JP2008237132A - Method and device for amplifying nucleic acid - Google Patents

Method and device for amplifying nucleic acid Download PDF

Info

Publication number
JP2008237132A
JP2008237132A JP2007083747A JP2007083747A JP2008237132A JP 2008237132 A JP2008237132 A JP 2008237132A JP 2007083747 A JP2007083747 A JP 2007083747A JP 2007083747 A JP2007083747 A JP 2007083747A JP 2008237132 A JP2008237132 A JP 2008237132A
Authority
JP
Japan
Prior art keywords
nucleic acid
reaction
acid amplification
reaction vessel
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007083747A
Other languages
Japanese (ja)
Inventor
Hiroto Shimakita
寛仁 島北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007083747A priority Critical patent/JP2008237132A/en
Publication of JP2008237132A publication Critical patent/JP2008237132A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To conduct the amplification reaction of a nucleic acid in efficiency higher than that in the reaction in a liquid phase. <P>SOLUTION: The amplification reaction of the nucleic acid is conducted in a vapor phase. The reaction is carried out by adding a primer 12, a target nucleic acid 1, a DNA polymerase 2 and deoxynucleoside triphosphate 3 to a fine drop of water, and releasing the resultant drop to the vapor phase. The temperature control by pressurizing is enabled because of the vapor phase to enable high-efficiency rapid temperature control. The primer 12, the target nucleic acid 1, the DNA polymerase 2 and the deoxynucleoside triphosphate 3 are released to the vapor phase by a finely subdividing means 5, and each thereof reacts and amplified. The temperature control at the amplification is carried out by utilizing a syringe 6 by the change of the pressure. The detection is carried out on the real time by utilizing fluorescence reaction. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、核酸を気相中に放出・反応させることで高効率に増幅するための方法ならびに装置に関する。   The present invention relates to a method and apparatus for efficiently amplifying nucleic acid by releasing and reacting it in the gas phase.

従来この種の核酸増幅方法はリアルタイムポリメラーゼチェインリアクションを含め液相中で行なわれてきた(例えば非特許文献1、特許文献1参照)。マイクロチューブ内に増幅に関する薬剤として、プライマー、検出対象の核酸、DNAポリメラーゼ、デオキシヌクレオシド三燐酸を加え、反応させる手法であり、マイクロチューブ内の温度を、加温機を使用し、調整することで反応させるものである。マイクロチューブ内の温度と加温機の加温とは時間差があり、また温度が十分でないなどの理由から事前にマイクロチューブ内の温度を把握し、設定温度の場所で反応させるなどの事前評価が必要であった。また、ポリメラーゼチェインリアクションは温度の増減が激しいため、加温機の材質を熱伝導性の高いアルミニウムなどで加工することで反応を実施してきた。
Anal Biochem. 1996 Nov 1;242(1):84−9 特表2005−522981号公報
Conventionally, this type of nucleic acid amplification method has been performed in a liquid phase including real-time polymerase chain reaction (see, for example, Non-Patent Document 1 and Patent Document 1). This is a technique in which primers, nucleic acids to be detected, DNA polymerase, and deoxynucleoside triphosphates are added and reacted as chemicals related to amplification in the microtube, and the temperature in the microtube is adjusted by using a warmer. It is what makes it react. There is a time difference between the temperature in the microtube and the warming of the warmer, and because the temperature is not enough, the temperature in the microtube is grasped in advance and a pre-evaluation such as reacting at the set temperature location is performed. It was necessary. In addition, since the temperature of the polymerase chain reaction changes drastically, the reaction has been carried out by processing the material of the warmer with aluminum having high thermal conductivity.
Anal Biochem. 1996 Nov 1; 242 (1): 84-9 JP 2005-522981

このような従来の核酸増幅方法および装置は増幅反応の原理から効率が低く、装置側の設定負担が大きい。また、液相反応の場合、熱伝導性の問題などから反応が遅くなるという課題がある。また、液相反応の場合、液中温度の増減が不十分あるいは過剰な場合があり、反応が促進されない場合があるといった課題がある。そこで安定した反応条件の核酸増幅方法ならびに装置が要求されている。   Such conventional nucleic acid amplification methods and devices are inefficient due to the principle of amplification reaction, and the setting burden on the device side is large. Moreover, in the case of a liquid phase reaction, there exists a subject that reaction becomes slow from the problem of thermal conductivity. In the case of a liquid phase reaction, there is a problem that the increase or decrease in the temperature in the liquid may be insufficient or excessive, and the reaction may not be promoted. Therefore, a nucleic acid amplification method and apparatus with stable reaction conditions are required.

本発明は、このような従来の課題を解決するものであり、核酸増幅反応を気相中で実施することにより効率が高い反応を可能にする手段である。また、容器全体を加温、もしくは圧縮し、気相全体の温度を調整することで液相に比べ、反応が促進され、安定した反応が可能になる。その結果、反応が早くなる核酸増幅方法および装置を提供することを目的としている。   The present invention solves such conventional problems, and is a means that enables a highly efficient reaction by carrying out a nucleic acid amplification reaction in a gas phase. In addition, by heating or compressing the entire container and adjusting the temperature of the entire gas phase, the reaction is accelerated compared to the liquid phase, and a stable reaction is possible. As a result, an object of the present invention is to provide a nucleic acid amplification method and apparatus that can accelerate the reaction.

本発明の気相中での核酸増幅方法および装置は上記課題解決を達成するために、微細水滴を噴霧し、その微細水滴中にプライマー、検出対象の核酸、DNAポリメラーゼ、デオキシヌクレオシド三燐酸を全て含むか、若しくは一つ以上を含ませ反応できるようにしたことを特徴とする。   In order to achieve the above object, the method and apparatus for nucleic acid amplification in the gas phase of the present invention sprays fine water droplets, and the primer, nucleic acid to be detected, DNA polymerase, and deoxynucleoside triphosphate are all contained in the fine water droplets. It is characterized in that it can be reacted by containing one or more.

本発明の気相中での核酸増幅方法および装置は、微細化水滴手段として超音波振動を利用することを特徴とする。   The nucleic acid amplification method and apparatus in the gas phase according to the present invention is characterized by utilizing ultrasonic vibration as a means for micronized water droplets.

本発明の気相中での核酸増幅方法および装置は、微細化水滴手段として加湿スチームを利用することを特徴とする。   The nucleic acid amplification method and apparatus in the gas phase of the present invention is characterized by using humidified steam as a means for atomizing water droplets.

本発明の気相中での核酸増幅方法および装置は、水分子の衝突による分散を利用したことを特徴とする。   The nucleic acid amplification method and apparatus in the gas phase of the present invention is characterized by utilizing dispersion caused by collision of water molecules.

本発明の気相中での核酸増幅方法および装置は、加温対象を、プライマー、検出対象の核酸、DNAポリメラーゼ、デオキシヌクレオシド三燐酸のいずれか一つ以上、若しくは全てとすることを特徴とする。   The method and apparatus for nucleic acid amplification in the gas phase of the present invention is characterized in that the object to be heated is any one or more or all of a primer, a nucleic acid to be detected, a DNA polymerase, and deoxynucleoside triphosphate. .

本発明の気相中での核酸増幅方法および装置は、少なくとも反応容器が30℃から100℃まで加温可能な材質とすることを特徴とする。   The nucleic acid amplification method and apparatus in the gas phase of the present invention is characterized in that at least the reaction vessel is made of a material that can be heated from 30 ° C. to 100 ° C.

本発明の気相中での核酸増幅方法および装置は、加温可能な材質として熱伝導性が高い金属とすることを特徴とする。   The nucleic acid amplification method and apparatus in the gas phase of the present invention is characterized in that a metal having high thermal conductivity is used as a heatable material.

本発明の気相中での核酸増幅方法および装置は、反応容器を加圧できることを特徴とする。   The nucleic acid amplification method and apparatus in the gas phase of the present invention is characterized in that a reaction vessel can be pressurized.

本発明の気相中での核酸増幅方法および装置は、反応容器を内部容積の増減で温度調整できることを特徴とする。   The nucleic acid amplification method and apparatus in the gas phase of the present invention is characterized in that the temperature of the reaction vessel can be adjusted by increasing or decreasing the internal volume.

本発明の気相中での核酸増幅方法および装置は、反応容器の圧力を圧力調整弁で調整可能な構造とすることを特徴とする。   The nucleic acid amplification method and apparatus in the gas phase according to the present invention is characterized in that the pressure in the reaction vessel can be adjusted with a pressure regulating valve.

本発明の気相中での核酸増幅方法および装置は、反応容器を光透過性の容器とし、容器内の蛍光発光を計測できる構造としたことを特徴とする。   The method and apparatus for amplifying nucleic acid in the gas phase of the present invention is characterized in that the reaction vessel is a light-transmitting vessel and the fluorescence emission in the vessel can be measured.

本発明によれば、気相中で核酸増幅反応を実施することで反応容器内の加温化および低温化を迅速、安定に行なうことで効率が高く、安定した反応をもたらすことができる核酸増幅方法および装置を提供できる。また、気相中であるため、液相中の反応に比べ、温度管理が緻密になり、安定した反応が可能となり、反応が早くなる。また、また、微細分化水滴下で反応させることにより、微量な検出対象核酸でもDNAポリメラーゼ、デオキシヌクレオシド三燐酸と効率よく接触し、反応が促進され、安定して反応させることが可能となる。また、反応容器内の気相温度を増減することで反応させることが可能であり、液相に比べ容易に温度調整が可能となる。また、反応容器内部圧力を調整し、温度管理することで、低エネルギーでの加温が可能となり、さらに温度を下げる場合にも圧力調整で容易に迅速に行なうことができる装置を提供でき、結果として早い反応が可能となる。   According to the present invention, nucleic acid amplification can be carried out in a gas phase by carrying out the nucleic acid amplification reaction in a gas phase so that the heating and lowering of the temperature in the reaction vessel can be carried out quickly and stably, resulting in a highly efficient and stable reaction. Methods and apparatus can be provided. Further, since it is in the gas phase, the temperature control becomes finer than the reaction in the liquid phase, the stable reaction becomes possible, and the reaction is accelerated. In addition, by reacting by adding finely differentiated water, even a small amount of nucleic acid to be detected can be efficiently contacted with DNA polymerase and deoxynucleoside triphosphate, the reaction is promoted, and the reaction can be stably performed. Further, the reaction can be performed by increasing or decreasing the gas phase temperature in the reaction vessel, and the temperature can be easily adjusted as compared with the liquid phase. In addition, by adjusting the internal pressure of the reaction vessel and controlling the temperature, it is possible to provide a device that can be heated with low energy and can be easily and quickly performed by adjusting the pressure even when the temperature is lowered. As soon as possible.

本発明の請求項1記載の発明は、反応容器内の気相中にプライマー、検出対象の核酸、DNAポリメラーゼ、デオキシヌクレオシド三燐酸を全て含むか、若しくは一つ以上を含ませた微細水滴を噴霧し、気相中で核酸増幅を行なうことで、検出対象の核酸と各試薬を高効率で接触させ、反応させることができるという作用を有する。   According to the first aspect of the present invention, the primer, the nucleic acid to be detected, the DNA polymerase, and deoxynucleoside triphosphate are all contained in the gas phase in the reaction vessel, or fine water droplets containing one or more are sprayed. In addition, by performing nucleic acid amplification in the gas phase, the detection target nucleic acid and each reagent can be brought into contact with each other with high efficiency and reacted.

また、請求項2記載の発明は、微細分化手法として超音波振動を利用することで熱が発生せず、また一定の微細分水滴を噴霧することができるという作用を有する。   Further, the invention described in claim 2 has an effect that heat is not generated by using ultrasonic vibration as a fine differentiation method, and a certain fine water droplet can be sprayed.

また、請求項3記載の発明は、微細分化手法として加温スチームを利用することで、低エネルギーで、また一定の微細分水滴を噴霧することができるという作用を有する。   In addition, the invention described in claim 3 has an effect that a certain fine water droplet can be sprayed with low energy by using heated steam as a fine differentiation method.

また、請求項4記載の発明は、微細分化手法として水分子の衝突による分散を利用することで熱が発生せず、また一定の微細分水滴を噴霧することができるという作用を有する。   Further, the invention described in claim 4 has the effect that no heat is generated by using dispersion due to collision of water molecules as a fine differentiation method, and that a certain fine water droplet can be sprayed.

また、請求項5記載の発明は、加温対象をプライマー、検出対象の核酸、DNAポリメラーゼ、デオキシヌクレオシド三燐酸のいずれか若しくは全てとすることで加温による影響が大きい酵素の活性維持などに繋がるという作用を有する。   In addition, the invention according to claim 5 leads to maintenance of the activity of an enzyme having a large influence by heating by using any one or all of a primer, a nucleic acid to be detected, a DNA polymerase, and deoxynucleoside triphosphate as a heating target. It has the action.

また、請求項6記載の発明は、反応容器を30℃から100℃まで加温可能な材質とすることで反応容器ごと加温、低温化することができ、反応の高効率化に繋がるという作用を有する。   Further, the invention according to claim 6 has the effect that the reaction vessel can be heated and lowered by making the reaction vessel a material that can be heated from 30 ° C. to 100 ° C., leading to higher efficiency of the reaction. Have

また、請求項7記載の発明は、反応容器の材質を熱伝導性が高い金属とすることでより迅速な反応容器内温度調整が可能となるという作用を有する。   The invention according to claim 7 has the effect that the reaction vessel temperature can be adjusted more quickly by making the material of the reaction vessel a metal having high thermal conductivity.

また、請求項8記載の発明は、反応容器を加圧できる加圧容器とすることで加圧・減圧により温度を迅速に調整できるという作用を有する。   Further, the invention described in claim 8 has an effect that the temperature can be quickly adjusted by pressurization / depressurization by using a pressure vessel capable of pressurizing the reaction vessel.

また、請求項9記載の発明は、反応容器の加圧・減圧を内部容積の増減で行なうことで簡便に温度を調整できるという作用を有する。   The invention according to claim 9 has the effect that the temperature can be easily adjusted by increasing or decreasing the internal volume of the reaction vessel.

また、請求項10記載の発明は、反応容器内の圧力を圧力調整弁で調整可能な構造とすることで圧力調整弁の圧力放出で温度調整が可能となる作用を有する。   The invention according to claim 10 has an effect that the temperature can be adjusted by releasing the pressure of the pressure regulating valve by making the pressure in the reaction vessel adjustable by the pressure regulating valve.

また、請求項11記載の発明は、反応容器を光透過性の容器とし、容器内の蛍光を検出できる構造とすることで蛍光ラベルなどにより核酸増幅反応をリアルタイムに検出できるという作用を有する。   The invention described in claim 11 has the effect that the nucleic acid amplification reaction can be detected in real time with a fluorescent label or the like by using a reaction container as a light-transmitting container and having a structure capable of detecting fluorescence in the container.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

(実施の形態1)
検体中に存在する核酸の種類を検出する手法の一つにポリメラーゼチェインリアクションがある。ポリメラーゼチェインリアクションは、特定の生体由来の、特定の核酸配列を特異的に増幅させ、その増加から特定の生体を同定するものである。これまでのポリメラーゼチェインリアクションは溶液中の反応をマイクロチューブ内で行い、加温機によって熱増減を行い、反応させ、短いもので、2時間程度で反応が可能となっている。しかしながら、加温位置、加温方法によっては反応が十分に進まず、また、溶液中の反応であるため、温度の低下が難しい。温度の低下には加温機の低温化が求められるが、多くのエネルギーを消費するものである。さらに核酸が微量であった場合、マイクロチューブ内の液量によっては反応がうまく進まない場合も懸念される。
(Embodiment 1)
One technique for detecting the type of nucleic acid present in a sample is the polymerase chain reaction. The polymerase chain reaction specifically amplifies a specific nucleic acid sequence derived from a specific organism and identifies the specific organism from the increase. In conventional polymerase chain reaction, the reaction in the solution is carried out in a microtube, the heat is increased or decreased by a warmer, the reaction is performed, and the reaction is short, and the reaction can be performed in about 2 hours. However, depending on the heating position and heating method, the reaction does not proceed sufficiently, and since it is a reaction in solution, it is difficult to lower the temperature. To lower the temperature, it is necessary to lower the temperature of the heater, but it consumes a lot of energy. Furthermore, when the amount of nucleic acid is very small, there is a concern that the reaction may not proceed well depending on the amount of liquid in the microtube.

そのため、安定した反応が可能で、全体の加温、低温化が迅速に実施できる方法、装置の開発が期待されている。例えば、接触効率の向上である。目的の検出対象核酸との反応を高効率化させるために反応液を微量にする必要がある。また、反応液中の低温化は一度加温してしまった場合、外部から過剰なエネルギーを提供しなければ低温化が難しい。特にポリメラーゼチェインリアクションの場合、90度以上まで温度を上げる反応が想定されるため、温度管理は特に重要である。そこで、気相中に目的の検出対象の核酸を放出させ、さらにプライマー、DNAポリメラーゼ、デオキシヌクレオシド三燐酸を加えることで温度管理、ならびに接触性の向上が可能になることを利用する。   Therefore, it is expected to develop a method and an apparatus that can perform a stable reaction and can rapidly carry out overall warming and low temperature. For example, improvement of contact efficiency. In order to increase the efficiency of the reaction with the target nucleic acid to be detected, the reaction solution needs to be made in a very small amount. In addition, when the temperature in the reaction solution is lowered once, it is difficult to lower the temperature unless excessive energy is provided from the outside. In particular, in the case of polymerase chain reaction, temperature control is particularly important because a reaction that raises the temperature to 90 degrees or more is assumed. Therefore, it is utilized that the target nucleic acid to be detected is released into the gas phase, and that temperature control and contactability can be improved by adding a primer, DNA polymerase, and deoxynucleoside triphosphate.

微細水滴を、例えば、反応容器中の微細水滴が漂って安定して存在する程度の高湿度下で噴霧し、その微細水滴中にプライマー、検出対象の核酸、DNAポリメラーゼ、デオキシヌクレオシド三燐酸を全て含むか、若しくは一つ以上を含ませ、気相中で反応させる。   For example, spray fine water droplets under high humidity where the fine water droplets in the reaction vessel drift and exist stably, and all of the primer, nucleic acid to be detected, DNA polymerase, and deoxynucleoside triphosphate are contained in the fine water droplets. Or contain one or more and react in the gas phase.

微細水滴中に核酸やプライマー、DNAポリメラーゼ、デオキシヌクレオシド三燐酸を含ませて接触することで個々が接触する確率が上がり、反応が促進される。そのため気相中に放出された検出対象の核酸やプライマー、DNAポリメラーゼ、デオキシヌクレオシド三燐酸は気相中の微細化された水滴中に保持されることでそれぞれが効率よく、高濃度で接触することができる。それに伴い、反応の加速化が可能となる。検出対象の核酸やプライマー、DNAポリメラーゼ、デオキシヌクレオシド三燐酸は最初に混合することも、あるいは個別に噴霧することも有効であるが、特に後者の場合、個別に噴霧することでDNAポリメラーゼのような酵素の熱失活を防止することができる。   Inclusion of a nucleic acid, primer, DNA polymerase, and deoxynucleoside triphosphate in a fine water droplet increases the probability of contact and promotes the reaction. Therefore, nucleic acids and primers to be detected, primers, DNA polymerase, and deoxynucleoside triphosphate released in the gas phase are held in fine water droplets in the gas phase so that each can be contacted efficiently and at a high concentration. Can do. As a result, the reaction can be accelerated. It is effective to mix the nucleic acid, primer, DNA polymerase, and deoxynucleoside triphosphate to be detected at the beginning, or spray separately. It is possible to prevent thermal inactivation of the enzyme.

噴霧条件は、反応容器の気相中に浮遊する条件であるが、回収して再噴霧することで再度反応を促進することもできる。微細化水滴手段として超音波振動、加湿スチーム、水分子の衝突による分散が挙げられるが、超音波振動は一定量、大きさの水分子を常時提供することが可能である。さらに一度下部にたまった水滴を再度噴霧することが可能である。加湿スチームは加温するものの、低エネルギーで一定量、大きさの水分子を常時提供することができる。水分子の衝突による分散は水分子の大きさが不安定になるが、温度が掛からず、DNAポリメラーゼの活性維持に有効である。   The spraying conditions are conditions that float in the gas phase of the reaction vessel, but the reaction can be promoted again by collecting and respraying. Examples of the fine water droplet means include ultrasonic vibration, humidified steam, and dispersion due to collision of water molecules. Ultrasonic vibration can always provide a certain amount and size of water molecules. Further, it is possible to spray the water droplets once accumulated in the lower part again. Although humidified steam is heated, it can always provide a certain amount and size of water molecules with low energy. Dispersion due to collision of water molecules makes the size of water molecules unstable, but does not apply temperature and is effective in maintaining the activity of DNA polymerase.

ポリメラーゼチェインリアクションのような核酸増幅反応は温度管理が重要な要素であるが、この際の加温対象は反応前の検出対象核酸、DNAポリメラーゼ、デオキシヌクレオシド三燐酸のいずれか若しくは全てでよい。加温は反応容器ごと行なうこともできる。そのため、加温反応容器は耐熱性の材質が望ましい。具体的に、反応容器ごと加温する場合は、熱伝導性が高い金属が有効である。一方、反応容器内のみ反応させる場合は、気相反応であるため、加圧で温度コントロールできる。加圧の場合、反応容器を耐圧性、耐熱性の容器である必要がある。加圧での温度コントロールは内部容積の増減、圧力弁の利用による内部圧力、温度調整が可能である。耐熱ガラスや耐圧ガラスなどが有効である。また、反応容器を光透過性の容器とすることで容器内蛍光発光を計測できる。これにより、リアルタイムで反応状態を確認することが可能となる。   In the nucleic acid amplification reaction such as the polymerase chain reaction, temperature control is an important factor, and the target to be heated in this case may be any or all of the nucleic acid to be detected, DNA polymerase, and deoxynucleoside triphosphate before the reaction. Heating can also be performed for each reaction vessel. Therefore, a heat resistant material is desirable for the warming reaction vessel. Specifically, when the whole reaction vessel is heated, a metal having high thermal conductivity is effective. On the other hand, when the reaction is carried out only in the reaction vessel, since it is a gas phase reaction, the temperature can be controlled by pressurization. In the case of pressurization, the reaction vessel needs to be a pressure-resistant and heat-resistant vessel. The temperature control by pressurization can adjust the internal volume and the temperature by using the pressure valve. Heat resistant glass or pressure resistant glass is effective. Moreover, the fluorescence emission in a container can be measured by making a reaction container into a light transmissive container. Thereby, it becomes possible to confirm the reaction state in real time.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

気相中での核酸増幅により高効率な反応を行なう。本技術はポリメラーゼチェインリアクションを行なうための反応容器、温度調節部、微細分化部からなる。ポリメラーゼチェインリアクションを行なうために対象の核酸、DNAポリメラーゼ、デオキシヌクレオシド三燐酸を気相中に放出する手段が必要となる。気相中で反応させるために対象の核酸、DNAポリメラーゼ、デオキシヌクレオシド三燐酸を微小な水滴中に含ませ、気相に放出し、容器内で反応させるものである。具体的な微細分化による気相放出手段として、超音波振動、加湿スチーム、水分子の衝突などが挙げられるが、加圧による拡散なども手段として挙げられる。微小な水滴の大きさとしては、対象の核酸、DNAポリメラーゼ、デオキシヌクレオシド三燐酸の一分子が含まれる水滴量以上、凝結等により落下しない大きさである。反応は微小な水滴中で行なわれるため、反応気相内を攪拌することなども有効である。反応気相のポリメラーゼチェインリアクションの、温度管理のために、反応容器ごとあるいはその内部を加温することが求められる。   A highly efficient reaction is performed by nucleic acid amplification in the gas phase. This technology consists of a reaction vessel for performing a polymerase chain reaction, a temperature control unit, and a fine differentiation unit. In order to perform the polymerase chain reaction, a means for releasing the target nucleic acid, DNA polymerase, and deoxynucleoside triphosphate into the gas phase is required. The target nucleic acid, DNA polymerase, and deoxynucleoside triphosphate are contained in a minute water droplet for reaction in the gas phase, released into the gas phase, and reacted in a container. Specific examples of vapor phase release means by fine differentiation include ultrasonic vibration, humidified steam, collision of water molecules, and the like. The size of the minute water droplet is a size that does not drop due to condensation or the like, exceeding the amount of the water droplet containing one molecule of the target nucleic acid, DNA polymerase, deoxynucleoside triphosphate. Since the reaction is performed in minute water droplets, it is also effective to stir the reaction gas phase. In order to control the temperature of the polymerase chain reaction in the reaction gas phase, it is required to heat the entire reaction vessel or the inside thereof.

反応容器ごとの加温はペルチェ素子による加温、低温化などが有効である。反応容器材質は、アルミニウム、銅、銀、金、など熱伝導性の高い金属、ポリカーボネート、ポリスチレンなど反応温度内の耐熱性がある容器、耐熱ガラス、耐圧ガラスなどが有効である。一方、加圧による温度管理は内部圧力の増減、加温に伴う、密閉状態維持による温度上昇などが有効である。特に加圧による温度管理は、加熱時のみならず、低温化にも対応可能である。すなわち、加温時は内部圧力を向上させ、低温化は内部圧力の低下により行なうものである。反応容器は耐圧、耐熱のものが有効である。また、リアルタイムポリメラーゼチェインリアクションに利用されるインターカレート型蛍光試薬なども同時に気相へ放出することで反応を促進、リアルタイムでの検出が可能となる。液相の場合、インターカレート型蛍光試薬の蛍光発光を捉えるために2時間程度の反応時間が必要であるが、気相の場合、反応効率が高いことから迅速化ができる。光透過性の反応容器を利用することで検出器9を備えた光学機器での計測が可能となる。   For heating each reaction vessel, it is effective to use a Peltier element or to lower the temperature. Effective materials for the reaction vessel include metals having high thermal conductivity such as aluminum, copper, silver, and gold, containers having heat resistance within the reaction temperature such as polycarbonate and polystyrene, heat resistant glass, and pressure resistant glass. On the other hand, temperature control by pressurization is effective such as increase / decrease of internal pressure, temperature rise by maintaining a sealed state accompanying heating. In particular, temperature control by pressurization can cope with not only heating but also low temperatures. That is, the internal pressure is improved during heating, and the temperature is lowered by lowering the internal pressure. A pressure-resistant and heat-resistant container is effective. In addition, the intercalating fluorescent reagent used for the real-time polymerase chain reaction is simultaneously released into the gas phase, thereby promoting the reaction and enabling real-time detection. In the case of the liquid phase, a reaction time of about 2 hours is required to capture the fluorescence emission of the intercalating fluorescent reagent. However, in the case of the gas phase, the reaction efficiency is high, so that the speed can be increased. By using a light-transmitting reaction container, measurement with an optical instrument equipped with the detector 9 becomes possible.

気相中での核酸増幅方法を好適に実施するための核酸増幅装置の一態様を示す概念図を図1に示す。   FIG. 1 is a conceptual diagram showing one embodiment of a nucleic acid amplification apparatus for suitably performing a nucleic acid amplification method in a gas phase.

図1に示すように、対象の核酸1、DNAポリメラーゼ2、デオキシヌクレオシド三燐酸3を含む反応容器4に微細分化手段5で気相に放出する。気相に放出された対象の核酸1、DNAポリメラーゼ2、デオキシヌクレオシド三燐酸3を気相中で接触させる。一方、反応容器4には圧力調整が可能なシリンジ6が設置されており、内部圧力を調整することができる。必要に応じ微細分化手段5は凝集した対象の核酸1、DNAポリメラーゼ2、デオキシヌクレオシド三燐酸3を再び再気相化させることが可能である構造となっている。   As shown in FIG. 1, a target vessel 4 containing a target nucleic acid 1, DNA polymerase 2, and deoxynucleoside triphosphate 3 is released into the gas phase by a fine differentiation means 5. The target nucleic acid 1, DNA polymerase 2, and deoxynucleoside triphosphate 3 released into the gas phase are contacted in the gas phase. On the other hand, the reaction vessel 4 is provided with a syringe 6 capable of adjusting the pressure, and the internal pressure can be adjusted. If necessary, the fine differentiation means 5 has a structure in which the aggregated nucleic acid 1, DNA polymerase 2, and deoxynucleoside triphosphate 3 can be re-vaporized again.

反応後、若しくは反応途中でSYBR GREENなどインターカレート型蛍光試薬7を同様の微細分化手段5で投入し、反応した核酸を検出する。反応容器4は光透過性の材質を用いており、水銀ランプなどの励起光源8から放出された励起光に対し、反応した発光を総発光輝度として認識させるものである。   After the reaction or during the reaction, an intercalating type fluorescent reagent 7 such as SYBR GREEN is introduced by the same fine differentiation means 5 to detect the reacted nucleic acid. The reaction vessel 4 is made of a light-transmitting material, and recognizes the emitted light that has reacted to the excitation light emitted from the excitation light source 8 such as a mercury lamp as the total emission luminance.

図2に反応容器4の温度調整手段として、ヒータなどの外部加温手段10を示した。   FIG. 2 shows an external heating means 10 such as a heater as a temperature adjusting means for the reaction vessel 4.

なお、対象の核酸を微細水滴中に一分子のみ導入することで、インターカレート型蛍光試薬を反応させ、発光微細水滴を個々に計数することも可能である。これにより、初期に含まれる対象の核酸の個数を把握することができる。   In addition, by introducing only one molecule of the target nucleic acid into the fine water droplets, it is possible to react with the intercalating fluorescent reagent and to count the luminescent fine water droplets individually. Thereby, it is possible to grasp the number of target nucleic acids included in the initial stage.

なお、インターカレート型蛍光試薬はSYBR GREENに限らず、DAPI、PI、SYTOシリーズなども有効である。   The intercalating fluorescent reagent is not limited to SYBR GREEN, but DAPI, PI, SYTO series, etc. are also effective.

なお、核酸の増幅は、蛍光発光ではなくとも回収した反応液を従来の電気泳動法などで検出することも可能である。   In the amplification of nucleic acid, the recovered reaction solution can be detected by a conventional electrophoresis method or the like without using fluorescence emission.

なお、蛍光発光検出は、容器外部からの励起光照射だけではなく、容器内部への励起光照射による検出も可能である。図3に反応容器4ならびに励起光源8を示した。   The fluorescence emission detection can be performed not only by excitation light irradiation from the outside of the container but also by excitation light irradiation inside the container. FIG. 3 shows the reaction vessel 4 and the excitation light source 8.

なお、ノズル噴出で微細水滴化させることも可能である。   It is also possible to make fine water droplets by ejecting nozzles.

本発明の気相中での核酸増幅方法及び装置を用いることで、気相中での核酸増幅反応を可能とし、高効率に反応させることができる。また、気相で行なうことで外部からの温度調整により反応容器内部の温度の増減を効率よく、調整できる。さらに内部圧力調整により加温、低温化を高効率で行なうことができ、安定した反応が可能となる。気相中での高効率反応であるため、微量な検体量でも安定した反応が可能となり、迅速検出、安定反応に非常に有効な方法である。   By using the nucleic acid amplification method and apparatus in the gas phase of the present invention, the nucleic acid amplification reaction in the gas phase can be performed and the reaction can be performed with high efficiency. Moreover, by performing in the gas phase, the increase and decrease of the temperature inside the reaction vessel can be efficiently adjusted by adjusting the temperature from the outside. Furthermore, heating and lowering of the temperature can be performed with high efficiency by adjusting the internal pressure, and a stable reaction is possible. Since it is a highly efficient reaction in the gas phase, a stable reaction is possible even with a very small amount of sample, and it is a very effective method for rapid detection and stable reaction.

本発明の実施例1の気相中での核酸増幅方法を含む、核酸増幅装置の一態様を示す概念図1 is a conceptual diagram showing an embodiment of a nucleic acid amplification apparatus including a method for amplifying nucleic acid in a gas phase according to Example 1 of the present invention. 同、外部加温手段を含む反応容器示す図The figure which shows the reaction container containing an external heating means 同、励起光源を設置した反応容器を示す図The figure which shows the reaction container which installed the same excitation light source

符号の説明Explanation of symbols

1 対象の核酸
2 DNAポリメラーゼ
3 デオキシヌクレオシド三燐酸
4 反応容器
5 微細分化手段
6 シリンジ
7 インターカレート型蛍光試薬
8 励起光源
9 検出器
10 外部加温手段
12 プライマー
1 Nucleic acid 2 DNA polymerase 3 Deoxynucleoside triphosphate 4 Reaction vessel 5 Fine differentiation means 6 Syringe 7 Intercalating fluorescent reagent 8 Excitation light source 9 Detector 10 External heating means 12 Primer

Claims (11)

微細水滴を噴霧し、その微細水滴中にプライマー、検出対象の核酸、DNAポリメラーゼ、デオキシヌクレオシド三燐酸を全て含むか、若しくは一つ以上を含ませ、気相中で反応させる核酸増幅方法。 A nucleic acid amplification method in which fine water droplets are sprayed, and the primer, nucleic acid to be detected, DNA polymerase, deoxynucleoside triphosphate is contained in the fine water droplets, or one or more of them are contained and reacted in the gas phase. 超音波振動を利用した請求項1記載の核酸増幅方法。 The nucleic acid amplification method according to claim 1, wherein ultrasonic vibration is used. 加温スチームを利用した請求項1記載の核酸増幅方法。 The nucleic acid amplification method according to claim 1, wherein warming steam is used. 水分子の衝突による分散を利用した請求項1記載の核酸増幅方法。 The nucleic acid amplification method according to claim 1, wherein dispersion by collision of water molecules is used. 加温対象を、プライマー、検出対象の核酸、DNAポリメラーゼ、デオキシヌクレオシド三燐酸のいずれか一つ以上、若しくは全てとした請求項1乃至4のいずれかに記載の核酸増幅方法。 The nucleic acid amplification method according to any one of claims 1 to 4, wherein the heating target is one or more or all of a primer, a nucleic acid to be detected, a DNA polymerase, and deoxynucleoside triphosphate. 30から100℃まで加温、冷却可能な材質の反応容器を備えた請求項1記載の核酸増幅装置。 The nucleic acid amplification device according to claim 1, further comprising a reaction vessel made of a material that can be heated and cooled from 30 to 100 ° C. 加温可能な材質として熱伝導性が高い金属とした請求項6記載の核酸増幅装置。 The nucleic acid amplification device according to claim 6, wherein the heatable material is a metal having high thermal conductivity. 圧力調整できる反応容器を備えた請求項1記載の核酸増幅装置。 The nucleic acid amplification apparatus according to claim 1, further comprising a reaction vessel capable of adjusting pressure. 反応容器を内部容積の増減で圧力および温度を調整できる構造とした請求項8記載の核酸増幅装置。 The nucleic acid amplification device according to claim 8, wherein the reaction vessel has a structure in which the pressure and temperature can be adjusted by increasing or decreasing the internal volume. 反応容器内の圧力を圧力調整弁で調整可能な構造とした請求項8記載の核酸増幅装置。 The nucleic acid amplification device according to claim 8, wherein the pressure in the reaction vessel can be adjusted with a pressure regulating valve. 核酸増幅の反応容器を光透過性の容器とし、容器内の蛍光を検出できる構造とした請求項6乃至10のいずれかに記載の核酸増幅装置。 The nucleic acid amplification device according to any one of claims 6 to 10, wherein a reaction vessel for nucleic acid amplification is a light-transmitting vessel and has a structure capable of detecting fluorescence in the vessel.
JP2007083747A 2007-03-28 2007-03-28 Method and device for amplifying nucleic acid Pending JP2008237132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083747A JP2008237132A (en) 2007-03-28 2007-03-28 Method and device for amplifying nucleic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083747A JP2008237132A (en) 2007-03-28 2007-03-28 Method and device for amplifying nucleic acid

Publications (1)

Publication Number Publication Date
JP2008237132A true JP2008237132A (en) 2008-10-09

Family

ID=39909217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083747A Pending JP2008237132A (en) 2007-03-28 2007-03-28 Method and device for amplifying nucleic acid

Country Status (1)

Country Link
JP (1) JP2008237132A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220011268A (en) * 2020-07-21 2022-01-28 박성준 Diagnosis test device based on Bursaphelenchus xylophilus DNA

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220011268A (en) * 2020-07-21 2022-01-28 박성준 Diagnosis test device based on Bursaphelenchus xylophilus DNA
KR102368219B1 (en) 2020-07-21 2022-03-02 박성준 Diagnosis test device based on Bursaphelenchus xylophilus DNA

Similar Documents

Publication Publication Date Title
RU2385940C1 (en) Method for real-time detection of nucleic acids by polymerase chain reaction and device for implementation thereof
JP6189388B2 (en) Method and apparatus for continuous amplification reaction
US8409848B2 (en) System and method for rapid thermal cycling
JP6440627B2 (en) Processing liquid samples
WO2013080939A1 (en) Liquid reflux high-speed gene amplification device
CN203474810U (en) Polymerase chain reaction device
US8691561B2 (en) Thermal treatment apparatus and fluid treatment method with fluidic device
JP6027321B2 (en) High-speed gene amplification detector
CN108636471A (en) A kind of nucleic acid amplifier and its application
JP2008035859A (en) Instrument for heating and cooling
US8610032B2 (en) Laser heating of aqueous samples on a micro-optical-electro-mechanical system
JP2011147411A (en) Method and apparatus for amplifying nucleic acid, and chip for amplifying nucleic acid
Terazono et al. Development of a high-speed real-time polymerase chain reaction system using a circulating water-based rapid heat-exchange
Terazono et al. Development of 1480 nm photothermal high-speed real-time polymerase chain reaction system for rapid nucleotide recognition
JP2011072263A (en) Gene analyzer
JP2008237132A (en) Method and device for amplifying nucleic acid
JP2010130925A (en) Method and device for amplifying nucleic acid, and method for holding minute amount of liquid
JP2006271216A (en) System for judging presence or absence of nucleic acid having specific nucleic acid sequence and method of the judgement
US20210023565A1 (en) Reaction apparatus and temperature control method
WO2023197588A1 (en) Rapid photoheating pcr apparatus using small-size micro-tube as container and method therefor
US20080199861A1 (en) Real-time microarray apparatus and methods related thereto
Bian et al. Online flow digestion of biological and environmental samples for inductively coupled plasma–optical emission spectroscopy (ICP–OES)
US20150233802A1 (en) Methods for sample storage and device thereof
JP5339838B2 (en) Genetic testing equipment
Oshige et al. Local temperature control device using a transparent electrode in the viewing area of a microscope: development and application to RT-PCR