JP2008238011A - Functional composite membrane formed by photoresist method, its manufacturing method and method of manufacturing useful substance by utilizing functional composite membrane - Google Patents

Functional composite membrane formed by photoresist method, its manufacturing method and method of manufacturing useful substance by utilizing functional composite membrane Download PDF

Info

Publication number
JP2008238011A
JP2008238011A JP2007080339A JP2007080339A JP2008238011A JP 2008238011 A JP2008238011 A JP 2008238011A JP 2007080339 A JP2007080339 A JP 2007080339A JP 2007080339 A JP2007080339 A JP 2007080339A JP 2008238011 A JP2008238011 A JP 2008238011A
Authority
JP
Japan
Prior art keywords
functional
composite membrane
substance
membrane
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007080339A
Other languages
Japanese (ja)
Inventor
Hiroshi Takahashi
博 高橋
Kenichi Kikuchi
賢一 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita University NUC
Original Assignee
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita University NUC filed Critical Akita University NUC
Priority to JP2007080339A priority Critical patent/JP2008238011A/en
Publication of JP2008238011A publication Critical patent/JP2008238011A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a functional composite membrane formed by a photoresist method and two or more layers of phases laminated and having different functions, a method of manufacturing the composite membrane and a method of manufacturing a useful substance by using an enzyme, a protein, etc. and utilizing the composite membrane. <P>SOLUTION: The composite membrane is formed by a photoresist method comprising dissolving a substance containing glutamate decarboxylase in photo-sensitive polyvinyl alcohol, applying the resultant solution to one side of a cation exchange membrane and drying, and irradiating the resultant membrane with light containing the wavelengths hardening the photo-sensitive resin to polymerize. When the formed composite membrane, CM, is laid at the center of a diffusion dialysis vessel consisting of a chamber F on the Feed side and a chamber S on the Strip side and dialysis is carried out by causing a substrate solution performing an enzymatic reaction to flow on one composite surface to which a functional substance is fixed while causing an electrolyte to flow on the other composite surface, a target substance is produced on the composite surface to which the functional substance is fixed, and a part of the product is recovered in the electrolyte solution on the other side through the composite membrane, leading to simultaneous execution of reaction and separation. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、フォトレジスト法を用いた、異種の機能を有する相を複数枚積層した機能性複合膜、それを製造する方法ならびに酵素、タンパク質、シクロデキストリン等を用い、機能性複合膜を利用して有用物質を製造する方法に関する。   The present invention relates to a functional composite membrane using a photoresist method in which a plurality of phases having different functions are laminated, a method for producing the same, and a functional composite membrane using enzymes, proteins, cyclodextrins, etc. And a method for producing useful substances.

酵素等を利用して有用物質を生産する場合、酵素反応のみならず、分離操作、濃縮操作、精製操作等多くのステップを介して行われており、コストダウンを含む効率の良い生産を計るには、複数のステップを1ユニットで実現できる高効率なプロセスを導入し、製品として得るまでの工程、ユニット数を減少することは重要である。   When producing useful substances using enzymes, etc., not only enzymatic reactions but also many steps such as separation operation, concentration operation, purification operation, etc. are aimed at efficient production including cost reduction. It is important to introduce a highly efficient process capable of realizing a plurality of steps in one unit, and to reduce the number of processes and units to obtain as a product.

この様な技術の一つとして、反応と分離を同時に行う組み合わせ型の反応器による運転は有効な手段となりえる。
特に、固液分離操作においてエネルギー消費量の少ない膜分離法を採用した場合、複雑なオペレーションを行わずに安定な操作が行えることから、膜分離法は魅力的な分離操作の一つとなる。
しかし、液体中に固体、あるいはコロイド状物質等の分子量が大きな物質が含まれる場合、膜面上へのスケールの付着を生じ膜の性能低下をもたらす。そのため、化学反応と分離操作を同時に行う際には、膜面にスケールが直接生成しないように、有用物質をゲル状、あるいは付着性を有する担体へ固定化して操作を行うことが必要である。
As one of such techniques, operation by a combined reactor that simultaneously performs reaction and separation can be an effective means.
In particular, when a membrane separation method with low energy consumption is employed in the solid-liquid separation operation, the membrane separation method is one of attractive separation operations because a stable operation can be performed without performing complicated operations.
However, when a substance having a large molecular weight such as a solid or colloidal substance is contained in the liquid, the scale adheres to the film surface and the performance of the film is deteriorated. Therefore, when performing the chemical reaction and the separation operation at the same time, it is necessary to perform the operation by immobilizing a useful substance on a gel-like or adherent carrier so that scale does not directly form on the membrane surface.

