially measured along the lens arrangement direction. Brightness measurement process to
A light transmittance setting step for setting the light transmittance of the light transmitting member based on the measurement result obtained in the lightness measurement step so as to be stepwise or continuously different in the arrangement direction of the lenses,
An assembling step for assembling the light transmissive member having the light transmittance set in the light transmittance setting step in a state of being interposed between the electro-optical panel and the converging lens array. A method for manufacturing an electro-optical device.
JP2007083691A 2006-09-29 2007-03-28 Electro-optical device and image forming apparatus Expired - Fee Related JP4320681B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007083691A JP4320681B2 (en) 2007-03-28 2007-03-28 Electro-optical device and image forming apparatus
US11/848,949 US7697022B2 (en) 2006-09-29 2007-08-31 Electro-optical device and image forming apparatus
TW096136424A TW200821780A (en) 2006-09-29 2007-09-28 Electro-optical device and image forming apparatus
KR1020070097754A KR20080029873A (en) 2006-09-29 2007-09-28 Electro-optical device and image forming apparatus
CN2007101532994A CN101153696B (en) 2006-09-29 2007-09-29 Electro-optical device and image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083691A JP4320681B2 (en) 2007-03-28 2007-03-28 Electro-optical device and image forming apparatus

Publications (2)

Publication Number Publication Date
JP2008238632A true JP2008238632A (en) 2008-10-09
JP4320681B2 JP4320681B2 (en) 2009-08-26

Family

ID=39910541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083691A Expired - Fee Related JP4320681B2 (en) 2006-09-29 2007-03-28 Electro-optical device and image forming apparatus

Country Status (1)

Country Link
JP (1) JP4320681B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033846A1 (en) * 2013-09-03 2015-03-12 コニカミノルタ株式会社 Planar light-emitting unit
WO2015033847A1 (en) * 2013-09-03 2015-03-12 コニカミノルタ株式会社 Planar light-emitting unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033846A1 (en) * 2013-09-03 2015-03-12 コニカミノルタ株式会社 Planar light-emitting unit
WO2015033847A1 (en) * 2013-09-03 2015-03-12 コニカミノルタ株式会社 Planar light-emitting unit
JP5700184B1 (en) * 2013-09-03 2015-04-15 コニカミノルタ株式会社 Planar light emitting unit
JP5700185B1 (en) * 2013-09-03 2015-04-15 コニカミノルタ株式会社 Planar light emitting unit

Also Published As

Publication number Publication date
JP4320681B2 (en) 2009-08-26

Similar Documents

Publication Publication Date Title
US7660022B2 (en) Electro-optical device, image printing apparatus, and method of manufacturing electro-optical device
US7274514B2 (en) Electro-optical device, image printing apparatus, and method of manufacturing electro-optical device
US7697022B2 (en) Electro-optical device and image forming apparatus
US8373737B2 (en) Optical head and electronic device
JP4320681B2 (en) Electro-optical device and image forming apparatus
JP4353250B2 (en) Light emitting device and image printing device
JP2007190742A (en) Electrooptical device and image printer
JP2007076028A (en) Image printer
CN1804733B (en) Electro-optical device, image printing apparatus, and method of manufacturing electro-optical device
JP4281795B2 (en) Electro-optical device, image forming apparatus, and electro-optical device manufacturing method
JP4586560B2 (en) Image printing device
JP4830332B2 (en) Electro-optical device, image printing device, and image reading device
JP2008143025A (en) Electrooptical device, image forming apparatus, and method for manufacturing this electrooptical device
JP4687723B2 (en) Exposure head, image forming unit, and image forming apparatus
JP4857686B2 (en) Image printing apparatus and light emitting apparatus
JP2009099379A (en) Light-emitting device and electronic equipment
JP2008149463A (en) Electrooptic apparatus and image forming apparatus
JP2011046093A (en) Line head and method for manufacturing the same
JP2007237575A (en) Electrooptical equipment, image forming device and manufacturing method of elecrooptical equipment
JP2007152611A (en) Line head module and image forming apparatus having the same
JP2011131457A (en) Light source device and image forming apparatus
JP2007090676A (en) Image printing device, method of adjusting image printing device, and method of producing the same
JP2012086522A (en) Exposure head and image forming apparatus
JP2007125841A (en) Exposure apparatus and image forming apparatus
JP2007076029A (en) Adjustment method and manufacturing method for image printer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees