JP2008232202A - Piezoelectric valve - Google Patents

Piezoelectric valve Download PDF

Info

Publication number
JP2008232202A
JP2008232202A JP2007069919A JP2007069919A JP2008232202A JP 2008232202 A JP2008232202 A JP 2008232202A JP 2007069919 A JP2007069919 A JP 2007069919A JP 2007069919 A JP2007069919 A JP 2007069919A JP 2008232202 A JP2008232202 A JP 2008232202A
Authority
JP
Japan
Prior art keywords
fluid
piezoelectric
side path
operating body
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007069919A
Other languages
Japanese (ja)
Other versions
JP5003224B2 (en
Inventor
Shuichi Narukawa
修一 成川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP2007069919A priority Critical patent/JP5003224B2/en
Publication of JP2008232202A publication Critical patent/JP2008232202A/en
Application granted granted Critical
Publication of JP5003224B2 publication Critical patent/JP5003224B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric valve capable of properly operating even if a flow rate of supply fluid is high or a pressure of the supply fluid is high and capable of preventing a fluid supply part for supplying the fluid to outside from becoming negative pressure. <P>SOLUTION: The piezoelectric valve is provided with a fluid accept part, a fluid discharge part for discharging the fluid to outside and a fluid supply part for supplying the fluid to outside. The piezoelectric valve using a piezoelectric element is provided with a piezoelectric operation body of a thin plate-shape having a longitudinal direction, arranged at the fluid discharge part, for opening and closing a discharge side route to outside of the fluid discharge part in accordance with applied voltage and a fluid chamber for communicating the fluid accept part, the fluid discharge part and the fluid supply part and suppressing operation pressure of the fluid to the piezoelectric operation body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、圧電素子を用いた圧電式バルブに係り、特に、空気を流体とするバルブとして好適な圧電式バルブに関する。   The present invention relates to a piezoelectric valve using a piezoelectric element, and more particularly to a piezoelectric valve suitable as a valve using air as a fluid.

近年、電子機器の小型化などに伴って、微細な部品を高速に搬送し供給する部品供給装置の需要が高まっている。このような部品供給装置では、部品の搬送・供給において不良部品を高速に選別して搬送供給経路上から排除する必要があり、このため不良部品を高速に選別し排除する手段が必要とされる。このような用途の技術では、数ミリ秒以下といった極めて高い動作速度と確実な動作が要求される。   In recent years, with the miniaturization of electronic devices, etc., there is an increasing demand for component supply apparatuses that transport and supply fine components at high speed. In such a component supply apparatus, it is necessary to sort out defective parts at high speed and remove them from the conveyance supply path in conveying and supplying parts. For this reason, a means for selecting and removing defective parts at high speed is required. . In the technology for such applications, extremely high operation speeds such as several milliseconds or less and reliable operations are required.

従来、微細な部品を高速に搬送し供給する部品供給装置で用いられ、部品の搬送・供給において不良部品を高速に選別して搬送・供給経路上から排除する装置に用いられる技術としては、圧電素子を用いた流体圧アクチュエータという技術が知られている(例えば、特許文献1参照)。この特許文献1に記載の技術に係る流体圧アクチュエータは、シリンダと、シリンダ内に摺動可能に配置されたピストンと、シリンダ内に流体を導入するための流通経路とを有する流体圧アクチュエータであって、この流通経路を開閉するためのバイモルフ型の圧電素子を用いた開閉手段を備えたアクチュエータである。   Conventionally, piezoelectric technology is used in parts supply equipment that transports and supplies fine parts at high speed, and is used in equipment that sorts out defective parts at high speed and removes them from the transport / supply path during parts transportation and supply. A technique called a fluid pressure actuator using an element is known (see, for example, Patent Document 1). The fluid pressure actuator according to the technique described in Patent Document 1 is a fluid pressure actuator having a cylinder, a piston slidably disposed in the cylinder, and a flow path for introducing fluid into the cylinder. Thus, the actuator includes an opening / closing means using a bimorph type piezoelectric element for opening and closing the distribution path.

この流体圧アクチュエータによると、本アクチュエータの作動媒体である流体は、常時、アクチュエータ本体内の流通経路を流れている。すなわち流体が停止していないため、アクチュエータ本体内の流通経路を開放状態から閉鎖状態に移行させたときには、流通経路を流れる流体の慣性を利用して迅速にシリンダ内の内圧を上昇させることができ、これによってピストンを迅速に動作させることができる。また、この流通経路を開閉する手段として高速に変位するバイモルフ型の圧電素子を用いているので、流通経路を高速に開閉することが可能である。よって、常時、アクチュエータ本体内の流通経路に流体が流れているため流体の慣性を利用できるということと、バイモルフ型の圧電素子を用いているということで、基本的には、シリンダ内の流通経路を高速に開閉することができ、ピストンを迅速に動作させることができる。   According to this fluid pressure actuator, the fluid that is the working medium of the actuator always flows through the flow path in the actuator body. In other words, since the fluid is not stopped, when the flow path in the actuator body is shifted from the open state to the closed state, the internal pressure in the cylinder can be quickly increased using the inertia of the fluid flowing in the flow path. As a result, the piston can be operated quickly. In addition, since a bimorph type piezoelectric element that is displaced at high speed is used as means for opening and closing the distribution path, the distribution path can be opened and closed at high speed. Therefore, since the fluid always flows through the flow path in the actuator body, the inertia of the fluid can be used and the bimorph type piezoelectric element is used. Can be opened and closed at high speed, and the piston can be operated quickly.

特開2005−9523号公報Japanese Patent Laid-Open No. 2005-9523

しかしながら、特許文献1に記載された流体圧アクチュエータにおいては、流体の排出経路に設けられたバイモルフ型の圧電素子を用いた開閉手段は、外部から導入された流体の流れを直接遮る形で配置されている。この場合、外部から導入される流体の単位時間当たりの流量が比較的少なく、又は流体の圧力が比較的低いときは、上記開閉手段の作動に関して特に影響は無いが、外部から導入される単位時間当たりの流体の流量が多く、或いは流体の圧力が高いときは、上記開閉手段の作動応答性が悪くなることがあり、条件によっては作動困難となる場合も考えられる。従って、大流量が必要な作動力の大きなアクチュエータとしては適用が難しい場合があり、また、圧力の高い流体を使用する場合に問題が生じることがある。   However, in the fluid pressure actuator described in Patent Document 1, the opening / closing means using the bimorph type piezoelectric element provided in the fluid discharge path is disposed so as to directly block the flow of the fluid introduced from the outside. ing. In this case, when the flow rate per unit time of the fluid introduced from the outside is relatively small or the fluid pressure is relatively low, there is no particular effect on the operation of the opening / closing means, but the unit time introduced from the outside When the flow rate of the hitting fluid is large or the pressure of the fluid is high, the operation response of the opening / closing means may be deteriorated, and it may be difficult to operate depending on conditions. Therefore, it may be difficult to apply as an actuator having a large operating force that requires a large flow rate, and a problem may occur when a fluid having a high pressure is used.

一方、例えば、特許文献1に記載された流体圧アクチュエータのシリンダ及びピストンで構成された部分を取り外して、先端から流体を供給する構造に改造した場合にも、上述と同様に、外部から導入される単位時間当たりの流体の流量が多く、或いは流体の圧力が高いときは、バイモルフ型の圧電素子を用いた流体流通経路の開閉手段の作動応答性が悪くなることがあり、条件によっては作動困難となる場合も考えられる。よって、大流量用の流体用バルブとしては適用が難しい場合があり、また、圧力の高い流体を使用する場合に問題が生じることがある。また、上記流体圧アクチュエータ本体内の流通経路構造のように、流体の排出経路と流体の供給経路がほぼ直交し、且つ、その間に流体を遮るものが無い場合は、流体の排出経路側に流体を流しているときに流体の供給経路側が負圧になりやすい。よって、例えば、部品供給装置の搬送経路(トラック)に空気を噴出させて、不良部品を搬送経路から吹き飛ばす装置としてこのバルブを用いる場合には、不良部品を排除するどころか、逆に不良部品を吸引して部品搬送の妨げになる。   On the other hand, for example, even when the part constituted by the cylinder and piston of the fluid pressure actuator described in Patent Document 1 is removed and remodeled to supply fluid from the tip, it is introduced from the outside as described above. When the fluid flow rate per unit time is high or the fluid pressure is high, the operation response of the fluid flow path opening / closing means using a bimorph type piezoelectric element may deteriorate, and it may be difficult to operate depending on the conditions. In some cases, Therefore, it may be difficult to apply as a fluid valve for a large flow rate, and a problem may occur when using a fluid having a high pressure. If the fluid discharge path and the fluid supply path are substantially orthogonal to each other and there is nothing to block the fluid between them, as in the flow path structure in the fluid pressure actuator body, the When the fluid is flowing, the fluid supply path side tends to be negative pressure. Therefore, for example, when this valve is used as a device that blows air to the conveyance path (track) of the component supply device and blows away defective components from the conveyance route, the defective components are sucked instead of eliminating the defective components. This hinders parts conveyance.

本発明は、上記実情に鑑みてなされたものであり、その目的は、供給する流体の流量が大であったり、又は供給する流体の圧力が高い場合であっても作動良好で、且つ流体を外部に供給する流体供給部が負圧になることを防止できる圧電式バルブを提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to provide a satisfactory operation even when the flow rate of the fluid to be supplied is large or the pressure of the fluid to be supplied is high, An object of the present invention is to provide a piezoelectric valve capable of preventing a fluid supply portion supplied to the outside from becoming negative pressure.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明に係る圧電式バルブは、圧電素子を用いた圧電式バルブに関する。そして、本発明に係る圧電式バルブは、上記目的を達成するために以下のようないくつかの特徴を有している。すなわち、本発明の圧電式バルブは、以下の特徴を単独で、若しくは、適宜組み合わせて備えている。   The piezoelectric valve according to the present invention relates to a piezoelectric valve using a piezoelectric element. In order to achieve the above object, the piezoelectric valve according to the present invention has several features as follows. That is, the piezoelectric valve of the present invention has the following features alone or in combination as appropriate.

上記目的を達成するための本発明に係る圧電式バルブにおける第1の特徴は、流体供給手段から流体を受け入れる流体受入部と、前記流体受入部から受け入れた前記流体を外部に排出するための流体排出部と、前記流体排出部に設けられ、薄い板状であって長手方向を有し、印加電圧に応じて前記流体排出部の外部に通じる排出側経路を開閉する圧電動作体と、前記流体受入部から受け入れた前記流体を外部に供給するための流体供給部と、前記流体受入部と前記流体排出部と前記流体供給部とを連通し、前記圧電動作体への前記流体の作用圧を抑制する流体室と、を備えていることである。   In order to achieve the above object, a first feature of the piezoelectric valve according to the present invention is that a fluid receiving portion that receives fluid from a fluid supply means, and a fluid that discharges the fluid received from the fluid receiving portion to the outside. A discharge unit, a piezoelectric operating body provided in the fluid discharge unit, having a thin plate shape and having a longitudinal direction, and opening and closing a discharge side path communicating with the outside of the fluid discharge unit according to an applied voltage; and the fluid The fluid supply unit for supplying the fluid received from the reception unit to the outside, the fluid reception unit, the fluid discharge unit, and the fluid supply unit communicate with each other, and the working pressure of the fluid on the piezoelectric operating body is reduced. And a fluid chamber to be suppressed.

この構成によると、圧電動作体により排出側経路を開にした状態において、流体供給手段から受け入れられた流体は、流体受入部から流体室を経由して流体排出部の開口部位から排出されるため、流体供給部への流体の流れはほぼ止められる。この状態で、圧電動作体により排出側経路を閉にすると、流体の流体排出部への流れはほぼ止められ、流体は流体受入部から流体室を経由して流体供給部から外部に供給される。逆に、排出側経路が閉の状態にあるときに、排出側経路を開にすると、流体供給部への流体の流れはほぼ止められ、流体は流体受入部から流体室を経由して流体排出部の開口部位から排出される。よって、この圧電動作体の開閉作動により、流体を流体供給部から外部に供給したり、その供給をほぼ停止させたりすることが可能になる。   According to this configuration, in a state where the discharge side path is opened by the piezoelectric operating body, the fluid received from the fluid supply means is discharged from the opening portion of the fluid discharge portion through the fluid chamber from the fluid receiving portion. The flow of fluid to the fluid supply unit is almost stopped. In this state, when the discharge side path is closed by the piezoelectric operating body, the flow of the fluid to the fluid discharge portion is almost stopped, and the fluid is supplied from the fluid receiving portion to the outside via the fluid chamber. . Conversely, when the discharge side path is open when the discharge side path is closed, the flow of fluid to the fluid supply unit is substantially stopped, and the fluid is discharged from the fluid receiving unit via the fluid chamber. It is discharged from the opening part of the part. Therefore, the opening / closing operation of the piezoelectric operating body makes it possible to supply the fluid from the fluid supply unit to the outside or to substantially stop the supply.

この場合、圧電動作体により排出側経路を開にした状態では、流体は、流体排出部の開口部位から排出される態様で流体室内を流れ、流体室内には流体の圧力が作用し続けているため、圧電動作体を開状態から閉状態に移行させたときには、流体の慣性を利用して迅速に所定量の流体を流体供給部から供給開始することができる。また、逆に、圧電動作体により排出側経路を閉にした状態から開状態に移行させたときには、迅速に流体室内の流体の流れを変えることができる。よって、単に圧電式バルブの上流側に配置された流体供給手段により流体を供給若しくは遮断する場合に比べて、高速に流体の供給・停止を行うことができる。   In this case, in a state where the discharge side path is opened by the piezoelectric operating body, the fluid flows in the fluid chamber in a mode of being discharged from the opening portion of the fluid discharge portion, and the pressure of the fluid continues to act on the fluid chamber. Therefore, when the piezoelectric operating body is shifted from the open state to the closed state, a predetermined amount of fluid can be quickly started to be supplied from the fluid supply unit using the inertia of the fluid. On the other hand, when the discharge path is closed from the closed state by the piezoelectric operating body, the flow of the fluid in the fluid chamber can be quickly changed. Therefore, it is possible to supply and stop the fluid at a higher speed than in the case where the fluid is simply supplied or shut off by the fluid supply means arranged on the upstream side of the piezoelectric valve.

また、流体受入部と流体排出部と流体供給部とを連通した流体室では、流体排出部の外部に通じる排出側経路を開閉する圧電動作体への流体の作用圧が抑制されるため、圧電動作体の作動負荷を抑えることができる。よって、供給する流体の流量が大であったり、又は供給する流体の圧力が高い場合であっても圧電式バルブの良好な作動状態を維持することが可能である。また、圧電動作体への流体の作用圧を抑制することにより、圧電動作体により排出側経路を開にした状態において、流体受入部から流体室を経由して流体排出部の開口部位から排出される流体の流量を抑えることができ、一部の流体は、わずかながら流体受入部から流体室を経由して流体供給部に導かれる。よって、流体を外部に供給する流体供給部をほぼ常時、正圧よりに維持することになるため、この流体供給部が負圧になることを防止することができる。   Further, in the fluid chamber in which the fluid receiving part, the fluid discharging part, and the fluid supply part are communicated, the working pressure of the fluid to the piezoelectric operating body that opens and closes the discharge side path leading to the outside of the fluid discharging part is suppressed. The operating load of the operating body can be suppressed. Therefore, even when the flow rate of the fluid to be supplied is large or the pressure of the fluid to be supplied is high, it is possible to maintain a good operating state of the piezoelectric valve. Further, by suppressing the working pressure of the fluid on the piezoelectric operating body, the fluid is discharged from the fluid receiving portion through the fluid chamber from the opening portion of the fluid discharging portion in a state where the discharge side path is opened by the piezoelectric operating body. However, a part of the fluid is slightly guided from the fluid receiving portion to the fluid supply portion via the fluid chamber. Therefore, since the fluid supply unit that supplies the fluid to the outside is maintained almost always at a positive pressure, it is possible to prevent the fluid supply unit from becoming a negative pressure.

また、本発明に係る圧電式バルブにおける第2の特徴は、前記圧電動作体は、前記排出側経路を開にしたときは前記流体供給部の外部に通じる供給側経路を閉にし、前記排出側経路を閉にしたときは前記供給側経路を開にする圧電動作体であり、前記流体室は、前記流体室が前記流体排出部に接続する接続部近傍で、前記流体受入部から前記流体排出部へ流れる前記流体の流れ方向と、前記圧電動作体の板面とが並行するように、且つ、スリット状に形成されていることである。   Further, a second feature of the piezoelectric valve according to the present invention is that the piezoelectric operating body closes the supply side path communicating with the outside of the fluid supply unit when the discharge side path is opened, and A piezoelectric operating body that opens the supply-side path when the path is closed, and the fluid chamber is located near a connection portion where the fluid chamber connects to the fluid discharge section, and the fluid discharge section from the fluid receiving section. The flow direction of the fluid flowing to the part and the plate surface of the piezoelectric operating body are parallel to each other and formed in a slit shape.

この構成によると、圧電動作体により流体供給部の外部に通じる供給側経路を閉にすることにより、流体供給部の外部からの流体の逆流を防止することができる。つまり、流体供給部が負圧になることを防止することが可能となる。また、圧電動作体の板面に対して並行に流体が流れるため、圧電動作体の板面に流体が直角等の角度で衝突する場合に比べて圧電動作体への流体の作用圧が抑制される。よって、圧電動作体の作動負荷を抑えることができる。また、流体室がスリット状に形成されることにより、変位の小さな圧電動作体であっても、1つのの圧電動作体により、流体の排出側経路と供給側経路とを容易に開閉することができる。   According to this configuration, the backflow of the fluid from the outside of the fluid supply unit can be prevented by closing the supply side path leading to the outside of the fluid supply unit by the piezoelectric operating body. That is, it is possible to prevent the fluid supply unit from becoming a negative pressure. Further, since the fluid flows in parallel with the plate surface of the piezoelectric operating body, the working pressure of the fluid on the piezoelectric operating body is suppressed compared to the case where the fluid collides with the plate surface of the piezoelectric operating body at an angle such as a right angle. The Therefore, the operation load of the piezoelectric operating body can be suppressed. In addition, since the fluid chamber is formed in a slit shape, even a piezoelectric operating body with a small displacement can easily open and close the fluid discharge side path and the supply side path with one piezoelectric operating body. it can.

また、本発明に係る圧電式バルブにおける第3の特徴は、前記圧電動作体は、片面で前記排出側経路を開閉し、他の片面で前記流体供給部の外部に通じる供給側経路を開閉する圧電動作体であり、前記流体室は、前記接続部近傍でスリット状に形成されていることである。   According to a third feature of the piezoelectric valve according to the present invention, the piezoelectric operating body opens and closes the discharge side path on one side and opens and closes the supply side path leading to the outside of the fluid supply unit on the other side. In the piezoelectric operating body, the fluid chamber is formed in a slit shape in the vicinity of the connection portion.

この構成によると、圧電動作体の片面で流体供給部の外部に通じる供給側経路を閉にすることにより、流体供給部の外部からの流体の逆流を防止することができる。つまり、流体供給部が負圧になることを防止することが可能となる。また、流体の排出側経路及び供給側経路をいずれも圧電動作体の板状の面で開閉するため、より確実に流体の排出側経路及び供給側経路を開閉することが可能となる。また、流体室が上記接続部近傍でスリット状に形成されることにより、変位の小さな圧電動作体であっても、1つのの圧電動作体により、流体の排出側経路と供給側経路とを容易に開閉することができる。   According to this configuration, the backflow of the fluid from the outside of the fluid supply unit can be prevented by closing the supply-side path that leads to the outside of the fluid supply unit on one side of the piezoelectric operating body. That is, it is possible to prevent the fluid supply unit from becoming a negative pressure. In addition, since both the fluid discharge side path and the supply side path are opened and closed by the plate-like surface of the piezoelectric operating body, the fluid discharge side path and the supply side path can be more reliably opened and closed. Further, since the fluid chamber is formed in a slit shape in the vicinity of the connecting portion, even with a piezoelectric operating body having a small displacement, the fluid discharge-side path and the supply-side path can be easily performed by one piezoelectric operating body. Can be opened and closed.

また、本発明に係る圧電式バルブにおける第4の特徴は、前記圧電動作体は、片面で前記排出側経路を開閉し、端部で前記流体供給部の外部に通じる供給側経路を開閉する圧電動作体であり、前記流体室は、前記接続部近傍でスリット状に形成されていることである。   A fourth feature of the piezoelectric valve according to the present invention is that the piezoelectric operating body opens and closes the discharge-side path on one side and opens and closes a supply-side path that communicates with the outside of the fluid supply section at an end. It is an operating body, and the fluid chamber is formed in a slit shape in the vicinity of the connecting portion.

この構成によると、圧電動作体の端部で流体供給部の外部に通じる供給側経路を閉にすることにより、流体供給部の外部からの流体の逆流を防止することができる。つまり、流体供給部が負圧になることを防止することが可能となる。また、流体の受入部、供給部並びに排出部の位置を外部条件等に応じて適切に配置できる多様性が向上する。また、流体室が上記接続部近傍でスリット状に形成されることにより、変位の小さな圧電動作体であっても、1つのの圧電動作体により、流体の排出側経路と供給側経路とを容易に開閉することができる。   According to this configuration, the backflow of the fluid from the outside of the fluid supply unit can be prevented by closing the supply side path communicating with the outside of the fluid supply unit at the end of the piezoelectric operating body. That is, it is possible to prevent the fluid supply unit from becoming a negative pressure. Moreover, the diversity which can arrange | position the position of the receiving part of a fluid, a supply part, and a discharge part appropriately according to external conditions etc. improves. Further, since the fluid chamber is formed in a slit shape in the vicinity of the connecting portion, even with a piezoelectric operating body having a small displacement, the fluid discharge-side path and the supply-side path can be easily performed by one piezoelectric operating body. Can be opened and closed.

また、本発明に係る圧電式バルブにおける第5の特徴は、前記圧電動作体は、端部で前記排出側経路を開にしたときは前記端部で前記流体供給部の外部に通じる供給側経路を閉にし、前記端部で前記排出側経路を閉にしたときは前記端部で前記供給側経路を開にする圧電動作体であり、前記流体室は、前記接続部近傍でスリット状に形成されていることである。   A fifth feature of the piezoelectric valve according to the present invention is that the piezoelectric operating body is connected to the outside of the fluid supply section at the end when the discharge side path is opened at the end. When the discharge side path is closed at the end, the piezoelectric operation body opens the supply side path at the end, and the fluid chamber is formed in a slit shape in the vicinity of the connection part. It has been done.

この構成によると、圧電動作体の端部で流体供給部の外部に通じる供給側経路を閉にすることにより、流体供給部の外部からの流体の逆流を防止することができる。つまり、流体供給部が負圧になることを防止することが可能となる。また、流体の受入部、供給部並びに排出部の位置を条件に応じて適切に配置できる多様性が向上する。また、流体室が上記接続部近傍でスリット状に形成されることにより、変位の小さな圧電動作体であっても、1つのの圧電動作体により、流体の排出側経路と供給側経路とを容易に開閉することができる。   According to this configuration, the backflow of the fluid from the outside of the fluid supply unit can be prevented by closing the supply side path communicating with the outside of the fluid supply unit at the end of the piezoelectric operating body. That is, it is possible to prevent the fluid supply unit from becoming a negative pressure. Moreover, the diversity which can arrange | position the position of the receiving part of a fluid, a supply part, and a discharge part appropriately according to conditions improves. Further, since the fluid chamber is formed in a slit shape in the vicinity of the connecting portion, even with a piezoelectric operating body having a small displacement, the fluid discharge-side path and the supply-side path can be easily performed by one piezoelectric operating body. Can be opened and closed.

また、本発明に係る圧電式バルブにおける第6の特徴は、前記圧電動作体は、片面で前記排出側経路を開にしたときは前記片面で前記流体供給部の外部に通じる供給側経路を閉にし、前記片面で前記排出側経路を閉にしたときは前記片面で前記供給側経路を開にする圧電動作体であることである。   The sixth feature of the piezoelectric valve according to the present invention is that when the piezoelectric operating body opens the discharge side path on one side, the supply side path communicating with the outside of the fluid supply unit is closed on the one side. When the discharge side path is closed on one side, the piezoelectric operating body opens the supply side path on the one side.

この構成によると、圧電動作体の片面で流体供給部の外部に通じる供給側経路を閉にすることにより、流体供給部の外部からの流体の逆流を防止することができる。つまり、流体供給部が負圧になることを防止することが可能となる。また、流体の受入部、供給部並びに排出部の位置を外部条件等に応じて適切に配置できる多様性が向上する。   According to this configuration, the backflow of the fluid from the outside of the fluid supply unit can be prevented by closing the supply-side path that leads to the outside of the fluid supply unit on one side of the piezoelectric operating body. That is, it is possible to prevent the fluid supply unit from becoming a negative pressure. Moreover, the diversity which can arrange | position the position of the receiving part of a fluid, a supply part, and a discharge part appropriately according to external conditions etc. improves.

また、本発明に係る圧電式バルブにおける第7の特徴は、前記流体受入部の前記流体を受け入れる受入側経路を前記流体が流れる方向である受入側流れ方向と、前記流体供給部の外部に通じる供給側経路を前記流体が流れる方向である供給側流れ方向とは並行し、且つ、前記受入側流れ方向及び前記供給側流れ方向と、前記圧電動作体の板面とは直交することである。   The seventh feature of the piezoelectric valve according to the present invention is that the fluid-receiving unit communicates with the receiving-side flow path, which is the direction in which the fluid flows, in the receiving-side path that receives the fluid, and the outside of the fluid supply unit. The supply-side flow direction, which is the direction in which the fluid flows through the supply-side path, is parallel, and the receiving-side flow direction and the supply-side flow direction are orthogonal to the plate surface of the piezoelectric operating body.

この構成によると、流体受入部の受入側経路と、流体供給部の供給側経路と、流体排出部の排出側経路とを連通する流体室は、受入側経路から流体室に接続するところで、広がって形成される。よって、受入側経路から流れてきた流体は、流体室に導入された際、流体の流れは広がり、広がった流れはそれぞれ排出側経路を開閉する圧電動作体に衝突することになるので、圧電動作体の受圧面積は大きくなる。また、圧電動作体が受ける作動抵抗である曲げモーメントは、圧電動作体の受圧する部位の端から端までの受圧力の積分として与えられる。従って、従来、受入側経路から流れてきた流体が、ほぼその経路断面積を変えず圧電動作体に衝突している場合に比較して、圧電動作体の作動負荷を抑えることができる。   According to this configuration, the fluid chamber that communicates the receiving side path of the fluid receiving unit, the supply side path of the fluid supply unit, and the discharge side path of the fluid discharge unit expands when the fluid chamber is connected to the fluid chamber from the receiving side path. Formed. Therefore, when the fluid flowing from the receiving side path is introduced into the fluid chamber, the flow of the fluid spreads, and the spread flow collides with the piezoelectric operating body that opens and closes the discharge side path, so that the piezoelectric operation The pressure receiving area of the body increases. The bending moment, which is the operating resistance received by the piezoelectric operating body, is given as an integral of the pressure receiving pressure from end to end of the portion of the piezoelectric operating body that receives pressure. Therefore, it is possible to suppress the operating load of the piezoelectric operating body compared to the case where the fluid flowing from the receiving side path hits the piezoelectric operating body without changing the cross-sectional area of the path.

また、受入側経路内を流れてきた流体の一部は、圧電動作体の板面に衝突し、その後、ほぼ180°向きを変えて供給側経路を流れていくので、供給側経路内を流れる流体は、受入側経路と供給側経路とが直交等している場合に比較して、受入側経路内を流れる流体の流れ方向の圧力の影響を受けにくい。よって、圧電動作体により排出側経路を開にした状態において、受入側経路から流れてきた流体の多くは、流体排出部の開口部位から排出され、一部の流体は、わずかながら流体供給側に開口する供給側経路にも流れる。従って、流体を外部に供給する流体供給部が負圧になることを防止できる。   Further, a part of the fluid that has flowed in the receiving side path collides with the plate surface of the piezoelectric operating body, and then flows through the supply side path by changing the direction by almost 180 °. The fluid is less susceptible to the pressure in the flow direction of the fluid flowing in the receiving side path than in the case where the receiving side path and the supply side path are orthogonal to each other. Therefore, in the state where the discharge side path is opened by the piezoelectric operating body, most of the fluid flowing from the reception side path is discharged from the opening portion of the fluid discharge section, and a part of the fluid is slightly transferred to the fluid supply side. It also flows through the supply-side path that opens. Therefore, it can prevent that the fluid supply part which supplies a fluid to the exterior becomes negative pressure.

また、本発明に係る圧電式バルブにおける第8の特徴は、前記排出側経路は、外部に開口したスリット状に形成され、前記圧電動作体の端部は、鉤形に折れ曲がり、鉤形に折れ曲がった前記端部は、前記排出側経路の一部から挿入されて前記流体受入部と前記流体供給部との間に設けられ、前記流体受入部からの前記流体の吐出方向に、前記流体供給部の前記流体の受入口が設けられていることである。   An eighth feature of the piezoelectric valve according to the present invention is that the discharge-side path is formed in a slit shape that opens to the outside, and an end portion of the piezoelectric operating body is bent into a bowl shape and bent into a bowl shape. The end portion is inserted from a part of the discharge side path and provided between the fluid receiving portion and the fluid supply portion, and the fluid supply portion is arranged in a direction in which the fluid is discharged from the fluid receiving portion. A receiving port for the fluid is provided.

この構成によると、流体受入部からの流体は圧電動作体に衝突し、衝突した流体のほとんどは外部に開口したスリット状の排出側経路より排出される。言い換えれば、圧電動作体により排出側経路を開にした状態である。流体の一部は、わずかながら流体供給部を経由して外部に流れるため、流体を外部に供給する流体供給部が負圧になることを防止することができる。また、圧電動作体により排出側経路を閉にするときには、圧電動作体の上記端部を、流体受入部からの流体の流れ方向に対してほぼ垂直方向に移動させるので、圧電動作体の作動負荷を抑えることができる。   According to this configuration, the fluid from the fluid receiving portion collides with the piezoelectric operating body, and most of the collided fluid is discharged from the slit-shaped discharge side path opened to the outside. In other words, the discharge side path is opened by the piezoelectric operating body. Since a part of the fluid slightly flows to the outside via the fluid supply unit, the fluid supply unit that supplies the fluid to the outside can be prevented from becoming a negative pressure. Further, when closing the discharge-side path by the piezoelectric operating body, the end of the piezoelectric operating body is moved in a direction substantially perpendicular to the fluid flow direction from the fluid receiving section, so that the operating load of the piezoelectric operating body is reduced. Can be suppressed.