一般に、この様なシステムにおいては、固定化担体と機能性分離膜は一つのシステムの中で別々のユニットとして存在する場合が多い。
そのため、反応タンクの大型化、あるいは担体同士の接触による摩耗他等の問題が生じる。
この問題を解決する方法の一つとして、機能性分離膜の表面に他の機能性物質を含む相を形成した複合膜を用いる方法があり、たとえば機能性分離膜の一種であるイオン交換膜を複合化する技術については種々の方法が考案されている(特許文献1〜4を参照)。
しかし、これらの手法では機能性物質を母材となる膜に複合化する際、機能性物質を含む相を化学的に合成、あるいは塗布して複合化する手法を用いるため、熱的に不安定なタンパク質、酵素等を含む複合膜を作製する場合には、複合化反応の過程で有用物質の活性が低下し、かならずしも十分な機能の発現が行われない場合が多いと考えられる。
特開2005−068396号公報 特開2004−139837号公報 特開2004−139836号公報 特開平10−312815号公報
In general, in such a system, the immobilization carrier and the functional separation membrane often exist as separate units in one system.
Therefore, problems such as an increase in the size of the reaction tank or wear due to contact between carriers occur.
One method for solving this problem is to use a composite membrane in which a phase containing another functional substance is formed on the surface of the functional separation membrane. For example, an ion exchange membrane that is a kind of functional separation membrane is used. Various methods have been devised for combining technologies (see Patent Documents 1 to 4).
However, these methods use a method of chemically synthesizing or coating a phase containing the functional substance when the functional substance is combined with the base material film. In the case of producing a composite membrane containing various proteins, enzymes, etc., it is considered that the activity of useful substances is reduced during the complexation reaction, and sufficient functions are not always expressed.
JP 2005-068396 A JP 2004-139837 A Japanese Patent Application Laid-Open No. 2004-139836 Japanese Patent Laid-Open No. 10-312815

本発明では、熱的、化学的なストレスを有する機能性物質等を含む相を、その化学的、物理的な機能を低下させることなく他の機能性を有する膜に複合化する新しい創製方法を提供する事、ならびにその複合膜の機能を発現させ、有用物質を生産する方法を提供する事を目的とする。   In the present invention, there is provided a new creation method in which a phase containing a functional substance having thermal and chemical stress is combined with a film having other functionality without reducing its chemical and physical functions. An object of the present invention is to provide a method for producing a useful substance by expressing the function of the composite membrane.

本発明の機能性複合膜は、機能性複合膜となるベース材として高分子性イオン交換膜を用い、光感光性素材としてPVAに光感光物質であるアジド系感光基を有する物質を用い、光感光性物質の量は光を照射して固化する量であり、固定化する水溶性物質は、溶液として混合あるいは含有量を高めるために凍結乾燥した粉体として光感光性物質含有PVAに混合、溶解あるいは分散させ、光感光性物質に対する酵素等の固定化物質の量は0.1〜30wt%とするものである。
前記固定化物質として、生理活性を有する物質を生産するためのグルタミン酸脱炭酸酵素、アミラーゼ等をはじめとする単一のタンパク質あるいは複合タンパク質等を含有するものである。
The functional composite membrane of the present invention uses a polymer ion exchange membrane as a base material to be a functional composite membrane, and uses a substance having an azide-based photosensitive group as a photosensitive material for PVA as a photosensitive material. The amount of the photosensitive material is an amount to be solidified by irradiation with light, and the water-soluble material to be immobilized is mixed with the photosensitive material-containing PVA as a lyophilized powder to be mixed or increased in content as a solution, The amount of the immobilized substance such as an enzyme with respect to the photosensitive substance is 0.1-30 wt% after being dissolved or dispersed.
The immobilizing substance contains a single protein or a complex protein such as glutamic acid decarboxylase and amylase for producing a physiologically active substance.

本発明のフォトレジスト法を用いた機能性複合膜の製造方法は、光感光性を有する素材ならびに高分子機能性膜を用い、光感光性素材中に酵素などの化学的、物理的な相互作用を及ぼす機能性物質を溶解、分散し、高分子機能性膜上に塗布、含浸、乾燥後、光感光性素材が化学変化をする領域の波長を含む光源を照射して現像さらには定着を行うフォトレジスト法を用い、異種材料間の機械的結合性を高め、1枚の膜中に複数の機能を有する高機能複合膜を製造するものである。
本発明の機能性複合膜を利用して有用物質を製造する方法は、高分子機能性膜上に酵素等を含む異種の相を複合化した複合膜を用い、酵素等の機能を発現させて物質の生成と分離を同時に行うものである。
The method for producing a functional composite film using the photoresist method of the present invention uses a material having photosensitivity and a polymer functional film, and a chemical and physical interaction such as an enzyme in the photosensitive material. After dissolving, dispersing, coating, impregnating, and drying on the functional polymer film, the photosensitive material is irradiated with a light source including the wavelength of the region where the photosensitive material undergoes chemical change, and then development and fixing are performed. A high-performance composite film having a plurality of functions in one film is manufactured by using a photoresist method to enhance mechanical bonding between different materials.
The method for producing a useful substance using the functional composite membrane of the present invention uses a composite membrane in which a heterogeneous phase containing an enzyme or the like is combined on a polymer functional membrane, and expresses the function of the enzyme or the like. Production and separation of substances are performed simultaneously.

