JP2008232072A - Vehicle and control method thereof - Google Patents

Vehicle and control method thereof Download PDF

Info

Publication number
JP2008232072A
JP2008232072A JP2007075348A JP2007075348A JP2008232072A JP 2008232072 A JP2008232072 A JP 2008232072A JP 2007075348 A JP2007075348 A JP 2007075348A JP 2007075348 A JP2007075348 A JP 2007075348A JP 2008232072 A JP2008232072 A JP 2008232072A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
engine
abnormality
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007075348A
Other languages
Japanese (ja)
Inventor
Takashi Matsumoto
隆志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007075348A priority Critical patent/JP2008232072A/en
Priority to PCT/JP2008/055123 priority patent/WO2008114826A1/en
Publication of JP2008232072A publication Critical patent/JP2008232072A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/10Safety devices not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • B60L2220/52Clutch motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/24Driver interactions by lever actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/004Generation of the ignition spark
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To more appropriately determine abnormality of an internal combustion engine without causing a trouble of the internal combustion engine. <P>SOLUTION: Abnormality counter C1 is incremented when actual power is insufficient to engine demand power in travel accompanied by engine operation, and the abnormality counter C1 is set to value 0 when the actual power is not insufficient. Abnormality counter C2 is incremented when engine speed after start of fuel injection control and ignition control is less than predetermined speed in engine start, and the abnormality counter C2 is set to value 0 when the engine speed is the predetermined speed or higher. Engine operation is controlled with accompanied by increase of target suction air quantity Q* when the abnormality counter C1 is in a range of a threshold α2 or greater, and less than a threshold α1 for abnormality settlement, or when the abnormality counter C2 is in a range of a threshold β2 or greater, and less than a threshold β1 for abnormality settlement, or fuel remaining quantity Fr is predetermined quantity Fref right before fuel starvation or more. Engine operation is controlled without accompanied by increase of target suction air quantity Q* when fuel remaining quantity Fr is less than predetermined quantity Fref. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、燃料の供給を受けて該燃料の燃焼により動力を出力する内燃機関を備える車両およびその制御方法に関する。   The present invention relates to a vehicle including an internal combustion engine that receives supply of fuel and outputs power by combustion of the fuel, and a control method thereof.

従来、この種の車両としては、モータによりエンジンを所定回転数までモータリングして燃料噴射制御や点火制御を開始しエンジンの完爆が判定されたときにモータリングを停止するエンジンの始動制御を行なう際に、エンジンの完爆が判定されないまま(燃焼不良)の状態でモータリングが所定時間(予備時間)に亘って継続されたときにはエンジンの吸入空気量の増量を伴ってエンジンを運転制御し、吸入空気量の増量にも拘わらずエンジンの完爆が判定されないままモータリングが予備時間よりも長い異常決定時間に亘って継続されたときにエンジンの異常を確定するものものが提案されている(例えば、特許文献1参照)。この車両では、エンジンの異常を確定する前に、吸入空気量の増加を伴ってエンジンを運転制御することにより、エンジンの一時的な出力低下によってエンジンの異常が確定されるのを防止している。
特開2006−274937号公報
Conventionally, in this type of vehicle, the engine is controlled to a predetermined number of revolutions by a motor, fuel injection control and ignition control are started, and engine start control for stopping motoring when engine complete explosion is determined. When the motoring is continued for a predetermined time (preliminary time) in a state where the complete explosion of the engine is not judged (combustion failure), the engine is controlled to operate with an increase in the intake air amount. A system has been proposed in which engine abnormality is determined when motoring is continued for an abnormality determination time longer than the preliminary time without determining whether the complete explosion of the engine is determined despite the increase in the intake air amount. (For example, refer to Patent Document 1). In this vehicle, before the engine abnormality is determined, the engine operation is controlled with an increase in the intake air amount, thereby preventing the engine abnormality from being determined due to a temporary decrease in the engine output. .
JP 2006-274937 A

ところで、上述した車両において、燃料タンク内が燃料切れ寸前の状態になると、エンジンへの燃料の供給が断続的になる場合があり、この場合、燃焼不良の発生により吸入空気量の増加を伴ってエンジンを運転制御すると、正常燃焼と燃焼不良とが繰り返されてエンジンの異常が確定されない状態が長時間に亘って続くおそれがある。こうした状態は、触媒の温度上昇などのエンジンの不具合の発生を招くことから、より適切に対処することが望まれる。   By the way, in the above-described vehicle, when the fuel tank is in a state of almost running out of fuel, the supply of fuel to the engine may be intermittent. In this case, an increase in intake air amount occurs due to the occurrence of combustion failure. When the engine is operated and controlled, normal combustion and poor combustion are repeated, and there is a possibility that a state in which the abnormality of the engine is not determined continues for a long time. Such a situation causes the occurrence of an engine failure such as an increase in the temperature of the catalyst, so it is desired to deal with it more appropriately.

本発明の車両およびその制御方法は、内燃機関に不具合を発生させることなく内燃機関の燃焼異常をより適切に判定することを目的とする。   An object of the vehicle and the control method thereof according to the present invention is to more appropriately determine a combustion abnormality of an internal combustion engine without causing a malfunction in the internal combustion engine.

本発明の車両およびその制御方法は、上述の目的を達成するために以下の手段を採った。   The vehicle and the control method thereof according to the present invention employ the following means in order to achieve the above-described object.

本発明の車両は、
燃料の供給を受けて該燃料の燃焼により動力を出力する内燃機関を備える車両であって、
前記内燃機関の燃焼状態を検出または推定する燃焼状態検出推定手段と、
前記燃焼状態検出推定手段により前記内燃機関の通常とは異なる非通常燃焼状態が検出または推定されたとき、該非通常燃焼状態の継続時間に基づいて該内燃機関の異常を段階的に判定する異常判定手段と、
燃料残量を検出する燃料残量検出手段と、
前記異常判定手段により前記内燃機関の異常のおそれが判定されたときに該異常を確定するに先立って、前記燃料残量検出手段により検出された燃料残量が燃料切れ寸前の所定量以上のときには前記内燃機関への吸入空気量の増量を伴って該内燃機関を運転制御し、前記燃料残量検出手段により検出された燃料残量が前記所定量未満のときには吸入空気量の増量を伴わずに前記内燃機関を運転制御する異常判定時制御手段と
を備えることを要旨とする。
The vehicle of the present invention
A vehicle including an internal combustion engine that receives supply of fuel and outputs power by combustion of the fuel,
Combustion state detection estimating means for detecting or estimating the combustion state of the internal combustion engine;
Abnormality determination for stepwise determining abnormality of the internal combustion engine based on the duration of the abnormal combustion state when the abnormal combustion state of the internal combustion engine different from normal is detected or estimated by the combustion state detection estimation unit Means,
Fuel remaining amount detecting means for detecting the remaining amount of fuel;
When the abnormality determination means determines that there is a possibility of abnormality of the internal combustion engine, prior to determining the abnormality, when the remaining fuel amount detected by the remaining fuel amount detection means is greater than or equal to a predetermined amount before the fuel shortage Operation control of the internal combustion engine is performed with an increase in the intake air amount to the internal combustion engine, and the increase in the intake air amount is not performed when the remaining fuel amount detected by the remaining fuel amount detecting means is less than the predetermined amount. And an abnormality determination time control means for controlling the operation of the internal combustion engine.

この本発明の車両では、内燃機関が通常とは異なる非通常燃焼状態にあるときこの非通常燃焼状態の継続時間に基づいて内燃機関の異常を段階的に判定し、内燃機関の異常のおそれが判定されたときに異常を確定するに先立って、燃料残量が燃料切れ寸前の所定量以上のときには内燃機関への吸入空気量の増量を伴って内燃機関を運転制御し、燃料残量が所定量未満のときには吸入空気量の増量を伴わずに内燃機関を運転制御する。したがって、内燃機関の異常をより適切に判定することができると共に燃料残量が燃料切れ寸前の所定量未満のときに吸入空気量の増量によって内燃機関の異常の確定が遅れることに起因する不具合の発生を抑制することができる。   In the vehicle according to the present invention, when the internal combustion engine is in a non-normal combustion state different from normal, the abnormality of the internal combustion engine is determined stepwise based on the duration of the non-normal combustion state, and there is a risk of abnormality of the internal combustion engine. Prior to determining the abnormality when judged, when the remaining fuel amount is equal to or greater than the predetermined amount before the fuel runs out, the internal combustion engine is controlled to operate with an increase in the intake air amount to the internal combustion engine, and the remaining fuel amount is determined. When it is less than the fixed amount, the internal combustion engine is controlled to operate without increasing the intake air amount. Therefore, it is possible to more appropriately determine the abnormality of the internal combustion engine and to solve the problem caused by delaying the determination of the abnormality of the internal combustion engine due to the increase of the intake air amount when the remaining amount of fuel is less than a predetermined amount immediately before the fuel runs out. Occurrence can be suppressed.

