JP2008238013A - Sludge water distribution feeder - Google Patents

Sludge water distribution feeder Download PDF

Info

Publication number
JP2008238013A
JP2008238013A JP2007080374A JP2007080374A JP2008238013A JP 2008238013 A JP2008238013 A JP 2008238013A JP 2007080374 A JP2007080374 A JP 2007080374A JP 2007080374 A JP2007080374 A JP 2007080374A JP 2008238013 A JP2008238013 A JP 2008238013A
Authority
JP
Japan
Prior art keywords
sludge water
open channel
sludge
supply pipe
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007080374A
Other languages
Japanese (ja)
Other versions
JP4922803B2 (en
Inventor
Tsuneki Yoshida
恒樹 由田
Takashi Niwa
隆 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2007080374A priority Critical patent/JP4922803B2/en
Publication of JP2008238013A publication Critical patent/JP2008238013A/en
Application granted granted Critical
Publication of JP4922803B2 publication Critical patent/JP4922803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sludge water thickening system which can be structured according to the required treatment amount, can be manufactured at a low cost, and requires no (or simple) maintenance and inspection. <P>SOLUTION: In a sludge water distribution feeder for distributing and feeding fibrous material-containing sludge water to a plurality of thickeners through an open channel, the forward and rear ends of a main open channel are closed, gates for making overflow water flow are installed in the top part of both side plates of the main open channel, branched open channels are arranged in parallel outside both side plates, a sludge water supply pipe is set inside the main open channel, and a slitlike opening is installed in the sludge water supply pipe so as to face downward. When an actual flow rate shows a variation of -25 to +50% to a standard flow rate, an effective effect can be obtained by setting a ratio of a slit width to the diameter of the sludge supply pipe to 20 to 40%. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は汚水処理などに使用される汚泥濃縮機の技術分野に属する。更に、詳細には、1個の大規模の汚泥水濃縮機を設ける代わりに複数台の小規模の汚泥水濃縮機を設けた場合に、各汚泥濃縮機に汚泥水を均等に供給する開水路の技術分野に属する。 The present invention belongs to the technical field of sludge concentrators used for sewage treatment and the like. More specifically, when a plurality of small-scale sludge water concentrators are provided instead of one large-scale sludge water concentrator, an open channel that supplies sludge water evenly to each sludge concentrator. Belongs to the technical field.

従来の汚泥水処理装置においては、処理する汚泥水量が少ない場合には1台の小型の汚泥水濃縮機により処理可能である。また、処理する汚泥水量が多くなっても大型の汚泥水濃縮機を利用すれば十分である。例えば、特許文献1に開示されているように、大型の汚泥水処理装置として、ベルトプレス型重力濃縮機、遠心濃縮機又はスクリーン濃縮機を利用すればよい。プレス型重力濃縮機やスクリーン濃縮機では40〜50立方メートル/時間の汚泥水を処理が可能であり、遠心濃縮機では100立方メートル/時間の汚泥水を処理が可能である。しかし、これらの大型濃縮機は製作コストが嵩むだけでなく、保守点検費用も高くなる。さらに、省スペースや省エネを図ることも困難である。
公開特許公報、特開2001−96297号、下水道放流を対象とした汚水処理方法と装置
In the conventional sludge water treatment apparatus, when the amount of sludge water to be treated is small, it can be treated by one small sludge water concentrator. Moreover, even if the amount of sludge water to be processed increases, it is sufficient to use a large sludge water concentrator. For example, as disclosed in Patent Document 1, a belt press type gravity concentrator, a centrifugal concentrator, or a screen concentrator may be used as a large sludge water treatment apparatus. A press-type gravity concentrator or a screen concentrator can treat 40 to 50 cubic meters / hour of sludge water, and a centrifugal concentrator can treat 100 cubic meters / hour of sludge water. However, these large concentrators are not only expensive to produce, but also expensive to maintain and inspect. Furthermore, it is difficult to save space and energy.
Published patent publication, JP 2001-96297, sewage treatment method and apparatus for sewer discharge

一方、小型の汚泥水濃縮機として、例えば特許文献2に開示されているように、「ハニカム型濃縮機」がある。ハニカム型濃縮機は製作コスト、保守点検費用、省エネ等の点で優れているが、1台あたりの処理量は10立方メートル/時間位の汚泥水しか処理ができず、現状では大型化が困難である。そこで、複数台の小型濃縮機を同時に利用すれば、必要とされる大処理量に対応した濃縮機が構成されるだけでなく、上記の問題も解決される。しかし、複数台の濃縮機が一様に効率的に機能するには個々の濃縮機に均等に汚泥水を供給できる分配装置が必要となる。
公開特許公報、特開2006−21136号、汚泥濃縮部構造
On the other hand, as a small sludge water concentrator, for example, as disclosed in Patent Document 2, there is a “honeycomb type concentrator”. Honeycomb type concentrators are superior in terms of production cost, maintenance and inspection costs, energy savings, etc., but only one cubic meter / hour of sludge water can be processed per unit, and it is difficult to increase the size at present. is there. Therefore, if a plurality of small concentrators are used at the same time, not only a concentrator corresponding to the required large throughput is constructed, but also the above problem is solved. However, in order for a plurality of concentrators to function uniformly and efficiently, a distributor that can supply sludge water evenly to each concentrator is required.
Published Patent Gazette, JP 2006-21136 A, Sludge Concentration Structure