また、本発明に係る圧電式バルブにおける第9の特徴は、前記流体室の上面又は下面は、前記流体排出部として形成され、前記流体受入部からの前記流体は、前記流体室の側面から前記流体室の内面に沿って、前記流体室に供給されることである。   The ninth feature of the piezoelectric valve according to the present invention is that the upper surface or the lower surface of the fluid chamber is formed as the fluid discharge portion, and the fluid from the fluid receiving portion is fed from the side surface of the fluid chamber. The fluid chamber is supplied along the inner surface of the fluid chamber.

この構成によると、圧電動作体により排出側経路を開にした状態において、流体受入部から流体室へ流入した流体は、流体室内で旋回して旋回流となり、流体室の上面又は下面に形成される流体排出部の開口部位から、圧電動作体の板面に沿う方向に放射状に排出される。よって、圧電動作体に対して直接、衝突する流体の流れを防止でき、圧電動作体の作動負荷を抑えることができる。また、旋回流となった流体が放射状に効率良く排出されるため、排出部の開口部位は、わずかな隙間で良い。よって、変位の小さな圧電動作体であっても使用し易い。   According to this configuration, in a state where the discharge side path is opened by the piezoelectric operating body, the fluid flowing into the fluid chamber from the fluid receiving portion turns in the fluid chamber to become a swirling flow, and is formed on the upper surface or the lower surface of the fluid chamber. The fluid is discharged radially from the opening portion of the fluid discharge portion in the direction along the plate surface of the piezoelectric operating body. Therefore, it is possible to prevent the flow of fluid that directly collides with the piezoelectric operating body, and to suppress the operation load of the piezoelectric operating body. Further, since the fluid that has become the swirl flow is efficiently discharged radially, the opening portion of the discharge portion may be a slight gap. Therefore, even a piezoelectric operating body with a small displacement is easy to use.

また、本発明に係る圧電式バルブにおける第10の特徴は、前記流体室は、テーパ面を有する円錐状に形成されることである。   A tenth feature of the piezoelectric valve according to the present invention is that the fluid chamber is formed in a conical shape having a tapered surface.

この構成によると、圧電動作体により排出側経路を開にした状態において、流体受入部から流体室へ流入した流体は、流体室内で旋回してより旋回流となり易く、また、その流体は、テーパ面に沿って流体室の断面が広がっていく方向の流体排出部に導かれ易くなるため、流体の排出がより効率よく行われる。   According to this configuration, in a state where the discharge side path is opened by the piezoelectric operating body, the fluid that has flowed into the fluid chamber from the fluid receiving portion is more likely to swirl in the fluid chamber, and the fluid is tapered. Since it becomes easy to be guided to the fluid discharge portion in the direction in which the cross section of the fluid chamber expands along the surface, the fluid is discharged more efficiently.

また、本発明に係る圧電式バルブにおける第11の特徴は、前記流体室は、円筒状に形成されることである。   An eleventh feature of the piezoelectric valve according to the present invention is that the fluid chamber is formed in a cylindrical shape.

この構成によると、圧電動作体により排出側経路を開にした状態において、流体受入部から流体室へ流入した流体は、流体室内で旋回してより旋回流となり易い。   According to this configuration, in a state where the discharge side path is opened by the piezoelectric operating body, the fluid that has flowed into the fluid chamber from the fluid receiving portion is more likely to swirl in the fluid chamber.

また、本発明に係る圧電式バルブにおける第12の特徴は、前記流体供給部は、前記流体排出部に対向する前記流体室の対向面に接続されることである。   A twelfth feature of the piezoelectric valve according to the present invention is that the fluid supply section is connected to a facing surface of the fluid chamber facing the fluid discharge section.

この構成によると、流体の受入部、供給部並びに排出部の位置を外部条件等に応じて適切に配置できる多様性が向上する。   According to this structure, the diversity which can arrange | position the position of the receiving part of a fluid, a supply part, and a discharge part appropriately according to external conditions etc. improves.

また、本発明に係る圧電式バルブにおける第13の特徴は、前記流体供給部の外部に通じる供給側経路と、前記流体受入部の前記流体を受け入れる受入側経路とは並行し、前記流体は、前記流体室の内面に沿って、前記供給側経路から外部に供給されることである。   A thirteenth feature of the piezoelectric valve according to the present invention is that a supply-side path that communicates with the outside of the fluid supply section and a reception-side path that receives the fluid of the fluid reception section are parallel to each other. It is supplied to the outside from the supply side path along the inner surface of the fluid chamber.

この構成によると、流体受入部からの流体は、流体室を経由しほぼ180°向きを変えて供給側経路から外部に流れていくので、供給側経路内を流れる流体は、受入側経路と供給側経路とが直交等している場合に比較して、受入側経路内を流れる流体の流れ方向の圧力の影響を受けにくい。よって、圧電動作体により排出側経路を開にした状態において、受入側経路から流れてきた流体の多くは、流体排出部の開口部位から排出され、一部の流体は、わずかながら流体室の内面に沿って流体供給側に開口する供給側経路にも流れる。従って、流体を外部に供給する流体供給部が負圧になることを防止できる。   According to this configuration, since the fluid from the fluid receiving portion changes the direction by approximately 180 ° through the fluid chamber and flows from the supply side path to the outside, the fluid flowing in the supply side path is supplied to the receiving side path. Compared with the case where the side path is orthogonal or the like, it is less affected by the pressure in the flow direction of the fluid flowing in the receiving side path. Therefore, in the state where the discharge side path is opened by the piezoelectric operating body, most of the fluid flowing from the reception side path is discharged from the opening part of the fluid discharge part, and a part of the fluid is slightly inside the fluid chamber. Along the supply side path that opens to the fluid supply side. Therefore, it can prevent that the fluid supply part which supplies a fluid to the exterior becomes negative pressure.

以下、本発明を実施するための形態について図面を参照しつつ説明する。以下に説明する本発明に係る圧電式バルブの実施形態は、気体、特に圧縮した空気を用いて動作する圧電式バルブに関するものであるが、本発明に係る圧電式バルブは圧縮した空気以外の気体や液体等の他の流体でも動作させることが可能である。以下の説明においては、圧縮空気を用いるものとして説明し、他の気体や液体を用いる場合には、以下の説明中の圧縮空気、空気等の語句を適宜、気体又は流体と読み替えて構成することとする。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The embodiment of the piezoelectric valve according to the present invention described below relates to a piezoelectric valve that operates using gas, particularly compressed air, but the piezoelectric valve according to the present invention is a gas other than compressed air. Or other fluids such as liquids. In the following description, it is assumed that compressed air is used, and when other gas or liquid is used, the phrase such as compressed air or air in the following description should be appropriately replaced with gas or fluid. And

図1は、本発明に係る圧電式バルブに用いる圧電動作体を示す図である。図1は、圧電動作体100の平面図(a)、側面図(b)、ならびに圧電動作体100の作動説明図(c)から構成される。図1に示すように、圧電動作体100は、2枚の圧電素子102を金属板101を介して貼り合わせた構造でバイモルフと呼ばれるもので、長手方向を有する薄い板状である。   FIG. 1 is a view showing a piezoelectric operating body used in a piezoelectric valve according to the present invention. FIG. 1 includes a plan view (a), a side view (b), and an operation explanatory view (c) of the piezoelectric operating body 100. As shown in FIG. 1, a piezoelectric operating body 100 is called a bimorph having a structure in which two piezoelectric elements 102 are bonded together via a metal plate 101, and is a thin plate having a longitudinal direction.

このような構造の圧電動作体100に電圧を印加すると一方の圧電素子102は圧電効果によって縮み、他方の圧電素子102は伸びる。その結果、全体としては片方に曲がることになる。圧電動作体100の一端を圧電式バルブ本体に固定し、他端を自由にすることで片持ち梁を形成し、この他端の板面101A、101Bや端部101Cで、印加電圧に応じて流体排出部の排出側経路等を開閉させる。圧電素子102はセラミック等の材料からなり、代表的な圧電素子としてピエゾ素子が挙げられる。金属板101は電極であり、ステンレス鋼等の金属板である。   When a voltage is applied to the piezoelectric operating body 100 having such a structure, one piezoelectric element 102 contracts due to the piezoelectric effect, and the other piezoelectric element 102 expands. As a result, it turns to one side as a whole. One end of the piezoelectric operating body 100 is fixed to the piezoelectric valve body, and the other end is made free to form a cantilever. The plate surfaces 101A and 101B and the end 101C of the other end are used in accordance with the applied voltage. Open and close the discharge side path of the fluid discharge part. The piezoelectric element 102 is made of a material such as ceramic, and a typical piezoelectric element is a piezoelectric element. The metal plate 101 is an electrode and is a metal plate such as stainless steel.

(第1実施形態)
図2は、本発明の第1実施形態に係る圧電式バルブを示す図である。図3は、図2に示す流体室18の端部付近の拡大図である。図2は、圧電式バルブ10の平面図(a)、及び断面図(b)から構成される。図2及び図3に示すように、圧電式バルブ10は、部材12及び部材13からなる本体と、空気圧縮機等の圧縮空気供給手段(不図示)から圧縮空気を受け入れるための受入側経路15a及び受入用接続具15を備えた流体受入部と、圧縮空気を外部に排出するための排出側経路17aを含む流体排出部と、圧電素子102を用いた圧電動作体100aと、圧縮空気を外部に供給するための供給側経路16a及び供給用接続具16を備えた流体供給部と、流体受入部と流体排出部と流体供給部とを連通する流体室18とを有する。図2及び図3における矢印は、圧縮空気の流れる方向を示す矢印と、圧電動作体100aの動作方向を示す矢印とである。
(First embodiment)
FIG. 2 is a view showing the piezoelectric valve according to the first embodiment of the present invention. FIG. 3 is an enlarged view of the vicinity of the end of the fluid chamber 18 shown in FIG. FIG. 2 includes a plan view (a) and a sectional view (b) of the piezoelectric valve 10. As shown in FIGS. 2 and 3, the piezoelectric valve 10 has a receiving side passage 15a for receiving compressed air from a main body including members 12 and 13, and compressed air supply means (not shown) such as an air compressor. And a fluid receiving portion including the receiving connector 15, a fluid discharge portion including a discharge side path 17 a for discharging compressed air to the outside, a piezoelectric operating body 100 a using the piezoelectric element 102, and compressed air to the outside A fluid supply unit including a supply-side path 16a and a supply connector 16, and a fluid chamber 18 that communicates the fluid receiving unit, the fluid discharge unit, and the fluid supply unit. The arrows in FIGS. 2 and 3 are an arrow indicating the direction in which the compressed air flows and an arrow indicating the operating direction of the piezoelectric operating body 100a.

圧電式バルブ10の本体を構成する部材12と部材13とは、ボルト11で連結されている。また、流体室18は、連結された部材12と部材13との間に形成される空間である。圧電素子102を用いた圧電動作体100aは、一方の端部がボルト14により部材13に固定され、他方の端部は流体室18のスリット状に形成された先端部において自由に変位できるように配置されている。ここで、スリット状とは、複数の面で形成された狭い空間の状態を表している(他の実施形態においても同様)。   The member 12 and the member 13 constituting the main body of the piezoelectric valve 10 are connected by a bolt 11. The fluid chamber 18 is a space formed between the connected member 12 and the member 13. The piezoelectric operating body 100a using the piezoelectric element 102 has one end fixed to the member 13 by the bolt 14 and the other end freely displaceable at the tip of the fluid chamber 18 formed in a slit shape. Has been placed. Here, the slit shape represents a state of a narrow space formed by a plurality of surfaces (the same applies to other embodiments).

まず、圧電動作体100aにより排出側経路17aを開にした状態(拡大図(c)に詳細を示す)について説明する。この状態は、圧縮空気を流体供給部にほぼ供給しない状態である。圧縮空気供給手段(不図示)から受入用接続具15に接続されたホース等(不図示)を経由して、圧縮空気は流体室18に導入される。流体室18に導入された圧縮空気は、流体室18のスリット状に形成された先端部に流れ、圧電動作体100aと排出側経路17aとの隙間を通って排出側経路17aを経由し外部に排出される。このとき、供給側経路16aは、圧電動作体100aの片面101Bで閉じられているため、外部から供給側経路16aへ流れ込んでくる空気はほぼ無く、流体供給部が負圧になることを防止できる。   First, a state in which the discharge side path 17a is opened by the piezoelectric operating body 100a (details are shown in the enlarged view (c)) will be described. This state is a state in which compressed air is hardly supplied to the fluid supply unit. Compressed air is introduced into the fluid chamber 18 from a compressed air supply means (not shown) via a hose or the like (not shown) connected to the receiving connector 15. The compressed air introduced into the fluid chamber 18 flows to the tip of the fluid chamber 18 formed in a slit shape, passes through the gap between the piezoelectric operating body 100a and the discharge side path 17a, and passes through the discharge side path 17a to the outside. Discharged. At this time, since the supply side path 16a is closed by the one surface 101B of the piezoelectric operating body 100a, there is almost no air flowing into the supply side path 16a from the outside, and it is possible to prevent the fluid supply unit from becoming negative pressure. .

次に、圧電動作体100aに電圧が印加されると、圧電動作体100aは変位し、供給側経路16aは開にされ、排出側経路17aは圧電動作体100aの他の片面101Aで閉にされる。この状態は、圧縮空気が流体供給部を経由して外部に供給される状態である。圧縮空気供給手段(不図示)から流体室18に導入され続けている圧縮空気は、圧電動作体100aを動作させることにより、圧電動作体100aと供給側経路16aとの隙間側に流れを変え、供給側経路16aを経由して外部に供給される。   Next, when a voltage is applied to the piezoelectric operating body 100a, the piezoelectric operating body 100a is displaced, the supply side path 16a is opened, and the discharge side path 17a is closed on the other surface 101A of the piezoelectric operating body 100a. The This state is a state in which compressed air is supplied to the outside via the fluid supply unit. Compressed air continuously introduced into the fluid chamber 18 from the compressed air supply means (not shown) changes the flow to the gap side between the piezoelectric operating body 100a and the supply side path 16a by operating the piezoelectric operating body 100a. It is supplied to the outside via the supply side path 16a.

ここで、圧電動作体100aにより排出側経路17aを開にした状態、圧電動作体100aにより供給側経路16aを開にした状態のいずれの状態においても、流体は、圧電動作体100aの板面に対して並行に流れるため、圧電動作体100aへの流体の作用圧が抑制される。よって、圧電動作体100aの作動負荷を抑えることができる。   Here, in either of the state where the discharge side path 17a is opened by the piezoelectric operating body 100a and the state where the supply side path 16a is opened by the piezoelectric operating body 100a, the fluid flows on the plate surface of the piezoelectric operating body 100a. On the other hand, since it flows in parallel, the working pressure of the fluid to the piezoelectric operating body 100a is suppressed. Therefore, the operating load of the piezoelectric operating body 100a can be suppressed.

尚、排出側経路17aから排出される空気量や供給側経路16aから外部に供給される空気量は、圧縮空気の受入側経路15a、排出側経路17a、供給側経路16a、及び流体室18等の寸法を適宜、選択することによって調整される(他の実施形態においても同様)。また、供給側経路16aや排出側経路17aに背圧弁等を設けることによっても空気量を調整することが可能である(他の実施形態においても同様)。   The amount of air discharged from the discharge side path 17a and the amount of air supplied to the outside from the supply side path 16a are the compressed air receiving side path 15a, the discharge side path 17a, the supply side path 16a, the fluid chamber 18, etc. The size is adjusted by appropriately selecting the dimensions (the same applies to other embodiments). Further, the air amount can also be adjusted by providing a back pressure valve or the like in the supply side path 16a or the discharge side path 17a (the same applies to other embodiments).