本発明のフォトレジスト法を用いた機能性複合膜の製造方法においては、光感光性素材を用いて複合膜を調製することから、機能性物質の機能性低下は化学合成法等に比較して少なく、そのため、酵素、タンパク質、シクロデキストリン等を含む複合膜も容易に作製できる。また、フォトレジストの技術の一つであるリソグラフ法を用いることから、現像、定着操作により任意のパターンを有する複合膜を設計できる。
また、本発明の機能性複合膜を利用して有用物質を製造する方法においては、得られた複合膜の反応相に原料となる液を供給し、他方の相には回収用の液を流すのみで複合膜の機能を発現させ、反応相で生成した物質を回収側に分離できることから、工業的に優れた生産方法であると言える。
さらに、特定の細胞やタンパク質に対して特異的に作用する物質を含む相を複合化した場合、アレルギー物質、ウイルス等の分離を行うことも可能であると考えられ、医薬分野、医療分野への応用も期待できる。
In the method for producing a functional composite film using the photoresist method of the present invention, since the composite film is prepared using a photosensitive material, the functional material has a reduced functionality compared to a chemical synthesis method or the like. Therefore, composite membranes containing enzymes, proteins, cyclodextrins and the like can be easily produced. In addition, since a lithographic method, which is one of photoresist techniques, is used, a composite film having an arbitrary pattern can be designed by developing and fixing operations.
Further, in the method for producing a useful substance using the functional composite membrane of the present invention, a raw material liquid is supplied to the reaction phase of the obtained composite membrane, and a recovery liquid is passed through the other phase. It can be said that this is an industrially excellent production method because the function of the composite membrane can be expressed by itself and the substance produced in the reaction phase can be separated to the recovery side.
Furthermore, when a phase containing a substance that specifically acts on a specific cell or protein is combined, it is considered possible to separate allergens, viruses, etc. Applications can also be expected.

本発明者等は、熱的、化学的なストレスを有する機能性物質等を含む相を、その化学的、物理的な機能を低下させることなく他の機能性を有する膜に複合化する新しい創製方法を提供するため鋭意検討を行った。
その結果、グルタミン酸脱炭酸酵素を含む物質を光感光性ポリビニルアルコール、例えばアジド系感光基を有する水溶性ポリビニルアルコールに溶解し、陽イオン交換膜の片面に塗布・乾燥後、光感光性樹脂が硬化する波長を含む光源を照射することにより重合するフォトレジストの手法を利用して複合化した複合膜を作製する技術に想到し、本発明を完成するに至った。
すなわち、本発明は、機能性を有する物質を含む感光性素材を用いて、熱的な重合反応、合成反応の操作を経ることなく、感光性素材が化学変化を生じる波長領域を含む光源を照射するのみで既存の機能性膜に複合化する技術、ならびに、発明した技術により作製した複合膜の機能を発現させ、物質の生産・分離操作を同時に行う技術である。
なお、既存の機能性膜は、有機性のものに限らず無機膜、セルロース等でも可能である。
The inventors of the present invention have created a new creation in which a phase containing a functional substance having thermal and chemical stress is combined with a film having other functionality without deteriorating its chemical and physical functions. In order to provide a method, intensive studies were conducted.
As a result, a substance containing glutamic acid decarboxylase is dissolved in photosensitive polyvinyl alcohol, for example, water-soluble polyvinyl alcohol having an azide-based photosensitive group, and after coating and drying on one side of the cation exchange membrane, the photosensitive resin is cured. The inventors have conceived of a technique for producing a composite film by using a photoresist technique that is polymerized by irradiating a light source including a wavelength to achieve the present invention.
That is, the present invention uses a photosensitive material containing a functional substance to irradiate a light source including a wavelength region in which the photosensitive material undergoes a chemical change without undergoing a thermal polymerization reaction or a synthetic reaction. This is a technology that combines the existing functional membrane with the existing functional membrane, and the technology that allows the function of the composite membrane produced by the invented technology to be expressed and the production / separation operation of the substances simultaneously.
Note that the existing functional film is not limited to an organic film, and may be an inorganic film, cellulose, or the like.

上記の本発明で得られた複合膜は、複合相の違いで機能性が異なるため、たとえば反応性を付与した相と分離特性を有する相を複合化した複合膜のそれぞれの面に、反応溶液、および反応物を回収する溶液を流すと、反応相において生成物が生成されるとともに反対側の面へ同時に生成物が分離されてくるシステムを構築することも可能である。   Since the composite membrane obtained in the present invention has different functionality depending on the composite phase, for example, a reaction solution is provided on each surface of the composite membrane in which a phase having reactivity and a phase having separation characteristics are combined. It is also possible to construct a system in which when a solution for recovering the reactant is flowed, a product is generated in the reaction phase and the product is simultaneously separated to the opposite surface.

本発明による複合膜の製造方法では、光感光性素材溶液に機能性物質を溶解するか、あるいはコロイド状の状態でできるだけ均一に分散させることにより、光架橋化後に得られる複合膜においても機能性物質が均一に存在する。また、機能性物質の含有量は溶解させる目的物質の量を調整することで可能となる。
機能性物質を含む光感光性樹脂溶液は、複合化を行う他の膜面上に塗布、乾燥を行うが、塗布する回数、あるいはスピンコートにより塗布相厚みの制御が可能であることから、複合化膜の積層構造を比較的制御しやすい。
塗布、乾燥を行った面には、ネガ型の光感光性素材を用いた場合紫外線の領域を含む光源等、素材が化学変化を生じる領域の波長を含む光源を照射して光重合を行うが、ピーク波長が352nmの光源でも十分に重合が可能であることから、紫外線によるダメージを受けやすい物質でもその機能の低下を極力抑制しながら固定化する事が可能となる。
In the method for producing a composite film according to the present invention, a functional substance is dissolved in a photosensitive material solution or dispersed as uniformly as possible in a colloidal state so that the composite film obtained after photocrosslinking is also functional. The substance is present uniformly. The content of the functional substance can be adjusted by adjusting the amount of the target substance to be dissolved.
A photosensitive resin solution containing a functional substance is applied and dried on the other film surface to be combined, but the number of times of application or the coating phase thickness can be controlled by spin coating. It is relatively easy to control the laminated structure of the chemical film.
When a negative photosensitive material is used on the coated and dried surface, photopolymerization is performed by irradiating a light source including a wavelength in a region where the material undergoes a chemical change, such as a light source including an ultraviolet region. Since the polymerization can be sufficiently performed even with a light source having a peak wavelength of 352 nm, even a substance that is easily damaged by ultraviolet rays can be immobilized while suppressing a decrease in its function as much as possible.

また、この際、ネガ型の光感光性素材を用いた場合には照射光源をリソグラフ技術により任意の形状で照射すると、その部分のみが重合が進み硬化する。
その後、水他の現像液で洗浄することにより現像操作を行うと感光しない部分のみが流出する事から、光源のパターンに応じた重合が可能となり、化学的な合成法では得ることが困難な構造が制御された機能性膜を得ることができる。なお、ポジ型の光感光性素材溶液を用いた場合、現像操作を行うと光照射を行った部分のみが溶解するため、ネガ型の光感光性素材を用いた場合のパターン制御法とは逆の製法となる。
光重合により複合化を行う機能性膜は、含水性を有する場合、光感光性素材モノマーの一部は機能性膜の一部にも含浸されることから、光重合を行うと表面の含水相の一部においても重合が進行するため、機能性膜を別々に作製し張り合わせた場合よりも密着性が向上する。
At this time, when a negative photosensitive material is used, when the irradiation light source is irradiated in an arbitrary shape by the lithographic technique, only the portion is polymerized and cured.
After that, when the developing operation is performed by washing with water or other developing solution, only the non-photosensitive part flows out, so that polymerization according to the pattern of the light source is possible, and a structure that is difficult to obtain by a chemical synthesis method Can be obtained. Note that when a positive type photosensitive material solution is used, only the portion irradiated with light dissolves when the development operation is performed. Therefore, this is opposite to the pattern control method when a negative type photosensitive material is used. It becomes the manufacturing method.
When the functional film that is combined by photopolymerization has water content, a part of the photosensitive material monomer is also impregnated in part of the functional film. Since the polymerization also proceeds in a part of the film, the adhesion is improved as compared with the case where the functional films are separately prepared and bonded.

上記手法により複合化を行った複合膜を用いて、その機能を発現させて有用物質を生産する場合、図1に示すように、作製した複合膜CMをFeed側FとStrip側Sとの2室からなる拡散透析槽の中央に配置し、機能性物質を固定化した複合面に酵素反応を行う基質溶液を流し、もう一方の複合面に電解質溶液等を流して透析を行うと、固定化した複合面で目的物が生成するとともに、生成物の一部が複合膜を透過して反対の電解質溶液に回収され、反応と分離が同時に行うことができる。なお、Bは恒温槽である。
この際、酵素反応を行う場合、酵素の種類に応じて最適なpH、温度に溶液を調整するとよい。
When a composite material composited by the above-described method is used to produce a useful substance by expressing its function, the composite membrane CM thus produced is divided into 2 of the Feed side F and the Strip side S as shown in FIG. Placed in the center of a diffusion dialysis chamber consisting of a chamber, the substrate solution that performs the enzyme reaction flows on the composite surface on which the functional substance is immobilized, and the electrolyte solution is flowed on the other composite surface to perform the dialysis. The target product is generated on the composite surface, and a part of the product permeates the composite membrane and is collected in the opposite electrolyte solution, so that the reaction and the separation can be performed simultaneously. B is a thermostatic bath.
At this time, when performing an enzyme reaction, the solution may be adjusted to an optimum pH and temperature according to the type of enzyme.

以下、本発明のフォトレジスト法を用いた機能性複合膜の製造方法を実施例により説明するが、本発明はこれに限られるものではない。
(1)ベースとなる機能性高分子膜として、厚さが100〜200μm程度のイオン交換膜を用いる。
(2)固定化剤として、ネガ型の光感光性を有し、ゲル状の光感光性物質を含有しているPVA水溶液(例えばアジド系感光基を有する水溶性ポリビニルアルコール)を用いた。
(3)光感光性物質の重量割合は水溶液重量に対して2〜5 wt%で実施したが、この濃度に固定するものではない。
(4)固定化される物質は、凍結乾燥法により処理を行った後、光感光性の機能を有するPVA水溶液に混合、溶解し、均一に分散させた。実施例における具体的な操作は、米糠から浸出したグルタミン酸脱炭酸酵素を含む粗タンパク質水溶液を凍結乾燥処理した後、所定量を光感光性機能を有するPVAに溶解させた。
(5)前記水溶液(光感光性機能を有するPVA水溶液)に対する酵素等を含有する粗タンパク質の含有割合は28%程度で実施したが、均一に分散させるという観点から好ましくは0.1 wt%から前記水溶液(光感光性機能を有するPVA水溶液)に対する飽和溶解度の範囲である。
(6)粗タンパク質等を含有する前記水溶液(光感光性機能を有するPVA水溶液)をセルロース膜、あるいはイオン交換膜面上に塗布、含浸操作を行い、その後乾燥操作を行った。実施例ではセルロース膜および陽イオン交換膜を用いてその片面に塗布、含浸操作を行ったが、複合化する膜についてはこの2種類に特定されるものではない。
(7)乾燥後、化学反応を進行させるため、352 nmのピーク波長を有する光源を30分照射したが、光化学反応が生じる波長領域を含む光線であればこのピーク波長に固定するものではない。また、光源のエネルギー出力、光源と複合膜との距離、照射時間については、ゲルが十分に固化する値であれば特定の値に固定されるものではない。
(8)上記の手法で得られた複合膜上の固定化相の厚みは、約300μm程度であったが、単位膜面積あたりの固定化量を増加させるため塗布、含浸の操作および光反応の操作を繰り返すと膜の厚みが変わるため、その厚みに固定されるものではない。
(9)図2に陽イオン交換膜上にグルタミン酸脱炭酸酵素を含むPVA相を複合化した膜のイメージを示す。1はイオン交換基、2は陽イオン交換膜相、3は固定化物質、4は複合化した膜の接合相、5は光感光性物質で固定化した粗タンパク質を含む相である。
Hereinafter, the method for producing a functional composite film using the photoresist method of the present invention will be described with reference to examples, but the present invention is not limited thereto.
(1) An ion exchange membrane having a thickness of about 100 to 200 μm is used as a functional polymer membrane serving as a base.
(2) A PVA aqueous solution (for example, water-soluble polyvinyl alcohol having an azide-based photosensitive group) having negative photosensitivity and containing a gel-like photosensitizer was used as the immobilizing agent.
(3) Although the weight ratio of the photosensitive material was 2 to 5 wt% with respect to the weight of the aqueous solution, it was not fixed at this concentration.
(4) The substance to be immobilized was treated by a freeze-drying method, then mixed and dissolved in a PVA aqueous solution having a photosensitive function, and uniformly dispersed. The specific operation in the examples was that a crude protein aqueous solution containing glutamate decarboxylase leached from rice bran was freeze-dried, and a predetermined amount was dissolved in PVA having a photosensitive function.
(5) The content ratio of the crude protein containing the enzyme and the like with respect to the aqueous solution (PVA aqueous solution having a photosensitivity function) was about 28%, but from the viewpoint of uniform dispersion, preferably from 0.1 wt% It is the range of the saturated solubility with respect to the aqueous solution (PVA aqueous solution having a photosensitive function).
(6) The aqueous solution (PVA aqueous solution having a photosensitivity function) containing the crude protein or the like was applied onto a cellulose membrane or an ion exchange membrane, impregnated, and then dried. In the examples, a cellulose membrane and a cation exchange membrane were used for coating and impregnation on one side, but the membrane to be combined is not limited to these two types.
(7) After drying, a light source having a peak wavelength of 352 nm was irradiated for 30 minutes in order to advance the chemical reaction. However, the light is not fixed to this peak wavelength as long as it includes a wavelength region in which a photochemical reaction occurs. Further, the energy output of the light source, the distance between the light source and the composite film, and the irradiation time are not fixed to specific values as long as the gel is sufficiently solidified.
(8) The thickness of the immobilization phase on the composite membrane obtained by the above method was about 300 μm, but in order to increase the immobilization amount per unit membrane area, the operation of coating, impregnation and photoreaction When the operation is repeated, the thickness of the film changes, so that the thickness is not fixed.
(9) FIG. 2 shows an image of a membrane in which a PVA phase containing glutamate decarboxylase is combined on a cation exchange membrane. 1 is an ion exchange group, 2 is a cation exchange membrane phase, 3 is an immobilization material, 4 is a bonded phase of a complexed membrane, and 5 is a phase containing a crude protein immobilized with a photosensitive material.

以下、本発明の機能性複合膜を用いた有用物質の製造方法を実施例により説明するが、本発明はこれに限られるものではない。
(1)実施例1の手法で作製したグルタミン酸脱炭酸酵素を含む粗タンパク質をPVA相に固定化するとともにセルロース膜に複合化した複合膜を、グルタミン酸脱炭酸酵素の機能が発現する1 mol/mのグルタミン酸水溶液に浸漬し、温度40度のもとで生成する物質の反応を追跡した。
(2)図3にグルタミン酸水溶液中のアミノ酸濃度の経時変化を示すグラフ図を示す。●はγ―アミノ酪酸(GABA)、○はグルタミン酸、△はアスパラギン酸、□はアラニンである。
(3)図3より、浸漬液中のグルタミン酸の濃度は急激に減少するが、それに対応して酵素反応によって生成したγ−アミノ酪酸の濃度が増加した。この結果より、PVAを基本骨格とした水溶性感光性素材に固定化してセルロース膜に複合化した酵素を含む粗タンパク質は、複合化を行ってもその機能は発現できることがわかる。
(4)なお、本実施例で使用したグルタミン酸水溶液は、グルタミン酸脱炭酸酵素の基質として供給した物質であり、他の酵素等タンパク質の機能を発現させる場合には、その基質特異性に応じた物質を供給するのが望ましい。また、温度、pH等の条件についても反応を阻害しない範囲であれば特に固定されるものではない。
Hereinafter, although the Example demonstrates the manufacturing method of the useful substance using the functional composite film of this invention, this invention is not limited to this.
(1) Immobilization of a crude protein containing glutamate decarboxylase produced by the method of Example 1 to a PVA phase and a complex membrane obtained by complexing with a cellulose membrane express 1 mol / m of the function of glutamate decarboxylase. 3 was immersed in an aqueous solution of glutamic acid, and the reaction of the substance produced at a temperature of 40 degrees was followed.
(2) FIG. 3 is a graph showing the change with time of the amino acid concentration in the glutamic acid aqueous solution. ● is γ-aminobutyric acid (GABA), ○ is glutamic acid, Δ is aspartic acid, and □ is alanine.
(3) From FIG. 3, the concentration of glutamic acid in the immersion liquid rapidly decreases, but the concentration of γ-aminobutyric acid generated by the enzyme reaction correspondingly increases. From this result, it is understood that the function of the crude protein containing the enzyme immobilized on the water-soluble photosensitive material having PVA as a basic skeleton and complexed with the cellulose membrane can be expressed even when complexed.
(4) The glutamic acid aqueous solution used in this example is a substance supplied as a substrate for glutamic acid decarboxylase. When expressing the function of a protein such as another enzyme, a substance corresponding to the substrate specificity is used. It is desirable to supply Further, conditions such as temperature and pH are not particularly fixed as long as they do not inhibit the reaction.

(1)実施例1の手法で作製したグルタミン酸脱炭酸酵素を含む粗タンパク質をPVA相に固定化するとともに陽イオン交換膜の片面に複合化した複合膜を、図1に示す2室からなる透析槽の中央に配置した。
(2)図1に示すFeed側Fにグルタミン酸脱炭酸酵素等を含む粗タンパク質含有相を、また反対側のStrip側Sにイオン交換膜相を向けて設置した。
(3)Feed側Fに基質となるグルタミン酸水溶液を、またStrip側Sに、塩酸水溶液を流して、酵素反応と分離操作を同時に行った。なお、Feed側に流す溶液は酵素等の機能が発現する基質溶液であれば特に固定されるものではない。またStrip側に流す溶液は、機能性膜の機能が発現できる溶液であれば塩酸に固定されるものではない。また、運転形式は本実施例では回分循環型の操作で行ったが、十分な膜面積および溶液量が確保される場合には連続操作による運転も可能である。
(4)その結果を図4のStrip室におけるアミノ酸濃度の経時変化を示すグラフ図に示す。●はγ―アミノ酪酸(GABA)、○はグルタミン酸、△はアスパラギン酸、□はアラニンである。
(5)図4より、透析の初期には基質であるグルタミン酸の膜透過が観測されるものの、生成したγ−アミノ酪酸が複合膜を透過して塩酸側に分離・回収された。
よって、新規に作製した複合膜の機能が発現したこと、また、その複合膜を用いて基質を複合膜の片側に流すのみで反対側の面に生成物を分離・回収できることが実験的に実証された。
(1) A dialysis composed of two chambers as shown in FIG. 1 is obtained by immobilizing a crude protein containing glutamic acid decarboxylase prepared by the method of Example 1 in a PVA phase and complexing it on one side of a cation exchange membrane. Arranged in the center of the tank.
(2) A crude protein-containing phase containing glutamic acid decarboxylase or the like was placed on the Feed side F shown in FIG. 1, and an ion exchange membrane phase was placed on the opposite Strip side S.
(3) The glutamic acid aqueous solution serving as a substrate was fed to the Feed side F, and the hydrochloric acid aqueous solution was flowed to the Strip side S, so that the enzyme reaction and the separation operation were performed simultaneously. The solution to be fed to the Feed side is not particularly fixed as long as it is a substrate solution that expresses functions such as enzymes. In addition, the solution that flows to the strip side is not fixed to hydrochloric acid as long as the function of the functional membrane can be expressed. In this embodiment, the operation mode is a batch circulation type operation. However, when a sufficient membrane area and a sufficient amount of solution are ensured, an operation by a continuous operation is also possible.
(4) The results are shown in a graph showing the change over time in the amino acid concentration in the Strip chamber of FIG. ● is γ-aminobutyric acid (GABA), ○ is glutamic acid, Δ is aspartic acid, and □ is alanine.
(5) From FIG. 4, although the membrane permeation of glutamic acid as a substrate was observed at the initial stage of dialysis, the produced γ-aminobutyric acid permeated the composite membrane and was separated and collected on the hydrochloric acid side.
Therefore, it was experimentally demonstrated that the function of the newly produced composite membrane was expressed, and that the product could be separated and collected on the opposite side just by flowing the substrate to one side of the composite membrane using the composite membrane. It was done.

食品産業、医薬品製造、医療分野、分析化学、センサーをはじめとする電子産業、さらには排水処理等幅広い分野への応用が期待できる。   Applications in a wide range of fields such as food industry, pharmaceutical manufacturing, medical field, analytical chemistry, electronics industry including sensors, and wastewater treatment can be expected.

複合膜の機能を発現させ、酵素反応と分離操作を同時に行うための装置の概略図である。It is the schematic of the apparatus for expressing the function of a composite membrane and performing enzyme reaction and separation operation simultaneously. 陽イオン交換膜面の片側に酵素を含むPVA相を複合化した膜のイメージ図である。It is an image figure of the film | membrane which compounded the PVA phase containing an enzyme on the one side of a cation exchange membrane surface. グルタミン酸脱炭酸酵素を含むPVA相をセルロースに複合化した膜をグルタミン酸水溶液に浸せきした場合の溶液中におけるアミノ酸濃度の経時変化を示すグラフ図である。It is a graph which shows a time-dependent change of the amino acid concentration in the solution at the time of immersing the membrane which combined the PVA phase containing glutamic acid decarboxylase with the cellulose in the glutamic acid aqueous solution. グルタミン酸脱炭酸酵素を含むPVA相を陽イオン交換膜の片面に複合化した膜を図1に示す装置に装着し、回分循環型操作を行った場合の、Strip室におけるアミノ酸濃度の経時変化を示すグラフ図である。1 shows the time-dependent change in amino acid concentration in the Strip chamber when a membrane in which a PVA phase containing glutamic acid decarboxylase is combined on one side of a cation exchange membrane is attached to the apparatus shown in FIG. FIG.

符号の説明Explanation of symbols

1 イオン交換基
2 陽イオン交換膜相
3 固定化物質
4 複合化した膜の接合相
5 光感光性物質で固定化した粗タンパク質を含む相
DESCRIPTION OF SYMBOLS 1 Ion-exchange group 2 Cation-exchange membrane phase 3 Immobilization substance 4 Junction phase of complexed membrane 5 Phase containing crude protein immobilized with photosensitive substance

Claims (4)

機能性複合膜となるベース材として高分子性イオン交換膜を用い、光感光性素材としてPVAに光感光物質であるアジド系感光基を有する物質を用い、光感光性物質の量は光を照射して固化する量であり、固定化する水溶性物質は、溶液として混合あるいは含有量を高めるために凍結乾燥した粉体として光感光性物質含有PVAに混合、溶解あるいは分散させ、光感光性物質に対する酵素等の固定化物質の量は0.1〜30wt%とすることを特徴とする機能性複合膜。   A polymeric ion-exchange membrane is used as the base material for the functional composite film, and a material having an azide-based photosensitive group, which is a photosensitive material, is used as the photosensitive material in PVA. The amount of the photosensitive material is irradiated with light. The water-soluble substance to be fixed is mixed, dissolved or dispersed in a photosensitive substance-containing PVA as a freeze-dried powder to increase the content or mixed as a solution. A functional composite membrane characterized in that the amount of an immobilized substance such as an enzyme is 0.1-30 wt%. 前記固定化物質として、生理活性を有する物質を生産するためのグルタミン酸脱炭酸酵素、アミラーゼ等をはじめとする単一のタンパク質あるいは複合タンパク質等を含有することを特徴とする請求項1記載の機能性複合膜。   The functional substance according to claim 1, wherein the immobilized substance contains a single protein or a complex protein such as glutamic acid decarboxylase and amylase for producing a physiologically active substance. Composite membrane. 光感光性を有する素材ならびに高分子機能性膜を用い、光感光性素材中に酵素などのタンパク質、あるいはシクロデキストリンなど化学的、物理的な相互作用を及ぼす機能性物質を溶解、分散し、高分子機能性膜上に塗布、含浸、乾燥後、光感光性素材が化学変化をする領域の波長を含む光源を照射して現像さらには定着を行うフォトレジスト法を用い、異種材料間の機械的結合性を高め、1枚の膜中に複数の機能を有する高機能複合膜を製造することを特徴とするフォトレジスト法を用いた機能性複合膜の製造方法。   Using photosensitive materials and functional polymer membranes, highly functional materials that have chemical and physical interactions such as enzymes or cyclodextrins are dissolved and dispersed in the photosensitive materials. After coating, impregnating, and drying on the molecular functional film, mechanically between different materials using a photoresist method that develops and fixes by irradiating a light source with a wavelength in a region where the photosensitive material undergoes a chemical change A method for producing a functional composite film using a photoresist method, wherein a highly functional composite film having a plurality of functions is produced in a single film with enhanced bonding properties. 機能性高分子機能性膜上に酵素等を含む異種の相を複合化した複合膜を用い、酵素等の機能を発現させて物質の生成と分離を同時に行うことを特徴とする機能性複合膜を利用して有用物質を製造する方法。   A functional composite membrane characterized by using a composite membrane in which different types of phases containing enzymes and the like are combined on a functional polymer functional membrane, and simultaneously generating and separating substances by expressing the functions of the enzymes and the like. A method for producing useful substances using
JP2007080339A 2007-03-26 2007-03-26 Functional composite membrane formed by photoresist method, its manufacturing method and method of manufacturing useful substance by utilizing functional composite membrane Pending JP2008238011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007080339A JP2008238011A (en) 2007-03-26 2007-03-26 Functional composite membrane formed by photoresist method, its manufacturing method and method of manufacturing useful substance by utilizing functional composite membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007080339A JP2008238011A (en) 2007-03-26 2007-03-26 Functional composite membrane formed by photoresist method, its manufacturing method and method of manufacturing useful substance by utilizing functional composite membrane

Publications (1)

Publication Number Publication Date
JP2008238011A true JP2008238011A (en) 2008-10-09

Family

ID=39909987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007080339A Pending JP2008238011A (en) 2007-03-26 2007-03-26 Functional composite membrane formed by photoresist method, its manufacturing method and method of manufacturing useful substance by utilizing functional composite membrane

Country Status (1)

Country Link
JP (1) JP2008238011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011139233A1 (en) * 2010-05-04 2011-11-10 Agency For Science, Technology And Research A microsieve for cells and particles filtration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011139233A1 (en) * 2010-05-04 2011-11-10 Agency For Science, Technology And Research A microsieve for cells and particles filtration

Similar Documents

Publication Publication Date Title
Li et al. Size matters: Challenges in imprinting macromolecules
Hoshino et al. Peptide imprinted polymer nanoparticles: a plastic antibody
Yan et al. Characteristic and synthetic approach of molecularly imprinted polymer
Holden et al. Light activated patterning of dye-labeled molecules on surfaces
Shi et al. Facile construction of multicompartment multienzyme system through layer-by-layer self-assembly and biomimetic mineralization
Piletsky Molecular imprinting of polymers
Li et al. Protein recognition via surface molecularly imprinted polymer nanowires
Liu et al. pH-switchable, ultrathin permselective membranes prepared from multilayer polymer composites
Zhan et al. Hydrogel-based microreactors as a functional component of microfluidic systems
Luo et al. Biocatalytic membrane: Go far beyond enzyme immobilization
Wulff et al. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization
Liu et al. 25th anniversary article: Reversible and adaptive functional supramolecular materials:“Noncovalent interaction” matters
Haupt et al. Molecularly imprinted polymers
Fernandes et al. Chiral separation in preparative scale: A brief overview of membranes as tools for enantiomeric separation
Liang et al. Synthesis and characterization of organometallic coordination polymer nanoshells of Prussian blue using miniemulsion periphery polymerization (MEPP)
Li et al. Surface-imprinted nanoparticles prepared with a his-tag-anchored epitope as the template
Gong et al. Molecular imprinting: A versatile tool for separation, sensors and catalysis
Liangyin et al. Stimuli-responsive membranes: Smart tools for controllable mass-transfer and separation processes
Zhang et al. Facile method for the fabrication of robust polyelectrolyte multilayers by post-photo-cross-linking of azido groups
Lamaoui et al. Synthesis techniques of molecularly imprinted polymer composites
Nghiem et al. Recent advances in the synthesis and application of polymer compartments for catalysis
Akiba et al. Photosensitive layer-by-layer assemblies containing azobenzene groups: Synthesis and biomedical applications
FR2903120A1 (en) METHOD FOR IMMOBILIZATION OF HYDROGELS ON NON-MODIFIED POLYMERIC MATERIALS, BIOPUCE BASED ON NON-MODIFIED POLYMERIC MATERIALS AND METHOD OF MANUFACTURING THE SAME
Kobayashi et al. Molecularly imprinted polysulfone membranes having acceptor sites for donor dibenzofuran as novel membrane adsorbents: Charge transfer interaction as recognition origin
Zhou et al. Interfacial super-assembly of nanofluidic heterochannels from layered graphene and alumina oxide arrays for label-free histamine-specific detection