JP2008232783A - Electron capture detector - Google Patents

Electron capture detector Download PDF

Info

Publication number
JP2008232783A
JP2008232783A JP2007071890A JP2007071890A JP2008232783A JP 2008232783 A JP2008232783 A JP 2008232783A JP 2007071890 A JP2007071890 A JP 2007071890A JP 2007071890 A JP2007071890 A JP 2007071890A JP 2008232783 A JP2008232783 A JP 2008232783A
Authority
JP
Japan
Prior art keywords
amount
electron capture
radiation source
electrode
free electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007071890A
Other languages
Japanese (ja)
Inventor
Sukenori Takemori
佑典 武守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2007071890A priority Critical patent/JP2008232783A/en
Publication of JP2008232783A publication Critical patent/JP2008232783A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enable analysis of a sample of a low concentration by improving detection sensitivity. <P>SOLUTION: The amount of a radiation source 16 that is a radioactive isotope element enclosed in a detection cell 11 is set in the range of not less than 20MBq and less than 100MBq that is lower than before, for instance, at 90MBq. Thus, the amount of free electrons generated following positive ionization of inert gas in the detection cell 11 is reduced, so that the change in the amount of electrons captured when an object substance (electrophilic molecule) to be detected of low concentration is introduced is more easily indicated in a detection signal and thus the detection sensitivity is improved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ガスクロマトグラフ等の検出器として用いられる電子捕獲型検出器(ECD=Electron Capture Detector)に関する。   The present invention relates to an electron capture detector (ECD = Electron Capture Detector) used as a detector such as a gas chromatograph.

ガスクロマトグラフの検出器としては種々のものが実用化されているが、その中で、電子捕獲型検出器はハロゲン化合物やニトロ化合物等の親電子性化合物の測定に特に適した検出器である。このため、有機水銀、農薬、PCB等の残留測定、或いは、ステロイドやアミノ酸等を親電子性の誘導体に変換しての極微量測定に主に利用されている。   Various detectors for gas chromatographs have been put into practical use. Among them, the electron capture detector is a detector particularly suitable for measuring electrophilic compounds such as halogen compounds and nitro compounds. For this reason, it is mainly used for the residual measurement of organic mercury, agricultural chemicals, PCB, etc., or the trace amount measurement by converting steroids, amino acids, etc. into electrophilic derivatives.

電子捕獲型検出器の動作原理は次の通りである(例えば特許文献1など参照)。検出セルの内部には63Ni等の放射性同位元素である線源が封入され、この検出セルにNなどの不活性ガスを導入する。すると、線源から放出される放射線(β線)の作用により不活性ガス分子は電離され、該分子は正イオン化されるとともに該分子から自由電子が放出される。この状態で検出セル内に設置された電極(正極)にパルス状の電圧を印加すると、自由電子が取り込まれて電極に電流が流れる。そこへ、電子を吸収する能力の高い親電子性(電子捕獲性)分子が導入されると、親電子性分子は自由電子を吸収して負イオンとなり、これに伴い検出セル内の自由電子の密度は減少する。 The operation principle of the electron capture detector is as follows (see, for example, Patent Document 1). A radiation source that is a radioactive isotope such as 63 Ni is sealed inside the detection cell, and an inert gas such as N 2 is introduced into the detection cell. Then, inert gas molecules are ionized by the action of radiation (β rays) emitted from the radiation source, the molecules are positively ionized, and free electrons are emitted from the molecules. When a pulsed voltage is applied to the electrode (positive electrode) installed in the detection cell in this state, free electrons are taken in and a current flows through the electrode. If an electrophilic (electron capturing) molecule having a high ability to absorb electrons is introduced there, the electrophilic molecule absorbs free electrons and becomes negative ions. Density decreases.

負イオンとなった分子は自由電子と同様に正極に向かって移動するが、負イオンは自由電子よりも格段に大きな質量を有するから移動速度は遅く、正極に到達するまでに時間が掛かる。また、正極に到達するまでに、正イオン化した不活性ガス分子と結合してしまう確率も高いために、自由電子とは異なり電極に流れる電流として殆ど寄与しない。そのため、検出セル内の自由電子の密度が減少すると、1個の電圧パルスに対して電極に取り込まれる電子の数も減少し、電極に流れる電流は減少することなる。単位時間当たりの電子総数、つまり電流の値を一定に保つように電圧パルスの数を制御すると、親電子性分子の濃度が高く、自由電子の減少度合が大きいほど電圧パルス数は増加する。従って、電圧パルス数の変化により、導入された親電子性分子の濃度を求めることができる。具体的には、単位時間当たりの電圧パルス数の変化、つまり周波数の変化を電圧に変換する(F−V変換する)ことにより、親電子性物質の濃度に応じた検出信号を得ることができる。   Molecules that have become negative ions move toward the positive electrode in the same way as free electrons, but since negative ions have a remarkably larger mass than free electrons, the movement speed is slow and it takes time to reach the positive electrode. Further, since it has a high probability of binding to positive ionized inert gas molecules before reaching the positive electrode, unlike free electrons, it hardly contributes as a current flowing through the electrode. Therefore, when the density of free electrons in the detection cell decreases, the number of electrons taken into the electrode with respect to one voltage pulse also decreases, and the current flowing through the electrode decreases. When the number of voltage pulses is controlled so that the total number of electrons per unit time, that is, the current value is kept constant, the number of voltage pulses increases as the concentration of electrophilic molecules increases and the degree of decrease in free electrons increases. Therefore, the concentration of the introduced electrophilic molecule can be obtained by changing the number of voltage pulses. Specifically, a detection signal corresponding to the concentration of the electrophilic substance can be obtained by converting the change in the number of voltage pulses per unit time, that is, the change in frequency into a voltage (FV conversion). .

電子捕獲型検出器はもともと比較的高感度な検出器ではあるが、近年、残留農薬、有機溶剤などの環境汚染物質に対する関心の高まりや規制の強化などにより、従来よりも一層の高感度化が求められるようになってきている。こうした要求に対し、従来より、検出セルの構造の改良などにより不活性ガスのイオン化の効率を向上させて感度向上を図るような試みがなされてきた(例えば特許文献2など参照)。しかしながら、従来のこうした試みでは限界があり、さらなる高感度化の要求に応えるのは難しい。   Although the electron capture detector is originally a relatively high-sensitivity detector, in recent years it has become more sensitive than ever due to increasing interest in environmental pollutants such as pesticide residues and organic solvents, and tightening regulations. It is getting demanded. In response to such demands, attempts have been made to improve sensitivity by improving the efficiency of ionization of an inert gas by improving the structure of the detection cell (see, for example, Patent Document 2). However, these conventional attempts have limitations, and it is difficult to meet the demand for higher sensitivity.

特開平11−153579号公報JP-A-11-153579 特開2000−65799号公報JP 2000-65799 A

本発明は上記課題を解決するために成されたものであり、その主な目的とするところは、従来よりも検出感度を向上させ低濃度や微量の物質も検出することができる電子捕獲型検出器を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the main object of the present invention is to provide an electron capture type detection capable of improving detection sensitivity and detecting low concentrations and trace amounts of substances as compared with the prior art. Is to provide a vessel.

電子捕獲型検出器では、検出セル内に導入された親電子性分子により捕獲され得ずに残存する自由電子が電極に流れる電流となるから、残存する自由電子の量が少なければ、より多くの電圧パルスを電極に印加しないと電流が流れない。その結果、電圧パルスの周波数は高くなりF−V変換の結果も大きくなって、ノイズ等の影響が相対的に小さくなる。親電子性分子の濃度(密度)が低くても検出セル内での残存自由電子の量を少なくするには、親電子性分子を導入しない状態での自由電子の量を少なくすればよい。この自由電子は、線源から放出される放射線により不活性ガス分子がイオン化される際に発生するから、自由電子の量は放射線の強さに依存する。   In the electron capture detector, since the free electrons that cannot be captured by the electrophilic molecules introduced into the detection cell become a current that flows to the electrode, the amount of remaining free electrons is small. If no voltage pulse is applied to the electrode, no current flows. As a result, the frequency of the voltage pulse is increased and the result of the FV conversion is increased, and the influence of noise and the like is relatively reduced. In order to reduce the amount of remaining free electrons in the detection cell even when the concentration (density) of the electrophilic molecule is low, the amount of free electrons in a state where no electrophilic molecule is introduced may be reduced. Since the free electrons are generated when the inert gas molecules are ionized by the radiation emitted from the radiation source, the amount of free electrons depends on the intensity of the radiation.

従来、電子捕獲型検出器に用いられている線源の放射性同位体元素の量は300MBq以上であるが、本願発明者はこの線源の放射線の強さに着目し、線源の量を減らすことで検出セル内の自由電子量を減らし検出感度を高めることに想到した。   Conventionally, the amount of radioactive isotope elements used in electron capture detectors is 300 MBq or more, but the inventors of the present application pay attention to the radiation intensity of these radiation sources and reduce the amount of radiation sources. This has led to the idea of reducing the amount of free electrons in the detection cell and increasing detection sensitivity.

上記課題を解決するために成された本発明は、放射性同位元素である線源と電子捕獲用電極とを内部に有するとともに下部に検出対象の成分を含む試料ガスを導入するガス導入口を有する検出セルを具備し、該検出セルを負極、前記電子捕獲用電極を正極として両極間に電圧を印加し、前記線源から放射される放射線によって前記ガス導入口から前記検出セル内に導入された気体分子を電離して、それにより生じた電子に起因して電子捕獲用電極に流れる電流を検出する電子捕獲型検出器において、前記線源の放射性同位体元素の量を20MBq以上100MBq未満の範囲に設定したことを特徴としている。   The present invention, which has been made to solve the above problems, has a radiation source that is a radioisotope and an electrode for electron capture inside, and a gas inlet for introducing a sample gas containing a component to be detected at the bottom. A detection cell is provided, a voltage is applied between both electrodes with the detection cell serving as a negative electrode and the electron capture electrode serving as a positive electrode, and is introduced into the detection cell from the gas inlet by radiation emitted from the radiation source. In an electron capture detector for ionizing gas molecules and detecting a current flowing through an electron capture electrode due to electrons generated thereby, the amount of radioactive isotope of the radiation source is in a range of 20 MBq to less than 100 MBq It is characterized by being set to.

即ち、本発明に係る電子捕獲型検出器においては、放射線源の量を従来の1/3以下に減らしている。そのため、検出セル内で放射線による電離で発生する自由電子の量が従来に比べてかなり少なく、低濃度の親電子性分子が導入されて少量の自由電子が捕獲されても、その影響は相対的に大きく現れる。それにより、従来よりも検出感度を上げることができる。   That is, in the electron capture detector according to the present invention, the amount of the radiation source is reduced to 1/3 or less of the conventional one. Therefore, the amount of free electrons generated by ionization by radiation in the detection cell is considerably smaller than before, and even if a low concentration of electrophilic molecules is introduced and a small amount of free electrons are captured, the effect is relatively Appear greatly in Thereby, detection sensitivity can be raised more than before.

但し、放射線源の量が少ないと発生する自由電子量と親電子性分子に捕獲される電子量との差が小さく、場合によっては自由電子量が不足することになるために、親電子性分子の濃度に対する応答の直線性(ダイナミックレンジ)が低下する。具体的には、本願発明者の実験によれば、放射線源量が370MBqである場合に直線性を保証できる濃度範囲は約10であるのに対し、放射線源量が90MBqである場合に直線性を保証できる濃度範囲は約10と1桁悪くなる。これよりも放射線源量を少なくした場合には直線性がさらに低下し、20MBq未満では直線性を保証できる濃度範囲が約10未満になると推測され、検出器として実用的ではなくなる。そこで、放射線源量の下限を20MBqに設定している。 However, if the amount of the radiation source is small, the difference between the amount of free electrons generated and the amount of electrons captured by the electrophilic molecule is small, and in some cases the amount of free electrons is insufficient. The linearity (dynamic range) of the response with respect to the concentration of is reduced. Specifically, according to the present inventor's experiments, whereas the concentration ranges the radiation source volume can guarantee the linearity in the case of 370MBq is about 10 4, a straight line when the source volume is 90MBq concentration range that can guarantee the sex is about 10 3 and 1 digit poor. This linearity is further decreased when reducing the radiation source volume than, it is less than 20MBq is estimated that concentration range that can guarantee the linearity is less than about 10 2, not practical as a detector. Therefore, the lower limit of the radiation source amount is set to 20 MBq.

このように本発明に係る電子捕獲型検出器によれば、従来に比べて、検出感度を向上させることで低濃度の物質、或いは少ない試料導入量に含まれる物質の検出が可能となる。   As described above, according to the electron capture detector according to the present invention, it is possible to detect a low-concentration substance or a substance contained in a small sample introduction amount by improving the detection sensitivity as compared with the related art.

さらにまた、放射線源量を100MBq未満に抑えることにより、全く別の利点もある。即ち、放射線は人間の健康に悪影響を及ぼすおそれがあるため、我が国においては放射線を利用した機器は法律による規制の対象となっており、電子捕獲型検出器の使用も、使用場所等を特定した上で所定の機関に届け出る(又は使用許可を得る)必要がある。そのため、装置を自由に移動させることができないという不便さがあった。これに対し、最近、この規定が一部緩和され、放射線源量が100MBq未満である機器については規制対象から外れたため、本発明に係る電子捕獲型検出器は上記規制を受けずに済む。それにより、検出器を自由に移動することが可能であり、従来は不可能であった可搬型の検出器を実現し、測定対象の物質がある現場に検出器を搬送してその場で測定を行うことも可能となる。   Furthermore, there is a completely different advantage by suppressing the radiation source amount to less than 100 MBq. In other words, since radiation may have a negative impact on human health, radiation-based devices are subject to legal regulations in Japan, and the use of electron capture detectors was also specified for use. It is necessary to report (or obtain a use permission) to a predetermined institution above. Therefore, there is an inconvenience that the apparatus cannot be moved freely. On the other hand, recently, this regulation has been partially relaxed, and devices having a radiation source amount of less than 100 MBq have been excluded from the regulation target. Therefore, the electron capture detector according to the present invention does not need to be subject to the regulation. As a result, it is possible to move the detector freely, realizing a portable detector that was impossible in the past, transporting the detector to the site where the substance to be measured is located, and measuring on the spot Can also be performed.

本発明の一実施例である電子捕獲型検出器について図面を参照して説明する。図1は本実施例の電子捕獲型検出器の要部の構成図である。   An electron capture detector according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a main part of the electron capture detector of this embodiment.

検出セル11の内部には検出室12が形成され、その下部には、ガスクロマトグラフのカラム14の出口端とメイクアップガス流路15とが接続されるガス導入口13が設けられている。一方、検出室12の上部には該室12内のガスを外部に排出するための排気ガス流路18が接続されている。検出室12には、放射性同位元素63Niを担持した放射線源16が周囲に設けられ、中央には棒状のコレクタ電極(電子捕獲用電極)17が配設されている。コレクタ電極17と導電体である検出セル11とは電気的に絶縁されており、図示しない電気回路により、コレクタ電極17と検出セル11との間にはパルス状の正電圧が印加されるようになっている。放射線源16の量は、従来市販されている電子捕獲型検出器における線源量370MBqの約1/4である90MBqに設定されている。 A detection chamber 12 is formed inside the detection cell 11, and a gas introduction port 13 to which an outlet end of a column 14 of the gas chromatograph and a makeup gas flow path 15 are connected is provided below the detection chamber 12. On the other hand, an exhaust gas flow path 18 for discharging the gas in the chamber 12 to the outside is connected to the upper portion of the detection chamber 12. The detection chamber 12 is provided with a radiation source 16 carrying a radioisotope 63 Ni around it, and a rod-like collector electrode (electron capturing electrode) 17 is disposed at the center. The collector electrode 17 and the detection cell 11 as a conductor are electrically insulated, and a pulsed positive voltage is applied between the collector electrode 17 and the detection cell 11 by an electric circuit (not shown). It has become. The amount of the radiation source 16 is set to 90 MBq, which is about ¼ of the amount of radiation source 370 MBq in a commercially available electron capture detector.

実施例の電子捕獲型検出器の動作は次の通りである。メイクアップガス流路15を通してガス導入口13から検出室12にメイクアップガスとしてNなどの不活性ガスを流すと、不活性ガス分子は放射線源16から放出される放射線(β線)により電離され、運動エネルギの低い電子(自由電子)を放出して正イオンとなる。前述のようにコレクタ電極17には正のパルス状の電圧が印加されているため、この電圧が印加されている期間だけ、自由電子を取り込んでコレクタ電極17に電流が流れる。従って、パルス電圧の周波数を上昇させると、パルス周期よりも長い所定の単位時間中にコレクタ電極17に流れる平均電流は増加し、パルス電圧の周波数を低下させると上記平均電流は減少する。 The operation of the electron capture detector of the embodiment is as follows. When an inert gas such as N 2 is flowed as makeup gas from the gas inlet 13 through the makeup gas channel 15 to the detection chamber 12, the inert gas molecules are ionized by radiation (β rays) emitted from the radiation source 16. Then, electrons (free electrons) with low kinetic energy are emitted and become positive ions. As described above, since a positive pulse voltage is applied to the collector electrode 17, free electrons are taken in and a current flows through the collector electrode 17 only during the period in which this voltage is applied. Accordingly, when the frequency of the pulse voltage is increased, the average current flowing through the collector electrode 17 during a predetermined unit time longer than the pulse cycle increases, and when the frequency of the pulse voltage is decreased, the average current decreases.

前述のように放射線源16の量は従来に比べてかなり少ないため、イオン化される不活性ガス分子の数が少なく、不活性ガス分子から離脱する自由電子の数(密度)も少ない状態である。そのため、或る一定の電流がコレクタ電極17に流れるように該電極17に印加するパルス電圧の周波数を制御すると、その周波数は高くなる。   As described above, since the amount of the radiation source 16 is considerably smaller than the conventional one, the number of inert gas molecules to be ionized is small and the number (density) of free electrons leaving the inert gas molecules is also small. Therefore, when the frequency of the pulse voltage applied to the electrode 17 is controlled so that a certain constant current flows to the collector electrode 17, the frequency becomes higher.

この状態で、カラム14の出口端からガス導入口13を通して検出室12に検出対象物質である親電子性分子が導入されると、該分子は自由電子を吸収して負イオンとなり、その分だけ自由電子は減少する。上述のようにもともと相的的に自由電子の数が少なかった状態からさらに電子捕獲により自由電子の数が減るため、コレクタ電極17に印加するパルス電圧の周波数を一層高くしないと一定電流を確保することができない。もともと相的的に自由電子の数が少ないため、親電子性分子により捕獲される自由電子の数が少なくともその影響がパルス電圧の周波数の増加に顕著に反映される。それにより、従来よりも低濃度の親電子性分子を検出することが可能となる。   In this state, when an electrophilic molecule as a detection target substance is introduced from the outlet end of the column 14 into the detection chamber 12 through the gas inlet port 13, the molecule absorbs free electrons and becomes negative ions. Free electrons decrease. As described above, since the number of free electrons is further reduced due to electron capture from the state where the number of free electrons is relatively small, a constant current is secured unless the frequency of the pulse voltage applied to the collector electrode 17 is further increased. I can't. Since the number of free electrons is originally relatively small, at least the influence of the number of free electrons trapped by the electrophilic molecule is significantly reflected in the increase of the pulse voltage frequency. This makes it possible to detect electrophilic molecules at a lower concentration than in the past.

本実施例による電子捕獲型検出器と従来の検出器との感度の相違を、実測結果に基づき説明する。図2は、放射線源量が約90MBqである本実施例の電子捕獲型検出器と放射線源量が370MBqである従来の電子捕獲型検出器とについて、試料注入量と応答値との関係を実測した結果を示すグラフである。サンプルはγ−BHCである。   The difference in sensitivity between the electron capture detector according to this embodiment and the conventional detector will be described based on the actual measurement result. FIG. 2 shows an actual measurement of the relationship between the sample injection amount and the response value for the electron capture detector of the present embodiment having a radiation source amount of about 90 MBq and the conventional electron capture detector having a radiation source amount of 370 MBq. It is a graph which shows the result. The sample is γ-BHC.

この結果から分かるように、本実施例の電子捕獲型検出器では従来のものよりも10倍以上感度が高く、従来は検出ができなかった0.1pg以下の低濃度のサンプルでも検出が可能となっている。また、放射線源量を減らすと直線性(ダイナミックレンジ)が低下するものの、従来(放射線源量370MBq)は約10の濃度範囲で直線性が保証されているのに対し、本実施例(放射線源量90MBq)でも約10の濃度範囲で直線性が保証されており、実用上十分である。 As can be seen from this result, the electron capture detector of the present example is more than 10 times more sensitive than the conventional one, and it is possible to detect even a low-concentration sample of 0.1 pg or less that could not be detected conventionally. It has become. Although linearity (dynamic range) is reduced reducing the radiation source volume, whereas conventional (radiation source volume 370 MBq) is linear in the concentration range of about 104 is guaranteed, this embodiment (Radiation Even with a source amount of 90 MBq), linearity is guaranteed in a concentration range of about 10 3 , which is practically sufficient.

また、これらの実験結果から、放射線源量が本実施例の約1/4以下である20MBq未満になると、さらに1桁、直線性が低下するものと推測できる。つまり、直線性を保証できる濃度範囲が約10よりも狭くなることになり、この程度まで狭くなる検出器として実用的ではなくなる。従って、検出感度の向上を図るにしても、放射線源量の下限を20MBq程度に設定すべきである。 Also, from these experimental results, it can be inferred that the linearity is further reduced by an order of magnitude when the radiation source amount is less than 20 MBq, which is about ¼ or less of the present embodiment. That is, the concentration range that can guarantee the linearity will be becomes narrower than about 10 2, not practical as a narrower detector to this extent. Therefore, even if the detection sensitivity is improved, the lower limit of the radiation source amount should be set to about 20 MBq.

なお、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形、修正、追加を行っても本願特許請求の範囲に包含されることは当然である。   The above-described embodiment is an example of the present invention, and it is a matter of course that modifications, corrections, and additions may be appropriately made within the scope of the present invention, and included in the scope of the claims of the present application.

本発明の一実施例である電子捕獲型検出器の要部の構成図。The block diagram of the principal part of the electron capture type | mold detector which is one Example of this invention. 本実施例の電子捕獲型検出器と従来の電子捕獲型検出器とにおける試料注入量と応答値との関係を実測した結果を示すグラフ。The graph which shows the result of having actually measured the relationship between the sample injection amount in the electron capture type detector of a present Example, and the conventional electron capture type detector, and a response value.

符号の説明Explanation of symbols

11…検出セル
12…検出室
13…ガス導入口
14…カラム
15…メイクアップガス流路
16…放射線源
17…コレクタ電極
18…排気ガス流路
DESCRIPTION OF SYMBOLS 11 ... Detection cell 12 ... Detection chamber 13 ... Gas inlet 14 ... Column 15 ... Makeup gas flow path 16 ... Radiation source 17 ... Collector electrode 18 ... Exhaust gas flow path

Claims (1)

放射性同位元素である線源と電子捕獲用電極とを内部に有するとともに下部に検出対象の成分を含む試料ガスを導入するガス導入口を有する検出セルを具備し、該検出セルを負極、前記電子捕獲用電極を正極として両極間に電圧を印加し、前記線源から放射される放射線によって前記ガス導入口から前記検出セル内に導入された気体分子を電離して、それにより生じた電子に起因して電子捕獲用電極に流れる電流を検出する電子捕獲型検出器において、
前記線源の放射性同位体元素の量を20MBq以上100MBq未満の範囲に設定したことを特徴とする電子捕獲型検出器。
A detection cell having a radiation source that is a radioisotope and an electrode for electron capture inside, and a gas introduction port for introducing a sample gas containing a component to be detected at the bottom; Due to the electrons generated by applying a voltage between both electrodes with the capture electrode as the positive electrode, ionizing the gas molecules introduced into the detection cell from the gas inlet by the radiation emitted from the radiation source, and In the electron capture detector that detects the current flowing through the electron capture electrode,
An electron capture detector, wherein the amount of the radioisotope element of the radiation source is set in a range of 20 MBq or more and less than 100 MBq.
JP2007071890A 2007-03-20 2007-03-20 Electron capture detector Pending JP2008232783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071890A JP2008232783A (en) 2007-03-20 2007-03-20 Electron capture detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071890A JP2008232783A (en) 2007-03-20 2007-03-20 Electron capture detector

Publications (1)

Publication Number Publication Date
JP2008232783A true JP2008232783A (en) 2008-10-02

Family

ID=39905763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071890A Pending JP2008232783A (en) 2007-03-20 2007-03-20 Electron capture detector

Country Status (1)

Country Link
JP (1) JP2008232783A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2471179C1 (en) * 2011-09-09 2012-12-27 Общество с ограниченной ответственностью Научно-производственная фирма "ИНКРАМ" Ionisation gas detector and method for operation thereof
WO2014184947A1 (en) * 2013-05-17 2014-11-20 株式会社島津製作所 Electron capture detector
CN112326774A (en) * 2020-10-30 2021-02-05 四川赛康智能科技股份有限公司 High energy ray irradiation of SF6Ionization test method for gas
US11971394B2 (en) 2018-04-26 2024-04-30 Sharp Kabushiki Kaisha Electron capture detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215722A (en) * 1992-01-31 1993-08-24 Shimadzu Corp Electron capture type detector
JPH10111275A (en) * 1996-09-30 1998-04-28 Hewlett Packard Co <Hp> Electron capture type detector and operation thereof
JPH11153579A (en) * 1997-11-20 1999-06-08 Shimadzu Corp Electron capture detector
JP2000065799A (en) * 1998-08-25 2000-03-03 Shimadzu Corp Electron capturing type detector
JP2006131486A (en) * 2004-11-04 2006-05-25 Marukita Yogyo Kk Method for manufacturing basic ceramic material and its sintered body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215722A (en) * 1992-01-31 1993-08-24 Shimadzu Corp Electron capture type detector
JPH10111275A (en) * 1996-09-30 1998-04-28 Hewlett Packard Co <Hp> Electron capture type detector and operation thereof
JPH11153579A (en) * 1997-11-20 1999-06-08 Shimadzu Corp Electron capture detector
JP2000065799A (en) * 1998-08-25 2000-03-03 Shimadzu Corp Electron capturing type detector
JP2006131486A (en) * 2004-11-04 2006-05-25 Marukita Yogyo Kk Method for manufacturing basic ceramic material and its sintered body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2471179C1 (en) * 2011-09-09 2012-12-27 Общество с ограниченной ответственностью Научно-производственная фирма "ИНКРАМ" Ionisation gas detector and method for operation thereof
WO2014184947A1 (en) * 2013-05-17 2014-11-20 株式会社島津製作所 Electron capture detector
CN105229457A (en) * 2013-05-17 2016-01-06 株式会社岛津制作所 Electron capture detector
JP5962854B2 (en) * 2013-05-17 2016-08-03 株式会社島津製作所 Electron capture detector
US11971394B2 (en) 2018-04-26 2024-04-30 Sharp Kabushiki Kaisha Electron capture detector
CN112326774A (en) * 2020-10-30 2021-02-05 四川赛康智能科技股份有限公司 High energy ray irradiation of SF6Ionization test method for gas
CN112326774B (en) * 2020-10-30 2024-04-23 四川赛康智能科技股份有限公司 SF is irradiated by high-energy rays6Ionization test method for gas

Similar Documents

Publication Publication Date Title
Poole Ionization-based detectors for gas chromatography
KR101110358B1 (en) Method and test system for detecting harmful substances
Dane et al. Selective ionization of melamine in powdered milk by using argon direct analysis in real time (DART) mass spectrometry
JP2010133879A (en) Radiation measuring apparatus
JP2008232783A (en) Electron capture detector
CN201514403U (en) Helium photoionization gas chromatography detector
Vogt et al. Separation of metal ions by capillary electrophoresis–diversity, advantages, and drawbacks of detection methods
Elizalde-González et al. Stability and determination of aflatoxins by high-performance liquid chromatography with amperometric detection
KR100977031B1 (en) Measuring device of compounds using the photo-ionization detector
US9513257B2 (en) Discharge ionization current detector and method for aging treatment of the same
JP4156602B2 (en) Non-radiation electron capture detector
Andronic et al. Pulse height measurements and electron attachment in drift chambers operated with Xe, CO2 mixtures
JP2007524803A (en) Gas detector with module detection and discharge calibration
JP5614379B2 (en) Discharge ionization current detector and gas chromatograph apparatus
KR101285564B1 (en) Electron capture detector using auxillary gas
Yamane Photoionization detector for gas chromatography: I. Detection of inorganic gases
JP3984110B2 (en) Radiation detector
JP4571170B2 (en) Photocatalytic activity quantitative measurement apparatus and photocatalytic activity quantitative measurement method
JPS60209167A (en) Method and device for capturing and detecting electron
US8188442B2 (en) Non-radioactive electron capture detector for GC
Nomura et al. Fabrication and evaluation of a shielded ultramicroelectrode for submicrosecond electroanalytical chemistry
JP6142767B2 (en) Electron capture detector
RU94345U1 (en) GAS AND STEAM PHOTOIONIZATION DETECTOR
JPH04303759A (en) Electron capture detector
Tyssebotn et al. CE‐XRF–initial steps toward a non‐invasive elemental sensitive detector for liquid separations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090615

A977 Report on retrieval

Effective date: 20110526

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110607

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110721

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110721

A131 Notification of reasons for refusal

Effective date: 20110816

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213