こうした本発明の車両において、前記異常判定手段は、前記燃焼状態検出推定手段により前記非通常燃焼状態が第1所定時間に亘って継続して検出または推定されたときに前記内燃機関の異常を確定する手段であり、前記燃焼状態検出推定手段により前記非通常燃焼状態が前記第1所定時間よりも短い第2所定時間に亘って継続して検出または推定されたときに前記内燃機関の異常のおそれを判定する手段であるものとすることもできる。   In such a vehicle of the present invention, the abnormality determination means determines the abnormality of the internal combustion engine when the non-normal combustion state is continuously detected or estimated over a first predetermined time by the combustion state detection estimation means. There is a risk of abnormality of the internal combustion engine when the non-normal combustion state is continuously detected or estimated over a second predetermined time shorter than the first predetermined time by the combustion state detection estimating means. It can also be a means for judging.

また、本発明の車両において、前記内燃機関をモータリングするモータリング手段と、前記内燃機関の始動が要求されたときには、該内燃機関がモータリングされるよう前記モータリング手段を制御すると共に該モータリングした後に該内燃機関の燃料噴射制御と点火制御とを開始する始動制御手段と、を備え、前記燃焼状態検出推定手段は、前記燃料噴射制御と前記点火制御とが開始された後の前記内燃機関の回転数またはトルクを検出または推定する手段であり、前記異常判定手段は、前記検出または推定された内燃機関の回転数またはトルクに基づいて該内燃機関の始動異常を判定する手段であるものとすることもできる。こうすれば、内燃機関の不具合の発生を抑制しながら内燃機関の始動異常をより適切に判定することができる。   In the vehicle of the present invention, the motoring means for motoring the internal combustion engine, and when the start of the internal combustion engine is requested, the motoring means is controlled so that the internal combustion engine is motored, and the motor Start control means for starting fuel injection control and ignition control of the internal combustion engine after ringing, and the combustion state detection estimating means is configured to detect the internal combustion engine after the fuel injection control and the ignition control are started. Means for detecting or estimating the engine speed or torque, and the abnormality determining means is means for determining a start abnormality of the internal combustion engine based on the detected or estimated engine speed or torque. It can also be. In this way, it is possible to more appropriately determine the start abnormality of the internal combustion engine while suppressing the occurrence of the malfunction of the internal combustion engine.

さらに、本発明の車両において、前記内燃機関に要求される要求動力に基づいて該内燃機関を運転制御する運転制御手段を備え、前記燃焼状態検出推定手段は、前記内燃機関から出力されている動力を検出または推定する手段であり、前記異常判定手段は、前記検出または推定された内燃機関から出力されている動力に基づいて該内燃機関の出力異常を判定する手段であるものとすることもできる。こうすれば、内燃機関の不具合の発生を抑制しながら内燃機関の出力異常をより適切に判定することができる。   The vehicle of the present invention further includes operation control means for controlling the operation of the internal combustion engine based on required power required for the internal combustion engine, wherein the combustion state detection estimating means is a power output from the internal combustion engine. The abnormality determining means may be means for determining an output abnormality of the internal combustion engine based on the power output from the detected or estimated internal combustion engine. . In this way, it is possible to more appropriately determine the output abnormality of the internal combustion engine while suppressing the occurrence of the malfunction of the internal combustion engine.

また、本発明の車両において、車軸に接続された駆動軸と該駆動軸に対して独立して回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記駆動軸と前記出力軸とに動力を入出力可能な電力動力入出力手段と、前記駆動軸に動力を入出力可能な電動機とを備えるものとすることもできる。この場合、前記電力動力入出力手段は、動力を入出力可能な発電機と、前記内燃機関の出力軸と前記発電機の回転軸と前記駆動軸の3軸に接続され該3軸のうちいずれか2軸に入出力される動力に基づいて残余の1軸に動力を入出力する3軸式動力入出力手段とを備える手段であるものとすることもできる。   Further, in the vehicle of the present invention, the drive shaft connected to the axle and the output shaft of the internal combustion engine connected to the output shaft of the internal combustion engine so as to be independently rotatable with respect to the drive shaft. And power output input / output means capable of inputting / outputting power to / from the output shaft, and an electric motor capable of inputting / outputting power to / from the drive shaft. In this case, the electric power drive input / output means is connected to three axes of a generator capable of inputting / outputting power, an output shaft of the internal combustion engine, a rotating shaft of the generator, and the drive shaft. Or a three-axis power input / output means for inputting / outputting power to the remaining one axis based on power input / output to / from the two axes.

本発明の車両の制御方法は、
燃料の供給を受けて該燃料の燃焼により動力を出力する内燃機関を備える車両の制御方法であって、
(a)前記内燃機関が通常とは異なる非通常燃焼状態にあるとき、該非通常燃焼状態の継続時間に基づいて該内燃機関の異常を段階的に判定し、
(b)前記内燃機関の異常のおそれが判定されたときに該異常を確定するに先立って、燃料残量が燃料切れ寸前の所定量以上のときには前記内燃機関への吸入空気量の増量を伴って該内燃機関を運転制御し、燃料残量が前記所定量未満のときには吸入空気量の増量を伴わずに前記内燃機関を運転制御する
ことを要旨とする。
The vehicle control method of the present invention includes:
A control method for a vehicle including an internal combustion engine that receives supply of fuel and outputs power by combustion of the fuel,
(A) When the internal combustion engine is in a non-normal combustion state different from normal, the abnormality of the internal combustion engine is determined stepwise based on the duration of the non-normal combustion state;
(B) Prior to establishing the abnormality when it is determined that there is a possibility of abnormality of the internal combustion engine, an increase in the amount of intake air to the internal combustion engine is accompanied when the remaining amount of fuel is equal to or greater than a predetermined amount immediately before the fuel runs out. The gist of the invention is to control the operation of the internal combustion engine, and to control the operation of the internal combustion engine without increasing the intake air amount when the remaining fuel amount is less than the predetermined amount.

本発明の車両の制御方法によれば、内燃機関が通常とは異なる非通常燃焼状態にあるときこの非通常燃焼状態の継続時間に基づいて内燃機関の異常を段階的に判定し、内燃機関の異常のおそれが判定されたときに異常を確定するに先立って、燃料残量が燃料切れ寸前の所定量以上のときには内燃機関への吸入空気量の増量を伴って内燃機関を運転制御し、燃料残量が所定量未満のときには吸入空気量の増量を伴わずに内燃機関を運転制御する。したがって、内燃機関の異常をより適切に判定することができると共に燃料残量が燃料切れ寸前の所定量未満のときに吸入空気量の増量によって内燃機関の異常の確定が遅れることに起因する不具合の発生を抑制することができる。   According to the vehicle control method of the present invention, when the internal combustion engine is in a non-normal combustion state that is different from the normal state, the abnormality of the internal combustion engine is determined stepwise based on the duration of the non-normal combustion state. Prior to determining the abnormality when the possibility of abnormality is determined, when the remaining amount of fuel is equal to or greater than a predetermined amount immediately before the fuel runs out, the operation of the internal combustion engine is controlled with an increase in the amount of intake air to the internal combustion engine, and the fuel When the remaining amount is less than a predetermined amount, the internal combustion engine is controlled to operate without increasing the intake air amount. Therefore, it is possible to more appropriately determine the abnormality of the internal combustion engine and to solve the problem caused by delaying the determination of the abnormality of the internal combustion engine due to the increase of the intake air amount when the remaining amount of fuel is less than a predetermined amount immediately before the fuel runs out. Occurrence can be suppressed.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例であるハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22と、エンジン22の出力軸としてのクランクシャフト26にダンパ28を介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続された駆動軸としてのリングギヤ軸32aに取り付けられた減速ギヤ35と、この減速ギヤ35に接続されたモータMG2と、動力出力装置全体をコントロールするハイブリッド用電子制御ユニット70とを備える。   FIG. 1 is a configuration diagram showing an outline of the configuration of a hybrid vehicle 20 according to an embodiment of the present invention. As shown in the figure, the hybrid vehicle 20 of the embodiment includes an engine 22, a three-shaft power distribution / integration mechanism 30 connected to a crankshaft 26 as an output shaft of the engine 22 via a damper 28, and power distribution / integration. A motor MG1 capable of generating electricity connected to the mechanism 30, a reduction gear 35 attached to a ring gear shaft 32a as a drive shaft connected to the power distribution and integration mechanism 30, a motor MG2 connected to the reduction gear 35, And a hybrid electronic control unit 70 for controlling the entire power output apparatus.

