JP2008232353A - Freezing adaptable valve - Google Patents

Freezing adaptable valve Download PDF

Info

Publication number
JP2008232353A
JP2008232353A JP2007075115A JP2007075115A JP2008232353A JP 2008232353 A JP2008232353 A JP 2008232353A JP 2007075115 A JP2007075115 A JP 2007075115A JP 2007075115 A JP2007075115 A JP 2007075115A JP 2008232353 A JP2008232353 A JP 2008232353A
Authority
JP
Japan
Prior art keywords
valve
freezing
elastic body
seat portion
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007075115A
Other languages
Japanese (ja)
Other versions
JP4838182B2 (en
Inventor
Keisuke Wakabayashi
計介 若林
Akihiro Sakakida
明宏 榊田
Shinichiro Takemoto
真一郎 竹本
Tsutomu Yamazaki
努 山崎
Hisashi Niioka
久 新岡
Kazuhiko Osawa
一彦 大澤
Ichiro Ogawara
一郎 大河原
Takehisa Yokota
健久 横田
Tomoyuki Ueno
知之 上野
Mitsuo Sugita
三男 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Saginomiya Seisakusho Inc
Original Assignee
Nissan Motor Co Ltd
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Saginomiya Seisakusho Inc filed Critical Nissan Motor Co Ltd
Priority to JP2007075115A priority Critical patent/JP4838182B2/en
Publication of JP2008232353A publication Critical patent/JP2008232353A/en
Application granted granted Critical
Publication of JP4838182B2 publication Critical patent/JP4838182B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Lift Valve (AREA)
  • Safety Valves (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a freezing adaptable valve whose breakage can be prevented by avoiding pressure rise when water in a valve chamber is frozen, without complicating the construction of the valve. <P>SOLUTION: The freezing adaptable valve 1 comprises a housing 4 having the valve chamber 2 and a valve seat portion 3 inside, a valve element body 6 having an elastic body 5 at the front end for abutting on/separating from the valve seat portion 3, and an actuator 7 for driving the valve element body 6. When water in the valve chamber 2 is frozen in a valve closed condition, part of the elastic body 5 is moved from the valve seat portion 3 to the downstream side to reduce pressure due to volume expansion when the water is frozen. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、凍結時に体積が膨張する水を開閉可能な凍結対応バルブに関する。   The present invention relates to a freeze-capable valve capable of opening and closing water whose volume expands when frozen.

燃料電池システムを搭載した燃料電池自動車は、冬季に氷結の可能性がある。特に、固体高分子型燃料電池では、燃料ガスや酸化剤ガスに加湿するための加湿用水や燃料電池の冷却水に純水を使用している。このような水の流路には、流量調整用または開閉用のバルブが用いられている。従来のバルブは、内部の水が凍結しても破損しないようにリリーフ弁を設け、凍結による内部圧力上昇時にリリーフ弁が開いて内部圧力を逃がすように構成されていた(例えば、特許文献1)。
実公昭58−45344号公報
A fuel cell vehicle equipped with a fuel cell system may freeze in winter. In particular, in a polymer electrolyte fuel cell, pure water is used as humidification water for humidifying fuel gas and oxidant gas and as cooling water for the fuel cell. In such a water flow path, a flow rate adjusting or opening / closing valve is used. The conventional valve is provided with a relief valve so that the internal water is not damaged even if the internal water is frozen, and is configured to open the relief valve and release the internal pressure when the internal pressure rises due to freezing (for example, Patent Document 1). .
Japanese Utility Model Publication No. 58-45344

しかしながら、上記従来のバルブ構造では、主流路を開閉する弁体本体以外にリリーフ弁が必要となり、バルブの構造が複雑となると共にバルブの体積が増加するという問題点があった。   However, the conventional valve structure has a problem in that a relief valve is required in addition to the valve body main body that opens and closes the main flow path, which complicates the valve structure and increases the volume of the valve.

また、弁体本体とリリーフ弁との間に凍結が先に起きてしまうと、そこから下流側の水が凍結した場合の体積膨張による圧力上昇は逃がすことができるが、その上流側の水が凍結した場合の体積膨張による圧力上昇は逃がすことができない。このため圧力上昇による応力にバルブ本体が耐えられず、破損する虞があるという問題点があった。   In addition, if freezing occurs between the valve body and the relief valve first, the pressure increase due to volume expansion when the water on the downstream side is frozen can be released, but the water on the upstream side The increase in pressure due to volume expansion when frozen cannot be released. For this reason, there was a problem that the valve body could not withstand the stress caused by the pressure rise and could be damaged.

上記問題点を解決するために本発明は、内部に弁室及び弁座部を備えるハウジングと、前記弁座部に当接・離間する弾性体を先端部に有する弁体本体と、前記弁体本体を駆動するアクチュエータと、を備えた凍結対応バルブであって、閉弁状態で弁室内の水が凍結すると、前記弾性体の一部が前記弁座部から下流側へ移動することを要旨とする。   In order to solve the above-described problems, the present invention includes a housing having a valve chamber and a valve seat portion therein, a valve body body having an elastic body at the tip portion that contacts and separates from the valve seat portion, and the valve body. A freezing-compatible valve having an actuator for driving the main body, wherein when the water in the valve chamber is frozen in a closed state, a part of the elastic body moves downstream from the valve seat portion. To do.

本発明によれば、内部に弁室及び弁座部を備えるハウジングと、前記弁座部に当接・離間する弾性体を先端部に有する弁体本体と、前記弁体本体を駆動するアクチュエータと、を備えた凍結対応バルブにおいて、閉弁状態で弁室内の水が凍結すると、前記弾性体の一部が前記弁座部から下流側へ移動するようにしたので、水凍結時の体積膨張による圧力上昇を逃がすことができ、構造を複雑にすることなく、凍結に対応したバルブを提供することができるという効果がある。   According to the present invention, a housing having a valve chamber and a valve seat portion therein, a valve body main body having an elastic body in contact with and separating from the valve seat portion at a tip portion, and an actuator for driving the valve body main body, When the water in the valve chamber freezes in the closed state, the elastic body moves partly from the valve seat portion to the downstream side. There is an effect that a rise in pressure can be released and a valve corresponding to freezing can be provided without complicating the structure.

次に、図面を参照して本発明の実施の形態を詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る凍結対応バルブの実施例1を説明する概略断面図である。図1において、凍結対応バルブ1は、内部に弁室2及び弁座部3を備えるハウジング4と、弁座部3に当接・離間する弾性体5を先端部に有する弁体本体6と、弁体本体6を駆動するアクチュエータ7と、を備えた凍結対応バルブである。そして、閉弁状態で弁室2内の水が凍結すると、弾性体5の一部が弁座部3から下流側へ移動することを特徴とする。   FIG. 1 is a schematic cross-sectional view for explaining a first embodiment of a freeze handling valve according to the present invention. In FIG. 1, a freezing valve 1 includes a housing 4 having a valve chamber 2 and a valve seat portion 3 therein, a valve body main body 6 having an elastic body 5 in contact with and separating from the valve seat portion 3 at a tip portion, This is a freezing valve having an actuator 7 that drives the valve body 6. And when the water in the valve chamber 2 freezes in the valve-closed state, a part of the elastic body 5 moves from the valve seat portion 3 to the downstream side.

弁体本体6を駆動するアクチュエータ7は、例えば、軟磁性体のプランジャ8、図示しない電磁石コイル、プランジャ8を電磁石コイルの吸引方向と逆方向に付勢するコイルばねからなる。このプランジャ8に弁体本体6が接続されて、図中上下方向に弁体本体6が駆動されるようになっている。   The actuator 7 that drives the valve body 6 includes, for example, a soft magnetic plunger 8, an electromagnetic coil (not shown), and a coil spring that urges the plunger 8 in a direction opposite to the attracting direction of the electromagnetic coil. The valve body 6 is connected to the plunger 8 so that the valve body 6 is driven in the vertical direction in the figure.

ハウジング4及び弁体本体6は、例えばステンレススチール等の耐食性金属で形成される。弁体本体6の先端部に設けられた弾性体5は、例えば、ゴム、弾性プラスチック等からなる。   The housing 4 and the valve body 6 are made of a corrosion-resistant metal such as stainless steel. The elastic body 5 provided at the tip of the valve body 6 is made of rubber, elastic plastic, or the like, for example.

この凍結対応バルブ1は、水通路に配置され、内部に水が残留した状態で氷点下になって凍結したとしても、水から氷へ相変化する際の体積膨張による圧力上昇を弾性体5の移動により緩和できるようになっている。また、凍結対応バルブ1が不凍液中で使用され、弁室2側の圧力が上昇した場合でも同様に圧力を緩和することができる。   This freezing valve 1 is disposed in the water passage, and even if the freezing point is below freezing with water remaining inside, the pressure increase due to volume expansion at the time of phase change from water to ice is caused to move the elastic body 5. Can be relaxed. Further, even when the freezing-compatible valve 1 is used in the antifreeze liquid and the pressure on the valve chamber 2 side increases, the pressure can be similarly reduced.

図2は、本実施例の凍結対応バルブ1の弁座部3付近の様子を説明する要部断面図であり、(a)通常時(非凍結時)と、(b)凍結時とのそれぞれの状態を示す。図2(a)に示すように、通常閉弁時には、アクチュエータ7の図示しないコイルばねがプランジャ8を押下することにより、弾性体5の下面が弁座部3に当接している。   FIG. 2 is a cross-sectional view of the main part for explaining the state of the vicinity of the valve seat portion 3 of the freezing-compatible valve 1 of the present embodiment. (A) Normal time (non-freezing time) and (b) Freezing time respectively. Shows the state. As shown in FIG. 2A, when the valve is normally closed, a coil spring (not shown) of the actuator 7 presses the plunger 8 so that the lower surface of the elastic body 5 is in contact with the valve seat portion 3.

ところで、0℃の水が凍結して氷になると、約8.7%体積が膨張する。ハウジング4の流体入口である流入路10の上流が凍結した状態で、凍結対応バルブ1内の弁室2内の水が凍結した場合、密閉された空間内で体積膨張しようとするために圧力が上昇する。その際、弁体本体6の先端部に設けられた弾性体5が弁座部3に押しつけられ、弾性体5が圧縮変形する。弾性体5は、弁座部3に対して上流側である弁室2から下流側の流出路9にまたがって配置されているため、弾性体5が上流側で圧縮変形すると、変形の歪みが弾性体5を順次伝わって、最終的には、弁座部3の下流である大気開放されている流出路9へ突出することになる。上流側の圧縮変形可能な体積を移動可能体積11とする。体積移動後の弁座部3のシート面より下流に突出した体積を移動後体積12とする。   By the way, when water at 0 ° C. freezes and becomes ice, the volume expands by about 8.7%. When water in the valve chamber 2 in the freezing-compatible valve 1 is frozen in a state where the upstream of the inflow passage 10 that is a fluid inlet of the housing 4 is frozen, the pressure is increased in order to expand the volume in the sealed space. To rise. At that time, the elastic body 5 provided at the tip of the valve body 6 is pressed against the valve seat portion 3 and the elastic body 5 is compressed and deformed. Since the elastic body 5 is disposed across the downstream outflow passage 9 from the valve chamber 2 on the upstream side with respect to the valve seat portion 3, if the elastic body 5 is compressed and deformed on the upstream side, deformation of the deformation is caused. The elastic body 5 is sequentially transmitted and finally protrudes to the outflow passage 9 that is open to the atmosphere downstream of the valve seat portion 3. The upstream compressible volume is defined as a movable volume 11. The volume protruding downstream from the seat surface of the valve seat portion 3 after the volume movement is defined as a volume 12 after movement.

この移動可能体積11は、弁室2の内部における水の凍結による体積膨張を許容することになる。ここで、移動可能体積11は、弁室2内の水凍結時の膨張体積以上であれば、その体積膨張を許容して凍結対応バルブが破損することがない。   This movable volume 11 allows volume expansion due to freezing of water inside the valve chamber 2. Here, if the movable volume 11 is equal to or larger than the expansion volume at the time of water freezing in the valve chamber 2, the volume expansion is allowed and the freezing valve is not damaged.

図3(a)は、弁座部3を弁体本体6へ向かって徐々に細くなるテーパ形状31とした例を示す要部断面図である。弁室2の水凍結により弾性体5が圧縮変形する際に、弁座部3と弾性体5との接触面の面圧は、図3(a)のテーパ形状31の方が図3(b)のストレート形状32より低下し、弾性体5の一部が弁座部3から下流側へ移動する際の応力を低下させることができる。弁座部3がストレート形状32の場合には、弾性体5と弁座部3との接触面積が小さいために、水凍結時の体積膨張時に、弾性体5が弁座部3に押しつけられる際の面圧が上がり、弾性体5が弁座部3の上流側から下流側へ体積移動する前に破断してしまう虞がある。しかし、弁座部3がテーパ形状31の場合には、弾性体5と弁座部3との接触面積が比較的大きくなるために、水凍結時の体積膨張時に、弾性体5が弁座部3に押しつけられる際の面圧が低下し、弾性体5が弁座部3の上流側から下流側へ体積移動する際に破断することが無くなる。   FIG. 3A is a cross-sectional view of the main part showing an example in which the valve seat portion 3 has a tapered shape 31 that gradually narrows toward the valve body 6. When the elastic body 5 is compressed and deformed due to water freezing of the valve chamber 2, the contact pressure between the valve seat portion 3 and the elastic body 5 is as shown in FIG. ) And the stress when a part of the elastic body 5 moves downstream from the valve seat portion 3 can be reduced. When the valve seat portion 3 has a straight shape 32, the contact area between the elastic body 5 and the valve seat portion 3 is small, and therefore, when the elastic body 5 is pressed against the valve seat portion 3 during volume expansion during water freezing. The surface pressure of the elastic body 5 may increase, and the elastic body 5 may be broken before moving from the upstream side to the downstream side of the valve seat portion 3. However, when the valve seat part 3 has the tapered shape 31, the contact area between the elastic body 5 and the valve seat part 3 becomes relatively large. The surface pressure at the time of being pressed against 3 decreases, and the elastic body 5 does not break when the volume of the elastic body 5 moves from the upstream side to the downstream side of the valve seat portion 3.

次に、弾性体5の硬さ(硬度)について説明する。弾性体5の硬度は低いほど、容易に弁座部3の上流側が圧縮されて下流側が膨張し体積移動することができる。しかしながら、弾性体5の硬度が低いとバルブとしての作動耐久性が低下するので、一定以上の硬度が必要となる。図4は、バルブの作動耐久回数と、弾性体の硬度との関係を示す図である。この関係は、種々の硬度の弾性体を制作して、凍結対応バルブに組み込み、凍結解凍のサイクル試験を行って、硬度毎に作動耐久回数を実験的に求めたものである。その結果は図4に示すように、硬度が比較的低い場合には、硬度と作動耐久回数が比例するが、有る硬度を超えると、硬度の増加に対する作動耐久回数の増加比率が増加する。   Next, the hardness (hardness) of the elastic body 5 will be described. As the hardness of the elastic body 5 is lower, the upstream side of the valve seat portion 3 is easily compressed and the downstream side is expanded and can move in volume. However, if the hardness of the elastic body 5 is low, the durability of the operation as a valve is lowered. FIG. 4 is a diagram showing a relationship between the number of times of operation durability of the valve and the hardness of the elastic body. This relationship is obtained by producing elastic bodies of various hardnesses, incorporating them into freeze-fitting valves, performing a freeze / thaw cycle test, and experimentally determining the number of operating durability for each hardness. As a result, as shown in FIG. 4, when the hardness is relatively low, the hardness is proportional to the number of operating durability, but when the hardness exceeds a certain hardness, the increasing ratio of the operating durability to the increase in hardness increases.

図4から、凍結対応バルブの寿命までの目標作動回数に対して、弾性体としての下限硬度が求まる。弾性体の硬度がこの下限硬度以上である弾性体の材料を選択すれば、凍結対応バルブは、目標作動回数に達しても正常な作動が期待できる。   From FIG. 4, the lower limit hardness as an elastic body is obtained with respect to the target number of operations until the lifetime of the freezing valve. If an elastic material whose hardness is equal to or greater than the lower limit hardness is selected, the freeze-corresponding valve can be expected to operate normally even if the target number of operations is reached.

図5は、弾性体の伸びと、そのときに弾性体に加えられている応力との関係を示す図である。図5において、同じ応力が弾性体に加えられた場合、材料Aの方が材料Bよりも伸びが大きい。そして、材料Aを弾性体5として用いた凍結対応バルブに耐圧限度の圧力がかかったときの応力に対応する伸びが、凍結時に弁座部上流から下流へ弾性体が移動する際の伸び域(伸び率の範囲)に入っていれば、弾性体の移動可能体積が弁座部上流から弁座部下流へ移動して、バルブは破損することがない。しかし材料Bを弾性体として使用した場合には、耐圧限度の圧力がかかったときの応力に対応する伸びによる弾性体の体積移動が水凍結時の体積膨張より少なく、バルブが破損する虞がある。   FIG. 5 is a diagram showing the relationship between the elongation of the elastic body and the stress applied to the elastic body at that time. In FIG. 5, when the same stress is applied to the elastic body, the material A has a larger elongation than the material B. And the elongation corresponding to the stress when the pressure of the pressure limit is applied to the freezing-compatible valve using the material A as the elastic body 5 is the elongation region when the elastic body moves from the valve seat upstream to the downstream during freezing ( If it falls within the range of the elongation rate), the movable volume of the elastic body moves from the valve seat portion upstream to the valve seat portion downstream, and the valve is not damaged. However, when the material B is used as an elastic body, the volume movement of the elastic body due to the elongation corresponding to the stress when the pressure of the pressure limit is applied is less than the volume expansion at the time of water freezing, and the valve may be damaged. .