汚泥水を分配供給する装置として、主開水路に分岐開水路を設けた装置が考えられる。しかし、上記の装置では分岐開水路の流量が不均一になるという問題があり、これを解決するために、例えば特許文献3に開示されているような可動堰を利用することが考えられる。即ち、主開水路と分岐開水路の分岐点に可動堰を設けて各分岐開水路の流量を均一にすることも可能であろう。しかし、可動堰を複数個設けると装置が高価になるという問題点が生じる。また、流量が多い場合は流速が大きくなるために、より下流に設けた分岐開水路の流量が多くなる傾向があり、逆に流量が少ない場合は流速が小さくなり、より上流の分岐開水路の流量が大きくなる傾向にあり、可動堰の高さの調整が必要になるという問題点も生じる。
公開特許公報、特開平11−93148号、上流水位調整水門
As an apparatus for distributing and supplying sludge water, an apparatus in which a branch open channel is provided in the main open channel can be considered. However, in the above apparatus, there is a problem that the flow rate of the branch open channel becomes non-uniform. In order to solve this problem, it is conceivable to use a movable weir as disclosed in Patent Document 3, for example. That is, it will be possible to make the flow rate of each branch open channel uniform by providing a movable weir at the branch point of the main open channel and the branch open channel. However, when a plurality of movable weirs are provided, there is a problem that the device becomes expensive. In addition, when the flow rate is high, the flow rate increases, so the flow rate of the branch open channel provided downstream is likely to increase. Conversely, when the flow rate is low, the flow rate decreases, and the flow rate of the upstream branch open channel increases. There is also a problem that the flow rate tends to increase and the height of the movable weir needs to be adjusted.
Published patent publication, JP-A-11-93148, upstream water level adjustment sluice

本発明は、以上に説明したように、必要とされる処理量に応じて汚泥水濃縮システムを構成し、しかも安価に製作が可能で、保守点検も不要な(或いは簡単な)汚泥水濃縮システムを提供することを課題としている。   As described above, the present invention constitutes a sludge water concentrating system according to the required processing amount, and can be manufactured at low cost, and does not require (or simple) maintenance inspection. It is an issue to provide.


上記課題を解決するために本発明は以下の手段を採用している。即ち、請求項1に記載の発明は、繊維状物を含んだ汚泥水を開水路にて複数台の濃縮機に分配供給する装置において、主開水路の前端及び後端を閉鎖すると共に、該主開水路の両側板の頂部に越流水を流す堰を設け、該両側板の外側に分岐開水路を並列に配置し、該主開水路の内部に汚泥水供給管を配設し、該汚泥水供給管にスリット状開口を下向きに設けたことを特徴としている。

In order to solve the above problems, the present invention employs the following means. That is, the invention according to claim 1 is an apparatus for distributing and supplying sludge water containing fibrous materials to a plurality of concentrators in an open channel, and closes the front end and the rear end of the main open channel, A weir for flowing overflow water is provided at the top of both side plates of the main open channel, a branch open channel is arranged in parallel outside the both side plates, a sludge water supply pipe is arranged inside the main open channel, and the sludge The water supply pipe is provided with a slit-like opening downward.

請求項2に記載の発明は、請求項1の発明において、前記スリット状開口幅は、前記汚泥水供給管の直径との比を所定の割合にしたことを特徴としている。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, the slit-like opening width has a predetermined ratio with the diameter of the sludge water supply pipe.

請求項3記載の発明は、請求項2に記載の発明において、前記所定の割合は各分岐開水路の汚泥水流量が均一になるように選択したことを特徴としている。   According to a third aspect of the present invention, in the second aspect of the present invention, the predetermined ratio is selected so that the sludge water flow rate in each branch open channel is uniform.

請求項4に記載の発明は、請求項2の発明において、前記スリット状開口幅は、前記汚泥水供給管の直径に対して20%〜40%の長さとしたことを特徴としている   The invention described in claim 4 is characterized in that, in the invention of claim 2, the slit-like opening width is 20% to 40% of the diameter of the sludge water supply pipe.

請求項5記載の発明は、請求項1〜請求項4に記載の発明において、前記スリット状開口幅は、汚泥水中の繊維状物が絡まない程度の最小限度幅以上に制限したことを特徴としている。   The invention according to claim 5 is characterized in that, in the invention according to claims 1 to 4, the slit-like opening width is limited to a minimum width or more so that the fibrous material in the sludge water is not entangled. Yes.

請求項6記載の発明は、請求項5に記載の発明において、前記最小限度幅は略30ミリメートルとしたことを特徴としている。   The invention described in claim 6 is characterized in that, in the invention described in claim 5, the minimum width is approximately 30 millimeters.

請求項7記載の発明は、請求項6に記載の発明において、前記供給管は円筒形の鋼管とし、該鋼管の内径を前記主幹開水路の幅の略半分とし、該鋼管の中心軸が該主開水路の深さの略半分以下の深さになる位置に配置したことを特徴としている。 The invention according to claim 7 is the invention according to claim 6, wherein the supply pipe is a cylindrical steel pipe, the inner diameter of the steel pipe is substantially half the width of the main open channel, and the central axis of the steel pipe is the It is characterized by being placed at a depth that is about half or less than the depth of the main open channel.

請求項8記載の発明は、請求項1〜請求項7に記載の発明において、前記汚泥水濃縮機をハニカム濃縮機で構成したことを特徴としている。 The invention according to claim 8 is the invention according to claims 1 to 7, wherein the sludge water concentrator is constituted by a honeycomb concentrator.

請求項9記載の発明は、請求項1に記載の発明において、前記汚泥供給管は汚泥水の突入流速が毎秒0.45メートル以下となるように直径を定め、前記スリットから流出する汚泥水の流速が毎秒(0.06〜0.08)メートルの範囲となるようにスリット幅を定めたことを特徴としている。
又、請求項10記載の発明は、請求項1に記載の発明において、前記汚泥水供給管の軸方向長さを前記複数台の濃縮機の内、最前端に配置した濃縮機と最後端に配置した濃縮機の中心軸間の距離よりも長くしたことを特徴としている。
The invention according to claim 9 is the invention according to claim 1, wherein the sludge supply pipe has a diameter determined so that the inflow velocity of the sludge water is 0.45 meters or less per second, and the sludge water flowing out from the slits. The slit width is determined so that the flow velocity is in the range of 0.06 to 0.08 meters per second.
The invention according to claim 10 is the invention according to claim 1, wherein the sludge water supply pipe has an axial length at the foremost end and the end of the plurality of concentrators. It is characterized by being longer than the distance between the central axes of the arranged concentrators.

本願発明によれば、必要とされる処理量に応じて複数台の同一規格の濃縮機を利用して構成することができるという効果が得られる。しかも安価に製作が可能で、保守点検も簡単な汚泥水濃縮機システムを構成することができるという効果が得られる。   According to the present invention, it is possible to obtain an effect that a plurality of concentrators of the same standard can be used according to a required processing amount. Moreover, it is possible to produce a sludge water concentrator system that can be manufactured at a low cost and that can be easily maintained and inspected.

本実施形態では、規格処理量が毎時10立方メートルのハニカム型濃縮機(以下、ハニカム濃縮機という)を両側に5台ずつ設けた汚泥濃縮システムについて説明する。なお、この実施形態の汚泥水濃縮システムでは汚泥水の規格処理量(汚泥水の供給量)は毎時100立方メートルとする。図1は本願発明の実施形態の斜視図を示す。図2は本願発明の実施形態の上平面図を示し、図3は図2のX−Xから見た側面の断面図を示す。図4(A)は図3のU−Uから見た正面図で、図4(B)はV−Vから見た断面図を示す。   In the present embodiment, a sludge concentration system in which five honeycomb type concentrators (hereinafter referred to as honeycomb concentrators) having a standard processing amount of 10 cubic meters per hour are provided on both sides will be described. In the sludge water concentration system of this embodiment, the standard treatment amount (sludge water supply amount) of sludge water is 100 cubic meters per hour. FIG. 1 shows a perspective view of an embodiment of the present invention. FIG. 2 shows a top plan view of an embodiment of the present invention, and FIG. 3 shows a cross-sectional side view as seen from XX in FIG. 4A is a front view as viewed from U-U in FIG. 3, and FIG. 4B is a cross-sectional view as viewed from V-V.

図1〜図4において、上面が開口の函体10の中央に主開水路11が設けられる。主開水路11は断面が矩形で、前端部及び後端部は閉鎖されている。また、主開水路11の両側面板12、12には越流水を流す堰(例えば、矩形堰)12aを設けている。この矩形堰12aは越流汚泥水がハニカム濃縮機17(17a、17b、17c、・・・)の入口部(図示省略)の高さと一致するように設ける。矩形堰12aの幅は、この堰12aを乗り越える越流水の平均的な水速と高さから決定する。さらに、主開水路11の略中央には汚泥水供給管20が配設される。汚泥水供給管20には下向きにスリット状開口21が設けられている。スリット状開口21のスリット幅Sは後述するように実験で求める。汚泥水供給管20はフランジ22によって外部の汚泥水供給パイプに接続されている。 1-4, the main open channel 11 is provided in the center of the box 10 whose upper surface is open. The main open channel 11 has a rectangular cross section, and the front end and the rear end are closed. Further, weirs (for example, rectangular weirs) 12a for flowing overflow water are provided on both side plates 12 and 12 of the main open channel 11. The rectangular weir 12a is provided so that the overflow sludge water coincides with the height of the inlet (not shown) of the honeycomb concentrator 17 (17a, 17b, 17c,...). The width of the rectangular weir 12a is determined from the average water speed and height of the overflow water over the weir 12a. Further, a sludge water supply pipe 20 is disposed substantially at the center of the main open channel 11. The sludge water supply pipe 20 is provided with a slit-shaped opening 21 downward. The slit width S of the slit-shaped opening 21 is obtained by experiments as will be described later. The sludge water supply pipe 20 is connected to an external sludge water supply pipe by a flange 22.