(第2実施形態)
図4は、本発明の第2実施形態に係る圧電式バルブを示す図である。図5は、図4に示す流体室28の端部付近の拡大図である。図4は、圧電式バルブ20の平面図(a)、及び断面図(b)から構成される。図4及び図5に示すように、圧電式バルブ20は、部材22及び部材23からなる本体と、空気圧縮機等の圧縮空気供給手段(不図示)から圧縮空気を受け入れるための受入側経路25a及び受入用接続具25を備えた流体受入部と、圧縮空気を外部に排出するための排出側経路27aを含む流体排出部と、圧電素子102を用いた圧電動作体100bと、圧縮空気を外部に供給するための供給側経路26a及び供給用接続具26を備えた流体供給部と、流体受入部と流体排出部と流体供給部とを連通する流体室28とを有する。図4及び図5における矢印は、圧縮空気の流れる方向を示す矢印と、圧電動作体100bの動作方向を示す矢印とである。
(Second Embodiment)
FIG. 4 is a diagram showing a piezoelectric valve according to a second embodiment of the present invention. FIG. 5 is an enlarged view of the vicinity of the end of the fluid chamber 28 shown in FIG. FIG. 4 includes a plan view (a) and a sectional view (b) of the piezoelectric valve 20. As shown in FIGS. 4 and 5, the piezoelectric valve 20 has a receiving side passage 25a for receiving compressed air from a main body composed of members 22 and 23 and compressed air supply means (not shown) such as an air compressor. And a fluid receiving portion including the receiving connector 25, a fluid discharge portion including a discharge side path 27a for discharging compressed air to the outside, a piezoelectric operating body 100b using the piezoelectric element 102, and compressed air to the outside A fluid supply section including a supply-side path 26a and a supply connector 26, and a fluid chamber 28 that communicates the fluid receiving section, the fluid discharge section, and the fluid supply section. The arrows in FIGS. 4 and 5 are an arrow indicating the direction in which the compressed air flows and an arrow indicating the operating direction of the piezoelectric operating body 100b.

本発明の第1実施形態と同様、圧電式バルブ20の本体を構成する部材22と部材23とは、ボルト21で連結されている。また、流体室28は、連結された部材22と部材23との間に形成される空間である。圧電素子102を用いた圧電動作体100bは、一方の端部がボルト24により部材23に固定され、他方の端部は流体室28のスリット状に形成された先端部において自由に変位できるように配置されている。   As in the first embodiment of the present invention, the member 22 and the member 23 constituting the main body of the piezoelectric valve 20 are connected by a bolt 21. The fluid chamber 28 is a space formed between the connected member 22 and the member 23. The piezoelectric operating body 100b using the piezoelectric element 102 has one end fixed to the member 23 by a bolt 24, and the other end can be freely displaced at the tip of the fluid chamber 28 formed in a slit shape. Has been placed.

まず、圧電動作体100bにより排出側経路27aを開にした状態(拡大図(c)に詳細を示す)について説明する。この状態は、圧縮空気を流体供給部にほぼ供給しない状態である。圧縮空気供給手段(不図示)から受入用接続具25に接続されたホース等(不図示)を経由して、圧縮空気は流体室28に導入される。流体室28に導入された圧縮空気は、流体室28のスリット状に形成された先端部に流れ、圧電動作体100bと排出側経路27aとの隙間を通って排出側経路27aを経由し外部に排出される。このとき、供給側経路26aは、圧電動作体100aの端部101Cで閉じられているため、外部から供給側経路26aへ流れ込んでくる空気はほぼ無く、流体供給部が負圧になることを防止できる。   First, a state where the discharge side path 27a is opened by the piezoelectric operating body 100b (details are shown in the enlarged view (c)) will be described. This state is a state in which compressed air is hardly supplied to the fluid supply unit. Compressed air is introduced into the fluid chamber 28 from a compressed air supply means (not shown) via a hose or the like (not shown) connected to the receiving connector 25. The compressed air introduced into the fluid chamber 28 flows to the tip of the fluid chamber 28 formed in a slit shape, passes through the gap between the piezoelectric operating body 100b and the discharge side path 27a, and passes through the discharge side path 27a to the outside. Discharged. At this time, since the supply side path 26a is closed by the end portion 101C of the piezoelectric operating body 100a, there is almost no air flowing from the outside to the supply side path 26a, and the fluid supply section is prevented from becoming negative pressure. it can.

次に、圧電動作体100bに電圧が印加されると、圧電動作体100bは変位し、供給側経路26aは開にされ、排出側経路27aは圧電動作体100bの片面101Aで閉にされる。この状態は、圧縮空気が流体供給部を経由して外部に供給される状態である。圧縮空気供給手段(不図示)から流体室28に導入され続けている圧縮空気は、圧電動作体100bを動作させることにより、圧電動作体100bと圧電式バルブ20の本体を構成する部材23との隙間側に流れを変え、供給側経路26aを経由して外部に供給される。   Next, when a voltage is applied to the piezoelectric operating body 100b, the piezoelectric operating body 100b is displaced, the supply side path 26a is opened, and the discharge side path 27a is closed on one surface 101A of the piezoelectric operating body 100b. This state is a state in which compressed air is supplied to the outside via the fluid supply unit. The compressed air that has been continuously introduced into the fluid chamber 28 from the compressed air supply means (not shown) operates the piezoelectric operating body 100b, so that the piezoelectric operating body 100b and the member 23 constituting the main body of the piezoelectric valve 20 are connected. The flow is changed to the gap side and supplied to the outside via the supply side path 26a.

ここで、本発明の第1実施形態と同様、圧電動作体100bにより排出側経路27aを開にした状態、圧電動作体100bにより供給側経路26aを開にした状態のいずれの状態においても、流体は、圧電動作体100bの板面に対して並行に流れるため、圧電動作体100bへの流体の作用圧が抑制される。よって、圧電動作体100bの作動負荷を抑えることができる。   Here, in the same manner as in the first embodiment of the present invention, in both the state where the discharge side path 27a is opened by the piezoelectric operating body 100b and the state where the supply side path 26a is opened by the piezoelectric operating body 100b, the fluid Flows in parallel with the plate surface of the piezoelectric operating body 100b, so that the working pressure of the fluid on the piezoelectric operating body 100b is suppressed. Therefore, the operation load of the piezoelectric operating body 100b can be suppressed.

(第3実施形態)
図6は、本発明の第3実施形態に係る圧電式バルブを示す図である。図7は、図6に示す流体室38の端部付近の拡大図である。図6は、圧電式バルブ30の平面図(a)、及び断面図(b)から構成される。図6及び図7に示すように、圧電式バルブ30は、部材32、部材32b、及び部材33からなる本体と、空気圧縮機等の圧縮空気供給手段(不図示)から圧縮空気を受け入れるための受入側経路35a及び受入用接続具35を備えた流体受入部と、圧縮空気を外部に排出するための排出側経路37aを含む流体排出部と、圧電素子102を用いた圧電動作体100cと、圧縮空気を外部に供給するための供給側経路36a及び供給用接続具36を備えた流体供給部と、流体受入部と流体排出部と流体供給部とを連通する流体室38とを有する。図6及び図7における矢印は、圧縮空気の流れる方向を示す矢印と、圧電動作体100cの動作方向を示す矢印とである。
(Third embodiment)
FIG. 6 is a view showing a piezoelectric valve according to a third embodiment of the present invention. FIG. 7 is an enlarged view of the vicinity of the end of the fluid chamber 38 shown in FIG. FIG. 6 includes a plan view (a) and a sectional view (b) of the piezoelectric valve 30. As shown in FIGS. 6 and 7, the piezoelectric valve 30 is for receiving compressed air from a main body composed of a member 32, a member 32b, and a member 33, and compressed air supply means (not shown) such as an air compressor. A fluid receiving portion including a receiving-side path 35a and a receiving connector 35; a fluid discharging section including a discharging-side path 37a for discharging compressed air to the outside; a piezoelectric operating body 100c using the piezoelectric element 102; A fluid supply unit including a supply side path 36a for supplying compressed air to the outside and a supply connector 36, and a fluid chamber 38 that communicates the fluid receiving unit, the fluid discharge unit, and the fluid supply unit. The arrows in FIGS. 6 and 7 are an arrow indicating the direction in which the compressed air flows and an arrow indicating the operating direction of the piezoelectric operating body 100c.

本発明の第1実施形態や第2実施形態と同様、圧電式バルブ30の本体を構成する部材32と部材33とは、ボルト31で連結され、部材32bと部材33とは、ボルト31bで連結されている。また、流体室38は、連結された部材32と部材33との間に形成される空間である。圧電素子102を用いた圧電動作体100cは、一方の端部がボルト34により部材33に固定され、他方の端部は流体室38のスリット状に形成された先端部において自由に変位できるように配置されている。   As in the first and second embodiments of the present invention, the member 32 and the member 33 constituting the main body of the piezoelectric valve 30 are connected by a bolt 31, and the member 32b and the member 33 are connected by a bolt 31b. Has been. The fluid chamber 38 is a space formed between the connected member 32 and the member 33. The piezoelectric operating body 100c using the piezoelectric element 102 has one end fixed to the member 33 by a bolt 34, and the other end can be freely displaced at the tip of the fluid chamber 38 formed in a slit shape. Has been placed.

まず、圧電動作体100cにより排出側経路37aを開にした状態(拡大図(c)に詳細を示す)について説明する。この状態は、圧縮空気を流体供給部にほぼ供給しない状態である。圧縮空気供給手段(不図示)から受入用接続具35に接続されたホース等(不図示)を経由して、圧縮空気は流体室38に導入される。流体室38に導入された圧縮空気は、流体室38のスリット状に形成された先端部に流れ、圧電動作体100cと圧電式バルブ30の本体を構成する部材32との隙間を通って排出側経路37aを経由し外部に排出される。このとき、供給側経路36aは、圧電動作体100cの端部101Cで閉じられているため、外部から供給側経路36aへ流れ込んでくる空気はほぼ無く、流体供給部が負圧になることを防止できる。   First, a state where the discharge side path 37a is opened by the piezoelectric operating body 100c (details are shown in the enlarged view (c)) will be described. This state is a state in which compressed air is hardly supplied to the fluid supply unit. Compressed air is introduced into the fluid chamber 38 from a compressed air supply means (not shown) via a hose or the like (not shown) connected to the receiving connector 35. The compressed air introduced into the fluid chamber 38 flows to the slit-shaped tip portion of the fluid chamber 38, passes through the gap between the piezoelectric operating body 100 c and the member 32 constituting the body of the piezoelectric valve 30, and is on the discharge side. It is discharged to the outside via the path 37a. At this time, since the supply side path 36a is closed by the end portion 101C of the piezoelectric operating body 100c, there is almost no air flowing into the supply side path 36a from the outside, and the fluid supply section is prevented from becoming negative pressure. it can.

次に、圧電動作体100cに電圧が印加されると、圧電動作体100cは変位し、供給側経路36aは開にされ、排出側経路37aは圧電動作体100cの端部101Cで閉にされる。この状態は、圧縮空気が流体供給部を経由して外部に供給される状態である。圧縮空気供給手段(不図示)から流体室38に導入され続けている圧縮空気は、圧電動作体100cを動作させることにより、圧電動作体100cと圧電式バルブ30の本体を構成する部材33との隙間側に流れを変え、供給側経路36aを経由して外部に供給される。   Next, when a voltage is applied to the piezoelectric operating body 100c, the piezoelectric operating body 100c is displaced, the supply side path 36a is opened, and the discharge side path 37a is closed at the end 101C of the piezoelectric operating body 100c. . This state is a state in which compressed air is supplied to the outside via the fluid supply unit. Compressed air continuously introduced from the compressed air supply means (not shown) into the fluid chamber 38 operates the piezoelectric operating body 100 c, thereby causing the piezoelectric operating body 100 c and the member 33 constituting the main body of the piezoelectric valve 30 to move. The flow is changed to the gap side and supplied to the outside via the supply side path 36a.

ここで、本発明の第1実施形態や第2実施形態と同様、圧電動作体100cにより排出側経路37aを開にした状態、圧電動作体100cにより供給側経路36aを開にした状態のいずれの状態においても、流体は、圧電動作体100cの板面に対して並行に流れるため、圧電動作体100cへの流体の作用圧が抑制される。よって、圧電動作体100cの作動負荷を抑えることができる。   Here, as in the first and second embodiments of the present invention, either the discharge side path 37a is opened by the piezoelectric operating body 100c, or the supply side path 36a is opened by the piezoelectric operating body 100c. Even in the state, since the fluid flows in parallel with the plate surface of the piezoelectric operating body 100c, the working pressure of the fluid on the piezoelectric operating body 100c is suppressed. Therefore, the operation load of the piezoelectric operating body 100c can be suppressed.

(第4実施形態)
図8は、本発明の第4実施形態に係る圧電式バルブを示す図である。図9は、図8に示す流体室48付近の拡大図である。図8は、圧電式バルブ40の平面図(a)、及び断面図(b)から構成される。図8及び図9に示すように、圧電式バルブ40は、部材42及び部材43からなる本体と、空気圧縮機等の圧縮空気供給手段(不図示)から圧縮空気を受け入れるための受入側経路45a及び受入用接続具45を備えた流体受入部と、圧縮空気を外部に排出するための排出側経路47aを含む流体排出部と、圧電素子102を用いた圧電動作体100dと、圧縮空気を外部に供給するための供給側経路46a及び供給用接続具46を備えた流体供給部と、流体受入部と流体排出部と流体供給部とを連通する流体室48とを有する。尚、図8に示すように、圧電式バルブ40に、圧電動作体100dやこの圧電動作体100dに関する電気回路部分を保護するためのカバー49cを取り付けても良い。図8及び図9における矢印は、圧縮空気の流れる方向を示す矢印と、圧電動作体100dの動作方向を示す矢印とである。
(Fourth embodiment)
FIG. 8 is a view showing a piezoelectric valve according to a fourth embodiment of the present invention. FIG. 9 is an enlarged view of the vicinity of the fluid chamber 48 shown in FIG. FIG. 8 includes a plan view (a) and a sectional view (b) of the piezoelectric valve 40. As shown in FIGS. 8 and 9, the piezoelectric valve 40 has a receiving side passage 45 a for receiving compressed air from a main body composed of a member 42 and a member 43 and compressed air supply means (not shown) such as an air compressor. And a fluid receiving portion including a receiving connector 45, a fluid discharge portion including a discharge side passage 47a for discharging compressed air to the outside, a piezoelectric operating body 100d using the piezoelectric element 102, and compressed air to the outside A fluid supply unit including a supply side path 46a and a supply connector 46, and a fluid chamber 48 that communicates the fluid receiving unit, the fluid discharge unit, and the fluid supply unit. In addition, as shown in FIG. 8, you may attach to the piezoelectric valve 40 the cover 49c for protecting the piezoelectric action body 100d and the electric circuit part regarding this piezoelectric action body 100d. The arrows in FIGS. 8 and 9 are an arrow indicating the direction in which the compressed air flows and an arrow indicating the operating direction of the piezoelectric operating body 100d.

