JP2008232939A - Microchip and its manufacturing method - Google Patents

Microchip and its manufacturing method Download PDF

Info

Publication number
JP2008232939A
JP2008232939A JP2007075203A JP2007075203A JP2008232939A JP 2008232939 A JP2008232939 A JP 2008232939A JP 2007075203 A JP2007075203 A JP 2007075203A JP 2007075203 A JP2007075203 A JP 2007075203A JP 2008232939 A JP2008232939 A JP 2008232939A
Authority
JP
Japan
Prior art keywords
fluorescence intensity
liquid
resin
microchip
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007075203A
Other languages
Japanese (ja)
Inventor
Takahiro Yamada
孝弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2007075203A priority Critical patent/JP2008232939A/en
Publication of JP2008232939A publication Critical patent/JP2008232939A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microchip made of a resin bondable easily even when a bonding surface is not smoothed strictly, the microchip which measures fluorescence intensity, and also to provide its manufacturing method. <P>SOLUTION: This microchip for measuring fluorescence intensity comprises: a resin substrate 1 having parts formed thereon, namely, a liquid introduction hole 2 penetrating in the thickness direction, a liquid storing hole 3 penetrating in the thickness direction, a channel 5 formed on one side in the thickness direction connecting the liquid introduction hole 2 to the liquid storing hole 3, and a measuring part 4 formed in the channel 5; the first coating resin film 6 bonded so as to cover the liquid storing hole 3, the liquid introduction hole 2, the channel 5 and the measuring part 4 on one surface side in the thickness direction of the resin substrate 1; and the second coating resin film 7 bonded so as to cover at least the liquid storing hole 3 on the other surface side in the thickness direction of the resin substrate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、蛍光強度測定用マイクロチップ及びその製造方法に関する。   The present invention relates to a microchip for measuring fluorescence intensity and a manufacturing method thereof.

一般的に微量試料を混合、反応、合成、抽出、分離、分析するために用いられるマイクロチップは微細な流路を持ったガラス基板で作製されるが、ガラス基板への精密加工が難しいため、近年様々な樹脂製のマイクロチップが提案されている。   In general, microchips used to mix, react, synthesize, extract, separate, and analyze a small amount of sample are made of a glass substrate with a fine channel, but it is difficult to precisely process the glass substrate. In recent years, various resin microchips have been proposed.

下記特許文献1には射出成形時に形成された微細流路及び貫通孔を備えた第1のプラスチック製基板と流路を有さない第2のプラスチック製基板とを貼り合わせて形成されたプラスチック製マイクロチップが開示されている。実施形態にスライドガラス形状の第1のプラスチック製基板とスライドガラス形状の第2のプラスチック製基板とから構成されるマイクロチップが開示されている。   The following Patent Document 1 discloses a plastic made by bonding a first plastic substrate having a fine flow path and a through-hole formed at the time of injection molding and a second plastic substrate having no flow path. A microchip is disclosed. The embodiment discloses a microchip including a slide glass-shaped first plastic substrate and a slide glass-shaped second plastic substrate.

また下記特許文献2には特定の紫外線領域波長の光源に対して、優れた光透過性を示す、1,3−シクロヘキサジエン(CHD)またはCHD誘導体からなる単独重合体及びこれらと共重合可能な他の単量体との共重合による重合体を水素添加した重合体から形成された樹脂製マイクロチップが開示されている。   Patent Document 2 below discloses a homopolymer composed of 1,3-cyclohexadiene (CHD) or a CHD derivative, which exhibits excellent light transmittance with respect to a light source having a specific ultraviolet wavelength, and can be copolymerized therewith. A resin microchip formed from a polymer obtained by hydrogenating a polymer obtained by copolymerization with another monomer is disclosed.

一般的な有機高分子材料は紫外領域に吸収があるため、吸光度法では正確な測定値が得られない。そのため紫外線波長領域である230〜400nmにおける光線透過性に優れた光学分析用マイクロチップを提供することを課題としている。
特開2006−234600号公報 特開2000−39420号公報
Since general organic polymer materials have absorption in the ultraviolet region, accurate measurement values cannot be obtained by the absorbance method. Therefore, an object of the present invention is to provide an optical analysis microchip excellent in light transmittance in the ultraviolet wavelength region of 230 to 400 nm.
JP 2006-234600 A JP 2000-39420 A

上記特許文献1は、2枚のプラスチック基板を貼り合わせることによって流路を形成するマイクロチップを開示するものである。プラスチック板の接合は熱圧着、溶剤圧着、レーザー溶着、超音波溶着によって行われている。この構造では、各プラスチック板の表面粗さによって接合部に隙間が出来る可能性がある。従って各プラスチック板の接合部において隙間が出来ないように接合部の表面を研磨等によって平滑にする必要がある。   Patent Document 1 discloses a microchip in which a flow path is formed by bonding two plastic substrates. The plastic plates are joined by thermocompression bonding, solvent pressure bonding, laser welding, and ultrasonic welding. In this structure, there is a possibility that a gap is formed in the joint due to the surface roughness of each plastic plate. Accordingly, it is necessary to smooth the surface of the joint portion by polishing or the like so that no gap is formed in the joint portion of each plastic plate.

上記特許文献2に記載のマイクロチップは紫外線波長領域における光線透過性に優れた特殊な樹脂を用いた光学分析用のマイクロチップである。一般的な有機高分子材料では紫外領域において吸収がある。そのため紫外線領域の吸収しかもたない生体物質を蛍光標識することなく直接検出するために特許文献2に記載の紫外線波長領域における光線透過性に優れた特殊な樹脂が考えられたことが開示されている。従って特許文献2に記載のマイクロチップは蛍光測定用に用いるものではない。   The microchip described in Patent Document 2 is a microchip for optical analysis using a special resin excellent in light transmittance in the ultraviolet wavelength region. A general organic polymer material has absorption in the ultraviolet region. Therefore, it is disclosed that a special resin excellent in light transmittance in the ultraviolet wavelength region described in Patent Document 2 has been considered in order to directly detect a biological substance that only absorbs in the ultraviolet region without fluorescent labeling. . Therefore, the microchip described in Patent Document 2 is not used for fluorescence measurement.

また上記特許文献2に記載の構造でも溝を刻んだ板状部材と溝のない板状部材とが貼り合わせられた構造が開示されている。ここでの接合方法も板と板との接合であり、プラスチック板の接合部において隙間が出来ないように接合部の表面を研磨等によって平滑にする必要がある。   Further, the structure described in Patent Document 2 discloses a structure in which a plate-like member with grooves and a plate-like member without grooves are bonded together. The joining method here is also a joining between the plates, and it is necessary to smooth the surface of the joining portion by polishing or the like so that there is no gap in the joining portion of the plastic plate.

本発明は、上記のような現状を鑑みてなされたものであって、蛍光強度測定用のマイクロチップであって、樹脂基板の接合面を厳密に平滑にしなくても簡便に接合出来る樹脂製マイクロチップ及びその製造方法を提供することを課題とする。   The present invention has been made in view of the above situation, and is a microchip for measuring fluorescence intensity, which is a resin-made microchip that can be easily joined without strictly smoothing the joining surface of a resin substrate. It is an object to provide a chip and a manufacturing method thereof.

本発明者らが、鋭意検討した結果、流路等が形成された樹脂基板と樹脂フィルムとを接合することによって接合面を厳密に平滑にしなくても簡便に蛍光強度測定に適したマイクロチップを提供出来ることを見いだした。   As a result of intensive studies by the present inventors, a microchip suitable for fluorescence intensity measurement can be obtained simply by bonding a resin substrate on which a flow path or the like is formed and a resin film without strictly smoothing the bonding surface. I found what I could offer.

すなわち、上記課題を解決するために、本発明のマイクロチップは、蛍光強度を測定するために用いられる蛍光強度測定用マイクロチップにおいて、測定試料となる液体を導入する厚み方向に貫通した液体導入孔と、蛍光強度測定後の前記液体を溜めておく厚み方向に貫通した液体溜め孔と、前記液体導入孔と前記液体溜め孔とをつなぐ厚み方向の片面側に形成された前記液体が流れる流路と、前記流路中に形成された蛍光強度を測定する測定部と、が形成された樹脂基板と、前記樹脂基板の厚み方向の前記片面側の前記液体導入孔、前記液体溜め孔、前記測定部及び前記流路を覆うように接合された第1被覆樹脂フィルムと、前記樹脂基板の厚み方向の他面側の少なくとも前記液体溜め孔を覆うように接合された第2被覆樹脂フィルムと、からなることを特徴とする。   That is, in order to solve the above problems, the microchip of the present invention is a liquid introduction hole penetrating in the thickness direction for introducing a liquid to be a measurement sample in the fluorescence intensity measurement microchip used for measuring the fluorescence intensity. A liquid reservoir hole penetrating in the thickness direction for accumulating the liquid after fluorescence intensity measurement, and a flow path through which the liquid is formed on one side in the thickness direction connecting the liquid introduction hole and the liquid reservoir hole And a measurement part for measuring the fluorescence intensity formed in the flow path, a resin substrate on which the liquid substrate is formed, the liquid introduction hole on the one side in the thickness direction of the resin substrate, the liquid reservoir hole, the measurement A first covering resin film joined so as to cover the portion and the flow path, and a second covering resin film joined so as to cover at least the liquid reservoir hole on the other surface side in the thickness direction of the resin substrate, And wherein the Ranaru.

流路等が形成された樹脂基板の形状に追随しやすい樹脂フィルムを接合することによって樹脂基板の接合部の表面を精密に平滑にしなくてもマイクロチップを形成できる。また樹脂フィルムを使うことによって樹脂基板の厚み方向の両面から接合してもマイクロチップの厚み及び重量は樹脂基板そのものと大差ない。また樹脂基板の厚み方向の両面から樹脂フィルムを接合することによって樹脂基板に開けた貫通孔を厚み方向の両面を閉鎖された容器として使用でき、例えば液体溜めとすることができる。   By bonding a resin film that easily follows the shape of the resin substrate on which the flow path and the like are formed, a microchip can be formed without precisely smoothing the surface of the bonded portion of the resin substrate. Moreover, even if it joins from both surfaces of the thickness direction of a resin substrate by using a resin film, the thickness and weight of a microchip do not differ greatly from the resin substrate itself. Moreover, the through-hole opened in the resin substrate by bonding the resin film from both surfaces in the thickness direction of the resin substrate can be used as a container closed on both surfaces in the thickness direction, for example, a liquid reservoir.

樹脂基板の厚みは1mm以上5mm以下が好ましい。更に好ましくは1.5mm以上2.5mm以下が好ましい。このような厚みを有することによって樹脂基板は歪みの少ない樹脂基板となる。樹脂基板の厚みによって樹脂基板に形成された貫通孔の深さすなわち液溜めとしての容量を調節出来る。また樹脂フィルムの厚みは0.05mm以上0.5mm以下が好ましい。更に好ましくは0.05mm以上0.2mm以下が好ましい。樹脂フィルムはこの厚みを有することにより形状が保たれ、樹脂基板に接合しやすい。   The thickness of the resin substrate is preferably 1 mm or more and 5 mm or less. More preferably, it is 1.5 mm or more and 2.5 mm or less. By having such a thickness, the resin substrate becomes a resin substrate with less distortion. The depth of the through-hole formed in the resin substrate, that is, the capacity as a liquid reservoir can be adjusted by the thickness of the resin substrate. The thickness of the resin film is preferably 0.05 mm or more and 0.5 mm or less. More preferably, it is 0.05 mm or more and 0.2 mm or less. By having this thickness, the shape of the resin film is maintained, and it is easy to join the resin film to the resin substrate.

樹脂基板には厚み方向に貫通した液体導入孔と、厚み方向に貫通した液体溜め孔と、前記液体導入孔と前記液体溜め孔とをつなぐ厚み方向の片面側に形成された流路と、前記流路中に形成された蛍光強度を測定する測定部とが形成される。   The resin substrate has a liquid introduction hole penetrating in the thickness direction, a liquid reservoir hole penetrating in the thickness direction, a flow path formed on one side in the thickness direction connecting the liquid introduction hole and the liquid reservoir hole, and A measurement part for measuring the fluorescence intensity formed in the flow path is formed.

樹脂基板に設けられた貫通孔及び流路は第1被覆樹脂フィルム及び第2被覆樹脂フィルムと接合されることによって測定試料となる液体が流れるラインとなる。液体導入孔に導入された液体は流路を通り測定部を通って液体溜め孔に導かれる。このような液体の流れるラインが形成できれば、液体導入孔、液体溜め孔、流路及び測定部は形状などの制約は特にない。流路の断面形状も特に限定されない。流路の断面形状は四角形、三角形、多角形形状、半円形、半楕円形などいずれのものでもよい。また測定部は蛍光強度測定のために担持物質を封入出来る形状になっていてもよい。その場合担持物質が流れていかないように流路の幅又は高さを測定部の前後で一部狭めたりする形状をとっても良い。また測定部の前後で流路を分岐して幅の細い複数の流路の集合体としても良い。   The through hole and the flow path provided in the resin substrate become a line through which a liquid serving as a measurement sample flows by being joined to the first coating resin film and the second coating resin film. The liquid introduced into the liquid introduction hole passes through the flow path, passes through the measurement unit, and is guided to the liquid reservoir hole. If such a line through which the liquid flows can be formed, the liquid introduction hole, the liquid reservoir hole, the flow path, and the measurement unit are not particularly limited in shape or the like. The cross-sectional shape of the channel is not particularly limited. The cross-sectional shape of the channel may be any of a square shape, a triangle shape, a polygonal shape, a semicircular shape, a semielliptical shape, and the like. Further, the measurement unit may have a shape that can enclose a support material for fluorescence intensity measurement. In that case, a shape in which the width or height of the flow path is partially narrowed before and after the measurement unit so that the carrier substance does not flow may be taken. Further, the flow paths may be branched before and after the measurement unit to form an aggregate of a plurality of narrow flow paths.

また上記液体導入孔から液体溜め孔を1セットのラインとすると、一枚のマイクロチップに複数セットのラインが形成されても良い。   If the liquid reservoir hole is formed as one set of lines from the liquid introduction hole, a plurality of sets of lines may be formed on one microchip.

測定試料となる液体とは測定を行うべき対象となる測定物質を含む、或いは含む可能性のある、又は全く含んでいない液体のサンプルのことを指す。   The liquid as the measurement sample refers to a liquid sample containing, possibly including, or not including the measurement substance to be measured.

液体はマイクロチップの流路中を移動できる程度の粘性を有するものであればどのような起源由来のものであっても良い。例えば環境試料、生検試料、水溶性の溶媒、水などが挙げられる。環境試料としては、工場跡地などから採取した土壌や河川から採取した水などが例示できる。生検試料としては細胞、培養物、体液、尿、血液などが挙げられる。水溶性の溶媒としては、リン酸緩衝食塩水(PBS)、トリスバッファーなどの緩衝液、アルコール、アセトン等の有機溶媒が挙げられる。   The liquid may be of any origin as long as it has a viscosity that can move in the flow path of the microchip. For example, environmental samples, biopsy samples, water-soluble solvents, water and the like can be mentioned. Examples of environmental samples include soil collected from a factory site, water collected from a river, and the like. Biopsy samples include cells, cultures, body fluids, urine, blood and the like. Examples of the water-soluble solvent include buffer solutions such as phosphate buffered saline (PBS) and Tris buffer, and organic solvents such as alcohol and acetone.

測定物質は例えば化学物質、高分子、微生物又はウイルス及びその断片、ホルモンなどあらゆる物質が対象となりうる。特に土壌中や絶縁油等に含まれる毒性物質(PCB、ダイオキシン)、油性物質(重油)などの環境汚染の要因となりうる物質、河川の水に含まれる病原性大腸菌の菌体、食品中に含まれる農薬などが好適に例示される。   The measurement substance can be any substance such as a chemical substance, a polymer, a microorganism or virus and a fragment thereof, and a hormone. In particular, substances that can cause environmental pollution such as toxic substances (PCB, dioxins) and oily substances (heavy oil) contained in soil and insulating oil, etc., contained in foods of pathogenic E. coli contained in river water, and food Pesticides and the like that can be suitably exemplified.

測定物質の量を測定するために測定物質を選択的に検出しうる分子認識能を有する物質を介する反応を利用する方法が行われる。分子識別能を有する物質の反応事例としては例えば抗原抗体反応、核酸間でのハイブリダイゼーション反応、酵素と基質間での生体応答能などが挙げられる。   In order to measure the amount of the measurement substance, a method using a reaction via a substance having molecular recognition ability capable of selectively detecting the measurement substance is performed. Examples of reaction of a substance having molecular discrimination ability include antigen-antibody reaction, hybridization reaction between nucleic acids, biological response ability between enzyme and substrate, and the like.

例えば抗原抗体反応を用い、抗体を蛍光物質により標識化することにより、その蛍光強度を検出する方法が挙げられる。標識化に用いる蛍光物質は特に限定されず、適用可能な蛍光物質としてはフルオレセイン、ローダミン、フィコシアニン等が挙げられる。抗原抗体反応を行う温度、反応を行う液体の組成及びPHは通常の免疫測定で行われる条件で可能である。例えば温度は5〜60℃前後、PHは5〜9程度が好ましい。温度37℃、PH7前後が特に好適である。   For example, there is a method of detecting the fluorescence intensity by labeling an antibody with a fluorescent substance using an antigen-antibody reaction. The fluorescent substance used for labeling is not particularly limited, and applicable fluorescent substances include fluorescein, rhodamine, phycocyanin and the like. The temperature at which the antigen-antibody reaction is carried out, the composition of the liquid in which the reaction is carried out and the pH are possible under the conditions used in ordinary immunoassay. For example, the temperature is preferably about 5 to 60 ° C. and the PH is preferably about 5 to 9. A temperature of 37 ° C. and a pH of around PH7 are particularly suitable.

測定部において一般的に用いられる原理の蛍光強度測定機を用いて蛍光強度を測定することが出来る。すなわち励起光を測定部に照射し測定部に存在する測定物質から発せられる蛍光光を測定することによって蛍光強度を測定する。従って測定部を覆う第1被覆樹脂フィルムは励起光及び蛍光光の波長の透過率の高いものが好ましい。   The fluorescence intensity can be measured by using a fluorescence intensity measuring machine of the principle generally used in the measurement unit. That is, the fluorescence intensity is measured by irradiating excitation light to the measurement unit and measuring the fluorescence light emitted from the measurement substance present in the measurement unit. Therefore, it is preferable that the first coating resin film covering the measurement part has a high transmittance for the wavelengths of excitation light and fluorescent light.

また流路内の液体の移動は公知の手法を用いることが出来る。例えば気体を用いて気体の吸引又は気体を押圧することによって液体を液体導入孔から液体溜め孔まで送液することが考えられる。樹脂基板、第1被覆樹脂フィルム及び第2被覆樹脂フィルムには、目的に応じて空気抜きのための小穴や、吸引するために吸引ポンプにつなぐ吸引口などが開けられていても良い。例えば樹脂基板に液体を吸引送液するための吸引口を設ける場合、吸引口は液体溜め孔に接続している貫通孔として形成され、第1被覆樹脂フィルム又は第2被覆樹脂フィルムで片側を覆うように接合されていても良い。吸引口は外部に設けた吸引ポンプと接続されることによって液体を吸引送液し、その場合送液量はポンプの吸引量で制御することが出来る。   A known method can be used to move the liquid in the flow path. For example, it is conceivable to send a liquid from a liquid introduction hole to a liquid reservoir hole by sucking the gas or pressing the gas using a gas. The resin substrate, the first coating resin film, and the second coating resin film may be provided with a small hole for venting air or a suction port connected to a suction pump for suction according to the purpose. For example, when a suction port for sucking and feeding liquid is provided on the resin substrate, the suction port is formed as a through hole connected to the liquid reservoir hole, and one side is covered with the first coating resin film or the second coating resin film. May be joined together. The suction port is connected to a suction pump provided outside to suck and feed the liquid. In this case, the amount of liquid feeding can be controlled by the suction amount of the pump.

また樹脂基板、第1被覆樹脂フィルム及び第2被覆樹脂フィルムは低蛍光性樹脂で形成されていることが望ましい。その場合測定物質の蛍光強度のノイズを低減できる。   The resin substrate, the first coating resin film, and the second coating resin film are preferably formed of a low fluorescent resin. In that case, the noise of the fluorescence intensity of the measurement substance can be reduced.

前記低蛍光性樹脂としてアクリル樹脂、ポリオレフィン系樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリアミド樹脂及びポリ塩化ビニリデン樹脂が用いられることが出来る。特に前記低蛍光性樹脂の蛍光剤を抜いたタイプ等の低蛍光性グレードのものが特に好ましい。また第1被覆樹脂フィルムは励起光及び蛍光光の波長の透過率の高い透明な樹脂であることが望ましい。   As the low fluorescent resin, acrylic resin, polyolefin resin, polyester resin, polycarbonate resin, polystyrene resin, polyamide resin, and polyvinylidene chloride resin can be used. Particularly preferred is a low-fluorescence grade type such as a type obtained by removing the fluorescent agent of the low-fluorescence resin. The first coating resin film is preferably a transparent resin having a high transmittance for wavelengths of excitation light and fluorescent light.

また低蛍光性樹脂は所望の蛍光強度を測定するのに支障のない限りは公知の酸化防止剤、紫外線吸収剤等が添加されていても良い。また低蛍光性樹脂で形成されたマイクロチップの表面は耐薬品性、耐摩耗性等を向上させるために公知のハードコート剤が塗布されていても良い。また低蛍光性樹脂で形成されたマイクロチップの表面は測定試料が流れやすくするために親水化処理(濡れ性の改善)を施しても良い。   The low-fluorescence resin may be added with known antioxidants, ultraviolet absorbers and the like as long as there is no hindrance in measuring the desired fluorescence intensity. The surface of the microchip formed of a low fluorescent resin may be coated with a known hard coat agent in order to improve chemical resistance, wear resistance, and the like. Further, the surface of the microchip formed of a low fluorescent resin may be subjected to a hydrophilic treatment (improvement of wettability) so that the measurement sample can easily flow.

特に前記低蛍光性樹脂は、前記測定部での低蛍光性樹脂の蛍光強度が測定検出対象となる物質の蛍光強度の1/5以下、更に好ましくは1/10以下であるような低蛍光性樹脂であることが望ましい。更に好ましくは低蛍光性樹脂の蛍光強度は無視出来る強度つまり限りなくゼロに近い強度であることが望ましい。測定部における樹脂基板、第1被覆樹脂フィルム及び第2被覆樹脂フィルムの蛍光強度が測定検出対象となる物質の蛍光強度の1/5以下、更に好ましくは1/10以下であることによってノイズの少ない正確な蛍光強度を測定できる。   In particular, the low-fluorescence resin has a low-fluorescence property such that the fluorescence intensity of the low-fluorescence resin in the measurement unit is 1/5 or less, more preferably 1/10 or less, of the fluorescence intensity of the substance to be measured and detected. A resin is desirable. More preferably, it is desirable that the fluorescence intensity of the low fluorescence resin is negligible, that is, an intensity close to zero. Low noise due to the fluorescence intensity of the resin substrate, the first coating resin film, and the second coating resin film in the measurement unit being 1/5 or less, more preferably 1/10 or less of the fluorescence intensity of the substance to be measured and detected. Accurate fluorescence intensity can be measured.

前記接合は熱圧着、溶剤溶着、レーザー溶着、超音波溶着、接着剤及び粘着剤を介する接合などが挙げられるが、特に接着剤及び粘着剤を介する接合が望ましい。特に非加熱接合であると樹脂の熱収縮がおこらず寸法精度がよくなる。より簡便な方法としてマイクロカプセル型接着剤を用いるとよい。あらかじめ接合部にマイクロカプセル型接着剤を塗布し、接合部を加圧することによってマイクロカプセルが壊れ、内部の接着剤が外に出て接着できる。そのため樹脂の熱収縮がおこらずかつ微細な流路に接着剤がはみ出ることなく接合部のみに接着剤を付けることが出来る。   Examples of the bonding include thermocompression bonding, solvent welding, laser welding, ultrasonic welding, bonding via an adhesive and a pressure-sensitive adhesive, and bonding via an adhesive and pressure-sensitive adhesive is particularly desirable. In particular, in the case of non-heat bonding, the resin does not shrink and the dimensional accuracy is improved. A microcapsule type adhesive may be used as a simpler method. By applying a microcapsule type adhesive to the joint portion in advance and pressurizing the joint portion, the microcapsule is broken, and the adhesive inside can come out and adhere. Therefore, it is possible to apply the adhesive only to the joint portion without causing thermal contraction of the resin and without the adhesive protruding into the fine flow path.

また本発明のマイクロチップは下記方法によって製造することが出来る。   The microchip of the present invention can be produced by the following method.

測定試料となる液体を導入する厚み方向に貫通した液体導入孔と、蛍光強度測定後の前記液体を溜めておく厚み方向に貫通した液体溜め孔と、前記液体導入孔と前記液体溜め孔とをつなぐ厚み方向の片面側に形成された前記液体が流れる流路と、前記流路中に形成された蛍光強度を測定する測定部と、が形成された樹脂基板を準備する樹脂基板準備工程と、
前記樹脂基板の厚み方向の両面に樹脂フィルムを接着剤又は粘着剤を介して加圧接合する樹脂フィルム接合工程とを有する。
A liquid introduction hole penetrating in the thickness direction for introducing a liquid as a measurement sample, a liquid reservoir hole penetrating in the thickness direction for accumulating the liquid after fluorescence intensity measurement, and the liquid introduction hole and the liquid reservoir hole A resin substrate preparation step of preparing a resin substrate on which a flow path in which the liquid formed on one side in the thickness direction to be connected flows and a measurement unit that measures fluorescence intensity formed in the flow path;
A resin film bonding step of pressure bonding the resin film to both surfaces in the thickness direction of the resin substrate via an adhesive or an adhesive.

樹脂基板は切り出された樹脂基板を切削加工して孔や流路等を形成しても良いし、あらかじめ孔や流路を形成した成形金型を用いて射出成形等によって孔や流路を有する樹脂基板を作製することによって準備されても良い。   The resin substrate may be formed by cutting the cut resin substrate to form holes, flow paths, or the like, or having holes or flow paths by injection molding or the like using a molding die in which holes or flow paths are formed in advance. You may prepare by producing a resin substrate.

接着剤又は粘着剤は樹脂基板或いは接着フィルムの少なくとも一方に塗布されていればよい。樹脂基板或いは樹脂フィルムに接着剤又は粘着剤を塗布する場合は、接合面のみ接着剤又は粘着剤がつくように接合面以外はマスキング等をして噴霧塗布、またはけやローラー等で塗布しても良い。またあらかじめ接着剤又は粘着剤が塗布された樹脂フィルムを準備しても良い。樹脂フィルムと樹脂基板とは加圧することによって接合される。   The adhesive or pressure-sensitive adhesive may be applied to at least one of the resin substrate or the adhesive film. When applying an adhesive or pressure sensitive adhesive to a resin substrate or resin film, apply masking etc. on the other side of the bonding surface so that the adhesive or pressure sensitive adhesive is applied only to the bonding surface, or apply it with a spray or roller. Also good. Moreover, you may prepare the resin film beforehand apply | coated with the adhesive agent or the adhesive. The resin film and the resin substrate are bonded together by applying pressure.

蛍光強度の測定方法によっては、樹脂フィルム接合工程との間に、前記測定部に担持物質を配置する担持物質配置工程を有しても良い。その場合樹脂基板の測定部は担持物質を封入出来る形状になっていることが望ましい。   Depending on the method for measuring the fluorescence intensity, a supporting material disposing step of disposing a supporting material in the measurement part may be provided between the resin film joining step. In this case, it is desirable that the measurement part of the resin substrate has a shape that can enclose the support material.

担持物質は、その表面に物質を担持できる水不溶性の物質であれば特に限定されない。例えばラテックス、ポリエチレン、ポリスチレン、ポリプロピレン等の高分子からなる担体、ケイ酸無機担体(ガラス、シリカゲル等)、有機担体(プラスチック、ニトロセルロース、デキストラン等)、活性炭などの炭素系材料、金属粒子・マグネタイト等の磁性体ナイロン、ニトロセルロース、酢酸セルロース、ガラス繊維、及び多孔性ポリマーなどの多孔性物質などを挙げることが出来る。   The supporting substance is not particularly limited as long as it is a water-insoluble substance capable of supporting the substance on its surface. For example, carriers made of polymers such as latex, polyethylene, polystyrene, polypropylene, inorganic silicate carriers (glass, silica gel, etc.), organic carriers (plastic, nitrocellulose, dextran, etc.), carbon materials such as activated carbon, metal particles / magnetite Examples thereof include porous materials such as magnetic nylon such as nylon, nitrocellulose, cellulose acetate, glass fiber, and porous polymer.

担持物質の形状は粒子(ビーズ)状、シート状、チューブ状など種々の形態を取ることが出来る。好ましい例としては直径10μm以上500μm以下のビーズ状である。更に好ましくは直径50μm以上200μm以下のビーズ状であることが好ましい。   The shape of the support material can take various forms such as particles (beads), sheets, and tubes. A preferable example is a bead shape having a diameter of 10 μm to 500 μm. More preferably, it is in the form of beads having a diameter of 50 μm to 200 μm.

担持物質にあらかじめ分子認識能を有する物質を担持させることによって、分子認識能を有する物質に親和性を有する物質を特異的に検出出来る。担持物質に分子認識能を有する物質を担持させる方法は公知の手法により行うことが出来る。例えば担持物質に分子認識能を有する物質である抗体を物理吸着させる方法、担持物質の表面に設けた官能基に分子認識能を有する物質が有するアミノ基などを共有結合させる方法がある。そのように担持物質に分子認識能を有する物質を固定化した後、担持物質の表面及び表面の未反応官能基を適当なタンパク質や界面活性剤でブロッキング処理し、非特異反応を抑制することも可能である。   A substance having affinity for a substance having molecular recognition ability can be specifically detected by preliminarily supporting the substance having molecular recognition ability on the support substance. A method of supporting a substance having molecular recognition ability on the supporting substance can be performed by a known method. For example, there are a method of physically adsorbing an antibody, which is a substance having molecular recognition ability, on a support material, and a method of covalently bonding an amino group or the like of a substance having molecular recognition ability to a functional group provided on the surface of the support material. After immobilizing a molecule-recognizing substance on the support material, the surface of the support material and unreacted functional groups on the surface are blocked with an appropriate protein or surfactant to suppress nonspecific reactions. Is possible.

上記方法で本発明の蛍光強度測定用マイクロチップは作製出来る。   The microchip for measuring fluorescence intensity of the present invention can be produced by the above method.

上記のような本発明の蛍光強度測定用マイクロチップは流路等が形成された樹脂基板に両面から第1被覆樹脂フィルム及び第2被覆樹脂フィルムを接合させることによって、樹脂基板の接合面を精密に平滑にしなくても簡便に樹脂基板の表面に第1被覆樹脂フィルム及び第2被覆樹脂フィルムを接合出来る。そのため簡便にマイクロチップが製造できる。また樹脂基板を厚み方向の両面から第1被覆樹脂フィルム及び第2被覆樹脂フィルムで接合するので、樹脂基板に開けた貫通孔を厚み方向の両面を閉鎖された容器として使用でき、例えば液体溜めとすることができる。   The above-described microchip for measuring fluorescence intensity of the present invention has a precise bonding surface of a resin substrate by bonding a first coated resin film and a second coated resin film from both sides to a resin substrate on which a flow path or the like is formed. The first coated resin film and the second coated resin film can be easily bonded to the surface of the resin substrate without being smooth. Therefore, a microchip can be easily manufactured. Also, since the resin substrate is bonded from both sides in the thickness direction with the first coating resin film and the second coating resin film, the through-hole opened in the resin substrate can be used as a container closed on both sides in the thickness direction. can do.

また樹脂基板、第1被覆樹脂フィルム及び第2被覆樹脂フィルムは低蛍光性樹脂からなるものとすると蛍光強度測定時のノイズが少なくなりより正確に測定物質の蛍光強度が測定出来る。   Further, if the resin substrate, the first coating resin film, and the second coating resin film are made of a low fluorescent resin, noise during measurement of the fluorescence intensity is reduced, and the fluorescence intensity of the measurement substance can be measured more accurately.

また樹脂基板と第1被覆樹脂フィルム及び第2被覆樹脂フィルムとの接合を接着剤又は粘着剤を介する接合とすれば、より接合面の密着性が高まる。またその接合を非加熱接合とすると樹脂基板、第1被覆樹脂フィルム及び第2被覆樹脂フィルムの熱収縮による影響がなくなり寸法精度が良くなる。特にマイクロカプセル型接着剤を用いると、あらかじめマイクロカプセル型接着剤を塗布した接合部を加圧することによってマイクロカプセルが壊れ、内部の接着剤が外に出て接着できる。そのため樹脂の熱収縮がおこらずかつ微細な流路に接着剤がはみ出ることなく接合部のみに接着剤を付けることが出来、より正確な接合が行える。   Moreover, if the joining of the resin substrate, the first covering resin film, and the second covering resin film is joined via an adhesive or a pressure-sensitive adhesive, the adhesion of the joining surface is further increased. Further, when the bonding is non-heat bonding, there is no influence of the heat shrinkage of the resin substrate, the first coating resin film, and the second coating resin film, and the dimensional accuracy is improved. In particular, when a microcapsule type adhesive is used, the microcapsule is broken by pressurizing the joint portion to which the microcapsule type adhesive has been applied in advance, and the internal adhesive comes out and can be bonded. Therefore, heat shrinkage of the resin does not occur, and the adhesive can be applied only to the joining portion without the adhesive protruding into the fine flow path, so that more accurate joining can be performed.

また上記の蛍光強度測定用マイクロチップの製造方法によれば、簡便に蛍光強度測定用マイクロチップを作製出来る。   Further, according to the method for producing a fluorescence intensity measurement microchip, a fluorescence intensity measurement microchip can be easily produced.

以下、本発明の実施形態について、添付の図面を参照しつつ説明する。本発明の蛍光強度測定用マイクロチップの製造方法の説明も兼ねる。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. It also serves as an explanation of the method for producing the fluorescence intensity measuring microchip of the present invention.

図1は、本発明の蛍光強度測定用マイクロチップの一実施形態を示す概略図である。図1の(a)は概略平面図であり、図1の(b)は概略側面図である。図2は図1の蛍光強度測定用マイクロチップの模式断面説明図である。図2は図1の(b)とは違い液体の流れを説明するために各孔等の大きさは実際の縮尺とは変更してある。また図3は図1の蛍光強度測定用マイクロチップの斜視図である。図4に図1の蛍光強度測定用マイクロチップの構成説明図を示す。図4の(a)に樹脂フィルムと樹脂基板との接合前のマイクロチップの構成を示し、(b)に接合後のマイクロチップを示す。   FIG. 1 is a schematic view showing an embodiment of a microchip for measuring fluorescence intensity according to the present invention. FIG. 1A is a schematic plan view, and FIG. 1B is a schematic side view. FIG. 2 is a schematic cross-sectional explanatory diagram of the fluorescence intensity measurement microchip of FIG. FIG. 2 differs from FIG. 1B in that the size of each hole and the like is changed from the actual scale in order to explain the flow of the liquid. FIG. 3 is a perspective view of the fluorescence intensity measurement microchip of FIG. FIG. 4 is an explanatory diagram of the configuration of the microchip for measuring fluorescence intensity shown in FIG. FIG. 4A shows the configuration of the microchip before joining the resin film and the resin substrate, and FIG. 4B shows the microchip after joining.

図1、図2、図3及び図4に示す樹脂基板1はアクリル樹脂(三菱レイヨン社製アクリライト品番000(紫外線透過タイプ)を用い射出成形後、一部切削加工することによって作製した。切削加工した箇所は後で説明する通路9及び気体通路10の樹脂基板厚み方向の貫通孔9a及び10aである。その他の形状はあらかじめ射出成形によって一体作製した。もちろん全て射出成形で成形することも出来る。   The resin substrate 1 shown in FIGS. 1, 2, 3 and 4 was manufactured by using an acrylic resin (Acrylite product number 000 (ultraviolet transmission type) manufactured by Mitsubishi Rayon Co., Ltd.) and then partially cutting it. The processed parts are through-holes 9a and 10a in the resin substrate thickness direction of the passage 9 and the gas passage 10 which will be described later.Other shapes are integrally manufactured in advance by injection molding. .

樹脂基板1は、厚さ1.7mm縦26mm横40mmの樹脂板に各2つずつの液体導入孔2、液体溜め孔3、流路5、測定部4、通路9、気体通路10、吸引口8及び蛍光強度測定機に取り付けるための取り付け用孔11が形成されている。樹脂基板1の上面を1u、下面を1dと示す。   The resin substrate 1 includes a resin plate having a thickness of 1.7 mm, a length of 26 mm, and a width of 40 mm, each having two liquid introduction holes 2, a liquid reservoir hole 3, a flow path 5, a measurement unit 4, a passage 9, a gas passage 10, and a suction port. 8 and an attachment hole 11 for attachment to a fluorescence intensity measuring machine. The upper surface of the resin substrate 1 is denoted by 1u and the lower surface is denoted by 1d.

図1及び図2に示すように,液体導入孔2は直径5mmの円柱状貫通孔であり高さは樹脂基板1の厚み1.7mmが高さとなる。同様に液体溜め孔3は幅2mm長さ9mm高さ1.7mmの楕円円又は長円柱状貫通孔、取り付け用孔11は直径2.5mm高さ1.7mmの円柱状貫通孔である。通路9は直径0.5mm高さ1.7mmの円柱状貫通孔9aと9aの樹脂基板上面1u側から慨直角に折れ曲がって樹脂基板1平面に平行に延び液体溜め孔3の上面側に通じる直径0.5mmの凹部状通路9bとからなり、気体通路10は直径0.5mm高さ1.7mmの円柱状貫通孔10aと10aの樹脂基板上面1u側から慨直角に折れ曲がって樹脂基板1平面に平行に延び液体溜め孔3の上面側に通じる直径0.5mmの凹部状気体通路10bであり、吸引口8は気体通路10aにつながる直径0.5mmの孔とした。   As shown in FIGS. 1 and 2, the liquid introduction hole 2 is a cylindrical through-hole having a diameter of 5 mm, and the height is 1.7 mm. Similarly, the liquid reservoir 3 is an elliptical or long cylindrical through hole having a width of 2 mm, a length of 9 mm and a height of 1.7 mm, and the mounting hole 11 is a cylindrical through hole having a diameter of 2.5 mm and a height of 1.7 mm. The passage 9 is a cylindrical through hole 9a having a diameter of 0.5 mm and a height of 1.7 mm. The diameter of the passage 9 is bent at right angles from the resin substrate upper surface 1 u side and extends parallel to the plane of the resin substrate 1 and reaches the upper surface side of the liquid reservoir hole 3. The gas passage 10 includes a cylindrical through hole 10a having a diameter of 0.5 mm and a height of 1.7 mm and is bent at a right angle from the resin substrate upper surface 1u side of the resin substrate 1 in the plane of the resin substrate 1. A recess-like gas passage 10b having a diameter of 0.5 mm that extends in parallel and communicates with the upper surface side of the liquid reservoir hole 3, and the suction port 8 is a hole having a diameter of 0.5 mm that is connected to the gas passage 10a.

流路5は樹脂基板1の下面1d側に液体導入孔2と液体溜め孔3とをつなぐように幅1mm高さ130μmで形成された、断面形状が矩形の下側1d側に開口した凹部であり、樹脂基板1の厚み方向に貫通してはいない。図2に示すように貫通孔である液体導入孔2及び液体溜め孔3の高さh1に比べて流路5の高さh2は約1/10となっている。   The flow path 5 is a recess having a width of 1 mm and a height of 130 μm so as to connect the liquid introduction hole 2 and the liquid reservoir hole 3 to the lower surface 1d side of the resin substrate 1 and having a sectional shape opened to the lower side 1d of the rectangle. There is no penetration in the thickness direction of the resin substrate 1. As shown in FIG. 2, the height h2 of the flow path 5 is about 1/10 of the height h1 of the liquid introduction hole 2 and the liquid reservoir hole 3 which are through holes.

測定部4は流路5と同等の高さ130μm直径1mmの円柱状凹部であり、測定部4の前の流路51、測定部4の後の流路52は測定部4から前後に長さ1mmずつ流路5の幅1mmが幅50μmの互いに平行に流れる細い幅の流路4本に分岐している。言い換えると流路5は測定部4の前後で流路の幅が狭まることによって測定部4から後述する担持物質が流れていかない構造となっている。   The measurement unit 4 is a cylindrical recess having a height of 130 μm and a diameter of 1 mm, which is the same as that of the flow channel 5, and the flow channel 51 in front of the measurement unit 4 and the flow channel 52 after the measurement unit 4 are lengthwise from the measurement unit 4 to the front and rear. The flow path 5 is branched into four narrow-width flow paths each having a width of 1 mm and a width of 50 μm flowing in parallel with each other by 1 mm. In other words, the flow path 5 has a structure in which a carrier material (to be described later) does not flow from the measurement unit 4 when the width of the flow path narrows before and after the measurement unit 4.

図2に示すように流路5は一端部5fが液体導入孔2の下端2d側の空間につながるように形成されている。液体溜め孔3は図1の(a)に示すように流路5の延長線上にはなく延長線上から一定の空間をあけて横に配置されている。これは液体溜め孔3の容積を必要に応じて大きく取るために流路5の延長線上からはずしたものである。また流路5は図1に示すように液体溜め孔3に直接つながるのではなく液体溜め孔3に通じる通路9を介してつながっている。また液体溜め孔3は気体通路10を介して吸引口8につながっている。取り付け用孔11は樹脂基板1の液体溜め孔3等の形成されていない場所に長手方向に並んで一定距離離れて2つ形成されている。   As shown in FIG. 2, the flow path 5 is formed so that one end portion 5 f is connected to the space on the lower end 2 d side of the liquid introduction hole 2. As shown in FIG. 1A, the liquid reservoir hole 3 is not on the extension line of the flow path 5, but is disposed laterally with a certain space from the extension line. This is removed from the extension of the flow path 5 in order to increase the volume of the liquid reservoir 3 as necessary. Further, the flow path 5 is not directly connected to the liquid reservoir hole 3 as shown in FIG. 1 but is connected through a passage 9 leading to the liquid reservoir hole 3. Further, the liquid reservoir hole 3 is connected to the suction port 8 through the gas passage 10. Two mounting holes 11 are formed at a predetermined distance in a line in the longitudinal direction at a location where the liquid reservoir hole 3 or the like of the resin substrate 1 is not formed.

樹脂基板1の下面1dには取り付け用孔11が形成されている箇所を除いて樹脂基板1と同等の縦横幅を有する縦20mm横40mmの第1被覆樹脂フィルム6が接合されている。第1被覆樹脂フィルム6には吸引口8の位置に吸引口8と同等の大きさの直径0.5mmの孔81が形成されている。   A first coated resin film 6 having a vertical and horizontal width equivalent to that of the resin substrate 1 and having a vertical and horizontal width of 20 mm and a width of 40 mm is bonded to the lower surface 1 d of the resin substrate 1 except for a portion where the mounting holes 11 are formed. A hole 81 having a diameter equivalent to that of the suction port 8 and having a diameter of 0.5 mm is formed in the first coating resin film 6 at the position of the suction port 8.

第1被覆樹脂フィルム6及び第2被覆樹脂フィルム7としてあらかじめマイクロカプセル型接着剤が塗布された低自己蛍光性の特徴を有する厚み0.1mmのポリオレフィン系樹脂のフィルム(3M社製、品番9795、マイクロプレート用シーリングテープ)を用いた。   A polyolefin resin film having a thickness of 0.1 mm and having a low autofluorescence characteristic in which a microcapsule-type adhesive is applied in advance as the first coating resin film 6 and the second coating resin film 7 (manufactured by 3M, product number 9795, Microplate sealing tape) was used.

ここで使用した第1被覆樹脂フィルム6及び第2被覆樹脂フィルム7にはあらかじめマイクロカプセル型接着剤が片面全面に塗布されているが、接着剤の塗布されていない樹脂フィルムにマイクロカプセル型接着剤を塗布しても良い。その場合マスキング等によって液体が接触する箇所に接着剤が塗布されないようにすることも出来る。   The first encapsulating resin film 6 and the second encapsulating resin film 7 used here are preliminarily coated with a microcapsule type adhesive on one entire surface, but the microcapsule type adhesive is applied to a resin film not coated with an adhesive. May be applied. In that case, it is possible to prevent the adhesive from being applied to the place where the liquid comes into contact by masking or the like.

第1被覆樹脂フィルム6は、第1被覆樹脂フィルム6の接着剤の塗布されてない側の面から加圧されることによって樹脂基板1に接合され、第1被覆樹脂フィルム6は液体導入孔2の下側2d開口の底面、流路5の下側5d開口及び測定部4の下側4d開口の底面、液体溜め孔3の下側3d開口の底面を構成する。   The first coating resin film 6 is bonded to the resin substrate 1 by being pressed from the surface of the first coating resin film 6 on which the adhesive is not applied, and the first coating resin film 6 is bonded to the liquid introduction hole 2. The bottom surface of the lower side 2d opening, the lower side 5d opening of the flow channel 5 and the bottom surface of the lower side 4d opening of the measurement unit 4, and the bottom surface of the lower side 3d opening of the liquid reservoir hole 3 are configured.

樹脂基板1の上面1uには、液体溜め孔3の上側3u開口に当たる箇所を覆うように縦20mm横15mmの第2被覆樹脂フィルム7が接合されている。液体導入孔2の上側2u開口には第2被覆樹脂フィルム7は接合されず上側は開口となっている。第2被覆樹脂フィルム7には前記マイクロカプセル型接着剤が片面全面に塗布されている。第2被覆樹脂フィルム7の接着剤の塗布されてない側の面から加圧されることによって第2被覆樹脂フィルム7は樹脂基板1に接合され、第2被覆樹脂フィルム7は液体溜め孔3の天井面を構成する。   A second covering resin film 7 having a length of 20 mm and a width of 15 mm is bonded to the upper surface 1 u of the resin substrate 1 so as to cover a portion corresponding to the upper 3 u opening of the liquid reservoir hole 3. The second covering resin film 7 is not joined to the upper 2u opening of the liquid introduction hole 2, and the upper side is an opening. The second encapsulating resin film 7 is coated with the microcapsule adhesive on the entire surface of one side. The second coating resin film 7 is bonded to the resin substrate 1 by being pressed from the surface of the second coating resin film 7 where the adhesive is not applied, and the second coating resin film 7 is formed in the liquid reservoir hole 3. Configure the ceiling surface.

流路5の液体溜め孔3と液体導入孔2との間に測定部4が形成されている。測定部4には直径90μmのポリスチレン性のビーズが60個から70個封入されている。ビーズには後で説明するように擬似抗原をあらかじめ固定化してある。測定部4の前の流路51、測定部4の後の流路52は測定部4から前後に長さ1mmずつ流路5の幅1mmが幅50μmの互いに平行に流れる細い幅の流路4本に分岐している。測定部4に封入されているビーズは直径90μmあるので、幅50μmの流路51及び流路52を通れないため測定部4から流路5中に流れ出すことはない。   A measurement unit 4 is formed between the liquid reservoir hole 3 and the liquid introduction hole 2 in the flow path 5. The measurement unit 4 contains 60 to 70 polystyrene beads having a diameter of 90 μm. As will be described later, a pseudoantigen is immobilized on the beads in advance. The flow path 51 in front of the measurement unit 4 and the flow path 52 after the measurement unit 4 are narrow-width flow paths 4 that flow in parallel with each other, with a width of 1 mm of the flow path 5 of 50 μm in width of 1 mm before and after the measurement unit 4. Branch to book. Since the beads encapsulated in the measurement unit 4 have a diameter of 90 μm, they cannot pass through the flow channel 51 and the flow channel 52 having a width of 50 μm and therefore do not flow out from the measurement unit 4 into the flow channel 5.

図1(b)では通路9及び気体通路10は液体溜め孔3の向こう側に存在して記載出来ないので、図2に図1の模式断面説明図を示す。図2は液体の流れを説明するために説明用に作成した図であるので各孔等の縮尺及び位置関係が実際と異なる。図2において樹脂基板1の上面を1u、下面を1dと示す.図2では通路9及び気体通路10がわかるように記載した。実際は図1(a)(b)に示すように通路9及び気体通路10は液体溜め孔3のむこう側にありむこう側から図面の手前方向に延び液体溜め孔3の上部とつながっている。   In FIG. 1B, since the passage 9 and the gas passage 10 exist beyond the liquid reservoir hole 3 and cannot be described, FIG. 2 shows a schematic cross-sectional explanatory view of FIG. Since FIG. 2 is a diagram created for the purpose of explaining the flow of the liquid, the scales and positional relationships of the holes and the like are different from the actual ones. In FIG. 2, the upper surface of the resin substrate 1 is denoted by 1u and the lower surface is denoted by 1d. In FIG. 2, the passage 9 and the gas passage 10 are shown so as to be understood. Actually, as shown in FIGS. 1A and 1B, the passage 9 and the gas passage 10 extend from the side opposite to the liquid reservoir hole 3 toward the front of the drawing and are connected to the upper part of the liquid reservoir hole 3. .

図2を用いて液体の流れを説明することによって一実施形態のマイクロチップを更に詳しく説明する。   The microchip of one embodiment will be described in more detail by explaining the flow of liquid with reference to FIG.

通路9は流路5の一端部5eから樹脂基板1の厚み方向に向かって延びた直径0.5mmの円柱状通路9aとそこから慨直角に曲がって液体溜め孔3の上部3u側につながっている直径0.5mmの樹脂基板の平面方向に延びる円柱状通路9bとからなっている。通路9bは樹脂基板上面1u側が開口した形状になっており、第2被覆樹脂フィルム7が接合されることによって密閉された通路空間を形成する。また液体溜め孔3の液体の流れの下流側の通路9の接続するのと反対側の上部端には吸引口8から延びる気体通路10がつながっている。気体通路10は液体溜め孔3の上部3u側から樹脂基板の平面方向に延びる直径0.5mmの円柱状気体通路10bとそこから慨直角に樹脂基板1の厚み方向に向かって延びる直径0.5mmの円柱状気体通路10aとからなり気体通路10aは樹脂基板下面1dに形成された吸引口8につながっている。また気体通路10bは樹脂基板上面1u側が開口した形状になっており、第2被覆樹脂フィルム7が接合されることによって密閉された通路空間を形成する。   The passage 9 is connected to the cylindrical passage 9a having a diameter of 0.5 mm extending from the one end portion 5e of the flow passage 5 in the thickness direction of the resin substrate 1 and to the upper portion 3u side of the liquid reservoir hole 3 by being bent at right angles. And a cylindrical passage 9b extending in the plane direction of a resin substrate having a diameter of 0.5 mm. The passage 9b has a shape in which the resin substrate upper surface 1u side is open, and forms a sealed passage space when the second covering resin film 7 is joined. A gas passage 10 extending from the suction port 8 is connected to the upper end on the opposite side of the passage 9 on the downstream side of the liquid flow in the liquid reservoir 3. The gas passage 10 has a cylindrical gas passage 10b having a diameter of 0.5 mm extending from the upper 3u side of the liquid reservoir hole 3 in the plane direction of the resin substrate and a diameter of 0.5 mm extending from the liquid reservoir hole 3 in the thickness direction of the resin substrate 1 at a right angle. The gas passage 10a is connected to a suction port 8 formed in the lower surface 1d of the resin substrate. Further, the gas passage 10b has a shape in which the resin substrate upper surface 1u side is opened, and a sealed passage space is formed by joining the second covering resin film 7.

図2において液体の吸引される方向を矢印A1〜A6でしめしている。液体21が液体導入孔2から流路5の測定部4を通って液体溜め孔3まで流れるラインが構成される。液体導入孔2に導入された試料である液体21は吸引口8からの吸引によって液体溜め孔3まで移送される。   In FIG. 2, the directions in which the liquid is sucked are indicated by arrows A1 to A6. A line is formed in which the liquid 21 flows from the liquid introduction hole 2 to the liquid reservoir hole 3 through the measurement unit 4 of the flow path 5. The liquid 21 as the sample introduced into the liquid introduction hole 2 is transferred to the liquid reservoir hole 3 by suction from the suction port 8.

流路5は液体導入孔2の下端2dから樹脂基板1の平面方向に延びているので、液体21に泡22が含まれていても、泡22は液面に浮かんで流路5には入りにくい構造となっている。   Since the flow path 5 extends in the plane direction of the resin substrate 1 from the lower end 2d of the liquid introduction hole 2, even if the liquid 21 includes bubbles 22, the bubbles 22 float on the liquid surface and enter the flow path 5. It has a difficult structure.

また流路5と液体溜め孔3とは直接つながらず、通路9によって一度樹脂基板1の上面1u側に持ち上げられる形になる。そのため液体21は矢印A2で示すように一度樹脂基板上面1uに持ち上げられため液体溜め孔3に液体21が一度入れば(矢印A3)、液体溜め孔3がいっぱいになるまで逆流はしにくい構造になっている。また液体溜め孔3は液体導入孔2よりも例えば1.5倍以上の容積を持つように大きさを設定すればまず液体溜め孔3がいっぱいになることはない。また吸引口8につながる気体通路10は液体溜め孔3の上部3u側につながっているので液体溜め孔3がいっぱいになるまで液体21が吸引口8から吸い出されることはなく液体溜め孔3に溜められている。吸引された気体は気体通路10を通って、矢印A4、矢印A5、矢印A6の向きに吸引され吸引口8から樹脂基板1の外部に吸い出される。   Further, the flow path 5 and the liquid reservoir hole 3 are not directly connected to each other, but are once lifted to the upper surface 1 u side of the resin substrate 1 by the passage 9. Therefore, the liquid 21 is once lifted to the upper surface 1u of the resin substrate as indicated by the arrow A2, so that once the liquid 21 enters the liquid reservoir hole 3 (arrow A3), it is difficult to reversely flow until the liquid reservoir hole 3 is full. It has become. Further, if the size of the liquid reservoir hole 3 is set so as to have, for example, 1.5 times or more the volume of the liquid introduction hole 2, the liquid reservoir hole 3 does not first fill up. Further, since the gas passage 10 connected to the suction port 8 is connected to the upper part 3u side of the liquid reservoir hole 3, the liquid 21 is not sucked out from the suction port 8 until the liquid reservoir hole 3 is full. It is accumulated. The sucked gas passes through the gas passage 10 and is sucked in the directions of arrows A4, A5, and A6 and sucked out of the resin substrate 1 from the suction port 8.

また図2の樹脂基板1の下に記載した矢印B1、B2は蛍光強度測定に際して励起光の入射方向B1と蛍光の放出方向B2を示す。入射及び放出角度は正確なものではない。励起光は矢印B1の方向から第1被覆樹脂フィルム6を通過して樹脂基板1の測定部4にあたり測定部4からの蛍光の放出光が第1被覆樹脂フィルム6を通過して矢印B2の方向に放出される。放出された蛍光の蛍光強度が測定される。   In addition, arrows B1 and B2 described below the resin substrate 1 in FIG. 2 indicate the incident direction B1 of excitation light and the emission direction B2 of fluorescence when measuring the fluorescence intensity. The incident and emission angles are not accurate. The excitation light passes through the first coated resin film 6 from the direction of the arrow B1 and hits the measuring unit 4 of the resin substrate 1, and the emission light of the fluorescence from the measuring unit 4 passes through the first coated resin film 6 and the direction of the arrow B2. To be released. The fluorescence intensity of the emitted fluorescence is measured.

図4の(a)(b)に蛍光強度測定用マイクロチップの構成説明図を示す。図4の(a)(b)図にみられるように第2被覆樹脂フィルム7と第1被覆樹脂フィルム6とが樹脂基板1の厚み方向の両面から接合されることによって蛍光強度測定用マイクロチップが簡便に作製される。   FIGS. 4A and 4B are explanatory diagrams of the configuration of the microchip for measuring fluorescence intensity. As shown in FIGS. 4A and 4B, the second coated resin film 7 and the first coated resin film 6 are joined from both sides in the thickness direction of the resin substrate 1 to thereby measure the fluorescence intensity measurement microchip. Is easily prepared.

下記に上記マイクロチップを用いて蛍光強度測定を行った試験例の説明をする。   A test example in which fluorescence intensity measurement was performed using the microchip will be described below.

この試験例では、トランスに用いられた絶縁油から抽出したPCBの量の測定を行うため、抗原抗体反応を利用した蛍光強度測定を行った。   In this test example, in order to measure the amount of PCB extracted from the insulating oil used in the transformer, fluorescence intensity measurement using an antigen-antibody reaction was performed.

複数個の直径90μmのポリスチレンビーズ(粒子径標準粒子)にPCBに擬似させたPCB擬似抗原を固定させた。   PCB pseudoantigen simulated by PCB was fixed to a plurality of polystyrene beads (particle size standard particles) having a diameter of 90 μm.

ビーズ0.125gをエタノールで洗浄して乾燥させ、リン酸緩衝液で調整したPCB擬似抗原溶液20μg/mlを2.5ml加え、室温で一昼夜攪拌してPCB擬似抗原をビーズ表面に物理吸着させた。4℃で保存した擬似抗原吸着ビーズを純水で洗浄した。洗浄後70個のビーズをマイクロチップの測定部4に詰め、マイクロチップを5分間減圧乾燥させた。   0.125 g of beads were washed with ethanol and dried, 2.5 ml of a PCB pseudoantigen solution 20 μg / ml prepared with a phosphate buffer was added, and the mixture was stirred overnight at room temperature to physically adsorb the PCB pseudoantigen onto the bead surface. . The pseudoantigen-adsorbing beads stored at 4 ° C. were washed with pure water. After washing, 70 beads were packed in the measurement part 4 of the microchip, and the microchip was dried under reduced pressure for 5 minutes.

PCBと結合力を有するPCB抗体に蛍光物質(登録商標Qdot 655:インビトロジェン社製)を標識化した。PCB抗体の標識化は、SMCC(スクシンイミジル4−(マレイミドメチル)シクロヘキサン−1−カルボキシレート)を用いて活性化したQdotをDTT(ジチオスレイトール)を用いて還元したPCB抗体と混合した後、β−メルカプトエタノールでブロッキングしてから濃縮及び精製を行った。標識化方法はインビトロジェン社の標識キットマニュアルにならって行った。 A fluorescent substance (registered trademark Qdot) is added to a PCB antibody having binding power to PCB. 655: manufactured by Invitrogen) was labeled. The labeling of the PCB antibody was carried out by mixing Qdot activated with SMCC (succinimidyl 4- (maleimidomethyl) cyclohexane-1-carboxylate) with PCB antibody reduced with DTT (dithiothreitol), then β -Concentration and purification were performed after blocking with mercaptoethanol. The labeling method was performed according to the labeling kit manual of Invitrogen.

蛍光強度測定は、マイクロチップの測定部4に励起光照射手段から励起光を照射させ、測定部から発せられる光信号を蛍光測定装置によって検出することによって行った。用いた蛍光強度測定機の内部構造を表す概略斜視図を図5に示す。測定された蛍光強度から既知量のPCBを測定した場合の蛍光強度と比較して、液体試料中のPCB量を決定した。   The fluorescence intensity measurement was performed by irradiating the measurement unit 4 of the microchip with excitation light from the excitation light irradiating means, and detecting the optical signal emitted from the measurement unit with a fluorescence measurement device. FIG. 5 is a schematic perspective view showing the internal structure of the fluorescence intensity measuring machine used. The amount of PCB in the liquid sample was determined by comparison with the fluorescence intensity when a known amount of PCB was measured from the measured fluorescence intensity.

図5に蛍光強度測定機1000の内部構造を示す。蛍光強度用マイクロチップ100はトレイ130に樹脂基板1の下面1d側が下になるように載せられ取り付けられる。図5には図示されていないがトレイ130には取り付け用突起物が形成されており、その突起物にマイクロチップの取り付け用孔11をはめ込むことによってトレイ130にマイクロチップ100が位置決めされる。また図5には図示されていないがトレイ130にはマイクロチップ100の吸引口8にあたる箇所に吸引チューブ220及び吸引チューブ230につながる取り付け口が接続されるようになっている。   FIG. 5 shows the internal structure of the fluorescence intensity measuring device 1000. The microchip 100 for fluorescence intensity is mounted and attached to the tray 130 such that the lower surface 1d side of the resin substrate 1 faces down. Although not shown in FIG. 5, mounting projections are formed on the tray 130, and the microchip 100 is positioned on the tray 130 by inserting the microchip mounting holes 11 into the projections. Although not shown in FIG. 5, the suction port 220 and the attachment port connected to the suction tube 230 are connected to the tray 130 at a location corresponding to the suction port 8 of the microchip 100.

位置決めされたマイクロチップ100に取り付け用カバー110がかぶせられることによって、吸引ポンプ200及び吸引ポンプ210からの吸引経路が形成される構造となっている。各吸引ポンプは吸引口8の各一つとつながっており、各々一つのラインの送液を行う。   A suction path from the suction pump 200 and the suction pump 210 is formed by placing the mounting cover 110 on the positioned microchip 100. Each suction pump is connected to each one of the suction ports 8 and each feeds one line.

蛍光強度はレーザー300から照射された波長405nmのレーザー光をマイクロチップの測定部4に下部4d側から照射し、測定部4から発せられる波長655nmの光信号を蛍光測定装置310によって検出する。トレイ130はモーター120によって水平に移動され、マイクロチップの測定部4にレーザー光が当たるように制御されている。各制御は複数の制御ボード400によって行われている。蛍光強度測定機1000の内部機構はケース500に納められている。   The fluorescence intensity is detected by irradiating the microchip measuring unit 4 with laser light having a wavelength of 405 nm emitted from the laser 300 from the lower 4d side, and detecting the optical signal having a wavelength of 655 nm emitted from the measuring unit 4 by the fluorescence measuring device 310. The tray 130 is moved horizontally by the motor 120 and is controlled so that the laser beam strikes the measurement unit 4 of the microchip. Each control is performed by a plurality of control boards 400. The internal mechanism of the fluorescence intensity measuring device 1000 is housed in a case 500.

上記の蛍光強度測定機1000を用いて蛍光強度を測定した。   The fluorescence intensity was measured using the fluorescence intensity measuring apparatus 1000 described above.

検査対象試料液30μlと蛍光物質Qdotを標識化されたPCB抗体溶液240μlとを混合した。この時、PCB抗体溶液は、試料液に含まれると予想されるPCBよりも10倍過剰になるようにあらかじめ決めた量を混合している。上記混合液をマイクロチップの液体導入孔2に10μl注入した。試験例ではサンプルを一つとし吸引ポンプ200を作動させて送液を行った。吸引ポンプ200の吸引速度は1μl/minとし、10分間送液した。測定部4には液体の気泡がない状態で送液することができた。   30 μl of the sample solution to be inspected and 240 μl of the PCB antibody solution labeled with the fluorescent substance Qdot were mixed. At this time, the PCB antibody solution is mixed in a predetermined amount so as to be 10 times more than the PCB expected to be contained in the sample solution. 10 μl of the mixed solution was injected into the liquid introduction hole 2 of the microchip. In the test example, one sample was used, and the suction pump 200 was operated to feed the liquid. The suction speed of the suction pump 200 was 1 μl / min, and the solution was fed for 10 minutes. The liquid could be fed to the measuring unit 4 without any liquid bubbles.

測定部4に液体が送液される前に測定部4における蛍光強度を測定した。この時点での測定された蛍光強度は測定部4に液体が送液された後で測定された蛍光強度の1/3であった。液体が送液される前の測定部4の蛍光強度が送液された後で測定された蛍光強度の1/5以下でないのは測定部4に固定されているポリスチレンビーズ等の影響が考えられる。   Before the liquid was fed to the measurement unit 4, the fluorescence intensity in the measurement unit 4 was measured. The measured fluorescence intensity at this time was 1/3 of the fluorescence intensity measured after the liquid was fed to the measurement unit 4. The fluorescence intensity of the measurement unit 4 before the liquid is fed is not less than 1/5 of the fluorescence intensity measured after the liquid is fed. .

しかし測定部4での送液前の蛍光強度が送液後の蛍光強度よりもはるかに低く抑える事が出来、精度良く蛍光強度が測定できた。   However, the fluorescence intensity before liquid feeding in the measurement unit 4 could be suppressed to be much lower than the fluorescence intensity after liquid feeding, and the fluorescence intensity could be measured with high accuracy.

液体導入孔2に導入された検査対象試料液と標識化されたPCB抗体溶液との混合液は送液されている間に検査対象試料液と標識化されたPCB抗体とが抗原抗体反応をおこし、検査対象試料液中のPCBは全て標識化されたPCB抗体と結合した。標識化されたPCB抗体は検査対象試料液中の予想PCB量より過剰に入れてあるので、PCBと反応していない標識化されたPCB抗体が検査対象試料液中に存在している。   While the liquid mixture of the test sample liquid introduced into the liquid introduction hole 2 and the labeled PCB antibody solution is being sent, the test target sample liquid and the labeled PCB antibody cause an antigen-antibody reaction. All the PCBs in the sample liquid to be examined bound to the labeled PCB antibody. Since the labeled PCB antibody is in excess of the expected amount of PCB in the sample liquid to be examined, a labeled PCB antibody that has not reacted with PCB is present in the sample liquid to be examined.

測定部4に送液された検査対象試料液中のPCBと反応していない標識化されたPCB抗体は測定部4において測定部4に封入されているビーズに固定化されたPCB擬似抗原と抗原抗体反応を起こし、標識化されたPCB抗体が測定部4に封入されているビーズに固定化される。固定化された標識化されたPCB抗体以外の物質は液体溜め孔3まで送液され、測定部4にはビーズに固定化された標識化されたPCB抗体が残り、標識物質の蛍光強度が測定された。前に測定した測定部4での混合液の送液前の蛍光強度をここで測定された蛍光強度から引くことで、測定試料のみからの由来の蛍光強度を求めた。求められた蛍光強度をもとにあらかじめ既知量のPCBを用いて同様に計測した検量線と比較して試料液中のPCBの量を算出した。   The labeled PCB antibody that has not reacted with the PCB in the sample liquid to be inspected sent to the measuring unit 4 is immobilized on the beads encapsulated in the measuring unit 4 in the measuring unit 4 and the antigen. An antibody reaction is caused, and the labeled PCB antibody is immobilized on the beads enclosed in the measurement unit 4. Substances other than the immobilized labeled PCB antibody are sent to the liquid reservoir 3, and the labeled PCB antibody immobilized on the beads remains in the measurement unit 4, and the fluorescence intensity of the labeled substance is measured. It was done. The fluorescence intensity derived only from the measurement sample was obtained by subtracting the fluorescence intensity before feeding the mixed liquid in the measurement unit 4 measured before from the fluorescence intensity measured here. Based on the obtained fluorescence intensity, the amount of PCB in the sample solution was calculated by comparison with a calibration curve similarly measured in advance using a known amount of PCB.

本発明の蛍光測定用マイクロチップの一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the microchip for fluorescence measurement of this invention. 図1の蛍光強度測定用マイクロチップの模式断面説明図である。FIG. 2 is a schematic cross-sectional explanatory diagram of the fluorescence intensity measurement microchip in FIG. 1. 図1の蛍光測定用マイクロチップの斜視図である。It is a perspective view of the microchip for fluorescence measurement of FIG. 図1の蛍光測定用マイクロチップを示す構成説明図である。FIG. 2 is a configuration explanatory view showing the fluorescence measurement microchip in FIG. 1. 蛍光強度測定機の内部構造を示す概略斜視図である。It is a schematic perspective view which shows the internal structure of a fluorescence intensity measuring machine.

符号の説明Explanation of symbols

1・・・樹脂基板、2・・・液体導入孔、3・・・液体溜め孔、4・・・測定部、
5・・・流路、6・・・第1被覆樹脂フィルム、7・・・第2被覆樹脂フィルム、
8・・・吸引口、9・・・通路、10・・・気体通路、11・・・取り付け用孔、
100・・・マイクロチップ、300・・・レーザー、310・・・蛍光測定装置、
200・・・吸引ポンプ、1000・・・蛍光強度測定機。
DESCRIPTION OF SYMBOLS 1 ... Resin substrate, 2 ... Liquid introduction hole, 3 ... Liquid reservoir hole, 4 ... Measurement part,
5 ... channel, 6 ... first coated resin film, 7 ... second coated resin film,
8 ... suction port, 9 ... passage, 10 ... gas passage, 11 ... mounting hole,
100 ... microchip, 300 ... laser, 310 ... fluorescence measuring device,
200: suction pump, 1000: fluorescence intensity measuring machine.

Claims (8)

蛍光強度を測定するために用いられる蛍光強度測定用マイクロチップにおいて、
測定試料となる液体を導入する厚み方向に貫通した液体導入孔と、蛍光強度測定後の前記液体を溜めておく厚み方向に貫通した液体溜め孔と、前記液体導入孔と前記液体溜め孔とをつなぐ厚み方向の片面側に形成された前記液体が流れる流路と、前記流路中に形成された蛍光強度を測定する測定部と、が形成された樹脂基板と、
前記樹脂基板の厚み方向の前記片面側の前記液体導入孔、前記液体溜め孔、前記測定部及び前記流路を覆うように接合された第1被覆樹脂フィルムと、
前記樹脂基板の厚み方向の他面側の少なくとも前記液体溜め孔を覆うように接合された第2被覆樹脂フィルムと、
からなることを特徴とする蛍光強度測定用マイクロチップ。
In the fluorescence intensity measurement microchip used to measure fluorescence intensity,
A liquid introduction hole penetrating in the thickness direction for introducing a liquid as a measurement sample, a liquid reservoir hole penetrating in the thickness direction for accumulating the liquid after fluorescence intensity measurement, and the liquid introduction hole and the liquid reservoir hole A resin substrate formed with a flow path through which the liquid formed on one side in the connecting thickness direction flows, and a measurement unit for measuring fluorescence intensity formed in the flow path;
A first covering resin film joined so as to cover the liquid introduction hole, the liquid reservoir hole, the measurement part, and the flow path on the one surface side in the thickness direction of the resin substrate;
A second covering resin film joined so as to cover at least the liquid reservoir hole on the other surface side in the thickness direction of the resin substrate;
A microchip for measuring fluorescence intensity, comprising:
前記樹脂基板、前記第1被覆樹脂フィルム及び前記第2被覆樹脂フィルムは低蛍光性樹脂で形成されている請求項1に記載の蛍光強度測定用マイクロチップ。   The microchip for fluorescence intensity measurement according to claim 1, wherein the resin substrate, the first covering resin film, and the second covering resin film are formed of a low fluorescent resin. 前記低蛍光性樹脂はアクリル樹脂、ポリオレフィン系樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリアミド樹脂及びポリ塩化ビニリデン樹脂から選択された少なくとも一つの樹脂である請求項2に記載の蛍光強度測定用マイクロチップ。   3. The fluorescence intensity measurement micro of claim 2, wherein the low fluorescence resin is at least one resin selected from acrylic resin, polyolefin resin, polyester resin, polycarbonate resin, polystyrene resin, polyamide resin and polyvinylidene chloride resin. Chip. 前記接合は粘着剤又は接着剤を介して行われる請求項1〜3のいずれかに記載の蛍光強度測定用マイクロチップ。   The said chip | tip is a microchip for a fluorescence intensity measurement in any one of Claims 1-3 performed through an adhesive or an adhesive agent. 前記接合は非加熱接合である請求項1〜4のいずれかに記載の蛍光強度測定用マイクロチップ。   The microchip for measuring fluorescence intensity according to any one of claims 1 to 4, wherein the bonding is non-heat bonding. 前記接着剤はマイクロカプセル型接着剤である請求項4又は5のいずれかに記載の蛍光強度測定用マイクロチップ。   The microchip for fluorescence intensity measurement according to claim 4 or 5, wherein the adhesive is a microcapsule type adhesive. 測定試料となる液体を導入する厚み方向に貫通した液体導入孔と、蛍光強度測定後の前記液体を溜めておく厚み方向に貫通した液体溜め孔と、前記液体導入孔と前記液体溜め孔とをつなぐ厚み方向の片面側に形成された前記液体が流れる流路と、前記流路中に形成された蛍光強度を測定する測定部と、が形成された樹脂基板を準備する樹脂基板準備工程と、
前記樹脂基板の厚み方向の両面に樹脂フィルムを接着剤又は粘着剤を介して加圧接合する樹脂フィルム接合工程と、
を有する蛍光強度測定用マイクロチップの製造方法。
A liquid introduction hole penetrating in the thickness direction for introducing a liquid as a measurement sample, a liquid reservoir hole penetrating in the thickness direction for accumulating the liquid after fluorescence intensity measurement, and the liquid introduction hole and the liquid reservoir hole A resin substrate preparation step of preparing a resin substrate on which a flow path in which the liquid formed on one side in the thickness direction to be connected flows and a measurement unit that measures fluorescence intensity formed in the flow path;
A resin film bonding step of pressure bonding the resin film to both surfaces in the thickness direction of the resin substrate via an adhesive or an adhesive;
A method for producing a microchip for measuring fluorescence intensity.
前記樹脂フィルム接合工程の前に
前記測定部に担持物質を配置する担持物質配置工程を有する請求項7に記載の蛍光強度測定用マイクロチップの製造方法。
The method for producing a microchip for measuring fluorescence intensity according to claim 7, further comprising a supporting material disposing step of disposing a supporting material in the measurement unit before the resin film joining step.
JP2007075203A 2007-03-22 2007-03-22 Microchip and its manufacturing method Withdrawn JP2008232939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075203A JP2008232939A (en) 2007-03-22 2007-03-22 Microchip and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075203A JP2008232939A (en) 2007-03-22 2007-03-22 Microchip and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008232939A true JP2008232939A (en) 2008-10-02

Family

ID=39905897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075203A Withdrawn JP2008232939A (en) 2007-03-22 2007-03-22 Microchip and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008232939A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160007934A (en) * 2014-07-10 2016-01-21 나노바이오시스 주식회사 Microfludic chip, manufacturing method thereof and analyzing apparatus using the same
JP2016211871A (en) * 2015-04-30 2016-12-15 栄研化学株式会社 Microchip
WO2022045355A1 (en) 2020-08-31 2022-03-03 藤森工業株式会社 Method for manufacturing microchip for liquid sample analysis
WO2022138930A1 (en) 2020-12-24 2022-06-30 藤森工業株式会社 Method for manufacturing micro chip for liquid sample analysis

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160007934A (en) * 2014-07-10 2016-01-21 나노바이오시스 주식회사 Microfludic chip, manufacturing method thereof and analyzing apparatus using the same
CN106470937A (en) * 2014-07-10 2017-03-01 纳米生物系统株式会社 Micro-fluidic chip and preparation method thereof and utilize its analytical equipment
JP2017519996A (en) * 2014-07-10 2017-07-20 ナノバイオシス インコーポレーテッドNanobiosys Inc. Microfluidic chip, method for manufacturing the same, and analyzer using the same
US10189021B2 (en) 2014-07-10 2019-01-29 Nanobiosys Inc. Microfluidic chip, manufacturing method therefor and analysis device using same
KR102195769B1 (en) 2014-07-10 2020-12-30 주식회사 미코바이오메드 Microfludic chip, manufacturing method thereof and analyzing apparatus using the same
JP2016211871A (en) * 2015-04-30 2016-12-15 栄研化学株式会社 Microchip
WO2022045355A1 (en) 2020-08-31 2022-03-03 藤森工業株式会社 Method for manufacturing microchip for liquid sample analysis
WO2022138930A1 (en) 2020-12-24 2022-06-30 藤森工業株式会社 Method for manufacturing micro chip for liquid sample analysis

Similar Documents

Publication Publication Date Title
EP2170515B1 (en) Microfluidic methods and systems for use in detecting analytes
US20120040470A1 (en) Single-use microfluidic test cartridge for the bioassay of analytes
EP1816187A1 (en) Microchip
CN102687018B (en) Filtration device for assays
JP5652393B2 (en) Plasmon excitation sensor and assay method used for measurement method by SPFS-LPFS system
CN101166974A (en) Flow control technique for assay devices
EP0226470A2 (en) Materials and methods for microchemical testing
JPWO2005029095A1 (en) Biochip
JPWO2004036194A1 (en) Analysis chip and analyzer
CA2468674A1 (en) Microfluidic device and surface decoration process for solid phase affinity binding assays
TW201525464A (en) Analytical device
WO2009125998A2 (en) Micro-nano fluidic biochip for assaying biological sample
Salva et al. Methods for immobilizing receptors in microfluidic devices: A review
KR20210021316A (en) Systems, apparatus, and methods for signal-amplification of lateral flow analyzers
JP2008232939A (en) Microchip and its manufacturing method
JP2007525681A (en) Covalent immobilization of biomolecules on organic surfaces
JP5426881B2 (en) Aggregation assay
CN109507422B (en) Optical microfluidic chip based on polymer and multilayer metal nanoparticle modification
JP2012242162A (en) Composite particle as indicator
JP2007003401A (en) Sample analyzer
JP5685601B2 (en) Nanofluidic biosensor and its utilization and method for rapid measurement of biomolecule interactions in solution
US20110200986A1 (en) Bio-assay using liquid crystals
JP2002122597A (en) Chip for measuring object to be measured, equipment and method for measuring object
JP4579867B2 (en) Chemical substance detection chip
JP4415612B2 (en) Bonding method and bonding substrate for plastic substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A761 Written withdrawal of application

Effective date: 20110614

Free format text: JAPANESE INTERMEDIATE CODE: A761