主開水路11の両側面板12の両外側に分岐開水路13を並列に設ける。即ち、分岐開水路13は仕切板14によって複数(本実施形態では10個)の分岐開水路13a、13b、13c、・・に分割されている。各分岐開水路13a、13b、13c、・・にはハニカム濃縮機17a、17b、17c、・・が設置される。矩形堰12aからの越流汚泥水がハニカム濃縮機17の入口部に入り、ハニカム濃縮機17(17a、17b、17c、・・)で分離された分離水は分離水槽16(16a、16b、16c、・・)に給水される。なお、分離水槽16(16a、16b、16c、・・)は分岐開水路13(13a、13b、13c、・・)が兼用されている。分離水槽16に貯水した分離水は分離水取出管36により外部に取り出される。また、ハニカム濃縮機17によって濃縮された濃縮汚泥は濃縮汚泥取出管37に供給され、外部に排出される。なお、主開水路11に残留したドレンは排出管38によって排出される。 Branch open channels 13 are provided in parallel on both outer sides of both side plates 12 of the main open channel 11. That is, the branch open channel 13 is divided into a plurality (ten in this embodiment) of the branch open channels 13a, 13b, 13c,. A honeycomb concentrator 17a, 17b, 17c,... Is installed in each branch open channel 13a, 13b, 13c,. Overflow sludge water from the rectangular weir 12a enters the inlet of the honeycomb concentrator 17, and the separated water separated by the honeycomb concentrator 17 (17a, 17b, 17c,...) Is separated into the separation water tank 16 (16a, 16b, 16c). , ...) is supplied with water. The separation water tank 16 (16a, 16b, 16c,...) Also serves as the branch open channel 13 (13a, 13b, 13c,...). The separated water stored in the separated water tank 16 is taken out to the outside through the separated water take-out pipe 36. The concentrated sludge concentrated by the honeycomb concentrator 17 is supplied to the concentrated sludge take-out pipe 37 and discharged to the outside. The drain remaining in the main open channel 11 is discharged through the discharge pipe 38.

本実施形態は以上の構成により、汚泥水供給管20から供給された汚泥水がスリット状開口21から下向きに(主開水路11の底に向かって)噴出流として供給される。汚泥水は主開水路11内部に充満されると矩形堰12aから越流して各分岐開水路13a、13b、13c、・・に設けられたハニカム濃縮機17の入口部に入り、汚泥と分離水に分離される。分離された分離水はハニカムスクリーンを通過してスクリーン外側に分離され、分離水槽16に供給され、分離水取水管36から外部に誘導される。また、濃縮汚泥39は濃縮汚泥取出管37に供給され、外部に排出される。   In the present embodiment, the sludge water supplied from the sludge water supply pipe 20 is supplied downward from the slit-like opening 21 (toward the bottom of the main open channel 11) as an ejection flow by the above configuration. When the sludge water is filled into the main open channel 11, it overflows from the rectangular weir 12a and enters the inlet of the honeycomb concentrator 17 provided in each branch open channel 13a, 13b, 13c,. Separated. The separated separated water passes through the honeycomb screen, is separated to the outside of the screen, is supplied to the separated water tank 16, and is guided to the outside from the separated water intake pipe 36. The concentrated sludge 39 is supplied to the concentrated sludge take-out pipe 37 and discharged to the outside.

以下に、スリット幅Sを決定する方法及び実験について説明する。本実施形態では、汚泥水の供給量(規格処理量)を毎時100立方メートルとしており、それに見合う程度に主開水路11の幅並びに深さ(高さ)を決定する。実験は模型を使用して行うものとし、模型の寸法を実機(実施形態)の(1/√5)に縮小し、模型の時刻変化を実時間の(1/√5)に短縮した。この結果、模型と実機の流量比は(1/√5)の3乗 ÷(1/√5)=1/5 になる。また、模型に使用する汚泥水は実機の場合と同一とした。   Hereinafter, a method and an experiment for determining the slit width S will be described. In this embodiment, the supply amount (standard processing amount) of sludge water is set to 100 cubic meters per hour, and the width and depth (height) of the main open channel 11 are determined to an extent corresponding to it. The experiment was performed using a model, and the size of the model was reduced to (1 / √5) of the real machine (embodiment), and the time change of the model was reduced to (1 / √5) of the real time. As a result, the flow rate ratio between the model and the actual machine is (1 / √5) cubed ÷ (1 / √5) = 1/5. The sludge water used for the model was the same as that for the actual machine.

<実験の目的>
実機の汚泥水供給管20は終端が閉鎖管であり、下向きにスリット状開口21が設けられていることから越流水量が均等になる条件を解析的に求めることは困難である。実験では、実機と同様に両側に5経路に振り分けているので、堰12aを乗り越える越流水量を10箇所の堰12a毎に流量を測定し平均値から最大値乃至最小値の大きい方の差分を平均値で除した値を平均誤差と規定している。従って、本実験の目的は、主開水路の中央部に沈められた汚泥水供給管20下部のスリット状開口の幅Sと、前記平均誤差との関係を、汚泥水供給管の供給流量を変化させて明らかにすることである。さらに、スリット状開口を通過する面速と、分配される堰12aを乗り越える越流水量の平均誤差との関係を明らかにすることである。そしてさらに、主開水路11の幅、並びに深さと汚泥水供給管の位置や内径を決定することである。
<Purpose of the experiment>
The sludge water supply pipe 20 of the actual machine has a closed pipe at the end and is provided with a slit-like opening 21 downward, so that it is difficult to analytically determine the conditions for equalizing the amount of overflow water. In the experiment, as in the case of the actual machine, there are five paths on both sides. Therefore, the amount of overflow water over the weir 12a is measured for each of the ten weirs 12a, and the difference between the average value and the larger one of the maximum value or the minimum value is calculated. The value divided by the average value is defined as the average error. Therefore, the purpose of this experiment is to change the supply flow rate of the sludge water supply pipe, the relationship between the average error and the width S of the slit-like opening under the sludge water supply pipe 20 submerged in the center of the main open channel. Let me clarify. Furthermore, it is to clarify the relationship between the surface speed passing through the slit-like opening and the average error of the amount of overflow water over the distributed weir 12a. Further, the width and depth of the main open channel 11 and the position and inner diameter of the sludge water supply pipe are determined.

<実験の内容>
実験は、越流水が乗り越える堰12a部分で汚泥水がうまく分配されていることを確認することを目的としているので、堰12aでの流量(これを10個集めると汚泥水供給管20から供給される汚泥水の総流量となる)を調整して行う。これは、堰12aの流量、つまり流速を調整することにより、供給流量も同時に変化させるので汚泥水分配供給の実験のパラメータとして扱える。また、模型には堰12aでの流量を調整するため、その下流域である分離開水路13a、13b、13c・・の流量を調整できるように分離開水路13a、13b、13c・・・の下流に、図5に示す直角三角堰31を設けた側面板30を追加設置した。なお、図5でhiは直角三角堰越流高さ、Bは分離水槽の幅、Dは水深である。また、その三角堰を乗り越える越流水の高さにより流量が直ぐに判明するよう、流量早見表により流量を決定した。
<Experiment contents>
The purpose of the experiment is to confirm that the sludge water is well distributed in the portion of the weir 12a where the overflow water gets over, so the flow rate at the weir 12a (collecting 10 of these will be supplied from the sludge water supply pipe 20). Adjust the total sludge water flow). By adjusting the flow rate of the weir 12a, that is, the flow velocity, the supply flow rate is also changed at the same time. Further, since the flow rate of the weir 12a is adjusted in the model, the downstream of the separation open channels 13a, 13b, 13c,... So that the flow rate of the separation open channels 13a, 13b, 13c,. In addition, a side plate 30 provided with a right triangular weir 31 shown in FIG. 5 was additionally installed. In FIG. 5, hi is a right triangular weir overflow height, B is the width of the separation tank, and D is the water depth. In addition, the flow rate was determined based on a quick flow chart so that the flow rate could be immediately determined by the overflow water level over the triangular weir.

上記の条件の下で模型の各分岐開水路13a、13b、13c、・・の平均流量、最大流量及び最小流量を求め、これらのデータから平均誤差を求めた。実験は模型の汚泥水供給管下部のスリット状開口の幅が30mm(24%)、45mm(36%)、60mm(48%)及び汚泥水供給管無し(汚泥水供給管を主開水路内に設けず主開水路側壁部で直接汚泥水を供給する場合)の各場合について行った。なお、上記の括弧内の数値は汚泥水供給管の内径に対するスリット幅の割合を(%)で示す。また、模型における汚泥水供給量を毎時15立方メートル(この場合の汚泥水供給管突入流速は0.34m/s);毎時20立方メートル(同0.45m/s);毎時30立方メートル(同0.68m/s)の各ケースについて行った。 Under the above conditions, the average flow rate, the maximum flow rate and the minimum flow rate of each branch open channel 13a, 13b, 13c,... Of the model were obtained, and the average error was obtained from these data. The experiment has 30mm (24%), 45mm (36%), and 60mm (48%) width of the slit-shaped opening at the bottom of the model sludge water supply pipe and no sludge water supply pipe (sludge water supply pipe in the main open channel) This was carried out for each case of supplying sludge water directly at the side wall of the main open channel. In addition, the numerical value in said parenthesis shows the ratio of the slit width with respect to the internal diameter of a sludge water supply pipe by (%). In addition, the sludge water supply rate in the model is 15 cubic meters per hour (in this case, the sludge water supply pipe rush speed is 0.34 m / s); 20 cubic meters per hour (0.45 m / s); 30 cubic meters per hour (0.68 m) / S) for each case.

<実験結果>
これらの実験結果のデータを図6に示し、そのグラフを図7に示す。実験では、スリット状開口の汚泥水供給管の軸方向の長さは2.3mであり、各堰12aの中心部までスリットが延びている。よって、スリット幅60mmで汚泥供給量が毎時15立方メートルの場合(この場合のスリット流出速度は0.03m/s)から、スリット幅30mmで汚泥供給量が毎時30立方メートルの場合(スリット流出速度は0.12m/s)まで変化させた。なお、いずれの場合もスリットに繊維状の付着物は残存しなかった。
<Experimental result>
The data of these experimental results are shown in FIG. 6, and the graph is shown in FIG. In the experiment, the length of the sludge water supply pipe in the slit-like opening in the axial direction is 2.3 m, and the slit extends to the center of each weir 12a. Therefore, when the slit width is 60 mm and the sludge supply rate is 15 cubic meters per hour (in this case, the slit outflow rate is 0.03 m / s), the slit width is 30 mm and the sludge supply amount is 30 cubic meters per hour (slit outflow rate is 0). .12 m / s). In either case, fibrous deposits did not remain in the slit.

後者の課題については、模型の流量が(毎時100立方メートル)×(1/5)=(毎時20立方メートル)であること、及び汚泥水供給管の突入汚泥水流速を(0.3〜0.7)m/s程度にしないと配管内で汚泥が分離するので、直径125mmの円管を利用することとし、模型の主開水路の幅は汚泥水供給管の直径の2倍(125mm×2=250mm)として狭小主開水路の状態に設定した。また、汚泥水供給管の中心軸が深さ250mmの位置になるように設置し、主開水路の深さを、実機の堰12a高さ(630mm)の(1/√5)の高さ280mmとした。 Regarding the latter problem, the flow rate of the model is (100 cubic meters per hour) × (1/5) = (20 cubic meters per hour), and the inflow sludge water flow rate of the sludge water supply pipe is (0.3 to 0.7). ) Since sludge separates in the pipe unless it is set to about m / s, a 125 mm diameter circular pipe is used, and the width of the main open channel of the model is twice the diameter of the sludge water supply pipe (125 mm × 2 = 250mm) and set to a narrow main open channel state. In addition, the sludge water supply pipe is installed so that the central axis is at a depth of 250 mm, and the depth of the main open channel is 280 mm, the height of the actual weir 12a (630 mm) (1 / √5). It was.

<実験結果の考察>
以上の実験結果から以下の様な知見が得られた。まず第1に、下向きのスリット状開口を有する汚泥水供給管を設けた場合は、汚泥水供給管を配置せず、直接汚泥水を供給の場合に比べて平均誤差が小さくなり、均等に汚泥水を供給できることからスリット状開口を有する汚泥水供給管を配設することの効果が認められた。特に、汚泥水の流量が大きいほど効果は大きく、流量が小さくなるとその効果も小さくなる。汚泥水の流量が小さい場合はスリット幅の割合を小さくすれば効果が改良されることが推察される。
<Consideration of experimental results>
The following findings were obtained from the above experimental results. First, when a sludge water supply pipe having a downward slit-like opening is provided, the sludge water supply pipe is not arranged, and the average error is smaller than that in the case of supplying the sludge water directly, and the sludge is evenly distributed. Since water can be supplied, the effect of arranging a sludge water supply pipe having a slit-like opening was recognized. In particular, the greater the sludge water flow rate, the greater the effect, and the smaller the flow rate, the smaller the effect. When the flow rate of sludge water is small, it can be inferred that the effect is improved by reducing the slit width ratio.

従って、規格流量に対して実流量が(−25%〜+50%)の変動がある場合は、汚泥水供給管の直径に対してスリット幅の割合を20%〜40%とすると有効な効果が認められる。特に、スリット幅の割合を20%程度にするのが望ましい。これは、汚泥水供給管がない場合は主開水路における液面が波打って変動し、入口からの距離によって越流の流量に差異が生じるからであり、スリットのある供給管を利用することにより液面が滑らかになり、かつ、一様水位になるからであろう。但し、実機では、スリット幅の割合をあまり小さくするとスリット状開口に繊維状物の付着が生じるから、一定の下限幅(例えば、30mm)を設けておく必要がある。 Therefore, when the actual flow rate varies (−25% to + 50%) with respect to the standard flow rate, it is effective to set the slit width ratio to 20% to 40% with respect to the diameter of the sludge water supply pipe. Is recognized. In particular, it is desirable to set the slit width ratio to about 20%. This is because if there is no sludge water supply pipe, the liquid level in the main open channel will wave and fluctuate, and the flow rate of the overflow will vary depending on the distance from the inlet. Use a supply pipe with a slit. This is because the liquid level becomes smooth and the water level becomes uniform. However, in the actual machine, if the ratio of the slit width is made too small, the fibrous material adheres to the slit-like opening, so it is necessary to provide a certain lower limit width (for example, 30 mm).

以上に説明したように、本実施形態の発明によれば、その平均誤差は20%以下に押さえることができ、汚泥水の均等分配が実用的に可能になるという効果が得られる。この結果、汚泥水濃縮機システムが全体として効率的に稼働するシステムの構成が可能になるという効果が得られた。特に、汚泥水の流量変化に対しても有効に機能するという効果が得られた。   As explained above, according to the invention of this embodiment, the average error can be suppressed to 20% or less, and the effect that the uniform distribution of sludge water is practically possible is obtained. As a result, the effect that the system configuration in which the sludge water concentrator system operates efficiently as a whole becomes possible is obtained. In particular, the effect of functioning effectively for changes in the flow rate of sludge water was obtained.

以上、この発明の実施形態、実施例を図面により詳述してきたが、具体的な構成はこの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。   The embodiments and examples of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the examples, and there are design changes and the like without departing from the gist of the present invention. Are also included in the present invention.