本発明の上記実施形態と同様、圧電式バルブ40の本体を構成する部材42と部材43とは、ボルト41で連結されている。また、流体室48は、連結された部材42と部材43との間に形成される空間である。圧電素子102を用いた圧電動作体100dは、一方の端部がボルト44により部材43に固定され、他方の端部は、圧電式バルブ40の本体を構成する部材42と部材43との間のスリット状に形成された隙間において自由に変位できるように配置されている。   As in the above-described embodiment of the present invention, the member 42 and the member 43 constituting the main body of the piezoelectric valve 40 are connected by a bolt 41. The fluid chamber 48 is a space formed between the connected member 42 and the member 43. The piezoelectric operating body 100d using the piezoelectric element 102 has one end fixed to the member 43 by a bolt 44 and the other end between the member 42 and the member 43 constituting the main body of the piezoelectric valve 40. It arrange | positions so that it can displace freely in the clearance gap formed in the slit shape.

まず、圧電動作体100dにより排出側経路47aを開にした状態(拡大図(c)に詳細を示す)について説明する。この状態は、圧縮空気を流体供給部にほぼ供給しない状態である。圧縮空気は、圧縮空気供給手段(不図示)から受入用接続具45に接続されたホース等(不図示)を介し受入側経路45aを経由して、流体室48に導入される。流体室48に導入された圧縮空気は、圧電動作体100dと圧電式バルブ40の本体を構成する部材43との隙間を通って排出側経路47aを経由し外部に排出される。   First, a state in which the discharge side path 47a is opened by the piezoelectric operating body 100d (details are shown in the enlarged view (c)) will be described. This state is a state in which compressed air is hardly supplied to the fluid supply unit. The compressed air is introduced into the fluid chamber 48 from the compressed air supply means (not shown) through the receiving side path 45a via a hose or the like (not shown) connected to the receiving connector 45. The compressed air introduced into the fluid chamber 48 passes through the gap between the piezoelectric operating body 100d and the member 43 constituting the main body of the piezoelectric valve 40, and is discharged to the outside through the discharge side path 47a.

ところで、供給側経路46aは、受入側経路45aと並行して設けられているため、圧縮空気が、流体室48を経由して受入側経路45aから供給側経路46aに流れるためには、流れの向きがほぼ180°変えられる。よって、受入側経路45aから流体室48に導入された圧縮空気は、その流れ方向に位置する上記の圧電動作体100dと圧電式バルブ30の本体を構成する部材43との隙間を通って、ほとんどが外部に排出され、一部の圧縮空気が、わずかだけ供給側経路46aを流れていく。よって、流体供給部が負圧になることを防止できる。このとき、流体供給部は、わずかだけ正圧になっていることが好ましいため、圧電動作体100dと部材43との隙間、供給側経路46a、受入側経路45a等の寸法を適切に決定し、圧縮空気の流量バランスが調整される。   By the way, since the supply side path 46a is provided in parallel with the reception side path 45a, in order for the compressed air to flow from the reception side path 45a to the supply side path 46a via the fluid chamber 48, a flow of The orientation can be changed by almost 180 °. Therefore, most of the compressed air introduced into the fluid chamber 48 from the receiving side passage 45a passes through the gap between the piezoelectric operating body 100d located in the flow direction and the member 43 constituting the main body of the piezoelectric valve 30. Is discharged to the outside, and a part of the compressed air flows through the supply side passage 46a only slightly. Therefore, it can prevent that a fluid supply part becomes a negative pressure. At this time, since it is preferable that the fluid supply unit has a slight positive pressure, the dimensions of the gap between the piezoelectric operating body 100d and the member 43, the supply side path 46a, the reception side path 45a, and the like are appropriately determined. The flow rate balance of compressed air is adjusted.

次に、圧電動作体100dに電圧が印加されると、圧電動作体100dは変位し、圧電動作体100dと部材43との隙間は閉ざされ、これにより、供給側経路46aに圧縮空気が流れる(供給側経路46aが開にされる)。圧縮空気供給手段(不図示)から流体室48に導入され続けている圧縮空気は、圧電動作体100dを動作させることにより、排出側経路47aから供給側経路46aに流れを変え、供給側経路36aを経由して外部に供給される。   Next, when a voltage is applied to the piezoelectric operating body 100d, the piezoelectric operating body 100d is displaced, and the gap between the piezoelectric operating body 100d and the member 43 is closed, whereby compressed air flows through the supply side path 46a ( The supply side path 46a is opened). Compressed air continuously introduced from the compressed air supply means (not shown) into the fluid chamber 48 changes the flow from the discharge side path 47a to the supply side path 46a by operating the piezoelectric operating body 100d, thereby supplying the supply side path 36a. It is supplied to the outside via.

ここで、受入側経路45aと、供給側経路46aと、排出側経路47aとを連通する流体室48は、受入側経路45aから流体室48に接続するところで、広がって形成されている。よって、受入側経路45aから流れてきた圧縮空気は、流体室48に導入された際、その流れは広がり、広がった流れはそれぞれ排出側経路47aを開閉する圧電動作体100dに衝突することになるので、圧電動作体100dの受圧面積は大きくなる。また、圧電動作体100dが受ける作動抵抗である曲げモーメントは、圧電動作体100dの受圧する部位の端から端までの受圧力の積分として与えられる。従って、従来、受入側経路から流れてきた圧縮空気が、ほぼその経路断面積を変えず圧電動作体に衝突している場合に比較して、本実施形態に係る圧電式バルブ40の圧電動作体100dの作動負荷は抑えられる。   Here, the fluid chamber 48 that communicates the receiving-side path 45a, the supply-side path 46a, and the discharge-side path 47a is formed so as to expand at a place where the receiving-side path 45a is connected to the fluid chamber 48. Therefore, when the compressed air that has flowed from the receiving side path 45a is introduced into the fluid chamber 48, the flow spreads, and the widened flow collides with the piezoelectric operating body 100d that opens and closes the discharge side path 47a. Therefore, the pressure receiving area of the piezoelectric operating body 100d increases. The bending moment, which is the operating resistance received by the piezoelectric operating body 100d, is given as an integral of the pressure receiving pressure from end to end of the portion of the piezoelectric operating body 100d that receives pressure. Therefore, compared with the conventional case where the compressed air flowing from the receiving-side path collides with the piezoelectric operating body without substantially changing the path cross-sectional area, the piezoelectric operating body of the piezoelectric valve 40 according to the present embodiment. The operating load of 100d is suppressed.

(第5実施形態)
図10は、本発明の第5実施形態に係る圧電式バルブを示す図である。図10は、圧電式バルブ40bの平面図(a)、及び断面図(b)から構成される。本実施形態に係る圧電式バルブ40bの構造は、ほぼ上記の第4実施形態に係る圧電式バルブ40と同様であり、違いは、図10に示すように、圧電式バルブ40bは、絶縁材料で形成されたカバー49a及びカバー49bで、周囲が保護されていることである。絶縁材料としては、塩ビやフェノール樹脂等の樹脂材料が挙げられる。圧電式バルブ40bをこのような絶縁材料で覆うことにより、周囲環境から電気的に絶縁することができる。尚、このような構造は、他の実施形態においても採用することが可能である。
(Fifth embodiment)
FIG. 10 is a view showing a piezoelectric valve according to a fifth embodiment of the present invention. FIG. 10 includes a plan view (a) and a sectional view (b) of the piezoelectric valve 40b. The structure of the piezoelectric valve 40b according to this embodiment is substantially the same as that of the piezoelectric valve 40 according to the fourth embodiment described above. The difference is that the piezoelectric valve 40b is made of an insulating material as shown in FIG. The periphery is protected by the formed cover 49a and cover 49b. Examples of the insulating material include resin materials such as vinyl chloride and phenol resin. By covering the piezoelectric valve 40b with such an insulating material, it is possible to electrically insulate from the surrounding environment. Such a structure can also be adopted in other embodiments.

(第6実施形態)
図11は、本発明の第6実施形態に係る圧電式バルブを示す図である。図12は、図11に示す流体室68付近の拡大図である。図11は、圧電式バルブ60の平面図(a)、及び断面図(b)から構成される。図11及び図12に示すように、圧電式バルブ60は、部材62及び部材63からなる本体と、空気圧縮機等の圧縮空気供給手段(不図示)から圧縮空気を受け入れるための受入側経路65a及び受入用接続具65を備えた流体受入部と、圧縮空気を外部に排出するための排出側経路67aを含む流体排出部と、圧電素子102を用いた圧電動作体100eと、圧縮空気を外部に供給するための供給側経路66a及び供給用接続具66を備えた流体供給部と、流体受入部と流体排出部と流体供給部とを連通する流体室68とを有する。尚、図8の第4実施形態と同様に、圧電式バルブ60に、圧電動作体100eやこの圧電動作体100eに関する電気回路部分を保護するためのカバー49cを取り付けても良い。図11及び図12における矢印は、圧縮空気の流れる方向を示す矢印と、圧電動作体100eの動作方向を示す矢印とである。
(Sixth embodiment)
FIG. 11 is a view showing a piezoelectric valve according to a sixth embodiment of the present invention. FIG. 12 is an enlarged view of the vicinity of the fluid chamber 68 shown in FIG. FIG. 11 includes a plan view (a) and a sectional view (b) of the piezoelectric valve 60. As shown in FIGS. 11 and 12, the piezoelectric valve 60 includes a main body composed of a member 62 and a member 63, and a receiving side path 65a for receiving compressed air from compressed air supply means (not shown) such as an air compressor. And a fluid receiving portion including the receiving connection device 65, a fluid discharge portion including a discharge side path 67a for discharging compressed air to the outside, a piezoelectric operating body 100e using the piezoelectric element 102, and compressed air to the outside A fluid supply unit including a supply side channel 66a and a supply connector 66, and a fluid chamber 68 that communicates the fluid receiving unit, the fluid discharge unit, and the fluid supply unit. As in the fourth embodiment of FIG. 8, the piezoelectric valve 60 may be provided with a cover 49c for protecting the piezoelectric operating body 100e and an electric circuit portion related to the piezoelectric operating body 100e. The arrows in FIGS. 11 and 12 are an arrow indicating the direction in which the compressed air flows and an arrow indicating the operating direction of the piezoelectric operating body 100e.

本発明の上記実施形態と同様、圧電式バルブ60の本体を構成する部材62と部材63とは、ボルト61で連結されている。また、流体室68は、連結された部材62と部材63との間に形成される空間である。圧電素子102を用いた圧電動作体100eは、一方の端部がボルト64により部材63に固定されている。他方の端部は、鉤形に折れ曲がり、その折れ曲がった端部は、排出側経路67aの一部から挿入されて流体受入部と流体供給部との間において自由に変位できるように配置されている。また、排出側経路67aは、スリット状に形成され、外部に開口している。また、流体受入部からの圧縮空気の吐出方向に、流体供給部の圧縮空気の受入口が設けられている。   Similar to the above-described embodiment of the present invention, the member 62 and the member 63 constituting the main body of the piezoelectric valve 60 are connected by a bolt 61. The fluid chamber 68 is a space formed between the connected member 62 and the member 63. One end of the piezoelectric operating body 100 e using the piezoelectric element 102 is fixed to the member 63 by a bolt 64. The other end portion is bent in a bowl shape, and the bent end portion is inserted from a part of the discharge side passage 67a so as to be freely displaceable between the fluid receiving portion and the fluid supply portion. . The discharge side path 67a is formed in a slit shape and opens to the outside. Further, a compressed air receiving port of the fluid supply unit is provided in the discharge direction of the compressed air from the fluid receiving unit.

まず、圧電動作体100eにより排出側経路67aを開にした状態(拡大図(c)に詳細を示す)について説明する。この状態は、圧縮空気を流体供給部にほぼ供給しない状態である。圧縮空気は、圧縮空気供給手段(不図示)から受入用接続具65に接続されたホース等(不図示)を介し受入側経路65aを経由して、流体室68に導入される。流体室68に導入された圧縮空気は、圧電式バルブ40の本体を構成する部材62と部材63の間にスリット状に形成された排出側経路47aを経由し外部に排出される。   First, a state where the discharge side path 67a is opened by the piezoelectric operating body 100e (details are shown in the enlarged view (c)) will be described. This state is a state in which compressed air is hardly supplied to the fluid supply unit. The compressed air is introduced into the fluid chamber 68 from the compressed air supply means (not shown) via the receiving side path 65a through a hose (not shown) connected to the receiving connector 65. The compressed air introduced into the fluid chamber 68 is discharged to the outside through a discharge side path 47a formed in a slit shape between the member 62 and the member 63 constituting the main body of the piezoelectric valve 40.

ところで、鉤形に折れ曲がった圧電動作体100eの端部を流体受入部と流体供給部との間に位置させ、流体受入部からの圧縮空気の吐出方向に流体供給部の受入口を設けることにより、流体受入部からの圧縮空気は圧電動作体100eに衝突し、衝突した圧縮空気のほとんどは外部に開口したスリット状の排出側経路67aより排出される。言い換えれば、圧電動作体100eにより排出側経路67aを開にした状態である。圧縮空気の一部は、わずかながら供給側経路66aを経由して外部に流れるため、圧縮空気を外部に供給する流体供給部が負圧になることを防止することができる。このとき、流体供給部は、わずかだけ正圧になっていることが好ましいため、圧電動作体100eと部材62との隙間、供給側経路646a、受入側経路65a、圧電動作体100eの板幅及び鉤形に折れ曲がった端部の挿入長さ等の寸法を適切に決定し、圧縮空気の流量バランスが調整される。   By the way, the end portion of the piezoelectric operating body 100e bent in a bowl shape is positioned between the fluid receiving portion and the fluid supply portion, and the receiving port of the fluid supply portion is provided in the discharge direction of the compressed air from the fluid receiving portion. The compressed air from the fluid receiving portion collides with the piezoelectric operating body 100e, and most of the collided compressed air is discharged from the slit-shaped discharge side passage 67a opened to the outside. In other words, the discharge side path 67a is opened by the piezoelectric operating body 100e. A part of the compressed air flows to the outside through the supply side path 66a slightly, so that it is possible to prevent the fluid supply unit that supplies the compressed air to the outside from becoming a negative pressure. At this time, since it is preferable that the fluid supply unit has a slightly positive pressure, the gap between the piezoelectric operating body 100e and the member 62, the supply side path 646a, the receiving side path 65a, the plate width of the piezoelectric operating body 100e, and The flow length balance of the compressed air is adjusted by appropriately determining dimensions such as the insertion length of the end bent into a bowl shape.

次に、圧電動作体100eに電圧が印加されると、圧電動作体100eは変位し、鉤形に折れ曲がった圧電動作体100eの端部は、受入側経路65aと供給側経路66aとの間から除かれる。これにより、受入側経路65aから供給側経路46aに圧縮空気が流れる(供給側経路46aが開にされる)。圧縮空気供給手段(不図示)から流体室68に導入され続けている圧縮空気は、圧電動作体100eを動作させることにより、排出側経路67aから供給側経路66aに流れを変え、供給側経路66aを経由して外部に供給される。   Next, when a voltage is applied to the piezoelectric operating body 100e, the piezoelectric operating body 100e is displaced, and the end of the piezoelectric operating body 100e bent in a bowl shape is between the receiving side path 65a and the supply side path 66a. Excluded. Thereby, compressed air flows from the receiving side path 65a to the supply side path 46a (the supply side path 46a is opened). The compressed air that has been continuously introduced into the fluid chamber 68 from the compressed air supply means (not shown) changes the flow from the discharge side path 67a to the supply side path 66a by operating the piezoelectric operating body 100e, thereby supplying the supply side path 66a. It is supplied to the outside via.

ここで、圧電動作体100eにより排出側経路67aを閉にするときには、圧電動作体100eの鉤形に折れ曲がった端部を、受入側経路65aからの圧縮空気の流れ方向に対してほぼ垂直方向に移動させるので、圧電動作体100eの作動負荷を抑えることができる。   Here, when closing the discharge side path 67a by the piezoelectric operating body 100e, the end portion of the piezoelectric operating body 100e bent in a bowl shape is substantially perpendicular to the flow direction of the compressed air from the receiving side path 65a. Since it is moved, the operating load of the piezoelectric operating body 100e can be suppressed.

(第7実施形態)
図13は、本発明の第7実施形態に係る圧電式バルブを示す図である。図14は、図13に示す流体室78付近の拡大図である。図13は、圧電式バルブ70の平面図(a)、及び断面図(b)から構成され、図14は、A−A断面図(a)、及び流体室78付近の拡大図(b)から構成される。図13及び図14に示すように、圧電式バルブ70は、部材72及び部材73からなる本体と、空気圧縮機等の圧縮空気供給手段(不図示)から圧縮空気を受け入れるための受入側経路75a及び受入用接続具75を備えた流体受入部と、圧縮空気を外部に排出するための排出側経路77aを含む流体排出部と、圧電素子102を用いた圧電動作体100fと、圧縮空気を外部に供給するための供給側経路76a及び供給用接続具76を備えた流体供給部と、流体受入部と流体排出部と流体供給部とを連通する流体室78とを有する。
(Seventh embodiment)
FIG. 13 is a view showing a piezoelectric valve according to a seventh embodiment of the present invention. FIG. 14 is an enlarged view of the vicinity of the fluid chamber 78 shown in FIG. 13 is composed of a plan view (a) and a sectional view (b) of the piezoelectric valve 70, and FIG. 14 is a sectional view taken along the line AA and an enlarged view (b) in the vicinity of the fluid chamber 78. Composed. As shown in FIGS. 13 and 14, the piezoelectric valve 70 includes a main body composed of a member 72 and a member 73, and a receiving side path 75 a for receiving compressed air from compressed air supply means (not shown) such as an air compressor. And a fluid receiving portion including the connection connector 75 for receiving, a fluid discharge portion including a discharge side passage 77a for discharging compressed air to the outside, a piezoelectric operating body 100f using the piezoelectric element 102, and compressed air to the outside A fluid supply unit including a supply side path 76a and a supply connector 76, and a fluid chamber 78 communicating the fluid receiving unit, the fluid discharge unit, and the fluid supply unit.

尚、図8の第4実施形態と同様に、圧電式バルブ70に、圧電動作体100fやこの圧電動作体100fに関する電気回路部分を保護するためのカバー49cを取り付けても良い。図13及び図14における矢印は、圧縮空気の流れる方向を示す矢印と、圧電動作体100fの動作方向を示す矢印とである。   Similarly to the fourth embodiment of FIG. 8, the piezoelectric valve 70 may be provided with a cover 49c for protecting the piezoelectric operating body 100f and the electric circuit portion related to the piezoelectric operating body 100f. The arrows in FIGS. 13 and 14 are an arrow indicating the direction in which the compressed air flows and an arrow indicating the operating direction of the piezoelectric operating body 100f.

本発明の上記実施形態と同様、圧電式バルブ70の本体を構成する部材72と部材73とは、ボルト71で連結されている。また、流体室78は、連結された部材72と部材73との間に形成される空間である。圧電素子102を用いた圧電動作体100fは、一方の端部がボルト74により部材73に固定され、他方の端部はスリット状に形成された流体室78において自由に変位できるように配置されている。   Similar to the above-described embodiment of the present invention, the member 72 and the member 73 constituting the main body of the piezoelectric valve 70 are connected by a bolt 71. The fluid chamber 78 is a space formed between the connected member 72 and the member 73. The piezoelectric operating body 100f using the piezoelectric element 102 is arranged such that one end is fixed to the member 73 by a bolt 74 and the other end can be freely displaced in a fluid chamber 78 formed in a slit shape. Yes.

まず、圧電動作体100fにより排出側経路77aを開にした状態(拡大図(d)に詳細を示す)について説明する。この状態は、圧縮空気を流体供給部にほぼ供給しない状態である。圧縮空気は、圧縮空気供給手段(不図示)から受入用接続具75に接続されたホース等(不図示)を介し受入側経路75aを経由して、スリット状に形成された流体室78に導入される。流体室78に導入された圧縮空気は、供給側経路76a方向が圧電動作体100fの片面101Bで遮断されているため、圧電動作体100fと圧電式バルブ70の本体を構成する部材72との隙間を通って排出側経路77aを経由し外部に排出される。このとき、上記のように供給側経路76a側の流体室78内経路が圧電動作体100fの片面101Bで遮断されているため、外部から供給側経路76aへ流れ込んでくる空気はほぼ無く、流体供給部が負圧になることを防止できる。   First, a state in which the discharge side path 77a is opened by the piezoelectric operating body 100f (details are shown in the enlarged view (d)) will be described. This state is a state in which compressed air is hardly supplied to the fluid supply unit. Compressed air is introduced from a compressed air supply means (not shown) into a fluid chamber 78 formed in a slit shape via a receiving side path 75a through a hose or the like (not shown) connected to a receiving connector 75. Is done. Since the compressed air introduced into the fluid chamber 78 is blocked by the one surface 101B of the piezoelectric operating body 100f in the direction of the supply side path 76a, there is a gap between the piezoelectric operating body 100f and the member 72 constituting the body of the piezoelectric valve 70. It is discharged to the outside through the discharge side path 77a. At this time, since the path in the fluid chamber 78 on the supply side path 76a side is blocked by the one surface 101B of the piezoelectric operating body 100f as described above, there is almost no air flowing from the outside into the supply side path 76a. It is possible to prevent the part from becoming negative pressure.

次に、圧電動作体100fに電圧が印加されると、圧電動作体100fは変位し、供給側経路76a側の流体室78内経路は開にされる。この状態は、圧縮空気が流体供給部を経由して外部に供給される状態である。圧縮空気供給手段(不図示)から流体室78に導入され続けている圧縮空気は、圧電動作体100fを動作させることにより、圧電動作体100fと圧電式バルブ70の本体を構成する部材73との隙間側に流れを変え、供給側経路76aを経由して外部に供給される。   Next, when a voltage is applied to the piezoelectric operating body 100f, the piezoelectric operating body 100f is displaced, and the path in the fluid chamber 78 on the supply side path 76a side is opened. This state is a state in which compressed air is supplied to the outside via the fluid supply unit. The compressed air that has been introduced into the fluid chamber 78 from the compressed air supply means (not shown) operates the piezoelectric operating body 100f, so that the piezoelectric operating body 100f and the member 73 constituting the body of the piezoelectric valve 70 are connected. The flow is changed to the gap side and supplied to the outside via the supply side path 76a.

ここで、本発明の第1乃至第3実施形態と同様、圧電動作体100fにより排出側経路77aを開にした状態、圧電動作体100fにより供給側経路76aを開にした状態のいずれの状態においても、流体は、圧電動作体100fの板面に対してほぼ並行に流れるため、圧電動作体100fへの流体の作用圧が抑制される。よって、圧電動作体100fの作動負荷を抑えることができる。   Here, as in the first to third embodiments of the present invention, in either state where the discharge side path 77a is opened by the piezoelectric operating body 100f or in the state where the supply side path 76a is opened by the piezoelectric operating body 100f. However, since the fluid flows substantially parallel to the plate surface of the piezoelectric operating body 100f, the working pressure of the fluid on the piezoelectric operating body 100f is suppressed. Therefore, the operating load of the piezoelectric operating body 100f can be suppressed.

(第8実施形態)
図15は、本発明の第8実施形態に係る圧電式バルブを示す図である。図16は、図15に示す流体室88付近の拡大図である。図15は、圧電式バルブ80の平面図(a)、及び断面図(b)から構成される。図15及び図16に示すように、圧電式バルブ80は、部材82及び部材83からなる本体と、空気圧縮機等の圧縮空気供給手段(不図示)から圧縮空気を受け入れるための受入側経路85a及び受入用接続具85を備えた流体受入部と、圧縮空気を外部に排出するための排出側経路87aを含む流体排出部と、圧電素子102を用いた圧電動作体100gと、圧縮空気を外部に供給するための供給側経路86a及び供給用接続具86を備えた流体供給部と、流体受入部と流体排出部と流体供給部とを連通する流体室88とを有する。尚、図8の第4実施形態と同様に、圧電式バルブ80に、圧電動作体100gやこの圧電動作体100gに関する電気回路部分を保護するためのカバー49cを取り付けても良い。図15及び図16における矢印は、圧縮空気の流れる方向を示す矢印と、圧電動作体100gの動作方向を示す矢印とである。
(Eighth embodiment)
FIG. 15 is a view showing a piezoelectric valve according to an eighth embodiment of the present invention. FIG. 16 is an enlarged view of the vicinity of the fluid chamber 88 shown in FIG. FIG. 15 includes a plan view (a) and a sectional view (b) of the piezoelectric valve 80. As shown in FIGS. 15 and 16, the piezoelectric valve 80 has a receiving side path 85 a for receiving compressed air from a main body composed of a member 82 and a member 83 and compressed air supply means (not shown) such as an air compressor. And a fluid receiving portion including the receiving connection device 85, a fluid discharge portion including a discharge side path 87a for discharging compressed air to the outside, a piezoelectric operating body 100g using the piezoelectric element 102, and compressed air to the outside A fluid supply section having a supply-side path 86a and a supply connector 86, and a fluid chamber 88 communicating with the fluid receiving section, the fluid discharge section, and the fluid supply section. As in the fourth embodiment of FIG. 8, the piezoelectric valve 80 may be provided with a cover 49c for protecting the piezoelectric operating body 100g and the electric circuit portion related to the piezoelectric operating body 100g. The arrows in FIGS. 15 and 16 are an arrow indicating the direction in which the compressed air flows and an arrow indicating the operating direction of the piezoelectric operating body 100g.

本発明の上記実施形態と同様、圧電式バルブ80の本体を構成する部材82と部材83とは、ボルト81で連結されている。また、流体室88は、部材82を加工して形成される空間でテーパ面を有する円錐状に形成されている。また、流体室88の下面は、流体排出部の一部として形成されている。圧電素子102を用いた圧電動作体100gは、一方の端部がボルト84により部材83に固定され、他方の端部は流体室88の下面において自由に変位できるように配置されている。   Similar to the above-described embodiment of the present invention, the member 82 and the member 83 constituting the main body of the piezoelectric valve 80 are connected by a bolt 81. The fluid chamber 88 is formed in a conical shape having a tapered surface in a space formed by processing the member 82. The lower surface of the fluid chamber 88 is formed as a part of the fluid discharge portion. The piezoelectric operating body 100 g using the piezoelectric element 102 is arranged so that one end is fixed to the member 83 by a bolt 84 and the other end can be freely displaced on the lower surface of the fluid chamber 88.

まず、圧電動作体100gにより排出側経路87aを開にした状態(拡大図(c)に詳細を示す)について説明する。この状態は、圧縮空気を流体供給部にほぼ供給しない状態である。圧縮空気は、圧縮空気供給手段(不図示)から受入用接続具85に接続されたホース等(不図示)を介し受入側経路85aを経由して、テーパ面を有する円錐状に形成された流体室88の側面から流体室88の内面に沿って流体室88に導入される。流体室88に導入された圧縮空気は、流体室88内で旋回して旋回流となり、テーパ面に沿って流体室88の断面が広がっていく方向の流体排出部に導かれ、排出側経路87aを経由し圧電動作体100gの板面に沿う方向に放射状に排出される。よって、圧電動作体100gに対して直接、衝突する流体の流れを防止でき、圧電動作体100gの作動負荷を抑えることができる。   First, a state where the discharge side path 87a is opened by the piezoelectric operating body 100g (details are shown in the enlarged view (c)) will be described. This state is a state in which compressed air is hardly supplied to the fluid supply unit. The compressed air is a fluid formed in a conical shape having a tapered surface via a receiving side path 85a via a hose or the like (not shown) connected to the receiving connector 85 from a compressed air supply means (not shown). The fluid is introduced into the fluid chamber 88 from the side surface of the chamber 88 along the inner surface of the fluid chamber 88. The compressed air introduced into the fluid chamber 88 swirls in the fluid chamber 88 to become a swirling flow, is guided to a fluid discharge portion in a direction in which the cross section of the fluid chamber 88 expands along the tapered surface, and discharge side passage 87a. Is discharged radially in a direction along the plate surface of the piezoelectric operating body 100g. Therefore, it is possible to prevent the flow of fluid that directly collides with the piezoelectric operating body 100g, and to suppress the operation load of the piezoelectric operating body 100g.

また、旋回流となった圧縮空気が放射状に効率良く排出されるため、排出部の開口部位は、わずかな隙間で良い。よって、変位の小さな圧電動作体であっても使用し易い。また、流体受入部から流入した圧縮空気の全てが排出側経路87aに導かれることはなく、圧縮空気の一部は、わずかながら流体供給側に開口する供給側経路86aにも流れていく。よって、流体を外部に供給する流体供給部が負圧になることを防止できる。ここで、排出側経路87aに流れる圧縮空気量と、供給側経路86aに流れる圧縮空気量とは、流体排出部、流体供給部、流体室88等の位置、寸法等により調整されている。   Moreover, since the compressed air which became the swirl | vortex flow is discharged | emitted efficiently radially, the opening part of a discharge part may be a slight clearance gap. Therefore, even a piezoelectric operating body with a small displacement is easy to use. Further, not all of the compressed air flowing in from the fluid receiving portion is guided to the discharge side passage 87a, and a part of the compressed air also flows into the supply side passage 86a that opens slightly to the fluid supply side. Therefore, it can prevent that the fluid supply part which supplies a fluid to the exterior becomes negative pressure. Here, the amount of compressed air flowing through the discharge side passage 87a and the amount of compressed air flowing through the supply side passage 86a are adjusted by the positions, dimensions, and the like of the fluid discharge portion, the fluid supply portion, the fluid chamber 88, and the like.

次に、圧電動作体100gに電圧が印加されると、圧電動作体100gは変位し、流体排出部は閉にされる。この状態は、圧縮空気が流体供給部を経由して外部に供給される状態である。圧縮空気供給手段(不図示)から流体室88に導入され続けている圧縮空気は、圧電動作体100gを動作させることにより、供給側経路86a側に流れを変え外部に供給される。   Next, when a voltage is applied to the piezoelectric operating body 100g, the piezoelectric operating body 100g is displaced, and the fluid discharge portion is closed. This state is a state in which compressed air is supplied to the outside via the fluid supply unit. Compressed air that has been introduced into the fluid chamber 88 from the compressed air supply means (not shown) is supplied to the outside by changing the flow toward the supply side path 86a by operating the piezoelectric operating body 100g.

(第9実施形態)
図17は、本発明の第9実施形態に係る圧電式バルブを示す図である。図18は、図17に示す流体室98付近の拡大図である。図17は、圧電式バルブ90の平面図(a)、及び断面図(b)から構成される。図18及び図19に示すように、圧電式バルブ90は、部材92及び部材93からなる本体と、空気圧縮機等の圧縮空気供給手段(不図示)から圧縮空気を受け入れるための受入側経路95a及び受入用接続具95を備えた流体受入部と、圧縮空気を外部に排出するための排出側経路97aを含む流体排出部と、圧電素子102を用いた圧電動作体100hと、圧縮空気を外部に供給するための供給側経路96a及び供給用接続具96を備えた流体供給部と、流体受入部と流体排出部と流体供給部とを連通する流体室98とを有する。尚、図8の第4実施形態と同様に、圧電式バルブ90に、圧電動作体100hやこの圧電動作体100hに関する電気回路部分を保護するためのカバー49cを取り付けても良い。図18及び図19における矢印は、圧縮空気の流れる方向を示す矢印と、圧電動作体100hの動作方向を示す矢印とである。
(Ninth embodiment)
FIG. 17 is a view showing a piezoelectric valve according to the ninth embodiment of the present invention. 18 is an enlarged view of the vicinity of the fluid chamber 98 shown in FIG. FIG. 17 includes a plan view (a) and a sectional view (b) of the piezoelectric valve 90. As shown in FIGS. 18 and 19, the piezoelectric valve 90 includes a main body composed of a member 92 and a member 93, and a receiving side path 95a for receiving compressed air from compressed air supply means (not shown) such as an air compressor. And a fluid receiving portion including the receiving connection device 95, a fluid discharge portion including a discharge side path 97a for discharging compressed air to the outside, a piezoelectric operating body 100h using the piezoelectric element 102, and compressed air to the outside A fluid supply unit including a supply-side path 96a and a supply connector 96, and a fluid chamber 98 that communicates the fluid receiving unit, the fluid discharge unit, and the fluid supply unit. Similarly to the fourth embodiment of FIG. 8, the piezoelectric valve 90 may be provided with a cover 49c for protecting the piezoelectric operating body 100h and the electric circuit portion related to the piezoelectric operating body 100h. The arrows in FIGS. 18 and 19 are an arrow indicating the direction in which the compressed air flows and an arrow indicating the operating direction of the piezoelectric operating body 100h.

本発明の上記実施形態と同様、圧電式バルブ90の本体を構成する部材92と部材93とは、ボルト91で連結されている。また、流体室98は、連結された部材92と部材93との間に形成される空間で円筒状に形成されている。また、流体室98の上面は、流体排出部の一部として形成されている。圧電素子102を用いた圧電動作体100hは、一方の端部がボルト94により部材93に固定され、他方の端部は流体室98の上面において自由に変位できるように配置されている。   As in the above-described embodiment of the present invention, the member 92 and the member 93 constituting the main body of the piezoelectric valve 90 are connected by a bolt 91. The fluid chamber 98 is formed in a cylindrical shape in a space formed between the connected member 92 and the member 93. The upper surface of the fluid chamber 98 is formed as a part of the fluid discharge portion. The piezoelectric operating body 100 h using the piezoelectric element 102 is arranged such that one end is fixed to the member 93 by a bolt 94 and the other end can be freely displaced on the upper surface of the fluid chamber 98.

まず、圧電動作体100hにより排出側経路97aを開にした状態(拡大図(c)に詳細を示す)について説明する。この状態は、圧縮空気を流体供給部にほぼ供給しない状態である。圧縮空気は、圧縮空気供給手段(不図示)から受入用接続具95に接続されたホース等(不図示)を介し受入側経路95aを経由して、円筒状に形成された流体室98の側面から流体室98の内面に沿って流体室98に導入される。流体室98に導入された圧縮空気は、流体室98内で旋回して旋回流となり、流体室98の上面に形成された流体排出部に導かれ、排出側経路97aを経由し圧電動作体100hの板面に沿う方向に放射状に排出される。よって、圧電動作体100hに対して直接、衝突する流体の流れを防止でき、圧電動作体100hの作動負荷を抑えることができる。   First, a state in which the discharge side path 97a is opened by the piezoelectric operating body 100h (details are shown in the enlarged view (c)) will be described. This state is a state in which compressed air is hardly supplied to the fluid supply unit. The compressed air passes through a receiving side path 95a via a hose or the like (not shown) connected to a receiving connector 95 from a compressed air supply means (not shown), and the side surface of the fluid chamber 98 formed in a cylindrical shape. To the fluid chamber 98 along the inner surface of the fluid chamber 98. The compressed air introduced into the fluid chamber 98 swirls in the fluid chamber 98 to become a swirling flow, is guided to a fluid discharge portion formed on the upper surface of the fluid chamber 98, and passes through the discharge-side path 97a, and the piezoelectric operating body 100h. Are discharged radially in the direction along the plate surface. Therefore, it is possible to prevent the flow of fluid that directly collides with the piezoelectric operating body 100h, and to suppress the operation load of the piezoelectric operating body 100h.

また、旋回流となった圧縮空気が放射状に効率良く排出されるため、排出部の開口部位は、わずかな隙間で良い。よって、変位の小さな圧電動作体であっても使用し易い。また、流体受入部から流入した圧縮空気の全てが排出側経路97aに導かれることはなく、圧縮空気の一部は、わずかながら流体供給側に開口する供給側経路96aにも流れていく。よって、流体を外部に供給する流体供給部が負圧になることを防止できる。ここで、排出側経路97aに流れる圧縮空気量と、供給側経路96aに流れる圧縮空気量とは、流体排出部、流体供給部、流体室98等の位置、寸法等により調整されている。   Moreover, since the compressed air which became the swirl | vortex flow is discharged | emitted efficiently radially, the opening part of a discharge part may be a slight clearance gap. Therefore, even a piezoelectric operating body with a small displacement is easy to use. Further, not all of the compressed air flowing in from the fluid receiving portion is guided to the discharge side passage 97a, and a part of the compressed air also flows into the supply side passage 96a that opens slightly to the fluid supply side. Therefore, it can prevent that the fluid supply part which supplies a fluid to the exterior becomes negative pressure. Here, the amount of compressed air flowing through the discharge side passage 97a and the amount of compressed air flowing through the supply side passage 96a are adjusted by the positions, dimensions, and the like of the fluid discharge portion, the fluid supply portion, the fluid chamber 98, and the like.

次に、圧電動作体100hに電圧が印加されると、圧電動作体100hは変位し、流体排出部は閉にされる。この状態は、圧縮空気が流体供給部を経由して外部に供給される状態である。圧縮空気供給手段(不図示)から流体室98に導入され続けている圧縮空気は、圧電動作体100hを動作させることにより、供給側経路96a側に流れを変え外部に供給される。   Next, when a voltage is applied to the piezoelectric operating body 100h, the piezoelectric operating body 100h is displaced, and the fluid discharge portion is closed. This state is a state in which compressed air is supplied to the outside via the fluid supply unit. The compressed air that has been continuously introduced into the fluid chamber 98 from the compressed air supply means (not shown) changes the flow toward the supply side path 96a and is supplied to the outside by operating the piezoelectric operating body 100h.

(第10実施形態)
図19は、本発明の第10実施形態に係る圧電式バルブを示す図である。図20は、図19に示す流体室208付近の拡大図である。図19は、圧電式バルブ200の平面図(a)、及び断面図(b)から構成され、図20は、流体室208付近の側面拡大図(a)、及び流体室208付近の平面拡大図(b)から構成される。図19及び図20に示すように、圧電式バルブ200は、部材202、部材203、及び部材203bからなる本体と、空気圧縮機等の圧縮空気供給手段(不図示)から圧縮空気を受け入れるための受入側経路205a及び受入用接続具205を備えた流体受入部と、圧縮空気を外部に排出するための排出側経路207aを含む流体排出部と、圧電素子102を用いた圧電動作体100iと、圧縮空気を外部に供給するための供給側経路206a及び供給用接続具206を備えた流体供給部と、流体受入部と流体排出部と流体供給部とを連通する流体室208とを有する。
(10th Embodiment)
FIG. 19 is a view showing a piezoelectric valve according to the tenth embodiment of the present invention. FIG. 20 is an enlarged view of the vicinity of the fluid chamber 208 shown in FIG. 19 includes a plan view (a) and a sectional view (b) of the piezoelectric valve 200, and FIG. 20 is an enlarged side view (a) in the vicinity of the fluid chamber 208 and an enlarged plan view in the vicinity of the fluid chamber 208. (B). As shown in FIGS. 19 and 20, the piezoelectric valve 200 is for receiving compressed air from a main body composed of a member 202, a member 203, and a member 203b, and compressed air supply means (not shown) such as an air compressor. A fluid receiving portion including a receiving-side path 205a and a receiving connector 205; a fluid discharging section including a discharging-side path 207a for discharging compressed air to the outside; a piezoelectric operating body 100i using the piezoelectric element 102; A fluid supply unit including a supply-side path 206a for supplying compressed air to the outside and a supply connector 206, and a fluid chamber 208 that communicates the fluid receiving unit, the fluid discharge unit, and the fluid supply unit.

尚、図8の第4実施形態と同様に、圧電式バルブ200に、圧電動作体100iやこの圧電動作体100iに関する電気回路部分を保護するためのカバー49cを取り付けても良い。図19及び図20における矢印は、圧縮空気の流れる方向を示す矢印と、圧電動作体100hの動作方向を示す矢印とである。   As in the fourth embodiment of FIG. 8, the piezoelectric valve 200 may be provided with a cover 49c for protecting the piezoelectric operating body 100i and an electric circuit portion related to the piezoelectric operating body 100i. The arrows in FIGS. 19 and 20 are an arrow indicating the direction in which the compressed air flows and an arrow indicating the operating direction of the piezoelectric operating body 100h.

本発明の上記実施形態と同様、圧電式バルブ200の本体を構成する部材202と部材203とは、ボルト201で連結され、部材203と部材203bとは、ボルト201bで連結されている。また、流体室208は、連結された部材202と部材203との間に形成される空間でテーパ面を有する円錐状に形成されている。また、流体室208の上面は、流体排出部の一部として形成されている。圧電素子102を用いた圧電動作体100iは、一方の端部がボルト204により部材203bに固定され、他方の端部は流体室208の上面において自由に変位できるように配置されている。   As in the above-described embodiment of the present invention, the member 202 and the member 203 constituting the main body of the piezoelectric valve 200 are connected by a bolt 201, and the member 203 and the member 203b are connected by a bolt 201b. The fluid chamber 208 is formed in a conical shape having a tapered surface in a space formed between the connected member 202 and the member 203. The upper surface of the fluid chamber 208 is formed as a part of the fluid discharge portion. The piezoelectric operating body 100 i using the piezoelectric element 102 is arranged such that one end is fixed to the member 203 b by a bolt 204 and the other end can be freely displaced on the upper surface of the fluid chamber 208.

まず、圧電動作体100iにより排出側経路207aを開にした状態(拡大図(c)に詳細を示す)について説明する。この状態は、圧縮空気を流体供給部にほぼ供給しない状態である。圧縮空気は、圧縮空気供給手段(不図示)から受入用接続具205に接続されたホース等(不図示)を介し受入側経路205aを経由して、テーパ面を有する円錐状に形成された流体室208の側面から流体室208の内面に沿って流体室208に導入される。流体室208に導入された圧縮空気は、流体室208内で旋回して旋回流となり、テーパ面に沿って流体室208の断面が広がっていく方向の流体排出部に導かれ、排出側経路207aを経由し圧電動作体100iの板面に沿う方向に放射状に排出される。よって、圧電動作体100gに対して直接、衝突する流体の流れを防止でき、圧電動作体100iの作動負荷を抑えることができる。   First, a state where the discharge side path 207a is opened by the piezoelectric operating body 100i (details are shown in the enlarged view (c)) will be described. This state is a state in which compressed air is hardly supplied to the fluid supply unit. The compressed air is a fluid formed in a conical shape having a tapered surface via a receiving side path 205a via a hose or the like (not shown) connected to the receiving connector 205 from a compressed air supply means (not shown). The fluid is introduced into the fluid chamber 208 from the side surface of the chamber 208 along the inner surface of the fluid chamber 208. The compressed air introduced into the fluid chamber 208 swirls in the fluid chamber 208 to become a swirling flow, is guided to the fluid discharge portion in the direction in which the cross section of the fluid chamber 208 expands along the tapered surface, and the discharge side path 207a. Are discharged radially in the direction along the plate surface of the piezoelectric operating body 100i. Therefore, it is possible to prevent the flow of fluid that directly collides with the piezoelectric operating body 100g, and to suppress the operation load of the piezoelectric operating body 100i.

また、旋回流となった圧縮空気が放射状に効率良く排出されるため、排出部の開口部位は、わずかな隙間で良い。よって、変位の小さな圧電動作体であっても使用し易い。また、流体受入部から流入した圧縮空気の全てが排出側経路207aに導かれることはなく、圧縮空気の一部は、わずかながら流体供給側に開口する供給側経路206aにも流れていく。よって、流体を外部に供給する流体供給部が負圧になることを防止できる。ここで、排出側経路207aに流れる圧縮空気量と、供給側経路206aに流れる圧縮空気量とは、流体排出部、流体供給部、流体室208等の位置、寸法等により調整されている。   Moreover, since the compressed air which became the swirl | vortex flow is discharged | emitted efficiently radially, the opening part of a discharge part may be a slight clearance gap. Therefore, even a piezoelectric operating body with a small displacement is easy to use. Further, not all of the compressed air flowing in from the fluid receiving portion is guided to the discharge side passage 207a, and a part of the compressed air also flows into the supply side passage 206a that opens slightly to the fluid supply side. Therefore, it can prevent that the fluid supply part which supplies a fluid to the exterior becomes negative pressure. Here, the amount of compressed air flowing through the discharge side passage 207a and the amount of compressed air flowing through the supply side passage 206a are adjusted by the positions, dimensions, etc. of the fluid discharge portion, the fluid supply portion, the fluid chamber 208, and the like.

次に、圧電動作体100iに電圧が印加されると、圧電動作体100iは変位し、流体排出部は閉にされる。この状態は、圧縮空気が流体供給部を経由して外部に供給される状態である。圧縮空気供給手段(不図示)から流体室208に導入され続けている圧縮空気は、圧電動作体100iを動作させることにより、供給側経路206a側に流れを変え外部に供給される。   Next, when a voltage is applied to the piezoelectric operating body 100i, the piezoelectric operating body 100i is displaced, and the fluid discharge portion is closed. This state is a state in which compressed air is supplied to the outside via the fluid supply unit. Compressed air that has been continuously introduced into the fluid chamber 208 from the compressed air supply means (not shown) is supplied to the outside by changing the flow toward the supply side path 206a by operating the piezoelectric operating body 100i.

以上、本発明の実施形態について説明したが、本発明は上述の実施の形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々に変更して実施することができるものである。例えば、図15及び図16に示す第8実施形態において、上方にいくに連れてテーパ面が広がるように流体室を上下逆にし、流体室の上面を流体排出部、下面を流体供給部としたり、図19及び図20に示す第10実施形態においては、逆に、下方にいくに連れてテーパ面が広がるように流体室を上下逆にし、流体室の下面を流体排出部、上面を流体供給部としたりして実施することができる。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims. For example, in the eighth embodiment shown in FIGS. 15 and 16, the fluid chamber is turned upside down so that the taper surface expands as it goes upward, and the upper surface of the fluid chamber is used as the fluid discharge portion and the lower surface as the fluid supply portion. In the tenth embodiment shown in FIG. 19 and FIG. 20, the fluid chamber is turned upside down so that the tapered surface widens as it goes downward, and the lower surface of the fluid chamber is the fluid discharge portion and the upper surface is supplied with fluid. It can be implemented as a part.

圧電動作体を示す図である。It is a figure which shows a piezoelectric action body. 第1実施形態に係る圧電式バルブを示す図である。It is a figure which shows the piezoelectric valve which concerns on 1st Embodiment. 図2の流体室の端部付近を示す拡大図である。It is an enlarged view which shows the edge part vicinity of the fluid chamber of FIG. 第2実施形態に係る圧電式バルブを示す図である。It is a figure which shows the piezoelectric valve which concerns on 2nd Embodiment. 図4の流体室の端部付近を示す拡大図である。It is an enlarged view which shows the edge part vicinity of the fluid chamber of FIG. 第3実施形態に係る圧電式バルブを示す図である。It is a figure which shows the piezoelectric valve which concerns on 3rd Embodiment. 図6の流体室の端部付近を示す拡大図である。It is an enlarged view which shows the edge part vicinity of the fluid chamber of FIG. 第4実施形態に係る圧電式バルブを示す図である。It is a figure which shows the piezoelectric valve which concerns on 4th Embodiment. 図8の流体室付近を示す拡大図である。It is an enlarged view which shows the fluid chamber vicinity of FIG. 第5実施形態に係る圧電式バルブを示す図である。It is a figure which shows the piezoelectric valve which concerns on 5th Embodiment. 第6実施形態に係る圧電式バルブを示す図である。It is a figure which shows the piezoelectric valve which concerns on 6th Embodiment. 図11の流体室付近を示す拡大図である。It is an enlarged view which shows the fluid chamber vicinity of FIG. 第7実施形態に係る圧電式バルブを示す図である。It is a figure which shows the piezoelectric valve which concerns on 7th Embodiment. 図13の流体室付近を示す拡大図である。It is an enlarged view which shows the fluid chamber vicinity of FIG. 第8実施形態に係る圧電式バルブを示す図である。It is a figure which shows the piezoelectric valve which concerns on 8th Embodiment. 図15の流体室付近を示す拡大図である。It is an enlarged view which shows the fluid chamber vicinity of FIG. 第9実施形態に係る圧電式バルブを示す図である。It is a figure which shows the piezoelectric valve which concerns on 9th Embodiment. 図17の流体室付近を示す拡大図である。It is an enlarged view which shows the fluid chamber vicinity of FIG. 第10実施形態に係る圧電式バルブを示す図である。It is a figure which shows the piezoelectric valve which concerns on 10th Embodiment. 図19の流体室付近を示す拡大図である。FIG. 20 is an enlarged view showing the vicinity of the fluid chamber in FIG. 19.

符号の説明Explanation of symbols

80 圧電式バルブ
85a 受入側経路
86a 供給側経路
87a 排出側経路
88 流体室
100g 圧電動作体
80 Piezoelectric valve 85a Acceptance side path 86a Supply side path 87a Discharge side path 88 Fluid chamber 100g Piezoelectric actuator

Claims (13)

圧電素子を用いた圧電式バルブであって、
流体供給手段から流体を受け入れる流体受入部と、
前記流体受入部から受け入れた前記流体を外部に排出するための流体排出部と、
前記流体排出部に設けられ、薄い板状であって長手方向を有し、印加電圧に応じて前記流体排出部の外部に通じる排出側経路を開閉する圧電動作体と、
前記流体受入部から受け入れた前記流体を外部に供給するための流体供給部と、
前記流体受入部と前記流体排出部と前記流体供給部とを連通し、前記圧電動作体への前記流体の作用圧を抑制する流体室と、
を備えていることを特徴とする、圧電式バルブ。
A piezoelectric valve using a piezoelectric element,
A fluid receiving portion for receiving fluid from the fluid supply means;
A fluid discharge portion for discharging the fluid received from the fluid receiving portion to the outside;
A piezoelectric operating body that is provided in the fluid discharge portion, has a thin plate shape and has a longitudinal direction, and opens and closes a discharge-side path that communicates with the outside of the fluid discharge portion according to an applied voltage;
A fluid supply unit for supplying the fluid received from the fluid receiving unit to the outside;
A fluid chamber that communicates the fluid receiving portion, the fluid discharge portion, and the fluid supply portion, and suppresses the working pressure of the fluid on the piezoelectric operating body;
A piezoelectric valve characterized by comprising:
前記圧電動作体は、前記排出側経路を開にしたときは前記流体供給部の外部に通じる供給側経路を閉にし、前記排出側経路を閉にしたときは前記供給側経路を開にする圧電動作体であり、
前記流体室は、前記流体室が前記流体排出部に接続する接続部近傍で、前記流体受入部から前記流体排出部へ流れる前記流体の流れ方向と、前記圧電動作体の板面とが並行するように、且つ、スリット状に形成されていることを特徴とする、請求項1に記載の圧電式バルブ。
The piezoelectric operating body closes a supply-side path that communicates with the outside of the fluid supply unit when the discharge-side path is opened, and opens the supply-side path when the discharge-side path is closed. Is an action body,
In the fluid chamber, the flow direction of the fluid flowing from the fluid receiving portion to the fluid discharge portion is parallel to the plate surface of the piezoelectric operating body in the vicinity of a connection portion where the fluid chamber is connected to the fluid discharge portion. The piezoelectric valve according to claim 1, wherein the piezoelectric valve is formed in a slit shape.
前記圧電動作体は、片面で前記排出側経路を開閉し、他の片面で前記流体供給部の外部に通じる供給側経路を開閉する圧電動作体であり、
前記流体室は、前記接続部近傍でスリット状に形成されていることを特徴とする、請求項1又は請求項2に記載の圧電式バルブ。
The piezoelectric operating body is a piezoelectric operating body that opens and closes the discharge-side path on one side and opens and closes a supply-side path that communicates with the outside of the fluid supply unit on the other side.
The piezoelectric valve according to claim 1 or 2, wherein the fluid chamber is formed in a slit shape in the vicinity of the connection portion.
前記圧電動作体は、片面で前記排出側経路を開閉し、端部で前記流体供給部の外部に通じる供給側経路を開閉する圧電動作体であり、
前記流体室は、前記接続部近傍でスリット状に形成されていることを特徴とする、請求項1又は請求項2に記載の圧電式バルブ。
The piezoelectric operating body is a piezoelectric operating body that opens and closes the discharge-side path on one side and opens and closes a supply-side path that communicates with the outside of the fluid supply section at an end portion.
The piezoelectric valve according to claim 1 or 2, wherein the fluid chamber is formed in a slit shape in the vicinity of the connection portion.
前記圧電動作体は、端部で前記排出側経路を開にしたときは前記端部で前記流体供給部の外部に通じる供給側経路を閉にし、前記端部で前記排出側経路を閉にしたときは前記端部で前記供給側経路を開にする圧電動作体であり、
前記流体室は、前記接続部近傍でスリット状に形成されていることを特徴とする、請求項1又は請求項2に記載の圧電式バルブ。
When the discharge side path is opened at the end, the piezoelectric operating body closes the supply side path leading to the outside of the fluid supply unit at the end, and closes the discharge side path at the end. When the piezoelectric operating body opens the supply side path at the end,
The piezoelectric valve according to claim 1 or 2, wherein the fluid chamber is formed in a slit shape in the vicinity of the connection portion.
前記圧電動作体は、片面で前記排出側経路を開にしたときは前記片面で前記流体供給部の外部に通じる供給側経路を閉にし、前記片面で前記排出側経路を閉にしたときは前記片面で前記供給側経路を開にする圧電動作体であることを特徴とする、請求項1又は請求項2に記載の圧電式バルブ。   The piezoelectric operating body closes the supply-side path communicating with the outside of the fluid supply unit on one side when the discharge-side path is opened on one side, and closes the discharge-side path on the one side. The piezoelectric valve according to claim 1 or 2, wherein the piezoelectric valve is a piezoelectric operating body that opens the supply-side path on one side. 前記流体受入部の前記流体を受け入れる受入側経路を前記流体が流れる方向である受入側流れ方向と、前記流体供給部の外部に通じる供給側経路を前記流体が流れる方向である供給側流れ方向とは並行し、且つ、前記受入側流れ方向及び前記供給側流れ方向と、前記圧電動作体の板面とは直交することを特徴とする、請求項1に記載の圧電式バルブ。   A receiving-side flow direction in which the fluid flows in a receiving-side path for receiving the fluid of the fluid receiving unit; and a supply-side flowing direction in which the fluid flows in a supplying-side path communicating with the outside of the fluid supplying unit. 2. The piezoelectric valve according to claim 1, wherein the receiving side flow direction and the supply side flow direction are orthogonal to a plate surface of the piezoelectric operating body. 前記排出側経路は、外部に開口したスリット状に形成され、
前記圧電動作体の端部は、鉤形に折れ曲がり、
鉤形に折れ曲がった前記端部は、前記排出側経路の一部から挿入されて前記流体受入部と前記流体供給部との間に設けられ、
前記流体受入部からの前記流体の吐出方向に、前記流体供給部の前記流体の受入口が設けられていることを特徴とする、請求項1に記載の圧電式バルブ。
The discharge side path is formed in a slit shape opened to the outside,
The end of the piezoelectric operating body is bent into a bowl shape,
The end portion bent in a bowl shape is inserted between a part of the discharge side path and provided between the fluid receiving portion and the fluid supply portion,
2. The piezoelectric valve according to claim 1, wherein a receiving port for the fluid of the fluid supply unit is provided in a direction in which the fluid is discharged from the fluid receiving unit.
前記流体室の上面又は下面は、前記流体排出部として形成され、
前記流体受入部からの前記流体は、前記流体室の側面から前記流体室の内面に沿って、前記流体室に供給されることを特徴とする、請求項1に記載の圧電式バルブ。
An upper surface or a lower surface of the fluid chamber is formed as the fluid discharge portion,
2. The piezoelectric valve according to claim 1, wherein the fluid from the fluid receiving portion is supplied to the fluid chamber from a side surface of the fluid chamber along an inner surface of the fluid chamber.
前記流体室は、テーパ面を有する円錐状に形成されることを特徴とする、請求項1又は請求項9に記載の圧電式バルブ。   The piezoelectric valve according to claim 1 or 9, wherein the fluid chamber is formed in a conical shape having a tapered surface. 前記流体室は、円筒状に形成されることを特徴とする、請求項1又は請求項9に記載の圧電式バルブ。   The piezoelectric valve according to claim 1, wherein the fluid chamber is formed in a cylindrical shape. 前記流体供給部は、前記流体排出部に対向する前記流体室の対向面に接続されることを特徴とする、請求項9乃至請求項11のいずれか1項に記載の圧電式バルブ。   The piezoelectric valve according to claim 9, wherein the fluid supply unit is connected to a facing surface of the fluid chamber that faces the fluid discharge unit. 前記流体供給部の外部に通じる供給側経路と、前記流体受入部の前記流体を受け入れる受入側経路とは並行し、
前記流体は、前記流体室の内面に沿って、前記供給側経路から外部に供給されることを特徴とする、請求項9乃至請求項11のいずれか1項に記載の圧電式バルブ。
The supply-side path that leads to the outside of the fluid supply unit and the reception-side path that receives the fluid of the fluid reception unit are in parallel.
12. The piezoelectric valve according to claim 9, wherein the fluid is supplied to the outside from the supply-side path along the inner surface of the fluid chamber.
JP2007069919A 2007-03-19 2007-03-19 Piezoelectric valve Expired - Fee Related JP5003224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007069919A JP5003224B2 (en) 2007-03-19 2007-03-19 Piezoelectric valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007069919A JP5003224B2 (en) 2007-03-19 2007-03-19 Piezoelectric valve

Publications (2)

Publication Number Publication Date
JP2008232202A true JP2008232202A (en) 2008-10-02
JP5003224B2 JP5003224B2 (en) 2012-08-15

Family

ID=39905277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007069919A Expired - Fee Related JP5003224B2 (en) 2007-03-19 2007-03-19 Piezoelectric valve

Country Status (1)

Country Link
JP (1) JP5003224B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299799A (en) * 2008-06-13 2009-12-24 Daishin:Kk Gas supply valve and part transporting device
KR20180075522A (en) * 2015-10-29 2018-07-04 페스토 악티엔 게젤샤프트 운트 코. 카게 Fluid control device and method of operating fluid control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181770U (en) * 1986-05-08 1987-11-18
JPH07158757A (en) * 1993-12-06 1995-06-20 Nippondenso Co Ltd Micro-valve
JP2002195434A (en) * 2000-11-20 2002-07-10 Festo Ag & Co Piezoelectric valve
JP2005009523A (en) * 2003-06-17 2005-01-13 Daishin:Kk Fluid pressure actuator
JP2006250221A (en) * 2005-03-10 2006-09-21 Daishin:Kk Flow passage changeover unit, suction retention unit and pressure operation unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62181770U (en) * 1986-05-08 1987-11-18
JPH07158757A (en) * 1993-12-06 1995-06-20 Nippondenso Co Ltd Micro-valve
JP2002195434A (en) * 2000-11-20 2002-07-10 Festo Ag & Co Piezoelectric valve
JP2005009523A (en) * 2003-06-17 2005-01-13 Daishin:Kk Fluid pressure actuator
JP2006250221A (en) * 2005-03-10 2006-09-21 Daishin:Kk Flow passage changeover unit, suction retention unit and pressure operation unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299799A (en) * 2008-06-13 2009-12-24 Daishin:Kk Gas supply valve and part transporting device
JP4555366B2 (en) * 2008-06-13 2010-09-29 株式会社ダイシン Gas supply valve and parts transfer device
KR20180075522A (en) * 2015-10-29 2018-07-04 페스토 악티엔 게젤샤프트 운트 코. 카게 Fluid control device and method of operating fluid control device
KR102374493B1 (en) * 2015-10-29 2022-03-14 페스토 에스이 운트 코. 카게 Fluid control device and method of operation of fluid control device

Also Published As

Publication number Publication date
JP5003224B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
CN105026060B (en) Blowing device
JP4555366B2 (en) Gas supply valve and parts transfer device
JP5003224B2 (en) Piezoelectric valve
JP2009154064A (en) Droplet applying dispenser
JP2009166153A (en) Vacuum generator
JP2009036096A (en) Vacuum generation unit
JP2007120441A (en) Fuel cell system and ejector device
JP2007522386A (en) Fuel cell system with variable Coanda amplifier for gas recirculation and system pressure regulation
JP2018119676A (en) Solenoid valve including independently-movable pilot plunger head
US20170284462A1 (en) Air bearing
WO2010119961A1 (en) Liquid jetting apparatus
KR101611518B1 (en) Exhaust and load port having therof
JP2014506976A (en) Valve device for controlling or metering fluid
KR101638454B1 (en) Exhaust and load port having therof
KR20090131919A (en) Conveying device
JP2021042769A (en) Flow rate controller and driving device including the same
KR101636242B1 (en) Durability improving apparatus of drain flow sensor for semiconductor manufacturing equipment
JP2004276230A (en) Mist generation device
US11378200B2 (en) Electromagnetically operated valve
KR100693904B1 (en) Two-way Micro Pump
CN100394040C (en) Vacuum generating unit with vacuum clearing volume
EP4325142A1 (en) Ejector having an actuation mechanism with a pilot valve and an equalization passage between two cylinder chambers
JP2009185701A (en) Fuel pump
JP2020169625A (en) Ejector
US20240117822A1 (en) Fluid circuit for intermittent air discharge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees