JP2008234938A - Method of rapidly intensifying magnetic field of electromagnet, and pulse electromagnet system - Google Patents

Method of rapidly intensifying magnetic field of electromagnet, and pulse electromagnet system Download PDF

Info

Publication number
JP2008234938A
JP2008234938A JP2007071350A JP2007071350A JP2008234938A JP 2008234938 A JP2008234938 A JP 2008234938A JP 2007071350 A JP2007071350 A JP 2007071350A JP 2007071350 A JP2007071350 A JP 2007071350A JP 2008234938 A JP2008234938 A JP 2008234938A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
electromagnet
excitation current
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007071350A
Other languages
Japanese (ja)
Other versions
JP4543182B2 (en
Inventor
Eiji Nakamura
英滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
High Energy Accelerator Research Organization
Original Assignee
High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by High Energy Accelerator Research Organization filed Critical High Energy Accelerator Research Organization
Priority to JP2007071350A priority Critical patent/JP4543182B2/en
Publication of JP2008234938A publication Critical patent/JP2008234938A/en
Application granted granted Critical
Publication of JP4543182B2 publication Critical patent/JP4543182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of rapidly intensifying a magnetic field of an electromagnet capable of remarkably shortening a rise time until a required strong magnetic field is formed, and expanding the variation width of a magnetic force by turning on/off an excitation current; and a pulse electromagnet system. <P>SOLUTION: This pulse electromagnet 20 is provided with: a magnetic block 21 having a space generating a magnetic field; excitation conductors 23 and 24 arranged along the space of the magnetic block 21; and a high-voltage pulse generator and a pulse transmission line applying a pulse-like excitation currents to the excitation conductors 23 and 24. The magnetic block 21 is excited by setting the current value of the pulse-like excitation current in an irreversible region in the vicinity of a saturation point of the magnetic block 21. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、磁性体を高速に強磁場化すると共にその磁場を消滅させる高速強磁場化方法及びパルス電磁石システムに関する。   The present invention relates to a high-speed strong magnetic field-enhancing method and a pulse electromagnet system that make a magnetic material a strong magnetic field at high speed and extinguish the magnetic field.

現在、素粒子実験、原子核実験、核医学(放射線治療等)等の分野では、高エネルギー粒子線加速器の利用が図られている。従来の高エネルギー粒子線加速器は、高エネルギーの荷電粒子の軌道を偏向させるために、軌道偏向用のパルス電磁石を用いるものがある(例えば、特許文献1参照)。   Currently, high energy particle beam accelerators are being used in fields such as elementary particle experiments, nuclear experiments, nuclear medicine (radiotherapy, etc.). Some conventional high energy particle beam accelerators use a pulse electromagnet for orbital deflection in order to deflect the orbit of high energy charged particles (see, for example, Patent Document 1).

図8は、従来のパルス電磁石の構成例を示す図である。
鉄心枠11の内周に珪素鋼板を積層したヨーク1を配置し、珪素鋼板を積層したC型のヨーク1の開口部2に、一巻のコイル、つまりセプタムコイル3及びリターンコイル4が巻装された構成となっている。また、開口部2におけるセプタムコイル3近傍には、導電性板6がセプタムコイル3とは接触せずにそれぞれ独立に設けられている。そして、開口部2に発生する磁場により、ビームダクト5の偏向部でのビームの取り出しを行うようになっている。ビームダクト5中の9は出射軌道を示しており、10はバンプ軌道を示している。また、セプタムコイル3に流れる電流により発生する熱を除去するために、鉄心枠11の外側には冷却管12が設けられている。
FIG. 8 is a diagram illustrating a configuration example of a conventional pulse electromagnet.
A yoke 1 in which silicon steel plates are laminated is arranged on the inner periphery of the iron core frame 11, and a single coil, that is, a septum coil 3 and a return coil 4 are wound around an opening 2 of a C-shaped yoke 1 in which silicon steel plates are laminated. It has been configured. In addition, in the vicinity of the septum coil 3 in the opening 2, conductive plates 6 are provided independently without contacting the septum coil 3. The beam is extracted at the deflecting portion of the beam duct 5 by the magnetic field generated in the opening 2. Reference numeral 9 in the beam duct 5 indicates an exit trajectory, and reference numeral 10 indicates a bump trajectory. Further, a cooling pipe 12 is provided outside the iron core frame 11 in order to remove heat generated by the current flowing through the septum coil 3.

ところで、小型の粒子加速器で加速された高エネルギー荷電粒子を外部に取り出して利用する場合、大強度の磁場が必要である。発生する磁場強度はパルス電磁石の開口部2のサイズに反比例し、セプタムコイルに流れる電流に比例する。一方、開口部2のサイズは荷電粒子のビームサイズにより決まるので、開口部2のサイズを小さくするには限度がある。従って、発生磁場強度を高めるためには、セプタムコイル3に流す電流を増加させなければならないことになる。   By the way, when high-energy charged particles accelerated by a small particle accelerator are taken out and used, a high-intensity magnetic field is required. The intensity of the generated magnetic field is inversely proportional to the size of the opening 2 of the pulse electromagnet and proportional to the current flowing through the septum coil. On the other hand, since the size of the opening 2 is determined by the beam size of the charged particles, there is a limit to reducing the size of the opening 2. Therefore, in order to increase the generated magnetic field strength, the current flowing through the septum coil 3 must be increased.

上述のような荷電粒子の軌道偏向を行うためには、まず、セプタム電磁石のバンプ軌道10からセプタム電磁石の開口部2に荷電粒子の軌道を瞬間的に偏向させなければならない。この役割を果すのが、パルス電磁石の中でも最高速偏向が可能なキッカー電磁石システムである。キッカー電磁石システムは周回軌道上に存在するため、軌道偏向を行う以外の殆どの時間帯は、出力があると周回軌道を妨げてしまうため、出力が出てはいけない。したがって、キッカー電磁石システムは磁場のオン/オフが明瞭である必要がある。   In order to perform the trajectory deflection of the charged particles as described above, first, the trajectory of the charged particles must be instantaneously deflected from the bump trajectory 10 of the septum electromagnet to the opening 2 of the septum electromagnet. This role is played by the kicker magnet system that can deflect the highest speed among pulsed electromagnets. Since the kicker electromagnet system exists on the orbit, the output should not be output in most of the time zones other than the orbital deflection, because if there is an output, the orbit will be hindered. Therefore, the kicker electromagnet system needs to clearly turn on / off the magnetic field.

ヨーク1等に用いられる軟磁性材料の磁性体であっても、励磁電流を増大して飽和点を超えた大きな外部磁場(不可逆領域)を印加した場合には、励磁電流をオフした後も磁化されたままの状態が維持されてしまう。このため、従来の磁化方法では、磁性体の飽和点に近づくと励磁電流のオン/オフによる磁力の変化幅を十分に確保できなかった。   Even in the case of a magnetic material of a soft magnetic material used for the yoke 1 or the like, when the excitation current is increased and a large external magnetic field (irreversible region) exceeding the saturation point is applied, magnetization is performed even after the excitation current is turned off. The state as it was done will be maintained. For this reason, in the conventional magnetization method, when the magnetic material approaches the saturation point, the change width of the magnetic force due to on / off of the excitation current cannot be secured sufficiently.

そのため、従来の電磁石の磁場化方法では、磁性体の飽和点付近に比べて大きな変化幅を確保できる動作領域として、磁性体の飽和点から十分に離れていて磁力曲線の傾きが大きい可逆領域を用いていた。
特開平8−288126号公報
Therefore, in the conventional method of applying a magnetic field to an electromagnet, a reversible region that is sufficiently far from the saturation point of the magnetic material and has a large gradient of the magnetic force curve is provided as an operation region that can ensure a large change width compared to the vicinity of the saturation point of the magnetic material. I used it.
JP-A-8-288126

しかしながら、従来の電磁石の磁場化方法では、磁性体の飽和点から十分に離れていて磁力曲線の傾きが大きい可逆領域を動作領域としていたので、励磁電流の大きさが制限されることとなり、励磁電流を供給して所望の強磁場が得られるまでの所要時間(立上がり時間)をこれ以上短縮するのは困難であった。   However, in the conventional method of applying a magnetic field to an electromagnet, since the reversible region that is sufficiently away from the saturation point of the magnetic material and has a large gradient of the magnetic force curve is used as the operation region, the magnitude of the excitation current is limited. It has been difficult to further shorten the time (rise time) required for supplying a current to obtain a desired strong magnetic field.

また、従来の電磁石の磁場化方法では、磁力曲線の傾きが大きい可逆領域の一部しか利用していないため、磁力の変化幅もこれ以上大きくすることは困難であった。   In addition, in the conventional method of applying a magnetic field to an electromagnet, since only a part of the reversible region where the gradient of the magnetic force curve is large is used, it is difficult to increase the change width of the magnetic force further.

本発明は、所要の強磁場が得られるまでの立ち上がり時間を大幅に短縮することができると共に励磁電流のオン/オフによる磁力の変化幅を拡大でき、しかも大幅な小型化が可能な電磁石の高速強磁場化方法及びパルス電磁石システムを提供することを目的とする。   The present invention can greatly shorten the rise time until a required strong magnetic field is obtained, can increase the range of change in magnetic force by turning on / off the excitation current, and can achieve a large size at high speed. An object of the present invention is to provide a magnetic field increasing method and a pulse electromagnet system.

本発明の電磁石の高速強磁場化方法は、磁性体に沿って配設した励磁導体にパルス状の励磁電流を流して当該磁性体に磁場の発生と消滅を瞬時に引き起こす磁性体の高速強磁場化方法であって、前記励磁電流の電流値を前記磁性体の飽和点付近の可逆領域に設定して当該磁性体を励磁することを特徴とする。   The method for increasing the speed of a strong magnetic field of an electromagnet according to the present invention is such that a pulsed excitation current is passed through an exciting conductor disposed along a magnetic material to instantly generate and extinguish the magnetic field in the magnetic material. In this method, the current value of the excitation current is set in a reversible region near the saturation point of the magnetic material to excite the magnetic material.

本発明の電磁石の高速強磁場化方法によれば、磁性体の飽和点付近の可逆領域を動作領域とするので、所要の強磁場が得られるまでの立ち上がり時間を大幅に短縮することができると共に励磁電流のオン/オフによる磁力の変化幅を拡大でき、しかも大幅な小型化が可能である。   According to the high-magnetization method of the electromagnet of the present invention, since the reversible region near the saturation point of the magnetic material is used as the operation region, the rise time until a required strong magnetic field can be obtained can be greatly shortened. The range of change in magnetic force due to on / off of the excitation current can be expanded, and the size can be greatly reduced.

本発明のパルス電磁石システムは、磁場が発生する間隙部を有する磁性体ブロックと、前記磁性体ブロックの間隙に沿って配設された励磁導体と、前記励磁導体にパルス状の励磁電流を印加する高電圧パルス発生手段とを備え、前記励磁電流の電流値を前記磁性体の飽和点付近の可逆領域に設定して当該磁性体ブロックを励磁することを特徴とする。   The pulse electromagnet system of the present invention applies a magnetic excitation block disposed along a gap of the magnetic block, a magnetic block having a gap where a magnetic field is generated, and a pulsed excitation current to the excitation conductor. High-voltage pulse generating means, and the magnetic material block is excited by setting the current value of the excitation current in a reversible region near the saturation point of the magnetic material.

上記電磁石の高速強磁場化方法及びパルス電磁石システムにおいて、前記磁性体の飽和点付近の可逆領域は、励磁電流の増大に対して磁力増大率が減少し始める磁性体飽和開始点と、励磁電流をオフしても磁場の消滅が認められなくなる永久磁石化開始点との間の領域であることが望ましい。また、パルス状の励磁電流の周期は、磁性体の高周波損失が顕著にならない程度の1KHz未満であることが望ましい。   In the above-described method for increasing the magnetic field at high speed and the pulsed electromagnet system, the reversible region near the saturation point of the magnetic material includes a magnetic material saturation start point at which the rate of increase in magnetic force starts to decrease with increasing excitation current, and an excitation current. A region between the permanent magnetization start point at which the disappearance of the magnetic field is not recognized even when turned off is desirable. Further, the period of the pulsed excitation current is preferably less than 1 KHz so that the high frequency loss of the magnetic material does not become significant.

本発明によれば、所要の強磁場が得られるまでの立上がり時間を大幅に短縮することができると共に励磁電流のオン/オフによる磁力の変化幅を拡大でき、しかも大幅な小型化が可能である。   According to the present invention, the rise time until a required strong magnetic field can be obtained can be greatly shortened, the change range of the magnetic force due to the on / off of the excitation current can be expanded, and the size can be greatly reduced. .

本発明者は、磁性体に磁場を発生させる励磁電流の周期が、1KHz未満であれば励磁電流の電流値を磁性体の飽和点付近まで増大しても励磁電流をオフしたときに出力が0又は0近傍まで戻ることを発見した。すなわち、従来は動作領域として使用できないとされていた領域が、磁性体の励磁周期によっては励磁電流の電流値を磁性体の飽和点付近まで上げることが可能であり、それに伴い立ち上げ時間の高速化及び高磁場化が可能であることが判明した。
以下、本発明の一実施の形態について図面を参照しながら具体的に説明する。
本実施の形態に係る高速磁場化方法において用いるパルス電磁石の動作領域について、図1を参照して説明する。
If the period of the excitation current for generating a magnetic field in the magnetic material is less than 1 KHz, the inventor outputs 0 when the excitation current is turned off even if the current value of the excitation current is increased to near the saturation point of the magnetic material. Or it discovered that it returned to 0 vicinity. In other words, the area that was previously considered unusable as the operating area can increase the current value of the excitation current to near the saturation point of the magnetic material depending on the excitation period of the magnetic material, and accordingly the startup time is fast. It has been found that a high magnetic field and a high magnetic field are possible.
Hereinafter, an embodiment of the present invention will be specifically described with reference to the drawings.
The operation region of the pulse electromagnet used in the high-speed magnetic field method according to the present embodiment will be described with reference to FIG.

図1はパルス電磁石における励磁電流と発生磁力との関係を示す図である。同図に示すように、励磁電流の増大に対して磁力増大率が減少し始める磁性体飽和開始点P1までは励磁電流の大きさに比例して発生磁力もリニアに増大している。そして、磁性体飽和開始点P1から励磁電流をオフしても磁場の消滅が認められなくなる永久磁石化開始点P2までの領域(本明細書では「OCEM領域(Over-Current Excitation Method)」と呼称する)では磁力曲線の傾きが緩やかになり、永久磁石化開始点P2以降は励磁電流を大きくしてもほとんど発生磁力が変化しない状態となる。すなわち、磁性体飽和開始点P1までは従来の磁場化方法でも励磁電流をオフすれば磁性体の磁力が無くなり、磁性体飽和開始点P1から永久磁石化開始点P2までは従来の磁場化方法では励磁電流をオフしても磁性体に磁力が残るが可逆性が認められる可逆領域である。また、永久磁石化開始点P2以降は磁性体が永久磁石化して励磁電流をオフしても磁性体が元の磁力を出力しない状態とはならない不可逆領域である。従来方法では、可逆領域でも磁力線の傾きが大きい励磁電流=5KA未満の動作領域(A)を用いていた。以下の説明では動作領域(A)のことを従来領域と呼称する。   FIG. 1 is a diagram showing a relationship between an exciting current and a generated magnetic force in a pulse electromagnet. As shown in the figure, the generated magnetic force increases linearly in proportion to the magnitude of the excitation current up to the magnetic material saturation start point P1 where the magnetic force increase rate starts to decrease with increasing excitation current. A region from the magnetic material saturation start point P1 to the permanent magnetization start point P2 where the disappearance of the magnetic field is not recognized even when the excitation current is turned off (referred to as “OCEM region (Over-Current Excitation Method)” in this specification). In this case, the gradient of the magnetic force curve becomes gentle, and the generated magnetic force hardly changes even when the excitation current is increased after the permanent magnetization start point P2. That is, until the magnetic material saturation start point P1, the magnetic force of the magnetic material is lost if the excitation current is turned off even in the conventional magnetic field method. From the magnetic material saturation start point P1 to the permanent magnetization start point P2, the conventional magnetic field method is used. Even if the exciting current is turned off, the magnetic material remains in the magnetic material, but it is a reversible region where reversibility is recognized. Further, the permanent magnetization starting point P2 and thereafter is an irreversible region in which the magnetic material does not output the original magnetic force even if the magnetic material is converted into a permanent magnet and the excitation current is turned off. In the conventional method, even in the reversible region, an operation region (A) where the gradient of the magnetic field lines is large and the excitation current is less than 5 KA is used. In the following description, the operation area (A) is referred to as a conventional area.

本実施の形態では、磁性体飽和開始点P1から永久磁石化開始点P2までの励磁電流が大きく、磁力線曲線の傾きが小さいOCEM領域(B)を用いるものとする。OCEM領域(B)は励磁電流が9KA〜20KAと大きく、発生磁力も従来領域(A)に比べて数倍大きな値が得られる。   In the present embodiment, it is assumed that the OCEM region (B) in which the excitation current from the magnetic material saturation start point P1 to the permanent magnetization start point P2 is large and the gradient of the magnetic field lines is small is used. In the OCEM region (B), the exciting current is as large as 9 KA to 20 KA, and the generated magnetic force is several times larger than that in the conventional region (A).

図2は本実施の形態のパルス電磁石の断面図である。
磁性体ブロック21は高電気抵抗フェライト材から構成されている。磁性体ブロック21は全体として四角形の筒状体をなしており、中央空隙部22は励磁導体としてのセプタムコイル23及びリターンコイル24が挿通されている。高エネルギー粒子線加速器に適用した場合には、中央空隙部22の中央がビーム軌道Pとなる。
FIG. 2 is a cross-sectional view of the pulse electromagnet of the present embodiment.
The magnetic block 21 is made of a high electrical resistance ferrite material. The magnetic block 21 has a rectangular tubular body as a whole, and a septum coil 23 and a return coil 24 as excitation conductors are inserted through the central gap portion 22. When applied to a high energy particle beam accelerator, the center of the central gap 22 is the beam trajectory P.

図3はパルス電磁石の励磁導体(23,24)に励磁電流を流すためのシステム構成図である。高電圧パルス発生器30は、0.1μ秒の立上り時間を有し1.3μ秒の時間長で最大20KAのパルス電流を発生させる能力を備える。高電圧パルス発生器30で発生させたパルス電流をパルス伝送線31経由でパルス電磁石のコイル23の一端に印加するように構成している。なお、コイル23の他端はリターンコイル24の一端に接続され、リターンコイル24の他端がグラウンドに接続された状態を示している。磁性体ブロック21は、パルス電磁石の動作領域が図1のOCEM領域(B)となるように寸法が調整される。なお、本実施形態では上記パルス電流に耐え得るような磁性体としてフェライト材を用いている。   FIG. 3 is a system configuration diagram for flowing an exciting current through the exciting conductors (23, 24) of the pulse electromagnet. The high voltage pulse generator 30 has a capability of generating a pulse current of up to 20 KA with a rise time of 0.1 μsec and a time length of 1.3 μsec. The pulse current generated by the high voltage pulse generator 30 is applied to one end of the pulse electromagnet coil 23 via the pulse transmission line 31. The other end of the coil 23 is connected to one end of the return coil 24, and the other end of the return coil 24 is connected to the ground. The dimensions of the magnetic block 21 are adjusted so that the operating area of the pulse electromagnet is the OCEM area (B) in FIG. In this embodiment, a ferrite material is used as a magnetic material that can withstand the pulse current.

従来領域(A)を用いる従来型のパルス電磁石とOCEM領域(B)を用いて本実施の形態のパルス電磁石との高速特性の比較結果について説明する。   Comparison results of high-speed characteristics between the conventional pulse electromagnet using the conventional region (A) and the pulse electromagnet of the present embodiment using the OCEM region (B) will be described.

図4に示す出力特性を測定するために用いた従来型のパルス電磁石及び本実施の形態のパルス電磁石の基本構造及びパラメータは図5の基本設計例に示す通りであり、出力高速特性及び磁性体寸法の実測値を図6に示す。なお、従来型のパルス電磁石は最も強い磁場を発生可能な分布定数、全反射電流利用型を用いた。また、励磁電流のパルス幅は1.3μ秒とした。   The basic structure and parameters of the conventional pulse electromagnet used for measuring the output characteristics shown in FIG. 4 and the pulse electromagnet of this embodiment are as shown in the basic design example of FIG. The actual measurement values of the dimensions are shown in FIG. The conventional pulse electromagnet used a distributed constant capable of generating the strongest magnetic field and a total reflection current utilizing type. The pulse width of the excitation current was 1.3 μsec.

図4及び図6に示すように、従来型のパルス電磁石で従来領域(A)を用いて励磁した場合、最大出力が得られるまでの時間(立ち上がり時間)は0.969μ秒である。これに対してOCEM領域(B)を用いて励磁した場合、最大出力が得られるまでの時間(立ち上がり時間)は0.467μ秒であり、本実施の形態の方が立ち上がり時間を約2倍も高速化できていることが判る。   As shown in FIGS. 4 and 6, when excitation is performed using the conventional region (A) with a conventional pulse electromagnet, the time until the maximum output is obtained (rise time) is 0.969 μsec. On the other hand, when excitation is performed using the OCEM region (B), the time until the maximum output is obtained (rise time) is 0.467 μsec, and the rise time is about twice as long in this embodiment. It turns out that it is speeding up.

また、OCEM領域(B)を用いる本実施の形態により、従来領域(A)を用いる従来型のパルス電磁石と同等の出力を得ようとすると、図6に示すように磁性体寸法を大幅に縮小できることが判る。   Further, according to the present embodiment using the OCEM region (B), if an output equivalent to that of the conventional pulse electromagnet using the conventional region (A) is to be obtained, the size of the magnetic material is greatly reduced as shown in FIG. I understand that I can do it.

図7は従来型のパルス電磁石と本実施の形態のパルス電磁石とを、磁性体ブロックの中央空隙部に発生させる磁場性能が同等である条件で設計した場合の、寸法比較図である。同図(a)は従来型のパルス電磁石を示し、同図(b)は本実施の形態のパルス電磁石を示している。同図に示すように、従来型のパルス電磁石は高速性能を達成させるために磁性体ブロック40の外周に大きな金属電極板41が必要となる。一方、本実施の形態では金属電極板41が不要であるのと同時に、OCEM領域での使用となり磁性体ブロック21そのものの体積を減らす事ができる。このため、本実施例では従来型のパルス電磁石に比べて全体の寸法を大幅に縮小することができる。   FIG. 7 is a dimension comparison diagram in the case where the conventional pulse electromagnet and the pulse electromagnet of the present embodiment are designed under the condition that the magnetic field performance generated in the central gap portion of the magnetic block is equivalent. FIG. 2A shows a conventional pulse electromagnet, and FIG. 2B shows a pulse electromagnet of the present embodiment. As shown in the figure, the conventional pulse electromagnet requires a large metal electrode plate 41 on the outer periphery of the magnetic block 40 in order to achieve high speed performance. On the other hand, in the present embodiment, the metal electrode plate 41 is unnecessary, and at the same time, it is used in the OCEM region, and the volume of the magnetic block 21 itself can be reduced. For this reason, in this embodiment, the overall size can be greatly reduced as compared with the conventional pulse electromagnet.

また、図4に示す出力波形は比較のため上部平坦部の値で正規化されているが、OCEM領域(B)使用時の最大出力(上部平坦部)は0.3Tであり、従来領域(A)使用時の最大出力は0.1Tであった。すなわち、OCEM領域(B)を用いることにより、従来領域(A)使用する場合に比べて3倍も強い磁力を実現することができる。   The output waveform shown in FIG. 4 is normalized by the value of the upper flat portion for comparison, but the maximum output (upper flat portion) when using the OCEM region (B) is 0.3 T, and the conventional region ( A) The maximum output during use was 0.1T. That is, by using the OCEM region (B), it is possible to realize a magnetic force that is three times stronger than when the conventional region (A) is used.

以上のように、本実施の形態は、OCEM領域(B)を用いてパルス電磁石を高速磁場化するようにしたので、従来領域(A)使用するパルス電磁石に比べて、最大出力が得られるまでの立ち上がり時間を大幅に短縮することができると共に励磁電流を印加した時の最大出力とオフしたときの出力(例えば0)との幅である磁力変化幅を拡大できる。しかも、磁性体ブロック自体及びパルス電磁石全体を大幅に縮小することができる。   As described above, in the present embodiment, the pulse electromagnet is changed to a high-speed magnetic field using the OCEM region (B), so that the maximum output is obtained as compared with the pulse electromagnet used in the conventional region (A). In addition, the rise time of the magnetic field can be greatly shortened, and the magnetic force change width that is the width between the maximum output when the excitation current is applied and the output when the excitation current is turned off (for example, 0) can be expanded. In addition, the magnetic block itself and the entire pulse electromagnet can be greatly reduced.

以上の説明では高エネルギー粒子線加速器において荷電粒子の進行方向を曲げるのに好適なパルス電磁石及びその高速強磁場化方法について説明したが、本発明は高エネルギー粒子線加速器以外にも極めて短い時間(1μ秒前後のオーダー)で磁力の発生と消滅を繰り返す用途であれば適用可能である。   In the above description, the pulse electromagnet suitable for bending the traveling direction of the charged particle in the high energy particle beam accelerator and the method for making the magnetic field at a high speed strong magnetic field accelerator have been described. Any application that repeats generation and disappearance of magnetic force on the order of 1 μsec) is applicable.

本発明は、磁性体を高速に強磁場化すると共にその磁場を消滅させるパルス電磁石システムに適用可能である。   The present invention can be applied to a pulsed electromagnet system that makes a magnetic material a strong magnetic field at high speed and extinguishes the magnetic field.

本実施の形態で使用するOCEM領域及び従来使用している従来領域対比して示す発生磁力−励磁電流の特性図Characteristics diagram of generated magnetic force-excitation current shown in comparison with the OCEM region used in the present embodiment and the conventional region used conventionally. 本実施の形態のパルス電磁石の断面図Sectional view of pulse electromagnet of this embodiment パルス電磁石の励磁導体に励磁電流を流すためのシステム構成図System configuration diagram for applying excitation current to the excitation conductor of a pulse electromagnet 従来型のパルス電磁石及び本実施の形態のパルス電磁石による出力特性の比較例を示す出力特性図Output characteristic diagram showing a comparative example of output characteristics of the conventional pulse electromagnet and the pulse electromagnet of the present embodiment 従来型のパルス電磁石及び本実施の形態のパルス電磁石の基本構造及びパラメータの基本設計例に示す図The figure shown in the basic design example of the basic structure and parameters of the conventional pulse electromagnet and the pulse electromagnet of the present embodiment 従来型のパルス電磁石及び本実施の形態のパルス電磁石の出力高速特性及び磁性体寸法の実測値を示す図The figure which shows the actual value of the output high-speed characteristic and magnetic body dimension of the conventional pulse electromagnet and the pulse electromagnet of this Embodiment 従来型のパルス電磁石と本実施の形態のパルス電磁石との寸法比較図Comparison of dimensions between conventional pulse electromagnet and pulse electromagnet of this embodiment 従来型のパルス電磁石の構成図Configuration of conventional pulse electromagnet

符号の説明Explanation of symbols

1…ヨーク
2…開口部
3…セプタムコイル
4…リターンコイル
5…ビームダクト
6…導電性板
10…バンプ軌道
11…鉄心枠
12…冷却管
P1…磁性体飽和開始点
P2…永久磁石化開始点
20…パルス電磁石
21…磁性体ブロック
22…中央空隙部
23…コイル
24…リターンコイル
DESCRIPTION OF SYMBOLS 1 ... Yoke 2 ... Opening part 3 ... Septum coil 4 ... Return coil 5 ... Beam duct 6 ... Conductive board 10 ... Bump track 11 ... Iron core frame 12 ... Cooling pipe P1 ... Magnetic material saturation start point P2 ... Permanent magnetization start point DESCRIPTION OF SYMBOLS 20 ... Pulse electromagnet 21 ... Magnetic body block 22 ... Central space | gap part 23 ... Coil 24 ... Return coil

Claims (5)

磁性体に沿って配設した励磁導体にパルス状の励磁電流を流して当該に磁場の発生と消滅を瞬時に引き起こす電磁石の高速強磁場化方法であって、
前記励磁電流の電流値を前記磁性体の飽和点付近の可逆領域に設定して当該磁性体を励磁することを特徴とする電磁石の高速強磁場化方法。
A method for increasing the speed and strength of an electromagnet causing a magnetic field to be generated and extinguished instantaneously by passing a pulsed excitation current through an exciting conductor disposed along a magnetic body,
An electromagnet high-speed magnetic field-enhancing method characterized by exciting the magnetic material by setting the current value of the exciting current in a reversible region near the saturation point of the magnetic material.
前記磁性体の飽和点付近の可逆領域は、励磁電流の増大に対して磁力増大率が減少し始める磁性体飽和開始点と、励磁電流をオフしても磁場の消滅が認められなくなる永久磁石化開始点との間の領域であることを特徴とする請求項1記載の電磁石の高速強磁場化方法。   The reversible region near the saturation point of the magnetic material is a magnetic material saturation start point at which the rate of increase in magnetic force begins to decrease with an increase in excitation current, and a permanent magnet that disappears even when the excitation current is turned off. 2. The method for forming a high-speed strong magnetic field in an electromagnet according to claim 1, wherein the region is between the start point and the starting point. 前記パルス状の励磁電流の周期は、1KHz未満であることを特徴とする請求項1又は請求項2記載の電磁石の高速強磁場化方法。   3. The method for producing a high-speed strong magnetic field in an electromagnet according to claim 1, wherein the period of the pulsed excitation current is less than 1 KHz. 前記パルス状の1μ秒程度の時間長の励磁電流により、最大出力が0.3[T]、最大出力に達するまでの所要時間が0.4μ秒であることを特徴とする請求項1から請求項3のいずれかに記載の電磁石の高速強磁場化方法。   The maximum output is 0.3 [T] by the pulsed excitation current having a time length of about 1 μsec, and the time required to reach the maximum output is 0.4 μsec. Item 4. The method for producing a high-speed strong magnetic field of the electromagnet according to any one of Items 3. 磁場が発生する間隙部を有する磁性体ブロックと、前記磁性体ブロックの間隙に沿って配設された励磁導体と、前記励磁導体にパルス状の励磁電流を印加する高電圧パルス発生手段とを備え、前記励磁電流の電流値を前記磁性体の飽和点付近の可逆領域に設定して当該磁性体ブロックを励磁することを特徴とするパルス電磁石システム。

A magnetic block having a gap for generating a magnetic field; an excitation conductor disposed along the gap of the magnetic block; and a high-voltage pulse generating means for applying a pulsed excitation current to the excitation conductor. A pulse electromagnet system that excites the magnetic block by setting a current value of the excitation current in a reversible region near a saturation point of the magnetic body.

JP2007071350A 2007-03-19 2007-03-19 Electromagnet excitation method and pulse electromagnet system Active JP4543182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071350A JP4543182B2 (en) 2007-03-19 2007-03-19 Electromagnet excitation method and pulse electromagnet system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071350A JP4543182B2 (en) 2007-03-19 2007-03-19 Electromagnet excitation method and pulse electromagnet system

Publications (2)

Publication Number Publication Date
JP2008234938A true JP2008234938A (en) 2008-10-02
JP4543182B2 JP4543182B2 (en) 2010-09-15

Family

ID=39907513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071350A Active JP4543182B2 (en) 2007-03-19 2007-03-19 Electromagnet excitation method and pulse electromagnet system

Country Status (1)

Country Link
JP (1) JP4543182B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106372A (en) * 2013-05-31 2016-06-16 メビオン・メディカル・システムズ・インコーポレーテッド Active return system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121299A (en) * 1986-11-10 1988-05-25 株式会社東芝 Deflecting magnet for accelerator
JPS63308897A (en) * 1987-06-10 1988-12-16 Fujitsu Ltd Pulse electromagnet for storage ring
JPH08298200A (en) * 1995-04-26 1996-11-12 Hitachi Ltd Particle accelerator and its operating method
JP2002164200A (en) * 2000-11-28 2002-06-07 Ishikawajima Harima Heavy Ind Co Ltd Pulse ultrahigh magnetic field deflection electromagnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63121299A (en) * 1986-11-10 1988-05-25 株式会社東芝 Deflecting magnet for accelerator
JPS63308897A (en) * 1987-06-10 1988-12-16 Fujitsu Ltd Pulse electromagnet for storage ring
JPH08298200A (en) * 1995-04-26 1996-11-12 Hitachi Ltd Particle accelerator and its operating method
JP2002164200A (en) * 2000-11-28 2002-06-07 Ishikawajima Harima Heavy Ind Co Ltd Pulse ultrahigh magnetic field deflection electromagnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106372A (en) * 2013-05-31 2016-06-16 メビオン・メディカル・システムズ・インコーポレーテッド Active return system

Also Published As

Publication number Publication date
JP4543182B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4174508B2 (en) Charged particle accelerator
US6548809B2 (en) Electromagnetic device for production of cold neutral atoms
JP2007273158A (en) Electron tube and travelling wave tube
JP4543182B2 (en) Electromagnet excitation method and pulse electromagnet system
USH1615H (en) Magnetic fields for chiron wigglers
JPH07191169A (en) Ion deflecting magnet and method for ion deflecting
JP2014529866A (en) Self-resonant compact X-ray source
Karelin et al. RF Oscillations in a coaxial transmission line with a saturated ferrite: 2-D simulation and experiment
Okamura et al. Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source
JP5565798B2 (en) Bending electromagnet system with acceleration function
WO2011065518A1 (en) Induction acceleration sector cyclotron
Park et al. Bunch stability during high-gradient wakefield generation in a dielectric-lined waveguide
JP2003133133A (en) Magnetic field generation device assembled in longitudinal direction by electromagnet and permanent magnet
KR102238857B1 (en) Accelerated Mass Spectrometry Cyclotron System
JP6952997B2 (en) Mirror magnetic field generator and ECR ion source device
Novac et al. Ultrahigh magnetic field dynamic transformers [for pulsed power]
JP3943578B2 (en) Circular particle accelerator
JPS63170832A (en) Ion beam device
Mehdian et al. High-Power Microwave Generation by a Periodic Focusing Quadrupole Transport System
JP2985469B2 (en) Pulse magnetic field generator
CN113056083A (en) Plasma beam generating device
Yalandin et al. Compact relativistic millimeter-band microwave oscillators
Demchenko et al. Stand for RF gap breakdown strength study in magnetic field
US20070152447A1 (en) Electric Energy Transducer And Method
JP2001060500A (en) High-frequency cavity device and high-frequency accelerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150