本発明を実施した実施形態の斜視図を示す。1 shows a perspective view of an embodiment implementing the present invention. 本実施形態の平面図を示す。The top view of this embodiment is shown. 図2におけるX−X断面図を示す。XX sectional drawing in FIG. 2 is shown. (A)本実施形態の正面図を示す。(B)Y−Y断面図を示す。(A) The front view of this embodiment is shown. (B) YY sectional drawing is shown. 模型の側板に設けた直角三角堰を示す。A right triangular weir provided on the side plate of the model is shown. 実験結果のデータを示す。The data of an experimental result are shown. 実験結果のグラフを示す。The graph of an experimental result is shown.

符号の説明Explanation of symbols

10 函体
11 主開水路
12 側面板
13 分岐開水路(分離水槽)
14 仕切板
16 分離水槽
20 汚泥水供給管
21 スリット状開口
30 模型機の側面板
31 直角三角堰
10 Box 11 Main open channel 12 Side plate 13 Branch open channel (separated water tank)
14 Partition plate 16 Separation water tank 20 Sludge water supply pipe 21 Slit-shaped opening 30 Side plate 31 of model machine Right angle triangular weir

Claims (10)

繊維状物を含んだ汚泥水を開水路にて複数台の濃縮機に分配供給する装置において、主開水路の前端及び後端を閉鎖すると共に、該主開水路の両側板の頂部に越流水を流す堰を設け、該両側板の外側に分岐開水路を並列に配置し、該主開水路の内部に汚泥水供給管を配設し、該汚泥水供給管にスリット状開口を下向きに設けたことを特徴とする汚泥水分配供給装置。 In an apparatus for distributing and supplying sludge water containing fibrous materials to a plurality of concentrators in an open channel, the front end and the rear end of the main open channel are closed, and overflow water is applied to the top of both side plates of the main open channel. Weirs are provided, branch open channels are arranged in parallel on the outside of the both side plates, a sludge water supply pipe is arranged inside the main open channel, and a slit-like opening is provided downward in the sludge water supply pipe A sludge water distribution and supply device characterized by that. 前記スリット状開口幅は、前記汚泥水供給管の直径との比を所定の割合にしたことを特徴とする請求項1に記載の汚泥水分配供給装置。 2. The sludge water distribution and supply device according to claim 1, wherein a ratio of the slit-shaped opening width to a diameter of the sludge water supply pipe is a predetermined ratio. 前記所定の割合は、各分岐開水路の汚泥水流量が均一になるように選択したことを特徴とする請求項2に記載の汚泥水分配供給装置。 3. The sludge water distribution and supply device according to claim 2, wherein the predetermined ratio is selected so that the sludge water flow rate in each branch open channel is uniform. 前記スリット状開口幅は、前記汚泥水供給管の直径に対して20%〜40%の長さとしたことを特徴とする請求項2に記載の汚泥水分配供給装置。 The sludge water distribution and supply device according to claim 2, wherein the slit-shaped opening width is 20% to 40% of the diameter of the sludge water supply pipe. 前記スリット状開口幅は、汚泥水中の繊維状物が絡まない程度の最小限度幅以上に制限したことを特徴とする請求項1〜請求項4の何れか1に記載の汚泥水分配供給装置。 The sludge water distribution and supply device according to any one of claims 1 to 4, wherein the slit-like opening width is limited to a minimum width or more so that the fibrous material in the sludge water is not entangled. 前記最小限度幅は約30ミリメートルとしたことを特徴とする請求項5に記載の汚泥水分配供給装置。 6. The sludge water distribution and supply device according to claim 5, wherein the minimum width is about 30 millimeters. 前記汚泥水供給管は円筒形の鋼管とし、該鋼管の内径を前記主開水路の幅の略半分とし、該鋼管の中心軸が該主開水路の深さの略半分以下の深さになる位置に配置したことを特徴とする請求項1〜請求項6の何れか1に記載の汚泥水分配供給装置。 The sludge water supply pipe is a cylindrical steel pipe, the inner diameter of the steel pipe is approximately half of the width of the main open channel, and the central axis of the steel pipe is approximately half or less the depth of the main open channel. The sludge water distribution and supply device according to any one of claims 1 to 6, wherein the sludge water distribution and supply device is arranged at a position. 前記汚泥水濃縮機をハニカム濃縮機で構成したことを特徴とする請求項1〜請求項7の何れか1に記載の汚泥水分配供給装置。 The sludge water distribution and supply device according to any one of claims 1 to 7, wherein the sludge water concentrator comprises a honeycomb concentrator. 前記汚泥水供給管は汚泥水の突入流速が毎秒0.45メートル以下となるように定め、前記スリットから流出する汚泥水の流速が毎秒(0.06〜0.08)メートルの範囲となるようにスリット幅を定めたことを特徴とする請求項1に記載の汚泥水分配供給装置。 The sludge water supply pipe is set so that the inflow speed of sludge water is 0.45 meters or less per second, and the flow speed of sludge water flowing out from the slit is in the range of 0.06 to 0.08 meters per second. The sludge water distribution and supply device according to claim 1, wherein a slit width is defined in the sludge water. 前記汚泥水供給管の軸方向長さを前記複数台の濃縮機の内、最前端に配置した濃縮機と最後端に配置した濃縮機の中心軸間の距離よりも長くしたことを特徴とする請求項1に記載の汚泥水分配供給装置。 The axial length of the sludge water supply pipe is longer than the distance between the central axes of the concentrators arranged at the front end and the concentrator arranged at the rear end among the plurality of concentrators. The sludge water distribution and supply device according to claim 1.
JP2007080374A 2007-03-26 2007-03-26 Sludge distribution and supply equipment Active JP4922803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080374A JP4922803B2 (en) 2007-03-26 2007-03-26 Sludge distribution and supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080374A JP4922803B2 (en) 2007-03-26 2007-03-26 Sludge distribution and supply equipment

Publications (2)

Publication Number Publication Date
JP2008238013A true JP2008238013A (en) 2008-10-09
JP4922803B2 JP4922803B2 (en) 2012-04-25

Family

ID=39909989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080374A Active JP4922803B2 (en) 2007-03-26 2007-03-26 Sludge distribution and supply equipment

Country Status (1)

Country Link
JP (1) JP4922803B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119570A (en) * 1976-03-31 1977-10-07 Shin Meiwa Ind Co Ltd Device for removing scum on waste water treating plant or the like
JPS55107202A (en) * 1979-02-09 1980-08-16 Tdk Electronics Co Ltd Nonnlinear voltage resistor
JPS5626598A (en) * 1979-08-09 1981-03-14 Mitsubishi Electric Corp Distributor for sludge
JPS5626597A (en) * 1979-08-09 1981-03-14 Mitsubishi Electric Corp Distributor for sludge
JP2002028699A (en) * 2000-07-18 2002-01-29 Nippon Steel Corp Sludge thickening and dewatering treatment system
JP2005021741A (en) * 2003-06-30 2005-01-27 Sanki Eng Co Ltd Structure of sludge concentration part
JP2006021136A (en) * 2004-07-08 2006-01-26 Sanki Eng Co Ltd Sludge concentration part structure
JP2006198482A (en) * 2005-01-18 2006-08-03 Ngk Insulators Ltd Method of controlling continuous pressurizing dehydrator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52119570A (en) * 1976-03-31 1977-10-07 Shin Meiwa Ind Co Ltd Device for removing scum on waste water treating plant or the like
JPS55107202A (en) * 1979-02-09 1980-08-16 Tdk Electronics Co Ltd Nonnlinear voltage resistor
JPS5626598A (en) * 1979-08-09 1981-03-14 Mitsubishi Electric Corp Distributor for sludge
JPS5626597A (en) * 1979-08-09 1981-03-14 Mitsubishi Electric Corp Distributor for sludge
JP2002028699A (en) * 2000-07-18 2002-01-29 Nippon Steel Corp Sludge thickening and dewatering treatment system
JP2005021741A (en) * 2003-06-30 2005-01-27 Sanki Eng Co Ltd Structure of sludge concentration part
JP2006021136A (en) * 2004-07-08 2006-01-26 Sanki Eng Co Ltd Sludge concentration part structure
JP2006198482A (en) * 2005-01-18 2006-08-03 Ngk Insulators Ltd Method of controlling continuous pressurizing dehydrator

Also Published As

Publication number Publication date
JP4922803B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
US9725334B2 (en) Rapid flotation device for water laden with suspended matter, and method for implementing same
KR101970936B1 (en) Siphon-type air diffuser, membrane separation activated sludge device, water treatment method
AU2017313255B2 (en) Waste water treatment system
JP4922803B2 (en) Sludge distribution and supply equipment
CN213738768U (en) Integrated synchronous pulse aeration device
JP6108209B2 (en) Fine bubble generation nozzle
CN112194243A (en) Integrated synchronous pulse aeration device
US20150136708A1 (en) Dissolved gas flotation apparatus
JP5957591B1 (en) Water treatment equipment
KR101297639B1 (en) Air diffusing system for biological aerated filtration with air and water discharging ports, and control method thereof
JP6394980B2 (en) Carrier input type sewage treatment equipment
JP6333097B2 (en) Filter cleaning equipment with flow path cleaning device
JP6784647B2 (en) Wastewater distributor and organic wastewater treatment system
JP6394976B2 (en) Carrier input type sewage treatment equipment
JP2008012499A (en) Distributor
US2733816A (en) griffith
JP6394977B2 (en) Carrier input type sewage treatment equipment
CN106186228B (en) A kind of integral type raw water regulating system of beneficiation wastewater fast uniform integrated treatment
FI122972B (en) Device for distributing a mass flow
RU172480U1 (en) Lime Milk Dispenser
US10065873B2 (en) Method and apparatus for static mixing of multiple opposing influent streams
FR2971432B1 (en) INSTALLATION FOR FLOATING WATER TREATMENT AND ASSOCIATED METHOD
CN103212301A (en) Ultrafiltration membrane pool with secondary on-line coagulation function
JP6048557B1 (en) Anaerobic treatment apparatus and anaerobic treatment method
KR20210147178A (en) A Distribution Channel for parallely comnected Reaction Chambers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

R150 Certificate of patent or registration of utility model

Ref document number: 4922803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250