JP2008233794A - Method for manufacturing perforated plate sound absorbing body - Google Patents

Method for manufacturing perforated plate sound absorbing body Download PDF

Info

Publication number
JP2008233794A
JP2008233794A JP2007077045A JP2007077045A JP2008233794A JP 2008233794 A JP2008233794 A JP 2008233794A JP 2007077045 A JP2007077045 A JP 2007077045A JP 2007077045 A JP2007077045 A JP 2007077045A JP 2008233794 A JP2008233794 A JP 2008233794A
Authority
JP
Japan
Prior art keywords
thin plate
particles
embedded particles
holes
embedded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007077045A
Other languages
Japanese (ja)
Inventor
Kunio Hiyama
邦夫 樋山
Yasutaka Nakamura
康敬 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2007077045A priority Critical patent/JP2008233794A/en
Publication of JP2008233794A publication Critical patent/JP2008233794A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a perforated plate sound absorbing body with which fine through-holes of several hundred micrometers in diameter can be easily and rapidly formed without requiring special members and devices. <P>SOLUTION: The method for manufacturing a perforated thin sheet 1 comprises disposing a plurality of through-holes 3 of 100 to 200 μm in average pore diameter on a thin plate 2 by successively performing a dispersion attachment process A of attaching embedding particles 4 to a surface 2a of the thin plate 2 while dispersing the particles, an embedding process B of embedding the embedding particles 4 into the thin plate 2, and a dissolving process C of removing the embedding particles 4 by swelling or dissolving the particles. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、多孔板吸音体の製造方法に関するものであり、特に、多孔板吸音体を製造するに際してフォトリソグラフィー技術等の複雑な工程を必要としない製造方法に関するものである。   The present invention relates to a method for producing a perforated plate sound absorber, and more particularly to a method for producing a perforated plate sound absorber that does not require a complicated process such as a photolithography technique.

従来から、金属、木材、プラスチック等からなる板状部材に貫通孔を設け、貫通孔の音源と反対側に背後空気層を持たせた吸音パネルが知られている。特に、直径が数百マイクロメートルの貫通孔を有する吸音パネルは、貫通孔を肉眼で視認できないため、美観性に優れるという特徴がある。   Conventionally, a sound absorbing panel is known in which a through-hole is provided in a plate-shaped member made of metal, wood, plastic, or the like, and a back air layer is provided on the side opposite to the sound source of the through-hole. In particular, a sound-absorbing panel having a through hole with a diameter of several hundreds of micrometers is characterized by excellent aesthetics because the through hole cannot be visually recognized.

板状部材に数百マイクロメートルの貫通孔を形成する手段としては、例えば、針状の金型を板材に押し当てて貫通孔を形成するプレス加工法(特許文献1)や、フォトリソグラフィー技術とエッチング技術を組み合わせて貫通孔を形成するエッチング加工法(特許文献2)や、ドリルを用いて貫通孔を形成するドリル加工法や、レーザーによって貫通孔を形成するレザー加工法(特許文献3)などが知られている。
特表2002−521722号公報 特開平9−209175号公報 特許第3160084号公報
Examples of means for forming a through hole of several hundreds of micrometers in a plate-like member include, for example, a pressing method (Patent Document 1) in which a needle-shaped mold is pressed against a plate material to form a through-hole, or a photolithography technique. Etching method for forming through holes by combining etching techniques (Patent Document 2), drilling method for forming through holes using a drill, leather processing method for forming through holes by laser (Patent Document 3), etc. It has been known.
JP-T-2002-521722 Japanese Patent Laid-Open No. 9-209175 Japanese Patent No. 3160084

しかし、上記のプレス加工法によって直径数百マイクロメートルの貫通孔を形成するためには、金型となる針を極細にする必要があり、針が折れて金型が破損しやすいという問題があった。また、吸音特性に応じて貫通孔のピッチや直径等を変更したい場合には、別途金型を用意する必要があり、吸音特性に応じた吸音パネルの仕様の変更が困難になる場合があった。更に、金型やプレス機が高価であるという問題もあった。
また、上記のエッチング加工法では、フォトリソグラフィー技術に供されるマスク、レジスト、現像液、剥離液等がいずれも高価であり、また、露光装置等も高価で、コスト増になるおそれがあった。
更に、ドリル加工法では、貫通孔のピッチ等にもよるが、吸音パネル1平方メートル当たり数十万個程度の貫通孔を逐一形成する必要があり、貫通孔の形成に要する時間が膨大になるという問題があった。
更にまた、レーザー加工法では、ドリル加工法と同様に、吸音パネル1平方メートル当たり数十万個程度の貫通孔を逐一形成する必要があり、貫通孔の形成に要する時間が膨大になるという問題があった。また、レーザー加工装置が高価でコスト増になるおそれがあった。
However, in order to form a through-hole with a diameter of several hundreds of micrometers by the above-mentioned press working method, it is necessary to make the needle used as a mold very fine, and there is a problem that the mold is easily broken and the mold is easily damaged. It was. Also, if you want to change the pitch and diameter of the through holes according to the sound absorption characteristics, it is necessary to prepare a separate mold, and it may be difficult to change the specifications of the sound absorption panel according to the sound absorption characteristics . Further, there is a problem that the mold and the press are expensive.
In the etching method described above, the mask, resist, developer, stripper, etc. used for the photolithography technique are all expensive, and the exposure apparatus is also expensive, which may increase the cost. .
Furthermore, in the drilling method, although it depends on the pitch of the through holes, it is necessary to form hundreds of thousands of through holes per square meter of the sound absorbing panel one by one, and the time required for forming the through holes is enormous. There was a problem.
Furthermore, in the laser processing method, as in the drill processing method, it is necessary to form several hundreds of thousands of through holes per square meter of the sound absorbing panel, and the time required for forming the through holes becomes enormous. there were. In addition, the laser processing apparatus is expensive and may increase costs.

本発明は、上記事情に鑑みてなされたものであって、特別な部材や装置を必要とせず、直径数百マイクロメートルの微細な貫通孔を容易にしかも短時間で形成することが可能な多孔板吸音体の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and does not require a special member or device, and can easily form a fine through hole having a diameter of several hundreds of micrometers in a short time. It aims at providing the manufacturing method of a board sound-absorbing body.

上記課題を解決すべく本発明者らが鋭意研究を行った結果、平均孔径が数百マイクロメートル程度の微細な貫通孔を有する多孔板吸音体においては、貫通孔の平均孔径及び開口率が所定の範囲内にあれば、貫通孔の開口形状、孔径または貫通孔同士のピッチ等が多少ばらついて、これらの分布が比較的広くなっている場合でも、所望の吸音特性が得られることを見出すに至り、本発明を完成させた。すなわち上記の目的を達成するために、本発明は以下の構成を採用した。   As a result of intensive studies conducted by the present inventors to solve the above-mentioned problems, the average hole diameter and the opening ratio of the through holes are predetermined in a perforated plate sound absorber having fine through holes with an average hole diameter of about several hundreds of micrometers. To find that the desired sound-absorbing characteristics can be obtained even if the distribution of the through-holes, the hole diameter, or the pitch between the through-holes varies somewhat and the distribution thereof is relatively wide. Finally, the present invention has been completed. That is, in order to achieve the above object, the present invention employs the following configuration.

本発明の多孔板吸音体の製造方法は、薄板の表面に、貫通孔形成用の埋め込み粒子を分散させつつ付着する分散付着工程と、前記埋め込み粒子を前記薄板に埋め込む埋込み工程と、前記埋め込み粒子を膨潤または溶解して除去する溶解工程とを順次行い、前記薄板に平均孔径が100μm以上200μm以下の複数の貫通孔を設けることを特徴とする。
また、本発明の多孔板吸音体の製造方法においては、前記分散付着工程において、前記埋め込み粒子を分散液に分散してスラリーとし、前記スラリーを前記薄板の表面に噴霧することにより、前記埋め込み粒子を前記薄板表面に分散させることが好ましい。
また、本発明の多孔板吸音体の製造方法においては、前記薄板の厚みが50〜200μmの範囲であることが好ましい。
更に、本発明の多孔板吸音体の製造方法においては、前記薄板が金属薄板であり、前記埋め込み粒子が樹脂からなる粒子であり、前記埋め込み粒子を溶解する溶解液が前記樹脂を膨潤または溶解可能な有機溶剤を含む溶解液であることが好ましい。
更にまた、本発明の多孔板吸音体の製造方法においては、前記薄板が樹脂薄板であり、前記埋め込み粒子が金属からなる粒子であり、前記埋め込み粒子を溶解する溶解液が前記金属を溶解可能な酸または金属塩を含む溶解液であることが好ましい。
The method for producing a perforated plate sound absorber according to the present invention includes a dispersion adhesion step in which embedded particles for forming through holes are dispersed and adhered to the surface of a thin plate, an embedding step of embedding the embedded particles in the thin plate, and the embedded particles And a dissolving step of removing the particles by swelling or dissolving them, and sequentially providing a plurality of through holes having an average pore diameter of 100 μm or more and 200 μm or less on the thin plate.
Further, in the method for producing a perforated plate sound absorber according to the present invention, in the dispersion adhesion step, the embedded particles are dispersed in a dispersion to form a slurry, and the slurry is sprayed on the surface of the thin plate, thereby the embedded particles. Is preferably dispersed on the surface of the thin plate.
Moreover, in the manufacturing method of the perforated plate sound absorber of this invention, it is preferable that the thickness of the said thin plate is the range of 50-200 micrometers.
Further, in the method for producing a perforated plate sound absorber according to the present invention, the thin plate is a metal thin plate, the embedded particles are particles made of a resin, and a solution for dissolving the embedded particles can swell or dissolve the resin. It is preferable that it is a solution containing an organic solvent.
Furthermore, in the method for producing a perforated plate sound absorber according to the present invention, the thin plate is a resin thin plate, the embedded particles are particles made of metal, and a solution for dissolving the embedded particles can dissolve the metal. A solution containing an acid or a metal salt is preferable.

本発明の多孔板吸音体の製造方法によれば、分散付着工程、埋込み工程及び溶解工程を順次行うことにより多孔板吸音体を製造するので、平均孔径が100〜200μmの微細な貫通孔を容易にしかも短時間で形成することができる。
また、本発明の多孔板吸音体の製造方法によれば、分散付着工程において、埋め込み粒子を含むスラリーを噴霧することにより埋め込み粒子を薄板表面に分散させるので、貫通孔同士のピッチが比較的均一な多孔板吸音体を製造できる。
更に、本発明の多孔板吸音体の製造方法によれば、金属薄板を用いる場合には、金属薄板に樹脂粒子を埋め込んでから樹脂粒子を膨潤または溶解させて除去することで、多孔板吸音体を容易に製造できる。
更にまた、本発明の多孔板吸音体の製造方法によれば、樹脂薄板を用いる場合には、樹脂薄板に金属粒子を埋め込んでから金属粒子を溶解させて除去することで、多孔板吸音体を容易に製造できる。
According to the method for producing a perforated plate sound absorber of the present invention, a perforated plate sound absorber is produced by sequentially performing a dispersion attaching step, an embedding step, and a dissolving step, so that it is easy to form fine through holes with an average pore diameter of 100 to 200 μm. Moreover, it can be formed in a short time.
Further, according to the method for producing a perforated plate sound absorber of the present invention, in the dispersion adhesion step, the embedded particles are dispersed on the surface of the thin plate by spraying the slurry containing the embedded particles, so that the pitch between the through holes is relatively uniform. A perforated plate sound absorber can be manufactured.
Furthermore, according to the method for producing a perforated plate sound absorber of the present invention, when using a metal thin plate, the resin particle is swelled or dissolved and then removed by embedding the resin particles in the metal thin plate, thereby removing the perforated plate sound absorber. Can be easily manufactured.
Furthermore, according to the method for producing a perforated plate sound absorber of the present invention, when using a resin thin plate, the perforated plate sound absorber is obtained by embedding the metal particles in the resin thin plate and then removing the metal particles by dissolving them. Easy to manufacture.

以下、本発明の実施形態である多孔板吸音体及びその製造方法について、図面を参照して説明する。以下の説明で参照する図は、吸音パネル等の構成を説明するためのものであり、図示される各部の大きさや厚さや寸法等は、実際の吸音パネル等の寸法関係と異なる場合がある。 Hereinafter, a perforated plate sound absorber which is an embodiment of the present invention and a manufacturing method thereof will be described with reference to the drawings. The drawings referred to in the following description are for explaining the configuration of the sound absorbing panel and the like, and the size, thickness, dimensions, and the like of each part illustrated may differ from the dimensional relationship of the actual sound absorbing panel or the like.

図1は、本実施形態の多孔板吸音体の製造方法によって製造された多孔板吸音体の一例を示す斜視図であり、図2は、図1に示す多孔板吸音体の断面模式図である。
図1及び図2に示すように、本実施形態の多孔板吸音体1は、厚みが50μm〜200μmの薄板2を主体として構成され、この薄板2には、一面2aから他面2bの間をその厚み方向に貫通する複数の貫通孔3が設けられている。複数の貫通孔3を薄板2に設けることによって、音や空気が多孔板吸音体1を通過可能になっている。また、貫通孔3は単に音や空気を通過するのみならず、音を吸音する機能も備わっている。
FIG. 1 is a perspective view illustrating an example of a perforated plate sound absorber manufactured by the method for manufacturing a perforated plate sound absorber according to the present embodiment, and FIG. 2 is a schematic cross-sectional view of the perforated plate sound absorber shown in FIG. .
As shown in FIGS. 1 and 2, the perforated plate sound absorber 1 of the present embodiment is mainly composed of a thin plate 2 having a thickness of 50 μm to 200 μm, and this thin plate 2 has a space between one surface 2a and the other surface 2b. A plurality of through holes 3 penetrating in the thickness direction are provided. By providing a plurality of through holes 3 in the thin plate 2, sound and air can pass through the perforated plate sound absorber 1. The through-hole 3 has a function of absorbing sound as well as passing sound and air.

薄板2の厚みが50μm以上であれば、薄板2自体の強度が低下することなく取り扱いが容易になり、また吸音特性が低下することもなく好適である。また、薄板2の厚み200μm以下であれば、後述するように貫通孔3を良好に形成できる。   If the thickness of the thin plate 2 is 50 μm or more, it is preferable that the strength of the thin plate 2 itself is not lowered and the handling becomes easy and the sound absorption characteristics are not lowered. Moreover, if the thickness of the thin plate 2 is 200 μm or less, the through-hole 3 can be satisfactorily formed as will be described later.

また、薄板2を金属薄板で構成した場合の材質は、比較的軟らかいものが好ましく、例えば、アルミニウム、アルミニウム合金、銅または銅合金を用いることが好ましい。また、薄板2を樹脂薄板で構成した場合は、金属の場合と同様に比較的軟らかいものが好ましく、例えばポリエチレンテレフタレート等のポリエステル樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、合成ゴム、シリコーンゴム等を用いることが好ましい。   In addition, the material when the thin plate 2 is formed of a metal thin plate is preferably relatively soft, and for example, aluminum, aluminum alloy, copper, or copper alloy is preferably used. When the thin plate 2 is formed of a resin thin plate, it is preferably relatively soft as in the case of metal. For example, a polyester resin such as polyethylene terephthalate, a polyolefin resin such as polyethylene or polypropylene, a synthetic rubber, a silicone rubber, or the like is used. It is preferable.

また、薄板2の一面2aまたは他面2bには、多孔板吸音体1の外観の美観性を向上させるために絵、模様等のデザインが施されていても良く、また各面2a、2bを鏡面仕上げにしても良い。   In addition, the one surface 2a or the other surface 2b of the thin plate 2 may be provided with a design such as a picture or a pattern in order to improve the appearance of the perforated plate sound absorber 1, and each surface 2a, 2b A mirror finish may be used.

貫通孔3は後述するように、薄板に貫通孔形成用の埋め込み粒子を埋め込み、その後、埋め込み粒子を除去することにより形成される。従って貫通孔3の平面視形状は、真円形状、楕円形状、矩形状、不定形状等の様々な形状をなす。また、隣接する貫通孔3同士が相互に繋がることによって、その平面視形状が不定形状になった貫通孔が一部に存在しても良い。
これら貫通孔3の平均孔径は、100〜200μmの範囲が好ましい。平均孔径が100μm以上であれば、十分な吸音特性を確保することができる。また、平均孔径が200μm以下であれば、貫通孔3を肉眼では視認することが困難になり、多孔板吸音体の美観性が向上して化粧板として用いることが可能になる。なお、平均孔径とは、複数の貫通孔3の孔径の平均である。また、貫通孔3の孔径は、例えば、貫通孔3の平面視形状が真円状の場合はその直径が孔径になり、楕円形状の場合はその長径が孔径となり、矩形状の場合はその長辺長が孔径になる。また、貫通孔3が不定形状の場合はその最長の長さが孔径になる。
As will be described later, the through hole 3 is formed by embedding embedded particles for forming a through hole in a thin plate and then removing the embedded particles. Accordingly, the through hole 3 has various shapes such as a perfect circle shape, an elliptical shape, a rectangular shape, and an indefinite shape in plan view. Moreover, the adjacent through-holes 3 may be connected to each other so that a part of the through-holes having an indefinite shape in plan view may exist.
The average hole diameter of these through holes 3 is preferably in the range of 100 to 200 μm. If the average pore diameter is 100 μm or more, sufficient sound absorption characteristics can be secured. If the average pore diameter is 200 μm or less, it is difficult to visually recognize the through holes 3 with the naked eye, and the aesthetic appearance of the perforated plate sound absorber is improved and can be used as a decorative board. The average hole diameter is an average of the hole diameters of the plurality of through holes 3. Further, the diameter of the through hole 3 is, for example, when the shape of the through hole 3 in plan view is a perfect circle, the diameter is the hole diameter. When the shape is elliptical, the major diameter is the hole diameter. The side length becomes the hole diameter. Moreover, when the through-hole 3 is indefinite shape, the longest length becomes a hole diameter.

また、貫通孔3の平面視形状は、図2に示すように薄板3の厚み方向に沿って一定であってもよいが、厚み方向に沿って大きさが徐々に変化してもよい。即ち、図2に示す貫通孔3は、いずれも模式的に示したものであるため、その平面視形状が薄板2の厚み方向に沿って一定であり、貫通孔3の内壁面3aが薄板の厚み方向に沿うように形成されているが、本実施形態ではこれに限らず、貫通孔3の内壁面3aがテーパー面でもよく、球面でもよい。また、内壁面3aは平滑面でもよいし粗面でもよい。貫通孔3は、薄板に埋め込んだ埋め込み粒子を除去することにより形成されるため、貫通孔3の内壁面3aは埋め込み粒子の表面形状をある程度反映した形状になるので、このような様々な形態の面に形成される。   Moreover, although the planar view shape of the through-hole 3 may be constant along the thickness direction of the thin plate 3 as shown in FIG. 2, a magnitude | size may change gradually along the thickness direction. That is, since all of the through holes 3 shown in FIG. 2 are schematically shown, the shape in plan view is constant along the thickness direction of the thin plate 2, and the inner wall surface 3a of the through hole 3 is a thin plate. Although formed so as to be along the thickness direction, the present invention is not limited to this, and the inner wall surface 3a of the through hole 3 may be a tapered surface or a spherical surface. The inner wall surface 3a may be a smooth surface or a rough surface. Since the through hole 3 is formed by removing the embedded particles embedded in the thin plate, the inner wall surface 3a of the through hole 3 has a shape that reflects the surface shape of the embedded particles to some extent. Formed on the surface.

また、貫通孔3の開口率は、0.2%〜15%の範囲が好ましく、0.5%〜10%の範囲がより好ましい。ここで貫通孔3の開口率とは、薄板2の一面2aまたは他面2bの面積に対する貫通孔3の開口面積の割合である。開口率が0.2%以上であれば、良好な吸音特性を得ることができ、開口率が15%以下であれば、貫通孔3が目立たず、多孔板吸音体1の外観の美観性が損なわれる虞がない。   Further, the opening ratio of the through holes 3 is preferably in the range of 0.2% to 15%, and more preferably in the range of 0.5% to 10%. Here, the opening ratio of the through hole 3 is a ratio of the opening area of the through hole 3 to the area of the one surface 2a or the other surface 2b of the thin plate 2. If the aperture ratio is 0.2% or more, good sound absorption characteristics can be obtained. If the aperture ratio is 15% or less, the through holes 3 are not noticeable, and the appearance of the perforated plate sound absorber 1 is aesthetic. There is no risk of damage.

更に、貫通孔3同士のピッチは、薄板に埋め込み粒子を分散させた際の粒子の分布によって決まるので、貫通孔3同士のピッチは完全に揃っていなくともよく、ある程度均一であればよい。   Furthermore, since the pitch between the through holes 3 is determined by the distribution of particles when the embedded particles are dispersed in the thin plate, the pitch between the through holes 3 does not have to be completely uniform and may be uniform to some extent.

上記の多孔板吸音体1は、図3に示すように、多孔板吸音体1の音源側の面とは反対側の面に離間して配置された背面板11(剛体)と組み合わされることによって、吸音パネル12を構成する。多孔板吸音体1と背面板11との間には、多孔板吸音体1の各貫通孔3と連通する背後空気層13が備えられる。また、背後空気層13には、グラスウールに代表される多孔質吸音基材が配置されてもよい。多孔質吸音基材としては、例えば、ガラス粒子、鉱物粒子、セラミックス粒子、樹脂粒子等が焼結若しくは結着されてなる粒状の多孔質材料でも良く、ガラス繊維、鉱物繊維、樹脂繊維、金属繊維、綿等の天然繊維等が絡まりあってなる繊維状の多孔質材料でも良い。また、繊維状の多孔質材料の場合には、繊維同士の間に、ガラス粒子、鉱物粒子、セラミックス粒子、樹脂粒子等を充填してもよい。   As shown in FIG. 3, the perforated plate sound absorber 1 is combined with a back plate 11 (rigid body) that is disposed apart from the sound source side surface of the perforated plate sound absorber 1. The sound absorbing panel 12 is configured. Between the perforated plate sound absorber 1 and the back plate 11, a back air layer 13 communicating with each through hole 3 of the perforated plate sound absorber 1 is provided. In addition, a porous sound-absorbing base material represented by glass wool may be disposed in the back air layer 13. The porous sound-absorbing substrate may be, for example, a granular porous material formed by sintering or binding glass particles, mineral particles, ceramic particles, resin particles, etc., and glass fibers, mineral fibers, resin fibers, metal fibers Alternatively, a fibrous porous material in which natural fibers such as cotton are entangled may be used. In the case of a fibrous porous material, glass particles, mineral particles, ceramic particles, resin particles, or the like may be filled between the fibers.

次に、本実施形態の多孔板吸音体の製造方法について説明する。この製造方法は、図4に示すように、薄板2の一面2a(表面)に貫通孔形成用の埋め込み粒子4を分散して付着させる分散付着工程Aと、埋め込み粒子4を薄板に埋め込む埋込み工程Bと、埋め込み粒子4を溶解して除去する溶解工程Cとから概略構成される。以下、各工程について図4を参照して説明する。   Next, the manufacturing method of the perforated panel sound absorber of this embodiment is demonstrated. In this manufacturing method, as shown in FIG. 4, a dispersion attaching step A in which embedded particles 4 for forming through holes are dispersed and attached to one surface 2a (surface) of the thin plate 2, and an embedding step of embedding the embedded particles 4 in the thin plate. B and a dissolution process C in which the embedded particles 4 are dissolved and removed. Hereinafter, each step will be described with reference to FIG.

(分散付着工程A)
分散付着工程Aでは、図4に示すように、一方向に連続的に移動する薄板2の一面2a上に、貫通孔形成用の埋め込み粒子4を順次分散させて付着する。具体的には例えば、埋め込み粒子4を水またはアルコールなどの分散液に分散してスラリーとし、このスラリーを移動中の薄板2の一面2aに連続的に噴霧することにより、埋め込み粒子4を薄板2上に分散させて付着する手段を例示できる。
(Dispersion adhesion process A)
In the dispersion adhesion step A, as shown in FIG. 4, the embedded particles 4 for forming through holes are sequentially dispersed and adhered on one surface 2a of the thin plate 2 that moves continuously in one direction. Specifically, for example, the embedded particles 4 are dispersed in a dispersion liquid such as water or alcohol to form a slurry, and this slurry is continuously sprayed onto one surface 2a of the moving thin plate 2 to thereby make the embedded particles 4 the thin plate 2. A means for dispersing and adhering to the surface can be exemplified.

ここで、薄板2としては、上述したように、金属または樹脂の薄板2を用いることができる。薄板2として金属薄板を用いる場合には、埋め込み粒子4として、樹脂からなる粒子を用いることができる。より具体的には、ポリメチルメタクリレートなどのアクリル樹脂、ポリカーボネート樹脂、ナイロン6、ナイロン66、ナイロン12等のポリアミド樹脂といった、比較的硬質の樹脂からなる粒子を用いることができる。一方、薄板2として樹脂薄板を用いる場合には、埋め込み粒子4として、金属からなる粒子を用いることができる。より具体的には、Cu、Al、Fe、Ni、Cr、W、Ti、NiFe合金等からなる粒子を用いることができる。   Here, as the thin plate 2, as described above, a metal or resin thin plate 2 can be used. When a metal thin plate is used as the thin plate 2, particles made of resin can be used as the embedded particles 4. More specifically, particles made of a relatively hard resin such as an acrylic resin such as polymethyl methacrylate, a polycarbonate resin, and a polyamide resin such as nylon 6, nylon 66, and nylon 12 can be used. On the other hand, when a resin thin plate is used as the thin plate 2, particles made of metal can be used as the embedded particles 4. More specifically, particles made of Cu, Al, Fe, Ni, Cr, W, Ti, NiFe alloy or the like can be used.

埋め込み粒子4の形状は、どのような形状でもよく、例えば、球状、楕円球状、柱状、針状、平板状、不定形状等の形状でもよい。   The shape of the embedded particles 4 may be any shape, for example, a spherical shape, an elliptical spherical shape, a columnar shape, a needle shape, a flat plate shape, an indefinite shape, or the like.

埋め込み粒子4の平均粒径は、薄板2の厚みにもよるが、500μm以下が好ましく、300μm以下がより好ましく、50μm以上200μm以下の範囲が最も好ましく、これらの範囲で薄板2の厚みよりも大きな平均粒径がよい。埋め込み粒子4の平均粒径が薄板2の厚みを大幅に超えて例えば500μmを超えると、次工程の埋め込み工程において埋め込み粒子4が粉砕されるかあるいは変形されてしまい、良好な貫通孔3が形成されなくなる場合があるので好ましくない。また、粒子の粉砕や変形がなくても、500μm超の粒子を用いた場合は貫通孔3の径が過大になり、多孔板吸音体1の美観性を損ねる場合があるので好ましくない。
また、埋め込み粒子4の平均粒径が薄板2の厚みより大幅に小さく例えば50μm未満になると、埋め込み粒子4が薄板2に完全に埋め込まれてしまい、貫通孔3の形成に寄与できなくなる場合があるので好ましくない。
更に、埋め込み粒子4の平均粒径が薄板の厚みよりも小さいと、薄板2の厚みより小さな粒径の粒子の割合が増加し、良好な貫通孔3が形成されなくなる場合があるので好ましくない。
Although the average particle diameter of the embedded particles 4 depends on the thickness of the thin plate 2, it is preferably 500 μm or less, more preferably 300 μm or less, most preferably in the range of 50 μm or more and 200 μm or less, and larger in these ranges than the thickness of the thin plate 2. Good average particle size. When the average particle diameter of the embedded particles 4 greatly exceeds the thickness of the thin plate 2 and exceeds 500 μm, for example, the embedded particles 4 are pulverized or deformed in the subsequent embedding step, and a good through hole 3 is formed. Since it may not be performed, it is not preferable. Even if the particles are not pulverized or deformed, the use of particles larger than 500 μm is not preferable because the diameter of the through hole 3 becomes excessive and the aesthetic appearance of the porous plate sound absorber 1 may be impaired.
Further, when the average particle diameter of the embedded particles 4 is significantly smaller than the thickness of the thin plate 2, for example, less than 50 μm, the embedded particles 4 may be completely embedded in the thin plate 2 and may not contribute to the formation of the through holes 3. Therefore, it is not preferable.
Furthermore, if the average particle size of the embedded particles 4 is smaller than the thickness of the thin plate, the ratio of particles having a particle size smaller than the thickness of the thin plate 2 increases, and a good through hole 3 may not be formed.

また、埋め込み粒子4の粒度分布は、比較的狭い分布幅を持つものが好ましい。埋め込み粒子4の粒度分布の分布幅が過剰に広がると、薄板2の厚みより大きな粒径の粒子や、薄板2の厚みより小さな粒径の粒子の割合が増加し、良好な貫通孔3が形成されなくなる場合があるので好ましくない。   The particle size distribution of the embedded particles 4 preferably has a relatively narrow distribution width. When the distribution width of the particle size distribution of the embedded particles 4 is excessively widened, the ratio of particles having a particle size larger than the thickness of the thin plate 2 and particles having a particle size smaller than the thickness of the thin plate 2 increases, and a favorable through hole 3 is formed. Since it may not be performed, it is not preferable.

(埋め込み工程B)
次に、埋め込み工程Bでは、一面2a上に分散して付着された埋め込み粒子4を薄板2に押し込んで、埋め込み粒子4を薄板2に埋め込む。具体的には例えば、図4に示すように、双ロール5の間に薄板2を連続的に通して、ロール圧力によって埋め込み粒子4を薄板2に順次埋め込む。このときのロール5同士の間隔は、例えば、薄板2の厚みとほぼ同じ寸法に調整すればよい。また、ロール5により薄板2に与える線圧は、薄板2及び埋め込み粒子4の材質や埋め込み粒子の粒径によって異なるので適宜変更すればよい。更に、ロール5は、埋め込み粒子4が潰されず、かつ粒子を露出させるようにロール材質が復元可能なゴム様なものとし、かつロールによる加圧力を適宜調整するとよい。このようにして、埋め込み粒子4が薄板2に埋め込まれる。
(Embedding process B)
Next, in the embedding step B, the embedded particles 4 dispersed and attached on the one surface 2 a are pushed into the thin plate 2 to embed the embedded particles 4 in the thin plate 2. Specifically, for example, as shown in FIG. 4, the thin plate 2 is continuously passed between the twin rolls 5 and the embedded particles 4 are sequentially embedded in the thin plate 2 by roll pressure. What is necessary is just to adjust the space | interval of the rolls 5 at this time to the dimension substantially the same as the thickness of the thin plate 2, for example. Further, the linear pressure applied to the thin plate 2 by the roll 5 varies depending on the material of the thin plate 2 and the embedded particles 4 and the particle size of the embedded particles, and may be appropriately changed. Further, the roll 5 may be a rubber-like material whose roll material can be restored so that the embedded particles 4 are not crushed and the particles are exposed, and the pressure applied by the rolls may be appropriately adjusted. In this way, the embedded particles 4 are embedded in the thin plate 2.

なお、図4では、連続して供給される薄板を双ロール5の間を通すことで埋め込み粒子4を薄板2に埋め込む例を示したが、薄板を連続的に平板プレスすることで埋め込み粒子4を薄板2に埋め込んでもよい。   In FIG. 4, an example in which the embedded particles 4 are embedded in the thin plate 2 by passing the thin plate continuously supplied between the twin rolls 5, but the embedded particles 4 are obtained by continuously pressing the thin plate to a flat plate. May be embedded in the thin plate 2.

(溶解工程C)
次に溶解工程Cでは、溶解液によって埋め込み粒子を膨潤または溶解して薄板2から除去することにより、薄板2に貫通孔3を形成する。具体的には、例えば図4に示すように、連続的に移動する薄板2に対して、埋め込み粒子4を膨潤または溶解させる溶解液Lをシャワーノズル等で噴射させてもよく、溶解液を満たした溶解槽を用意し、この溶解槽に薄板を連続的に浸漬させてもよい。溶解液に触れた埋め込み粒子4は、溶解または膨潤して薄板2から除去される。
(Dissolution process C)
Next, in the dissolving step C, the through-holes 3 are formed in the thin plate 2 by swelling or dissolving the embedded particles with the dissolving liquid and removing them from the thin plate 2. Specifically, for example, as shown in FIG. 4, a solution L that swells or dissolves the embedded particles 4 may be sprayed to the continuously moving thin plate 2 with a shower nozzle or the like. Alternatively, a dissolution tank may be prepared, and the thin plate may be continuously immersed in the dissolution tank. The embedded particles 4 that have come into contact with the solution are dissolved or swollen and removed from the thin plate 2.

ここで溶解液としては、金属または樹脂からなる埋め込み粒子を溶解または膨潤させるものがよい。埋め込み粒子4が金属からなる場合は、金属の種類にもよるが例えば、塩酸水溶液、硫酸水溶液、硝酸水溶液、塩化第2鉄水溶液等を用いればよい。また、埋め込み粒子4が樹脂からなる場合は、樹脂の種類にもよるが例えば、N−メチルピロリドン(NMP)、アセトン等を用いればよい。   Here, the solution is preferably a solution that dissolves or swells embedded particles made of metal or resin. When the embedded particles 4 are made of metal, depending on the type of metal, for example, an aqueous hydrochloric acid solution, an aqueous sulfuric acid solution, an aqueous nitric acid solution, an aqueous ferric chloride solution, etc. may be used. Further, when the embedded particles 4 are made of a resin, for example, N-methylpyrrolidone (NMP), acetone, or the like may be used depending on the type of resin.

図5及び図6には、埋め込み工程後及び溶解工程後の薄板の拡大断面図を示す。図5(a)及び図6(a)はそれぞれ、埋め込み工程後の薄板の拡大断面模式図であり、図5(b)及び図6(b)はそれぞれ、溶解工程後の薄板の拡大断面模式図である。
図5について説明すると、図5(a)は、様々な粒径の球状の埋め込み粒子が薄板に埋め込まれた状態を示している。図5(a)に示す埋め込み粒子4aは、その粒径が薄板2の厚みよりも若干大きいため、その一部が薄板2の一面2a及び他面2bから僅かに露出している。また、図5(a)に同時に示す埋め込み粒子4b〜4dは、その粒径が薄板2の厚みより若干小さいため、薄板中に完全に埋め込まれたり(4b)、一部が薄板2の一面2aまたは他面2bから僅かに露出した状態になっている(4c、4d)。
このような状態の薄板に対して溶解工程を行ったのが図5(b)に示される薄板であり、図5(b)においては、埋め込み粒子4aに対応する貫通孔3bが形成される一方、埋め込み粒子4bは溶解されずに薄板2内に残存し、埋め込み粒子4cについては一面2a側に開口する穴3cを形成し、更に埋め込み粒子4dについては他面2b側に開口する穴3dを形成する。このうち、吸音特性を発現するのは貫通孔3bであり、残存した埋め込み粒子4b及び穴3c、3dは吸音特性に何ら関与しない。
このように、本実施形態の多孔質製造方法によれば、一部に吸音特性に関与しない穴が形成されたり、埋め込み粒子が残存する場合もあるが、埋め込み粒子4の一部を一面2a及び他面2bから露出させてから溶解除去することで、概ね、平均孔径100〜200μmの貫通孔3が薄板2を貫通するように形成される。
5 and 6 are enlarged cross-sectional views of the thin plate after the embedding process and after the melting process. 5 (a) and 6 (a) are enlarged schematic cross-sectional views of the thin plate after the embedding process, and FIGS. 5 (b) and 6 (b) are enlarged schematic cross-sectional views of the thin plate after the melting step, respectively. FIG.
Referring to FIG. 5, FIG. 5 (a) shows a state in which spherical embedded particles having various particle diameters are embedded in a thin plate. The embedded particles 4a shown in FIG. 5 (a) are slightly exposed from the one surface 2a and the other surface 2b of the thin plate 2 because the particle diameter thereof is slightly larger than the thickness of the thin plate 2. Further, since the embedded particles 4b to 4d shown in FIG. 5 (a) have a particle size slightly smaller than the thickness of the thin plate 2, they are completely embedded in the thin plate (4b), or a part of the surface 2a of the thin plate 2 is 2a. Or it is in the state exposed slightly from the other surface 2b (4c, 4d).
The thin plate shown in FIG. 5 (b) was subjected to the melting step for the thin plate in such a state. In FIG. 5 (b), the through hole 3b corresponding to the embedded particle 4a was formed. The embedded particles 4b remain in the thin plate 2 without being dissolved, and the embedded particles 4c are formed with holes 3c that open on the one surface 2a side, and the embedded particles 4d are formed with holes 3d that are opened on the other surface 2b side. To do. Among these, it is the through hole 3b that expresses the sound absorption characteristic, and the remaining embedded particles 4b and holes 3c and 3d are not involved in the sound absorption characteristic at all.
As described above, according to the porous manufacturing method of the present embodiment, holes that do not participate in the sound absorption characteristics may be formed in part or embedded particles may remain. By exposing and removing from the other surface 2b, the through holes 3 having an average hole diameter of 100 to 200 μm are generally formed so as to penetrate the thin plate 2.

また、図6について説明すると、図6(a)は、様々な形状の埋め込み粒子が薄板に埋め込まれた状態を示している。図6(a)に示す球状または楕円球状の埋め込み粒子4e、4fは、図5に示す埋め込み粒子4aと同様に、その粒径が薄板2の厚みよりも若干大きいため、その一部が薄板2の一面2a及び他面2bから僅かに露出している。また、図6(a)に示す柱状の埋め込み粒子4gは、アスペクト比が1に近いため、薄板2に対してその長手方向が直交する方向に沿って埋め込まれている。更に、図6(a)に示す柱状の埋め込み粒子4hは、アスペクト比が1より大きいため、薄板2に対してその長手方向が平行になって埋め込まれている。
このような状態の薄板に対して溶解工程を行ったのが図6(b)に示される薄板であり、図6(b)においては、埋め込み粒子4e〜4hに対応する貫通孔3e〜3hが形成されている。図6に示すように、各貫通孔3e〜3hは、埋め込み粒子4e〜4hの形状に対応した異なる孔径を有している。
このように、本実施形態の多孔質製造方法によれば、異なる孔径の貫通孔が形成される場合もあるが、概ね、平均孔径100〜200μmの貫通孔が薄板2を貫通して形成される。
Referring to FIG. 6, FIG. 6 (a) shows a state where embedded particles of various shapes are embedded in a thin plate. The spherical or oval spherical embedded particles 4e and 4f shown in FIG. 6A have a particle size slightly larger than the thickness of the thin plate 2 in the same manner as the embedded particles 4a shown in FIG. It is slightly exposed from one surface 2a and the other surface 2b. Further, since the columnar embedded particles 4g shown in FIG. 6A have an aspect ratio close to 1, they are embedded along the direction in which the longitudinal direction is perpendicular to the thin plate 2. Furthermore, since the columnar embedded particles 4h shown in FIG. 6A have an aspect ratio larger than 1, they are embedded with the longitudinal direction parallel to the thin plate 2.
The thin plate shown in FIG. 6 (b) was subjected to the melting step for the thin plate in such a state. In FIG. 6 (b), the through holes 3e to 3h corresponding to the embedded particles 4e to 4h are provided. Is formed. As shown in FIG. 6, each through-hole 3e-3h has a different hole diameter corresponding to the shape of the embedded particles 4e-4h.
Thus, according to the porous manufacturing method of the present embodiment, through holes having different pore diameters may be formed, but generally, through holes having an average pore diameter of 100 to 200 μm are formed through the thin plate 2. .

上記の多孔板吸音体の製造方法によれば、分散付着工程、埋込み工程及び溶解工程を順次行うことにより多孔板吸音体1を製造するので、平均孔径が100〜200μmの微細な貫通孔を容易にしかも短時間で形成することができる。
また、分散付着工程において、埋め込み粒子4を含むスラリーを噴霧することにより、埋め込み粒子4を薄板表面2aに分散させるので、貫通孔3同士のピッチが比較的均一な多孔板吸音体1を製造できる。
According to the manufacturing method of the perforated plate sound absorber, the perforated plate sound absorber 1 is manufactured by sequentially performing the dispersion attaching step, the embedding step, and the dissolving step. Moreover, it can be formed in a short time.
In addition, since the embedded particles 4 are dispersed on the thin plate surface 2a by spraying the slurry containing the embedded particles 4 in the dispersion adhesion step, the porous plate sound absorber 1 in which the pitch between the through holes 3 is relatively uniform can be manufactured. .

以下、実施例により本発明を更に詳細に説明する。
「実施例1」
ポリエチレンテレフタレート樹脂(以下、PETという)からなる厚み0.1mmの樹脂薄板と、平均粒径170μmで最大粒径が300μmの球状のCuからなる埋め込み粒子を用意した。この埋め込み粒子を水に分散させてスラリーを形成し、このスラリーを樹脂薄板に噴霧して樹脂薄板上に埋め込み粒子を分散させて付着させた。
次に、埋め込み粒子が付着した状態の樹脂薄板を、双ロールの間に通して薄板に埋め込み粒子を埋め込ませた。ロールによって薄板に印加する線圧は100MPaに調整した。
次に、埋め込み粒子が埋め込まれた樹脂薄板を、濃度30重量%の塩化第2鉄水溶液中に浸漬させ、液温を最高40℃程度に調整することにより、Cuからなる埋め込み粒子を溶解させて除去した。このようにして貫通孔を形成した。その後、樹脂薄板を水洗して乾燥することにより、実施例1の多孔板吸音体を製造した。
Hereinafter, the present invention will be described in more detail with reference to examples.
"Example 1"
A 0.1 mm thick resin thin plate made of polyethylene terephthalate resin (hereinafter referred to as PET) and embedded particles made of spherical Cu having an average particle size of 170 μm and a maximum particle size of 300 μm were prepared. The embedded particles were dispersed in water to form a slurry, and the slurry was sprayed on the resin thin plate to disperse the embedded particles on the resin thin plate and adhere to them.
Next, the resin thin plate with the embedded particles attached was passed between twin rolls to embed the embedded particles in the thin plate. The linear pressure applied to the thin plate by the roll was adjusted to 100 MPa.
Next, the resin thin plate in which the embedded particles are embedded is immersed in an aqueous ferric chloride solution having a concentration of 30% by weight, and the liquid temperature is adjusted to about 40 ° C. to dissolve the embedded particles made of Cu. Removed. In this way, a through hole was formed. Then, the porous board sound-absorbing body of Example 1 was manufactured by washing and drying the resin thin plate.

「実施例2」
Cuからなる厚み0.1mmの金属薄板と、平均粒径170μmで最大粒径が300μmの球状のポリメチルメタクリレート樹脂(以下、PMMAという)からなる埋め込み粒子を用意した。この埋め込み粒子を水に分散させてスラリーを形成し、このスラリーを樹脂薄板に噴霧して金属薄板上に埋め込み粒子を分散させて付着させた。
次に、埋め込み粒子が付着した状態の金属薄板を、双ロールの間に通して薄板に埋め込み粒子を埋め込ませた。ロールによって薄板に印加する線圧は100MPaに調整した。
次に、埋め込み粒子が埋め込まれた金属薄板を、N−メチルピロリドン中に浸漬させ、液温を80℃程度に調整しつつ超音波振動を印加することにより、PMMAからなる埋め込み粒子を溶解させて除去した。このようにして貫通孔を形成した。その後、金属薄板を水洗して乾燥することにより、実施例2の多孔板吸音体を製造した。
"Example 2"
A metal thin plate made of Cu having a thickness of 0.1 mm and embedded particles made of spherical polymethyl methacrylate resin (hereinafter referred to as PMMA) having an average particle diameter of 170 μm and a maximum particle diameter of 300 μm were prepared. The embedded particles were dispersed in water to form a slurry, and the slurry was sprayed onto a resin thin plate to disperse the embedded particles on the metal thin plate and adhere to them.
Next, the metal thin plate with the embedded particles attached was passed between twin rolls to embed the embedded particles in the thin plate. The linear pressure applied to the thin plate by the roll was adjusted to 100 MPa.
Next, the metal thin plate in which the embedded particles are embedded is immersed in N-methylpyrrolidone, and ultrasonic waves are applied while adjusting the liquid temperature to about 80 ° C., thereby dissolving the embedded particles made of PMMA. Removed. In this way, a through hole was formed. Then, the porous board sound-absorbing body of Example 2 was manufactured by washing and drying the metal thin plate.

「比較例1」
Cuからなる厚み0.1mmの金属薄板を用意した。この金属薄板上にフォトレジスト層を形成し、フォトレジスト層上にマスクを載置し、露光及び現像処理を行ってフォトレジスト層をパターニングした。その後、ウエットエッチング法により金属薄板をエッチングすることにより、貫通孔を形成した。その後、フォトレジスト層を除去することにより、比較例1の多孔板吸音体を製造した。
"Comparative Example 1"
A thin metal plate having a thickness of 0.1 mm made of Cu was prepared. A photoresist layer was formed on the thin metal plate, a mask was placed on the photoresist layer, and exposure and development processes were performed to pattern the photoresist layer. Thereafter, the metal thin plate was etched by a wet etching method to form a through hole. Thereafter, the perforated plate sound absorber of Comparative Example 1 was manufactured by removing the photoresist layer.

「比較例2」
PETからなる厚み0.1mmの樹脂薄板を用意した。この樹脂薄板上に針状の金型を配置し、プレス機によって金型を樹脂薄板に押し当てることにより貫通孔を形成した。その後、プレスの際に付着した油分を取り除くことにより、比較例2の多孔板吸音体を製造した。
"Comparative Example 2"
A 0.1 mm thick resin thin plate made of PET was prepared. A needle-shaped mold was placed on the resin thin plate, and the through hole was formed by pressing the mold against the resin thin plate with a press. Thereafter, the perforated plate sound absorber of Comparative Example 2 was manufactured by removing the oil adhering during pressing.

「比較例3」
Alからなる厚み0.1mmの金属薄板を用意した。この金属薄板に対して、レーザー加工機によるレーザー加工を行うことにより貫通孔を形成した。このようにして、比較例3の多孔板吸音体を製造した。
“Comparative Example 3”
A thin metal plate made of Al and having a thickness of 0.1 mm was prepared. Through holes were formed on the metal thin plate by laser processing using a laser processing machine. Thus, the perforated plate sound absorber of Comparative Example 3 was produced.

実施例1〜2及び比較例1〜3の多孔板吸音体について、貫通孔の平均孔径、最大孔径、最小孔径、平均ピッチ及び開口率を計測した。また、実施例1〜2及び比較例1〜3の直径100mmの多孔板吸音体について、背後空気層の厚みを50mmとした場合の垂直入射吸音特性を測定した。
これらの結果を表1及び図7〜図9に示す。
About the porous plate sound-absorbing body of Examples 1-2 and Comparative Examples 1-3, the average hole diameter of the through-hole, the maximum hole diameter, the minimum hole diameter, the average pitch, and the aperture ratio were measured. Further, with respect to the perforated plate sound absorbers of Examples 1 to 2 and Comparative Examples 1 to 3 having a diameter of 100 mm, the normal incident sound absorption characteristics when the thickness of the back air layer was 50 mm were measured.
These results are shown in Table 1 and FIGS.

Figure 2008233794
Figure 2008233794

表1に示すように、実施例1及び2の多孔板吸音体は、貫通孔の最大孔径と最小孔径との差が200μmもあり、一方、比較例1〜3では最大孔径と最小孔径との差が10〜40μm程度であり、実施例1及び2の貫通孔は孔径のバラツキが大きいことが判る。それにもかかわらず、実施例1及び2については比較例1〜3とほぼ同等の吸音特性を示していることが判る。   As shown in Table 1, in the porous plate sound absorbers of Examples 1 and 2, the difference between the maximum hole diameter and the minimum hole diameter of the through holes is as much as 200 μm, whereas in Comparative Examples 1 to 3, the maximum hole diameter and the minimum hole diameter The difference is about 10 to 40 μm, and it can be seen that the through holes of Examples 1 and 2 have large variations in hole diameter. Nevertheless, it can be seen that Examples 1 and 2 exhibit substantially the same sound absorption characteristics as Comparative Examples 1 to 3.

すなわち、表1に示すように、実施例1及び2と比較例1〜3の1kHzにおける吸音率は、いずれも91〜92%程度である。また、図7〜図9に示すように、実施例1及び2並びに比較例2における吸音率の周波数依存性は、ほぼ同等である。以上のことから、実施例1及び2と比較例1〜3とは、ほぼ同等の吸音特性を有していることが判る。   That is, as shown in Table 1, the sound absorptivity at 1 kHz of Examples 1 and 2 and Comparative Examples 1 to 3 are all about 91 to 92%. Moreover, as shown in FIGS. 7-9, the frequency dependence of the sound absorption rate in Examples 1 and 2 and Comparative Example 2 is substantially the same. From the above, it can be seen that Examples 1 and 2 and Comparative Examples 1 to 3 have substantially the same sound absorption characteristics.

また、実施例1及び2においては、薄板、埋め込み粒子及び溶解液を準備する他は、特に特別な材料を用いることなく、また、双ロールプレス機等の汎用的な設備を用意する他は特別な装置を用意することもなく、比較例1〜3の多孔板吸音体と同等の吸音特性を有する多孔板吸音体が得られている。   Further, in Examples 1 and 2, except that a thin plate, embedded particles and a solution are prepared, a special material is not used, and a general equipment such as a twin roll press machine is prepared. A perforated plate sound absorber having sound absorbing characteristics equivalent to those of the perforated plate sound absorbers of Comparative Examples 1 to 3 is obtained without preparing a simple device.

これに対して、比較例1では、露光装置、エッチング装置等の高価な設備が必要であり、比較例2では高価な金型が必要であった。また、比較例1では製造工程が複雑であった。
また、比較例3では、レーザー光の照射によって貫通孔を1つずつ形成する必要があり、多孔板吸音体の製造に膨大な時間を要した。
このように比較例1〜3では、実施例1及び2に比べて、製造に要する時間が長く、コストも極めて高いものとなった。
On the other hand, in Comparative Example 1, expensive equipment such as an exposure apparatus and an etching apparatus is necessary, and in Comparative Example 2, an expensive mold is necessary. Moreover, in the comparative example 1, the manufacturing process was complicated.
Moreover, in Comparative Example 3, it was necessary to form through holes one by one by irradiation with laser light, and it took an enormous amount of time to manufacture the perforated plate sound absorber.
As described above, in Comparative Examples 1 to 3, compared to Examples 1 and 2, the time required for production was longer and the cost was extremely high.

図1は、本発明の実施形態である多孔板吸音体の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a perforated plate sound absorber according to an embodiment of the present invention. 図2は、図1の多孔板吸音体の部分断面模式図である。FIG. 2 is a schematic partial sectional view of the perforated plate sound absorber of FIG. 図3は、図1の多孔板吸音体を備えた吸音パネル一例を示す断面模式図である。FIG. 3 is a schematic cross-sectional view showing an example of a sound absorbing panel provided with the perforated plate sound absorber of FIG. 図4は、本発明の実施形態である多孔板吸音体の製造方法の全工程を説明する工程図である。FIG. 4 is a process diagram for explaining all the steps of the method for producing a perforated plate sound absorber according to the embodiment of the present invention. 図5は、本発明の実施形態である多孔板吸音体の製造方法を説明する工程図である。FIG. 5 is a process diagram illustrating a method for producing a perforated plate sound absorber according to an embodiment of the present invention. 図6は、本発明の実施形態である多孔板吸音体の製造方法を説明する工程図である。FIG. 6 is a process diagram illustrating a method for producing a perforated plate sound absorber according to an embodiment of the present invention. 図7は、実施例1の多孔板吸音体の垂直入射吸音率を周波数との関係を示すグラフである。FIG. 7 is a graph showing the relationship between the normal incident sound absorption coefficient of the perforated plate sound absorber of Example 1 and the frequency. 図8は、実施例2の多孔板吸音体の垂直入射吸音率を周波数との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the normal incident sound absorption coefficient of the perforated plate sound absorber of Example 2 and the frequency. 図9は、比較例2の多孔板吸音体の垂直入射吸音率を周波数との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the normal incident sound absorption coefficient of the perforated plate sound absorber of Comparative Example 2 and the frequency.

符号の説明Explanation of symbols

1…多孔板吸音体、2…薄板、2a…一面(表面)、3…貫通孔、4…埋め込み粒子 DESCRIPTION OF SYMBOLS 1 ... Perforated plate sound absorber, 2 ... Thin plate, 2a ... One side (surface), 3 ... Through-hole, 4 ... Embedded particle

Claims (5)

薄板の表面に、貫通孔形成用の埋め込み粒子を分散させつつ付着する分散付着工程と、前記埋め込み粒子を前記薄板に埋め込む埋込み工程と、前記埋め込み粒子を膨潤または溶解して除去する溶解工程とを順次行い、前記薄板に平均孔径が100μm以上200μm以下の複数の貫通孔を設けることを特徴とする多孔板吸音体の製造方法。   A dispersion and adhesion step of dispersing and adhering embedded particles for forming through holes on the surface of the thin plate; an embedding step of embedding the embedded particles in the thin plate; and a dissolution step of removing the embedded particles by swelling or dissolving. A method for producing a perforated plate sound absorber, which is sequentially performed, and a plurality of through holes having an average pore diameter of 100 μm or more and 200 μm or less are provided in the thin plate. 前記分散付着工程において、前記埋め込み粒子を分散液に分散してスラリーとし、前記スラリーを前記薄板の表面に噴霧することにより、前記埋め込み粒子を前記薄板表面に分散させることを特徴とする請求項1に記載の多孔板吸音体の製造方法。   2. The dispersion adhesion step, wherein the embedded particles are dispersed in a dispersion liquid to form a slurry, and the slurry is sprayed on the surface of the thin plate to disperse the embedded particles on the surface of the thin plate. The manufacturing method of the perforated plate sound-absorbing body described in 1. 前記薄板の厚みが50〜200μmの範囲であることを特徴とする請求項1または請求項2に記載の多孔板吸音体の製造方法。   The thickness of the said thin plate is the range of 50-200 micrometers, The manufacturing method of the perforated panel sound absorber of Claim 1 or Claim 2 characterized by the above-mentioned. 前記薄板が金属薄板であり、前記埋め込み粒子が樹脂からなる粒子であり、前記埋め込み粒子を溶解する溶解液が前記樹脂を膨潤または溶解可能な有機溶剤を含む溶解液であることを特徴とする請求項1乃至請求項3の何れかに記載の多孔板吸音体の製造方法。   The thin plate is a metal thin plate, the embedded particles are particles made of a resin, and the solution for dissolving the embedded particles is a solution containing an organic solvent capable of swelling or dissolving the resin. The manufacturing method of the perforated panel sound absorber in any one of Claims 1 thru | or 3. 前記薄板が樹脂薄板であり、前記埋め込み粒子が金属からなる粒子であり、前記埋め込み粒子を溶解する溶解液が前記金属を溶解可能な酸または金属塩を含む溶解液であることを特徴とする請求項1乃至請求項3の何れかに記載の多孔板吸音体の製造方法。   The thin plate is a resin thin plate, the embedded particles are particles made of a metal, and the solution for dissolving the embedded particles is a solution containing an acid or a metal salt capable of dissolving the metal. The manufacturing method of the perforated panel sound absorber in any one of Claims 1 thru | or 3.
JP2007077045A 2007-03-23 2007-03-23 Method for manufacturing perforated plate sound absorbing body Pending JP2008233794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007077045A JP2008233794A (en) 2007-03-23 2007-03-23 Method for manufacturing perforated plate sound absorbing body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077045A JP2008233794A (en) 2007-03-23 2007-03-23 Method for manufacturing perforated plate sound absorbing body

Publications (1)

Publication Number Publication Date
JP2008233794A true JP2008233794A (en) 2008-10-02

Family

ID=39906613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077045A Pending JP2008233794A (en) 2007-03-23 2007-03-23 Method for manufacturing perforated plate sound absorbing body

Country Status (1)

Country Link
JP (1) JP2008233794A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059658A (en) * 2008-09-02 2010-03-18 Tomoegawa Paper Co Ltd Member for sound absorbing structure and sound absorbing structure
WO2016136740A1 (en) * 2015-02-27 2016-09-01 ヤマハ株式会社 Acoustic structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059658A (en) * 2008-09-02 2010-03-18 Tomoegawa Paper Co Ltd Member for sound absorbing structure and sound absorbing structure
WO2016136740A1 (en) * 2015-02-27 2016-09-01 ヤマハ株式会社 Acoustic structure
JPWO2016136740A1 (en) * 2015-02-27 2017-04-27 ヤマハ株式会社 Acoustic structure

Similar Documents

Publication Publication Date Title
JP3723201B1 (en) Method for producing microsphere using metal substrate having through hole
AU2020202234A1 (en) Polymer membranes having open through holes, and method of fabrication thereof
DE202008012829U1 (en) screen printing forme
DE2749620C3 (en) Process for the production of printed circuits
JP2002521722A5 (en)
WO2004101857A3 (en) Methods and apparatus for forming multi-layer structures using adhered masks
DE102009058262A1 (en) Layered radiation sensitive materials with varying sensitivity
DE10392199T5 (en) Film with microarchitecture
JP2016507642A (en) Method of metallizing machine material and layer structure made of machine material and metal layer
EP1884582B1 (en) Sieves, in particular for consolidating nonwoven fabric by gas- or hydro-entanglement
US10315166B2 (en) Etching mask, manufacturing method therefor, porous membrane manufacturing method using etching mask, porous membrane, fine dust-blocking mask including porous membrane, and manufacturing method for surface enhanced Raman scattering active substrate
US11930339B2 (en) Nano membrane, method of manufacturing nano membrane, and apparatus for speaker and microphone using nano membrane
JP2008233794A (en) Method for manufacturing perforated plate sound absorbing body
JP6545395B2 (en) Mesh filter manufacturing method
JP2007118589A (en) Metal mask screen plate and its manufacturing method
DE102007024847A1 (en) Paper machine clothing
KR100599764B1 (en) Water proof substrate and method for making the same substrate
JPH068062A (en) Method for processing partially fabricated plastic item with small recess on one side
EP2490893B1 (en) Method for producing perforated or partially perforated templates with reliefs
KR101076049B1 (en) A method of producing lens pattern on roll for producing optical film and roll for producing optical film with the lens pattern therefrom
JP2008231369A (en) Method for producing sound absorbing porous plate
DE102009018286A1 (en) Radiation-emitting semiconductor chip manufacturing method, involves applying structuring process on structured surface of photoresist, and partially transferring structure attached to photoresist to outer surface of uncoupling layer
EP2650256B1 (en) Method for manufacturing a microstructured device
JP4527250B2 (en) Nozzle body manufacturing method
JP2010172841A (en) Method of manufacturing metal filter and the metal filter