次に、実施例1の変形例を説明する。図6は、弾性体5の形状を弁座部3に向かって徐々に細くなるテーパ形状51とした変形例を示す要部断面図である。その他の構成は、実施例1と同様であるので、同じ構成要素には同じ符号を付与して重複する説明を省略する。本変形例によれば、弾性体5を弁座部3に向かって徐々に細くなるテーパ形状51とすることで、弁座部3より上流側の移動可能体積11が圧縮変形される際に、弾性体5の一部が容易に弁座部3から下流側へ移動することができるという効果がある。   Next, a modification of the first embodiment will be described. FIG. 6 is a cross-sectional view of an essential part showing a modified example in which the shape of the elastic body 5 is a tapered shape 51 that gradually decreases toward the valve seat portion 3. Since other configurations are the same as those of the first embodiment, the same components are denoted by the same reference numerals, and redundant description is omitted. According to this modification, by making the elastic body 5 into a tapered shape 51 that gradually narrows toward the valve seat portion 3, when the movable volume 11 upstream from the valve seat portion 3 is compressed and deformed, There exists an effect that a part of elastic body 5 can move to the downstream side from the valve seat part 3 easily.

図7は、本発明に係る凍結対応バルブの実施例2を説明する概略断面図である。本実施例と実施例1との相違は、本実施例において、弾性体5の付近の弁体本体の熱伝導率、または弾性体付近のハウジングの熱伝導率をそれぞれ他の部位の熱伝導率よりも低下させた点にある。   FIG. 7 is a schematic cross-sectional view for explaining a second embodiment of the freezing-compatible valve according to the present invention. The difference between the present embodiment and the first embodiment is that in this embodiment, the thermal conductivity of the valve body in the vicinity of the elastic body 5 or the thermal conductivity of the housing in the vicinity of the elastic body is different from the thermal conductivity of other parts. It is in the point which lowered more.

本実施例では、弁体本体6の下部の表面に樹脂コート層13、ハウジング4の下部の内面に樹脂コート層14をそれぞれ設けることにより、弾性体5付近の弁体本体6または弾性体5付近のハウジング4の熱伝導率を他の部位よりも低下させている。その他の構成は、実施例1と同様であるので、同じ構成要素には同じ符号を付与して重複する説明を省略する。樹脂コート層13、14に用いる樹脂は、例えば、フッ素樹脂やエポキシ樹脂である。   In this embodiment, a resin coat layer 13 is provided on the lower surface of the valve body 6 and a resin coat layer 14 is provided on the inner surface of the lower portion of the housing 4 so that the valve body 6 near the elastic body 5 or the vicinity of the elastic body 5 is provided. The thermal conductivity of the housing 4 is lowered as compared with other parts. Since other configurations are the same as those of the first embodiment, the same components are denoted by the same reference numerals, and redundant description is omitted. The resin used for the resin coat layers 13 and 14 is, for example, a fluororesin or an epoxy resin.

これらの樹脂は、ハウジング4や弁体本体6を構成するステンレススチール等の耐食性金属よりも熱伝導率が低いことが知られている。このような樹脂コート層を設けることにより、本実施例の凍結対応バルブが氷点下に放置された場合、弁室2内の水は、樹脂コート層がない上方から凍り始め、熱伝導率の低い樹脂コート層13、14が設けられた弾性体5付近の水の凍結が最も遅くなる。従って、本実施例2によれば、弁室2内の水凍結時の体積膨張を弾性体の変形移動により確実に許容して、凍結対応バルブの信頼性を更に高めることができる。尚、本実施例の変形例として、樹脂コート層を設ける代わりに、図7において弁体本体6の下部及びハウジング4の下部をそれぞれ他の部位の耐食性金属よりも熱伝導率の低いエンジニアリングプラスチック等の樹脂製とし、図7において樹脂コートを施していない部位を耐食性金属製とした接続構造により、同様な熱伝導率の変化をつけることもできる。   These resins are known to have a lower thermal conductivity than a corrosion-resistant metal such as stainless steel constituting the housing 4 or the valve body 6. By providing such a resin coating layer, when the freezing-compatible valve of this embodiment is left below freezing point, the water in the valve chamber 2 begins to freeze from above without the resin coating layer, and the resin having low thermal conductivity. Freezing of water in the vicinity of the elastic body 5 provided with the coat layers 13 and 14 becomes the slowest. Therefore, according to the second embodiment, the volume expansion at the time of water freezing in the valve chamber 2 can be reliably allowed by the deformation movement of the elastic body, and the reliability of the freezing-compatible valve can be further enhanced. As a modification of the present embodiment, instead of providing a resin coat layer, in FIG. 7, the lower part of the valve body 6 and the lower part of the housing 4 are engineering plastics having lower thermal conductivity than the corrosion-resistant metal in other parts, respectively. A similar change in thermal conductivity can be provided by a connection structure in which the portion made of the above resin and the portion not applied with the resin coat in FIG. 7 is made of a corrosion-resistant metal.

図8(a)は、本発明に係る凍結対応バルブの実施例3を説明する概略断面図、(b)は、(a)におけるA−A矢視図である。本実施例と実施例1との相違は、本実施例において、弁座部3の周囲に弁体本体6のハウジング4に対する移動量を規制するストッパー15を備えた点にある。その他の構成は、実施例1と同様であるので、同じ構成要素には同じ符号を付与して重複する説明を省略する。ストッパー15は、弁体本体6の移動量を規制するとともに、弁座部3への流体の流入を妨げないように、弁座部3の周囲を一周するように連続的に設けるのではなく、離散的に配置されている。   FIG. 8A is a schematic cross-sectional view for explaining a third embodiment of the freezing-compatible valve according to the present invention, and FIG. 8B is a view taken along the line AA in FIG. The difference between the present embodiment and the first embodiment is that, in the present embodiment, a stopper 15 that regulates the amount of movement of the valve body main body 6 relative to the housing 4 is provided around the valve seat portion 3. Since other configurations are the same as those of the first embodiment, the same components are denoted by the same reference numerals, and redundant description is omitted. The stopper 15 is not provided continuously so as to restrict the amount of movement of the valve body 6 and to make a round around the valve seat 3 so as not to prevent the flow of fluid into the valve seat 3. Discretely arranged.

本実施例では、図9(a)に示す通常の閉弁状態から、凍結対応バルブが氷点下に放置された場合、弁室2内の水が凍結して膨張し、弁室2の内部圧力が上昇して弾性体5が圧縮変形して弁体本体6が下方に押し下げられるとともに、弾性体5が圧縮変形する。このときに、図9(b)に示すように弁体本体6がストッパー15に当接して、移動量が規制される。弁体本体6がストッパー15に当接した後には、弁室2の内部圧力が更に上昇しようとしても、弁体本体6がストッパー15により受け止められ、弾性体5と弁座部3との接触面の面圧は、更に上昇することはない。さらに凍結が進んで弁室2の内部の氷の量が増加したとしても、弁室2の内部圧力は更に上昇することなく、面圧が規制された弾性体5と弁座部3との間に隙間ができて、弁室2の内部の水が流出路9へ流出し、そこで凍結する。   In this embodiment, when the freezing-compatible valve is left below the freezing point from the normal closed state shown in FIG. 9A, the water in the valve chamber 2 freezes and expands, and the internal pressure in the valve chamber 2 is increased. The elastic body 5 is compressed and deformed, the valve body 6 is pushed downward, and the elastic body 5 is compressed and deformed. At this time, as shown in FIG.9 (b), the valve body main body 6 contact | abuts to the stopper 15, and the movement amount is controlled. After the valve body 6 comes into contact with the stopper 15, the valve body 6 is received by the stopper 15 even if the internal pressure of the valve chamber 2 further increases, and the contact surface between the elastic body 5 and the valve seat 3. The surface pressure does not increase further. Even if freezing progresses and the amount of ice inside the valve chamber 2 increases, the internal pressure of the valve chamber 2 does not further increase, and the surface pressure between the elastic body 5 and the valve seat portion 3 is regulated. The water inside the valve chamber 2 flows out to the outflow passage 9 and freezes there.

以上説明した本実施例によれば、弁体本体6のハウジング4に対する移動量を規制するストッパー15を備えたので、弁室2内の水凍結時に、弾性体5と弁座部3との面圧が規制され、弁室内の水凍結による体積膨張による圧力を弾性体と弁座部との間から排出させることができ、凍結時の圧力上昇を低減させることができるという効果がある。   According to the present embodiment described above, since the stopper 15 that regulates the amount of movement of the valve body 6 relative to the housing 4 is provided, the surface of the elastic body 5 and the valve seat portion 3 when the water in the valve chamber 2 is frozen. The pressure is regulated, and the pressure due to the volume expansion due to water freezing in the valve chamber can be discharged from between the elastic body and the valve seat portion, so that an increase in pressure during freezing can be reduced.

本発明に係る凍結対応バルブの実施例1を説明する概略断面図である。It is a schematic sectional drawing explaining Example 1 of the freeze corresponding | compatible valve | bulb which concerns on this invention. 実施例1における弾性体の体積移動を説明する要部断面図である。FIG. 4 is a cross-sectional view of a main part for explaining volume movement of an elastic body in Example 1. 実施例1における弁座部の詳細形状を説明する要部断面図である。It is principal part sectional drawing explaining the detailed shape of the valve seat part in Example 1. FIG. 凍結対応バルブの作動耐久回数と弾性体の硬度との関係を説明する図である。It is a figure explaining the relationship between the number of times of operation endurance of a freeze correspondence valve, and the hardness of an elastic body. 弾性体の伸び率と応力との関係を説明する図である。It is a figure explaining the relationship between the elongation rate of an elastic body, and stress. 弾性体の詳細形状を説明する要部断面図である。It is principal part sectional drawing explaining the detailed shape of an elastic body. 本発明に係る凍結対応バルブの実施例2を説明する概略断面図である。It is a schematic sectional drawing explaining Example 2 of the freeze corresponding | compatible valve | bulb which concerns on this invention. (a)本発明に係る凍結対応バルブの実施例3を説明する概略断面図、(b)弁座部及びストッパーを説明するA矢視図である。(A) It is a schematic sectional drawing explaining Example 3 of the freeze corresponding | compatible valve concerning this invention, (b) It is A arrow directional view explaining a valve seat part and a stopper. (a)実施例3における通常時(非凍結時)、(b)凍結途中時、(c)凍結終了時の様子を説明する要部断面図である。(A) It is principal part sectional drawing explaining the mode at the time of the normal time in Example 3 (at the time of non-freezing), (b) in the middle of freezing, and (c) completion | finish of freezing.

符号の説明Explanation of symbols

1 凍結対応バルブ
2 弁室
3 弁座部
4 ハウジング
5 弾性体
6 弁体本体
7 アクチュエータ
8 プランジャ
9 流出路
10 流入路
DESCRIPTION OF SYMBOLS 1 Freezing corresponding valve 2 Valve chamber 3 Valve seat part 4 Housing 5 Elastic body 6 Valve body 7 Actuator 8 Plunger 9 Outflow path 10 Inflow path

Claims (9)

内部に弁室及び弁座部を備えるハウジングと、
前記弁座部に当接・離間する弾性体を先端部に有する弁体本体と、
前記弁体本体を駆動するアクチュエータと、を備えた凍結対応バルブであって、
閉弁状態で弁室内の水が凍結すると、前記弾性体の一部が前記弁座部から下流側へ移動することを特徴とする凍結対応バルブ。
A housing provided with a valve chamber and a valve seat inside,
A valve body main body having an elastic body in contact with and separating from the valve seat at the tip;
An anti-freezing valve comprising an actuator for driving the valve body,
When the water in the valve chamber is frozen in the valve-closed state, a part of the elastic body moves downstream from the valve seat portion.
前記弁座部は、前記弁体本体方向へ向かって徐々に外周部が細くなるテーパ状に形成されていることを特徴とする請求項1に記載の凍結対応バルブ。   The freezing-compatible valve according to claim 1, wherein the valve seat portion is formed in a tapered shape in which an outer peripheral portion gradually becomes thinner toward the valve body main body. 前記弾性体の一部が前記弁座部から下流側へ移動する場合の移動可能体積は、前記弁室内の水が凍結膨張して増加する体積以上であることを特徴とする請求項1に記載の凍結対応バルブ。   2. The movable volume when a part of the elastic body moves downstream from the valve seat portion is equal to or larger than a volume that is increased by freezing and expanding water in the valve chamber. Freezing compatible valve. 前記弾性体は、前記弁体本体よりも前記弁座部側へ突出していることを特徴とする請求項1に記載の凍結対応バルブ。   The freezing-compatible valve according to claim 1, wherein the elastic body protrudes from the valve body body toward the valve seat portion. 前記弾性体は、先端部が前記弁座部へ向かって徐々に細くなるテーパ状に形成されていることを特徴とする請求項1に記載の凍結対応バルブ。   The freezing-compatible valve according to claim 1, wherein the elastic body is formed in a tapered shape with a tip portion gradually becoming narrower toward the valve seat portion. 前記弾性体の硬度は、非凍結時にバルブとして最低限の密閉性を確保できる硬度であることを特徴とする請求項1に記載の凍結対応バルブ。   The freezing valve according to claim 1, wherein the elastic body has a hardness capable of ensuring a minimum sealing property as a valve when not frozen. 前記弾性体は、閉弁状態でバルブ耐圧より低い圧力が前記弁室に加えられたときに、前記弾性体の一部が前記弁座部から下流側へ移動する歪みを生じるような応力歪特性を有することを特徴とする請求項1に記載の凍結対応バルブ。   The elastic body has a stress-strain characteristic such that when a pressure lower than a valve pressure resistance is applied to the valve chamber in a valve-closed state, a part of the elastic body is distorted to move downstream from the valve seat portion. The freezing-compatible valve according to claim 1, comprising: 前記弾性体付近の前記弁体本体、または前記弾性体付近の前記ハウジングの熱伝導率は、それぞれ他の部位の熱伝導率よりも小さいことを特徴とする請求項1に記載の凍結対応バルブ。   The freezing valve according to claim 1, wherein the thermal conductivity of the valve body main body in the vicinity of the elastic body or the housing in the vicinity of the elastic body is smaller than the thermal conductivity of other portions. 前記弁座部の周囲に、前記弁体本体の前記ハウジングに対する移動量を規制するストッパーを備えたことを特徴とする請求項1に記載の凍結対応バルブ。   The freezing-compatible valve according to claim 1, further comprising a stopper that regulates a movement amount of the valve body with respect to the housing around the valve seat portion.
JP2007075115A 2007-03-22 2007-03-22 Freezing valve Expired - Fee Related JP4838182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075115A JP4838182B2 (en) 2007-03-22 2007-03-22 Freezing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075115A JP4838182B2 (en) 2007-03-22 2007-03-22 Freezing valve

Publications (2)

Publication Number Publication Date
JP2008232353A true JP2008232353A (en) 2008-10-02
JP4838182B2 JP4838182B2 (en) 2011-12-14

Family

ID=39905395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075115A Expired - Fee Related JP4838182B2 (en) 2007-03-22 2007-03-22 Freezing valve

Country Status (1)

Country Link
JP (1) JP4838182B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202521A (en) * 2011-03-28 2012-10-22 Kyb Co Ltd Differential pressure valve and air spring type suspension
JP2019066111A (en) * 2017-10-02 2019-04-25 株式会社パロマ Shut-out valve and bath water heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223541A (en) * 1984-04-19 1985-11-08 株式会社 エコ− Roll packing with freeze preventing device in spigot
JPS63131856A (en) * 1986-11-19 1988-06-03 Nippon Carbureter Co Ltd Carburettor
JP2004162878A (en) * 2002-11-15 2004-06-10 Honda Motor Co Ltd Sheet structure for valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223541A (en) * 1984-04-19 1985-11-08 株式会社 エコ− Roll packing with freeze preventing device in spigot
JPS63131856A (en) * 1986-11-19 1988-06-03 Nippon Carbureter Co Ltd Carburettor
JP2004162878A (en) * 2002-11-15 2004-06-10 Honda Motor Co Ltd Sheet structure for valve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012202521A (en) * 2011-03-28 2012-10-22 Kyb Co Ltd Differential pressure valve and air spring type suspension
JP2019066111A (en) * 2017-10-02 2019-04-25 株式会社パロマ Shut-out valve and bath water heater
JP7040749B2 (en) 2017-10-02 2022-03-23 株式会社パロマ Edge valve and bath water heater

Also Published As

Publication number Publication date
JP4838182B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
KR100909454B1 (en) On / off valve device for fluid
KR102237872B1 (en) Diaphragm valve with dual point seal and floating diaphragm web
EP2072871A2 (en) Check valve
SE1150976A1 (en) Actuator
JP4838182B2 (en) Freezing valve
JP6872643B2 (en) Gas pressure limiting valve with an annular gap sheet for controlling and discharging gaseous media
JP2006242327A (en) Valve structure, frozen condition determining device, frozen condition predicting device, and valve controller
JP6963636B2 (en) Gas pressure limiting valve for controlling and discharging gaseous media
CN104405933B (en) A kind of low temperature Double-disc type check valve based on memory alloy elastic element
JP4784705B2 (en) High pressure fluid supply device
GB2472750A (en) Dual-acting multi-actuation mode gate valve
JP4519770B2 (en) Fluid control valve
CN102840345B (en) Can freeze and be with the anode valve in slide plate aperture of encapsulation
KR100764694B1 (en) A check valve of fuel supply system for high pressure gas vehicles
CN107314141B (en) Straight-through valve and method for controlling water pressure by same
JP5510551B2 (en) Stop valve, fuel cell system
JP4108063B2 (en) Pilot valve
CN104696582A (en) Water switch and air-conditioner with water switch
CN113063001A (en) Multifunctional low-pressure integrated valve and control method thereof
JP7492233B2 (en) solenoid valve
KR101059796B1 (en) Rocket Propellant Flow Control
JP2008121289A (en) Water supply system
CN103148230A (en) Automatic pressure release structure for double disk parallel gate valve
CN204533776U (en) Water switch and the air conditioner with it
CN204459328U (en) Safety valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees