JP2008237334A - Method of measuring glucose level in living fish and biosensor used for the method - Google Patents

Method of measuring glucose level in living fish and biosensor used for the method Download PDF

Info

Publication number
JP2008237334A
JP2008237334A JP2007079303A JP2007079303A JP2008237334A JP 2008237334 A JP2008237334 A JP 2008237334A JP 2007079303 A JP2007079303 A JP 2007079303A JP 2007079303 A JP2007079303 A JP 2007079303A JP 2008237334 A JP2008237334 A JP 2008237334A
Authority
JP
Japan
Prior art keywords
biosensor
working electrode
fish
measuring
glucose concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007079303A
Other languages
Japanese (ja)
Other versions
JP5017652B2 (en
Inventor
Hideaki Endo
英明 遠藤
Yuki Yonemori
雄輝 米森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Marine Science and Technology NUC
Original Assignee
Tokyo University of Marine Science and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Marine Science and Technology NUC filed Critical Tokyo University of Marine Science and Technology NUC
Priority to JP2007079303A priority Critical patent/JP5017652B2/en
Publication of JP2008237334A publication Critical patent/JP2008237334A/en
Application granted granted Critical
Publication of JP5017652B2 publication Critical patent/JP5017652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of measuring a glucose level in living fish which imposes a lesser load on the fish, restrains enzymes from getting deactivated and can measure a glucose level for a long time, and to provide a biosensor used for the method. <P>SOLUTION: The measuring method sticks a biosensor A having a short line working electrode 1 covering the periphery with an insulator 2 except for the tip portion, a counter electrode 5 made up of a silver-silver chloride layer applied to the periphery of the insulator 2, a spherical body 6 mounted on the tip of the working electrode 1 and having a diameter larger than the diameter of the working electrode 1, a measuring portion 8 measuring electrical current flowing through a circuit connecting the working electrode 1 and the counter electrode 5, and an enzyme fixing portion 11 provided on the periphery of the tip portion of the working electrode 1 between the spherical body 6 and the insulator 2 into an interstitial liquid in the interior of a mucous membrane present in the vicinity of an eyeball of fish and measures a glucose level in the living fish. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、魚類の眼球付近の間質液を検体として、魚類生体内のグルコース濃度を測定する方法及びこれに使用するバイオセンサに関する。   The present invention relates to a method for measuring a glucose concentration in a fish body using a stromal fluid in the vicinity of fish eyeballs as a specimen, and a biosensor used therefor.

世界的な魚資源の減少により、様々な魚種の栽培漁業が年々盛んになっているが、病気を持った魚は消費者に嫌われるだけでなく、魚の死亡率が高いと経済的損失が大きくなるため、ストレスがない安定した状態で魚を養殖し、しかも、使用する抗生物質等の量を最小限に抑える必要がある。
ところで、魚のストレスと血液中のグルコース濃度との間には密接な関係が有り、血中グルコース濃度が高いと魚が強いストレスを感じており、死亡率が高まる傾向にあるといわれている。
Due to the global decline in fish stocks, the growing fishery of various fish species is thriving year after year. Not only are sick fish hated by consumers, but high fish mortality causes economic losses. Because it grows large, it is necessary to cultivate fish in a stable state without stress, and to keep the amount of antibiotics used to a minimum.
By the way, there is a close relationship between the stress of fish and the blood glucose concentration, and it is said that when the blood glucose concentration is high, the fish feels strong stress and the mortality rate tends to increase.

従来、魚類の健康状態を調べる方法として、魚群から選択した1以上の個体を血液学的検査及び血液生化学的検査により検査した検査値と、検査標準域を比較する魚類の異常の検査方法が知られている(特許文献1参照)。
しかし、この方法は、魚類の動脈や心臓から採血しなければならず、魚への負担が大きく、場合によっては開腹が必要なので、検査の対象となる魚を殺すこともある。また、採取した血液を検体としているので、長時間連続的に検査を続けることは不可能であった。
Conventionally, as a method for examining the health condition of fish, there is a method for examining abnormalities in fish by comparing a test value obtained by examining one or more individuals selected from a school of fish by a hematological test and a blood biochemical test with a test standard range. It is known (see Patent Document 1).
However, in this method, blood must be collected from the arteries and heart of the fish, and the burden on the fish is large. In some cases, laparotomy is required, so the fish to be examined may be killed. Further, since the collected blood is used as a specimen, it was impossible to continue the examination for a long time.

さらに、センサー検出部を直径1mm程度の針型に形成し、直接生体に刺入し、埋め込んだ状態で体液成分を測定するバイオセンサが開発されている(特許文献2参照)。
しかし、通常のバイセンサは直径が0.5mm〜1.5mm程度あって、魚体に対する負担は依然として大きいばかりでなく、生きた魚類に長時間装着しておくのは困難であった。
Furthermore, a biosensor has been developed in which a sensor detection unit is formed in a needle shape having a diameter of about 1 mm, and is directly inserted into a living body and measures a body fluid component in an embedded state (see Patent Document 2).
However, a normal bisensor has a diameter of about 0.5 mm to 1.5 mm, and the burden on the fish is not only large, but it is difficult to attach it to live fish for a long time.

特開2001−37368号公報JP 2001-37368 A 特開2005−230521号公報JP-A-2005-230521

本発明が解決しようとする課題は、魚に対する負担が少なく、バイオセンサの受容体である酵素の失活を抑制し、長時間に亘って連続して測定可能な魚類生体内のグルコース濃度を測定する方法及びこれに使用するバイオセンサを提供することにある。   The problem to be solved by the present invention is to measure the glucose concentration in the fish body that can be measured continuously over a long period of time, suppressing the inactivation of the enzyme that is the receptor of the biosensor, with less burden on the fish And a biosensor used for the method.

本発明の測定方法は、魚類の眼球付近に存在する粘膜内部の間質液中へ刺し入れたバイオセンサにより、魚類生体内のグルコース濃度を測定する。
バイオセンサを装着するには、注射針の外周に外筒を嵌合し、頭骨を通して生体魚類の眼球付近の粘膜内部に前記注射針及び外筒を刺し入れてから、前記注射針を抜き取って外筒のみを埋設し、次いで、外筒の内部に前記バイオセンサを挿入し、その後、該バイオセンサを頭骨に接着すると良い。
In the measurement method of the present invention, the glucose concentration in the fish body is measured by a biosensor inserted into the interstitial fluid in the mucous membrane existing near the fish eyeball.
To attach the biosensor, an outer cylinder is fitted to the outer periphery of the injection needle, the injection needle and the outer cylinder are inserted into the mucous membrane near the eyeball of a living fish through the skull, and the injection needle is removed and removed. It is preferable to embed only the cylinder, then insert the biosensor into the outer cylinder, and then bond the biosensor to the skull.

バイオセンサで測定した電流等の測定値を間質液中のグルコース濃度に変換することがある。
この場合、前記バイオセンサの測定値を送信手段により無線送信し、該送信手段からの信号を、生体魚類の近傍に配置された受信手段により受信し、該受信手段に接続された変換手段によって、前記バイオセンサの測定値を間質液中のグルコース濃度に変換しても良い。
A measurement value such as current measured by a biosensor may be converted into a glucose concentration in the interstitial fluid.
In this case, the measurement value of the biosensor is wirelessly transmitted by the transmission unit, the signal from the transmission unit is received by the reception unit arranged in the vicinity of the living fish, and the conversion unit connected to the reception unit is used. The measurement value of the biosensor may be converted into the glucose concentration in the interstitial fluid.

本発明のバイオセンサは、先端部を除いた外周を絶縁体で被覆した短線状の作用極と、前記絶縁体の外周に塗布した銀・塩化銀層より成る対極と、前記作用極の先端に装着され、前記作用極の直径よりも大きい径を有する球体と、前記作用極と対極を接続する回路に流れる電流を測定する測定部と、前記球体と絶縁体との間において、前記作用極の先端部外周に設けられた酵素固定部とを備える。
或いは、先端部を除いた外周を絶縁体で被覆した短線状の作用極と、前記絶縁体の外周に塗布した銀・塩化銀層より成る対極と、前記作用極の先端に装着され、前記作用極の直径よりも大きい径を有する球体と、前記作用極と対極を接続する回路に流れる電流を測定する測定部と、該測定部の測定値を無線送信する送信手段と、前記球体と絶縁体との間において、前記作用極の先端部外周に設けられた酵素固定部とを備える。
The biosensor of the present invention comprises a short-line working electrode whose outer periphery excluding the tip is coated with an insulator, a counter electrode composed of a silver / silver chloride layer applied to the outer periphery of the insulator, and a tip of the working electrode. A sphere having a diameter larger than the diameter of the working electrode, a measuring unit for measuring a current flowing in a circuit connecting the working electrode and the counter electrode, and the working electrode between the sphere and the insulator. And an enzyme immobilization part provided on the outer periphery of the tip part.
Alternatively, the short electrode working electrode whose outer periphery excluding the tip is coated with an insulator, a counter electrode composed of a silver / silver chloride layer coated on the outer periphery of the insulator, and the tip of the working electrode are mounted, A sphere having a diameter larger than the diameter of the pole, a measurement unit that measures a current flowing in a circuit that connects the working electrode and the counter electrode, a transmission unit that wirelessly transmits a measurement value of the measurement unit, and the sphere and the insulator And an enzyme immobilization portion provided on the outer periphery of the tip end portion of the working electrode.

請求項1〜4に係る発明によれば、眼球付近の粘膜内部にバイオセンサを刺し入れて測定を行うので、血管にバイオセンサを挿入するのに比べて魚に対する負担を軽減でき、魚を生かしたままでグルコース濃度を測定することが可能である。
また、測定対象として血液を用いていないため、凝固した血液が付着して酵素(グルコースオキシダーゼ)が失活するのを抑制できる。
According to the inventions according to claims 1 to 4, since the biosensor is inserted into the mucous membrane in the vicinity of the eyeball and the measurement is performed, the burden on the fish can be reduced as compared with the case where the biosensor is inserted into the blood vessel. It is possible to measure the glucose concentration as it is.
In addition, since blood is not used as a measurement target, it is possible to suppress the inactivation of the enzyme (glucose oxidase) due to adhesion of coagulated blood.

特に、請求項2に係る発明によれば、バイオセンサが硬い頭骨で支持されるので、動き回る生体魚類にも安定して取り付けることが可能であり、魚類の動きによって外れるのを防ぐ。
また、請求項4に係る発明によれば、バイオセンサと変換手段とを導線で接続する必要が無いので、バイオセンサを装着された魚は自由に動くことができ、バイオセンサを試着したままで長期間に亘って測定することが可能であると共に、ストレスによってグルコース濃度が変動する心配が無い。
In particular, according to the invention of claim 2, since the biosensor is supported by a hard skull, it can be stably attached to a living fish that moves around, and is prevented from coming off due to the movement of the fish.
Further, according to the invention according to claim 4, since it is not necessary to connect the biosensor and the conversion means with a conducting wire, the fish equipped with the biosensor can move freely and the biosensor can be tried on. It can be measured over a long period of time, and there is no fear that the glucose concentration will fluctuate due to stress.

請求項5及び6に係る発明によれば、直径0.3mm〜0.5mmというきわめて微細なものでありながら、銀・塩化銀処理を電気化学的に施した銀線を多数回巻きつけて対極を形成したものと同様に対極の表面積を大きくすることが可能であり、この結果、分極を防いで電位を安定させることができる。
また、従来のもののように、銀線表面の薄い銀・塩化銀処理が剥がれ、露出した銀線と銀・塩化銀の二つの金属が対極の役割を果たしてしまう心配が無く、長期間に亘って高い安定性が得られる。
According to the inventions according to claims 5 and 6, the counter electrode is obtained by winding a silver wire subjected to silver / silver chloride treatment electrochemically many times while being extremely fine with a diameter of 0.3 mm to 0.5 mm. It is possible to increase the surface area of the counter electrode as in the case of forming the electrode, and as a result, the polarization can be prevented and the potential can be stabilized.
Also, unlike the conventional ones, the silver / silver chloride treatment on the surface of the silver wire is peeled off, and there is no concern that the exposed silver wire and the two metals of silver / silver chloride will play the role of counter electrodes. High stability is obtained.

さらに、作用極の先端にこれより径大の球体を装着したので、酵素溶液に浸漬すると、適度な表面張力が生まれて微細な酵素固定部に確実に酵素を固定できるだけでなく、バイオセンサ刺入時に酵素固定部に固定された酵素が剥離するのを防ぐことが可能である。
また、先端に球体を設けてあるので、生体魚類の眼球粘膜に長期間刺し入れた状態でも刺激が少なくて済み、魚類に与える負担を軽減できる。
In addition, since a sphere with a larger diameter than this is attached to the tip of the working electrode, when immersed in an enzyme solution, an appropriate surface tension is created, so that the enzyme can be securely fixed to a fine enzyme fixing part, and a biosensor can be inserted. It is possible to prevent the enzyme fixed to the enzyme fixing part from peeling off at times.
In addition, since the sphere is provided at the tip, even when it is inserted into the eyeball mucous membrane of a living fish for a long period of time, the stimulation can be reduced and the burden on the fish can be reduced.

図1〜図7は、本発明の実施例1を示す。
本発明のバイオセンサAは、生体魚類の眼球付近に存在する粘膜内部の間質液中へ刺し入れるものであって、図1に示すように、短線状の作用極1と、作用極1の外周に被覆した絶縁体2と、絶縁体2の外周に設けられた銀線3と、作用極1の外周に塗布された銀・塩化銀層より成る対極5と、作用極1の先端に装着された球体6と、作用極1及び対極5に接続された定電圧装置7と、定電圧装置7に接続され、作用極1と対極5を接続する回路に流れる電流を測定する測定部8とを備える。
定電圧装置7と測定部8はポテンシオスタット17に組み込まれている。また、測定部8には、送信線16を介して、測定値をグルコース濃度へ変換する変換手段(コンピュータ)15が接続され、測定部8の測定値が送信線16によって変換手段15へ送信されるようになっている。
1 to 7 show Embodiment 1 of the present invention.
The biosensor A of the present invention is inserted into the interstitial fluid in the mucous membrane existing near the eyeball of a living fish, and as shown in FIG. Attached to the tip of the working electrode 1, an insulator 2 coated on the outer periphery, a silver wire 3 provided on the outer periphery of the insulator 2, a counter electrode 5 composed of a silver / silver chloride layer applied to the outer periphery of the working electrode 1 A spherical body 6, a constant voltage device 7 connected to the working electrode 1 and the counter electrode 5, a measuring unit 8 connected to the constant voltage device 7 and measuring a current flowing through a circuit connecting the working electrode 1 and the counter electrode 5, Is provided.
The constant voltage device 7 and the measurement unit 8 are incorporated in a potentiostat 17. The measurement unit 8 is connected to a conversion means (computer) 15 for converting the measurement value into a glucose concentration via the transmission line 16, and the measurement value of the measurement unit 8 is transmitted to the conversion means 15 via the transmission line 16. It has become so.

作用極1は、直径0.178mmの白金イリジウム線を長さ2cmに切断したものであり、先端から1mm程度の長さを除いて、その外周をテフロン(登録商標)等より成る絶縁体2で被覆してある。
また、導線10をハンダ付けするために、絶縁体2の外周の末端寄りに、直径0.1mmの銀線3を10回程度巻きつけてある。
対極5である銀・塩化銀層は、微細な塩化銀粉末を0.2〜40重量%含有した銀ペーストを、銀線3を被覆するように、絶縁体2の外周に塗布して形成される。
そして、作用極1及び対極5には、ハンダ付けされた導線10を介して定電圧装置7が接続され、定電圧装置7から作用極1へ+0.650mVの定電圧を印加できるようになっている。
The working electrode 1 is obtained by cutting a platinum iridium wire having a diameter of 0.178 mm to a length of 2 cm, and the outer periphery thereof is made of an insulator 2 made of Teflon (registered trademark) or the like except for a length of about 1 mm from the tip. It is covered.
Further, in order to solder the conducting wire 10, a silver wire 3 having a diameter of 0.1 mm is wound about 10 times near the end of the outer periphery of the insulator 2.
The silver / silver chloride layer as the counter electrode 5 is formed by applying a silver paste containing 0.2 to 40% by weight of fine silver chloride powder to the outer periphery of the insulator 2 so as to cover the silver wire 3. The
A constant voltage device 7 is connected to the working electrode 1 and the counter electrode 5 via a soldered lead 10 so that a constant voltage of +0.650 mV can be applied from the constant voltage device 7 to the working electrode 1. Yes.

球体6は、エポキシ樹脂等を素材とし、作用極1の直径よりやや大きい径を有する。そして、球体6と絶縁体2の間において、作用極1の先端部外周の窪んだ部分は、酵素固定部11となっている。
実際に測定を行う前に、バイオセンサAをグルコースオキシダーゼ溶液に浸漬し、酵素固定部11にグルコースオキシダーゼを固定する。酵素固定部11には表面張力が働いて確実にグルコースオキシダーゼが固定される。
The sphere 6 is made of an epoxy resin or the like and has a diameter slightly larger than the diameter of the working electrode 1. A recessed portion on the outer periphery of the tip end of the working electrode 1 between the sphere 6 and the insulator 2 serves as an enzyme fixing portion 11.
Before the actual measurement, the biosensor A is immersed in a glucose oxidase solution, and glucose oxidase is fixed to the enzyme fixing unit 11. Glucose oxidase is reliably fixed to the enzyme fixing part 11 by surface tension.

このバイオセンサAを粘膜Cに刺し入れると、間質液中のグルコースと酵素固定部11に固定されたグルコースオキシダーゼが接触し、グルコースがグルコースオキシダーゼの触媒反応によって酸化され、過酸化水素が発生する。
作用極1には+0.650mVの定電圧が印加されているので、グルコースの酸化反応が起きていないときは、作用極1には+0.650mVの電位が常に維持されているが、過酸化水素が発生すると電子を受け取って電位が上昇し、作用極1と対極5を接続した回路に流れる電流が強まる。
When this biosensor A is inserted into the mucous membrane C, glucose in the interstitial fluid comes into contact with glucose oxidase fixed to the enzyme fixing part 11, and glucose is oxidized by the catalytic reaction of glucose oxidase to generate hydrogen peroxide. .
Since a constant voltage of +0.650 mV is applied to the working electrode 1, the potential of +0.650 mV is always maintained at the working electrode 1 when no glucose oxidation reaction occurs. When this occurs, electrons are received and the potential rises, and the current flowing through the circuit connecting the working electrode 1 and the counter electrode 5 increases.

発生する過酸化水素の濃度は間質液中のグルコース濃度に比例するので、グルコース濃度が高いほど作用極1と対極5とを接続する回路には大きい電流が流れる。
また、バイオセンサAで測定した電流とグルコース濃度とは比例しているので、電流値に比例定数を乗することにより簡単にグルコース濃度に変換できる。
従って、測定部8が測定した電流を変換手段15へ送信すると、変換手段15は受信した測定値にこの比例定数を掛けてグルコース濃度へ変換する。
Since the concentration of generated hydrogen peroxide is proportional to the glucose concentration in the interstitial fluid, the higher the glucose concentration, the larger the current that flows through the circuit connecting the working electrode 1 and the counter electrode 5.
In addition, since the current measured by the biosensor A is proportional to the glucose concentration, it can be easily converted into the glucose concentration by multiplying the current value by a proportionality constant.
Therefore, when the current measured by the measuring unit 8 is transmitted to the conversion unit 15, the conversion unit 15 multiplies the received measurement value by this proportionality constant to convert it into a glucose concentration.

本実施例のバイオセンサAを用いて、魚類(本実施例ではティラピア)生体内のグルコース濃度を測定した。
ティラピアを水から引き上げ、2-phenoxy ethanolで麻酔を施す。
次いで、図2に示すように、注射針12の外周にテフロン(登録商標)製の外筒13を嵌合したサーフローを用い、頭骨を通してティラピアの眼球B付近の粘膜C内部に注射針12及び外筒13を刺し入れてから、図3に示すように、注射針12を抜き取って外筒13のみを埋設する。
Using the biosensor A of this example, the glucose concentration in the living body of fish (in this example, tilapia) was measured.
Pull tilapia out of the water and anesthetize with 2-phenoxy ethanol.
Next, as shown in FIG. 2, by using a surf flow in which an outer cylinder 13 made of Teflon (registered trademark) is fitted to the outer periphery of the injection needle 12, the injection needle 12 and the outside are placed inside the mucous membrane C near the eyeball B of the tilapia through the skull. After inserting the tube 13, as shown in FIG. 3, the injection needle 12 is pulled out and only the outer tube 13 is embedded.

次に、皮膚外にはみ出した外筒13を切り取り、バイオセンサAを球体6側から外筒13へ挿入して、バイオセンサAを眼球B付近の粘膜C内部に刺し入れる。外筒13はその後で引き抜いてもよいし、残しておいても良い。
次いで、軟組織接合用接着剤(例えば、商品名:アロンアルファA,「三共株式会社」等のシアノアクリレート系接着剤)で、バイオセンサAを皮膚へ接着する。
Next, the outer cylinder 13 protruding from the skin is cut off, the biosensor A is inserted into the outer cylinder 13 from the sphere 6 side, and the biosensor A is inserted into the mucous membrane C near the eyeball B. The outer cylinder 13 may be pulled out after that, or may be left.
Next, the biosensor A is adhered to the skin with an adhesive for soft tissue bonding (for example, trade name: Aron Alpha A, cyanoacrylate adhesive such as “Sankyo Co., Ltd.”).

また、幅40cm、奥行24cm、高さ15cmの水槽中に麻酔剤(2-phenoxy ethanol)を1ppm添加し、水槽内部に2枚のセパレータを、ティラピアを収納できるが自由に動けない程度の間隔をあけて設置した。
そして、眼球付近にバイオセンサAが装着されたティラピアを2枚のセパレータの間に収納し、測定部8で電流を測定した。
ティラピアを水槽へ投入した後、電位が安定するまでしばらく待ってから、1.07時間後(a時点)に水槽から取り出し、眼球付近の間質液中のグルコース濃度を血糖計(アークレイ株式会社製 DIAmeter αGLUCOCARD)により測定した。
その後、ティラピアを水槽中に戻し、1.85時間後(b時点)及び3.44時間後(c時点)にそれぞれティラピアを取り出して、間質液中のグルコース濃度を血糖計で測定した。
バイオセンサAによる電流の測定値と血糖値を表1及び図4に示す。
In addition, 1 ppm of anesthetic (2-phenoxy ethanol) is added to a water tank with a width of 40 cm, a depth of 24 cm, and a height of 15 cm, and two separators are placed inside the water tank. Opened and installed.
Then, the tilapia with the biosensor A attached in the vicinity of the eyeball was housed between two separators, and the current was measured by the measuring unit 8.
After throwing tilapia into the aquarium, wait for a while until the potential stabilizes, then remove it from the aquarium 1.07 hours later (time point a), and measure the glucose concentration in the interstitial fluid near the eyeballs (manufactured by ARKRAY, Inc.) DIAmeter αGLUCOCARD).
Thereafter, tilapia was returned to the water tank, and tilapia was taken out after 1.85 hours (time point b) and 3.44 hours (time point c), respectively, and the glucose concentration in the interstitial fluid was measured with a blood glucose meter.
Table 1 and FIG. 4 show measured current values and blood glucose levels by the biosensor A.

Figure 2008237334
Figure 2008237334

a時点におけるバイオセンサAの測定値は4.37nA、血糖計によるグルコース濃度は194mg/dLであり、b時点におけるバイオセンサAの測定値は15.11nA、血糖計によるグルコース濃度は272mg/dL、c時点におけるバイオセンサAの測定値は22.46nAなので、これらの値から二点校正法によりc時点での血糖値G(t)を求める。
電流とグルコース濃度とは比例するので、c時点における電流値を式で表すと、
22.46=S×G(t)+I0となる。
The measured value of biosensor A at time a is 4.37 nA, the glucose concentration by a blood glucose meter is 194 mg / dL, the measured value of biosensor A at time b is 15.11 nA, the glucose concentration by a blood glucose meter is 272 mg / dL, Since the measured value of biosensor A at time point c is 22.46 nA, the blood glucose level G (t) at time point c is obtained from these values by a two-point calibration method.
Since the current and the glucose concentration are proportional to each other, the current value at the time point c is expressed by an equation:
22.46 = S × G (t) + I 0

a時点及びb時点での計測結果から比例定数S及び切片I0を求めると、
S=(15.11−4.37)/(272−194)=0.14
0=4.37−(0.14×194)=−22.35984となる。
よって、
G(t)=(22.46−I0)/S={22.46−(−22.36)}/0.14=325mg/dLとなる。
c時点で血糖計により計測したグルコース濃度は317mg/dLなので、バイオセンサAで測定した電流から計算で求めたグルコース濃度はほぼ正しいことがわかった。
When the proportionality constant S and the intercept I 0 are obtained from the measurement results at time points a and b,
S = (15.11-4.37) / (272-194) = 0.14
I 0 = 4.37− (0.14 × 194) = − 22.35984.
Therefore,
G (t) = (22.46−I 0 ) / S = {22.46 − (− 22.36)} / 0.14 = 325 mg / dL.
Since the glucose concentration measured with the blood glucose meter at time c was 317 mg / dL, it was found that the glucose concentration calculated from the current measured by the biosensor A was almost correct.

また、ディスポーザブル型血糖計を用いて、ティラピアの眼球付近の粘膜内部から採取した間質液中のグルコース濃度と、血中グルコース濃度を一定時間ごとに測定した結果を図5に示す。
図5からは、間質液中のグルコース濃度は血中グルコース濃度よりやや低い傾向にあり、間質液中のグルコース濃度は血中グルコース濃度の変化に伴って一定の割合で変化し、両者には高い相関関係のあることがわかる。
従って、バイオセンサAの出力から間質液中のグルコース濃度を算出することで、血中グルコース濃度のモニタリングも可能である。
In addition, FIG. 5 shows the results of measuring the glucose concentration in the interstitial fluid collected from the inside of the mucous membrane near the eyeball of tilapia and the blood glucose concentration at regular intervals using a disposable blood glucose meter.
From FIG. 5, the glucose concentration in the interstitial fluid tends to be slightly lower than the blood glucose concentration, and the glucose concentration in the interstitial fluid changes at a constant rate with the change in the blood glucose concentration. Is highly correlated.
Therefore, blood glucose concentration can be monitored by calculating the glucose concentration in the interstitial fluid from the output of the biosensor A.

さらに、本発明のバイオセンサA用電極と、表面に銀・塩化銀をコーティングした銀線を多数回巻いて対極としてある従来のバイオセンサ用電極の耐久性及び安定性を比較した。
本発明のバイオセンサAに酵素を固定する前のバイオセンサ用電極、及び、従来のバイオセンサ用電極をpH6.5のPBSに浸漬し、0.650mVの定電圧を印加して、電流値の変化を1週間モニタリングした。このモニタリング結果を図6及び図7に示す。
図6及び図7からわかるように、従来のバイオセンサ用電極が時間経過と共に大きく電位のずれが生じたのに対し、本発明のバイオセンサ用の電極は、非常に良い安定性を示した。このような違いが生ずるのは、従来のバイオセンサ用電極では、極細の銀線の表面に銀・塩化銀を電気化学的にコーティングしたものを巻いて対極としてあるので、コーティングが非常に薄くて剥がれやすく、銀・塩化銀が剥がれると、内部の銀線と表層の塩化銀の二つの金属が対極の役割を果たしてしまうことになり、電位が非常に不安定になるためではないかと考えられる。
Furthermore, the durability and stability of the biosensor A electrode of the present invention and the conventional biosensor electrode which is a counter electrode obtained by winding a silver wire coated with silver / silver chloride on the surface many times were compared.
The biosensor electrode before immobilizing the enzyme to the biosensor A of the present invention and the conventional biosensor electrode are immersed in PBS of pH 6.5, a constant voltage of 0.650 mV is applied, and the current value is Changes were monitored for 1 week. The monitoring results are shown in FIGS.
As can be seen from FIGS. 6 and 7, the biosensor electrode of the present invention showed very good stability, whereas the conventional biosensor electrode showed a large potential shift with time. This difference occurs because conventional biosensor electrodes have a very thin coating because the surface of an ultrafine silver wire is wrapped with an electrochemical coating of silver and silver chloride. If the silver and silver chloride are peeled off easily, the two metals, the inner silver wire and the surface silver chloride, will play the role of counter electrodes, and the potential may be very unstable.

図8及び図9は、本発明の実施例2を示す。
図8に示すように、バイオセンサAの測定部8に、その測定値を無線送信する送信手段9を接続し、測定対象である生体魚類の近傍に、送信手段9からの信号を受信する受信手段14を設置すると共に、受信手段14に測定した電流をグルコース濃度へ変換する変換手段15を接続してある。
定電圧装置7、測定部8及び送信手段9は無線ポテンシオスタット17’としてユニット化されており、その定電圧装置7をバイオセンサAの導線10に接続した。
8 and 9 show a second embodiment of the present invention.
As shown in FIG. 8, a transmission unit 9 that wirelessly transmits the measurement value is connected to the measurement unit 8 of the biosensor A, and reception is performed to receive a signal from the transmission unit 9 in the vicinity of a living fish that is a measurement target. The means 14 is installed, and the receiving means 14 is connected to a conversion means 15 for converting the measured current into a glucose concentration.
The constant voltage device 7, the measurement unit 8, and the transmission unit 9 are unitized as a wireless potentiostat 17 ′, and the constant voltage device 7 is connected to the conductor 10 of the biosensor A.

本実施例では、無線ポテンシオスタット17’として、測定部8の出力信号をFM波に変換して送信する送信手段9を備えた市販の無線ポテンシオスタット基盤(3102BP,PINNACLE TECHNOLOGY株式会社製)を防水加工して使用した。この無線ポテンシオスタット17’は、直径約3cm、重量3gと小型なので、魚類の表皮にベルトや軟組織用接着剤を用いて装着することができる。
また、FM波は淡水中で送信が可能なため、FM波を受信する受信手段14で受信することができる。
In this embodiment, a commercially available wireless potentiostat base (3102BP, manufactured by PINNACK TECHNOLOGY Co., Ltd.) provided with a transmission means 9 that converts the output signal of the measuring unit 8 into an FM wave and transmits it as the wireless potentiostat 17 ′. Was used after waterproofing. Since this wireless potentiostat 17 'has a small diameter of about 3 cm and a weight of 3 g, it can be attached to the skin of fish using a belt or an adhesive for soft tissue.
Further, since the FM wave can be transmitted in fresh water, it can be received by the receiving means 14 that receives the FM wave.

図9に、本実施例のバイオセンサAを淡水中に沈め、バイオセンサAから発信された信号を、陸上に設置した受信手段(FM受信機,3100RX)14で受信した結果を示す。
本実施例によれば、バイオセンサAと変換手段15とを送信線16で直接接続する必要が無いので、バイオセンサAを装着された魚は自由に動くことができ、バイオセンサAを試着したままで長期間に亘って測定することが可能であると共に、ストレスによってグルコース濃度が変動する心配が無い。
FIG. 9 shows the result of receiving the signal transmitted from the biosensor A by the receiving means (FM receiver, 3100RX) 14 installed on land, by submerging the biosensor A of the present embodiment in fresh water.
According to the present embodiment, since it is not necessary to directly connect the biosensor A and the conversion means 15 with the transmission line 16, the fish equipped with the biosensor A can move freely, and the biosensor A was tried on. It is possible to measure over a long period of time, and there is no concern that the glucose concentration fluctuates due to stress.

実施例1に係るバイオセンサを示す図。1 is a diagram illustrating a biosensor according to Example 1. FIG. サーフローの正面図。FIG. 生体魚類に外筒を埋設した状態を示す図。The figure which shows the state which embed | buried the outer cylinder in the living fish. 測定した電流値を示す図。The figure which shows the measured electric current value. 間質液中のグルコース濃度と血中グルコース濃度との関係を示す図。The figure which shows the relationship between the glucose level in interstitial fluid, and the blood glucose level. 本発明のバイオセンサと従来のバイオセンサの電流値の変化を狭い電流範囲内で示す図。The figure which shows the change of the electric current value of the biosensor of this invention and the conventional biosensor within a narrow electric current range. 本発明のバイオセンサと従来のバイオセンサの電流値の変化を広い電流範囲で示す図。The figure which shows the change of the electric current value of the biosensor of this invention and the conventional biosensor in a wide electric current range. 実施例2に係るバイオセンサとその周辺機器を示す図。The figure which shows the biosensor which concerns on Example 2, and its peripheral device. 実施例2のバイオセンサからの出力信号をモニタリングした結果を示す図。The figure which shows the result of having monitored the output signal from the biosensor of Example 2. FIG.

符号の説明Explanation of symbols

A バイオセンサ
B 眼球
C 粘膜
1 作用極
2 絶縁体
3 銀線
5 対極
6 球体
7 定電圧装置
8 測定部
9 送信手段
10 導線
11 酵素固定部
12 注射針
13 外筒
14 受信手段
15 変換手段
16 送信線
17 ポテンシオスタット
17’ 無線ポテンシオスタット
A Biosensor B Eyeball C Mucosa 1 Working electrode 2 Insulator 3 Silver wire 5 Counter electrode 6 Sphere 7 Constant voltage device 8 Measuring unit 9 Transmitting means 10 Conducting wire 11 Enzyme fixing unit 12 Injection needle 13 Outer tube 14 Receiving means 15 Converting means 16 Transmitting Line 17 Potentiostat 17 'Wireless Potentiostat

Claims (6)

魚類の眼球付近に存在する粘膜内部の間質液中へ刺し入れたバイオセンサにより魚類生体内のグルコース濃度を測定する方法。   A method for measuring the glucose concentration in a fish by using a biosensor inserted into the interstitial fluid in the mucous membrane existing near the eyeball of the fish. 注射針の外周に外筒を嵌合し、頭骨を通して生体魚類の眼球付近の粘膜内部に前記注射針及び外筒を刺し入れてから、前記注射針を抜き取って外筒のみを埋設し、次いで、外筒の内部に前記バイオセンサを挿入し、その後、該バイオセンサを頭骨に接着する請求項1に記載された魚類生体内のグルコース濃度を測定する方法。   The outer cylinder is fitted to the outer periphery of the injection needle, and the injection needle and the outer cylinder are inserted into the mucous membrane in the vicinity of the eyeball of the living fish through the skull, and then the injection needle is removed to embed only the outer cylinder, The method for measuring a glucose concentration in a fish body according to claim 1, wherein the biosensor is inserted into an outer cylinder, and then the biosensor is adhered to a skull. 前記バイオセンサの測定値を間質液中のグルコース濃度に変換する請求項1又は2に記載された魚類生体内のグルコース濃度を測定する方法。   The method for measuring a glucose concentration in a fish body according to claim 1 or 2, wherein the measurement value of the biosensor is converted into a glucose concentration in an interstitial fluid. 前記バイオセンサの測定値を送信手段により無線送信し、該送信手段からの信号を、生体魚類の近傍に配置された受信手段により受信し、該受信手段に接続された変換手段によって、前記バイオセンサの測定値を間質液中のグルコース濃度に変換する請求項3に記載された魚類生体内のグルコース濃度を測定する方法。   The measurement value of the biosensor is wirelessly transmitted by a transmission means, a signal from the transmission means is received by a reception means arranged in the vicinity of the living fish, and the biosensor is converted by a conversion means connected to the reception means The method for measuring the glucose concentration in a fish body according to claim 3, wherein the measured value is converted into a glucose concentration in the interstitial fluid. 請求項1〜3のいずれかに記載された魚類生体内のグルコース濃度を測定する方法に使用されるバイオセンサであって、先端部を除いた外周を絶縁体で被覆した短線状の作用極と、前記絶縁体の外周に塗布した銀・塩化銀層より成る対極と、前記作用極の先端に装着され、前記作用極の直径よりも大きい径を有する球体と、前記作用極と対極を接続する回路に流れる電流を測定する測定部と、前記球体と絶縁体との間において、前記作用極の先端部外周に設けられた酵素固定部とを備えたバイオセンサ。   A biosensor used in the method for measuring a glucose concentration in a fish living body according to any one of claims 1 to 3, wherein a short wire-like working electrode whose outer periphery excluding the tip is covered with an insulator; The working electrode and the counter electrode are connected to a counter electrode made of a silver / silver chloride layer applied to the outer periphery of the insulator, a sphere attached to the tip of the working electrode and having a diameter larger than the diameter of the working electrode. A biosensor comprising: a measurement unit that measures a current flowing through a circuit; and an enzyme immobilization unit provided on an outer periphery of a distal end portion of the working electrode between the sphere and the insulator. 請求項4に記載された魚類生体内のグルコース濃度を測定する方法に使用されるバイオセンサであって、先端部を除いた外周を絶縁体で被覆した短線状の作用極と、前記絶縁体の外周に塗布した銀・塩化銀層より成る対極と、前記作用極の先端に装着され、前記作用極の直径よりも大きい径を有する球体と、前記作用極と対極を接続する回路に流れる電流を測定する測定部と、該測定部の測定値を無線送信する送信手段と、前記球体と絶縁体との間において、前記作用極の先端部外周に設けられた酵素固定部とを備えたバイオセンサ。   A biosensor used in the method for measuring a glucose concentration in a fish body according to claim 4, wherein a short wire-like working electrode whose outer periphery excluding a tip is covered with an insulator, A counter electrode composed of a silver / silver chloride layer applied to the outer periphery, a sphere attached to the tip of the working electrode and having a diameter larger than the diameter of the working electrode, and a current flowing through a circuit connecting the working electrode and the counter electrode A biosensor comprising: a measuring unit for measuring; a transmitting unit for wirelessly transmitting a measurement value of the measuring unit; and an enzyme fixing unit provided on the outer periphery of the tip of the working electrode between the sphere and the insulator .
JP2007079303A 2007-03-26 2007-03-26 Method for measuring glucose concentration in fish body and biosensor used therefor Active JP5017652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079303A JP5017652B2 (en) 2007-03-26 2007-03-26 Method for measuring glucose concentration in fish body and biosensor used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079303A JP5017652B2 (en) 2007-03-26 2007-03-26 Method for measuring glucose concentration in fish body and biosensor used therefor

Publications (2)

Publication Number Publication Date
JP2008237334A true JP2008237334A (en) 2008-10-09
JP5017652B2 JP5017652B2 (en) 2012-09-05

Family

ID=39909396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079303A Active JP5017652B2 (en) 2007-03-26 2007-03-26 Method for measuring glucose concentration in fish body and biosensor used therefor

Country Status (1)

Country Link
JP (1) JP5017652B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011105178A1 (en) * 2010-02-26 2013-06-20 アークレイ株式会社 Analysis device, analysis method, and analysis system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084091A (en) * 1998-09-11 2000-03-28 Nippon Zeon Co Ltd Medical valve element
JP2004502252A (en) * 2000-06-29 2004-01-22 センサーズ・フォー・メディシン・アンド・サイエンス・インコーポレイテッド Embedded sensor processing system and method
WO2004071294A1 (en) * 2003-02-17 2004-08-26 Toyo Precision Parts Mfg. Co., Ltd. Linear device
JP2005230521A (en) * 2004-01-21 2005-09-02 Denso Corp Humor component detecting device and humor component detecting system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000084091A (en) * 1998-09-11 2000-03-28 Nippon Zeon Co Ltd Medical valve element
JP2004502252A (en) * 2000-06-29 2004-01-22 センサーズ・フォー・メディシン・アンド・サイエンス・インコーポレイテッド Embedded sensor processing system and method
WO2004071294A1 (en) * 2003-02-17 2004-08-26 Toyo Precision Parts Mfg. Co., Ltd. Linear device
JP2005230521A (en) * 2004-01-21 2005-09-02 Denso Corp Humor component detecting device and humor component detecting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011105178A1 (en) * 2010-02-26 2013-06-20 アークレイ株式会社 Analysis device, analysis method, and analysis system
JP5738838B2 (en) * 2010-02-26 2015-06-24 アークレイ株式会社 Analysis device, analysis method, and analysis system

Also Published As

Publication number Publication date
JP5017652B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
US5704354A (en) Electrocatalytic glucose sensor
CA3062680C (en) Sensor systems having multiple probes and electrode arrays
JP5711141B2 (en) Substrate concentration continuous measurement method
JP5080251B2 (en) Electrochemical sensor for measuring the partial pressure of carbon dioxide in living tissues in vivo or in vitro
US20140135605A1 (en) Methods and systems for optimizing sensor function by the application of voltage
JP2008512162A (en) Sensor
JPH09168602A (en) Implantable medical equipment
JP2011511665A (en) Analyte sensor and method using semiconductors
JP6046115B2 (en) Biosensor
JPH06510684A (en) Dialysis electrode device
US20140127791A1 (en) Diagnostic device
JP2007518466A (en) Sensor
Koeners et al. Prolonged and continuous measurement of kidney oxygenation in conscious rats
JP5017652B2 (en) Method for measuring glucose concentration in fish body and biosensor used therefor
JP2017534327A (en) Continuous electrochemical measurement of blood components
KR102307775B1 (en) New sensor initialization method for faster body sensor response
JPWO2017086445A1 (en) Biosensor and manufacturing method thereof
Yoneyama et al. Wireless biosensor system for real-time cholesterol monitoring in fish “Nile tilapia”
US3336919A (en) Implanted electrode for measuring oxygen pressure in an organ
JP2004208766A (en) Denture-type sugar concentration measuring instrument
JP2017202235A (en) Biosensor
KR20080088290A (en) Device for measuring glucose concentration and a method of measuring the concentration of glucose using the same
JPH1183797A (en) Oxidation/reduction potential measuring apparatus for living being
US6090053A (en) Dental device and method and also reference electrode for determining the state of a tooth crown or tooth bridge
JP2018096875A (en) Biosensor, method for manufacturing the same, and bio-sensing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150