エンジン22は、燃料タンク23から供給される例えばガソリンまたは軽油などの炭化水素系の燃料の燃焼により動力を出力可能な内燃機関として構成されており、図2に示すように、エアクリーナ122により清浄された空気をスロットルバルブ124を介して吸入すると共に燃料噴射弁126からガソリンを噴射して吸入された空気とガソリンとを混合し、この混合気を吸気バルブ128を介して燃料室に吸入し、点火プラグ130による電気火花によって爆発燃焼させて、そのエネルギにより押し下げられるピストン132の往復運動をクランクシャフト26の回転運動に変換する。エンジン22からの排気は、一酸化炭素(CO)や炭化水素(HC),窒素酸化物(NOx)の有害成分を浄化する浄化装置(三元触媒)134を介して外気へ排出される。   The engine 22 is configured as an internal combustion engine capable of outputting power by combustion of hydrocarbon fuel such as gasoline or light oil supplied from the fuel tank 23, and is cleaned by an air cleaner 122 as shown in FIG. The air is sucked in through the throttle valve 124 and gasoline is injected from the fuel injection valve 126 to mix the sucked air and gasoline, and this mixture is sucked into the fuel chamber through the intake valve 128 and ignited. The reciprocating motion of the piston 132, which is explosively burned by the electric spark generated by the plug 130 and pushed down by the energy, is converted into the rotational motion of the crankshaft 26. Exhaust gas from the engine 22 is discharged to the outside air through a purification device (three-way catalyst) 134 that purifies harmful components such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx).

エンジン22は、エンジン用電子制御ユニット(以下、エンジンECUという)24により制御されている。エンジンECU24は、CPU24aを中心とするマイクロプロセッサとして構成されており、CPU24aの他に処理プログラムを記憶するROM24bと、データを一時的に記憶するRAM24cと、図示しない入出力ポートおよび通信ポートとを備える。エンジンECU24には、エンジン22の状態を検出する種々のセンサからの信号、燃料タンク23に取り付けられた燃料残量センサ23aからの燃料残量Frやクランクシャフト26の回転位置を検出するクランクポジションセンサ140からのクランクポジション,エンジン22の冷却水の温度を検出する水温センサ142からの冷却水温,燃焼室内に取り付けられた圧力センサ143からの筒内圧力Pin,燃焼室へ吸排気を行なう吸気バルブ128や排気バルブを開閉するカムシャフトの回転位置を検出するカムポジションセンサ144からのカムポジション,スロットルバルブ124のポジションを検出するスロットルバルブポジションセンサ146からのスロットルポジション,吸気管に取り付けられたエアフローメータ148からのエアフローメータ信号AF,同じく吸気管に取り付けられた温度センサ149からの吸気温,空燃比センサ135aからの空燃比AF,酸素センサ135bからの酸素信号などが入力ポートを介して入力されている。また、エンジンECU24からは、エンジン22を駆動するための種々の制御信号、例えば、燃料噴射弁126への駆動信号や、スロットルバルブ124のポジションを調節するスロットルモータ136への駆動信号、イグナイタと一体化されたイグニッションコイル138への制御信号、吸気バルブ128の開閉タイミングの変更可能な可変バルブタイミング機構150への制御信号などが出力ポートを介して出力されている。なお、エンジンECU24は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータを出力する。なお、エンジンECU24は、クランクポジションセンサ140からのクランクポジションに基づいてクランクシャフト26の回転数、即ちエンジン22の回転数Neも演算している。   The engine 22 is controlled by an engine electronic control unit (hereinafter referred to as an engine ECU) 24. The engine ECU 24 is configured as a microprocessor centered on the CPU 24a, and includes a ROM 24b that stores a processing program, a RAM 24c that temporarily stores data, an input / output port and a communication port (not shown), in addition to the CPU 24a. . The engine ECU 24 includes a crank position sensor for detecting signals from various sensors for detecting the state of the engine 22, a fuel remaining amount Fr from the fuel remaining amount sensor 23 a attached to the fuel tank 23, and a rotational position of the crankshaft 26. The crank position from 140, the cooling water temperature from the water temperature sensor 142 that detects the temperature of the cooling water of the engine 22, the in-cylinder pressure Pin from the pressure sensor 143 installed in the combustion chamber, and the intake valve 128 that performs intake and exhaust to the combustion chamber And a cam position from a cam position sensor 144 that detects a rotational position of a camshaft that opens and closes an exhaust valve, a throttle position from a throttle valve position sensor 146 that detects a position of a throttle valve 124, and an air flow meter 148 attached to an intake pipe The air flow meter signal AF, the intake air temperature from the temperature sensor 149 attached to the intake pipe, the air-fuel ratio AF from the air-fuel ratio sensor 135a, the oxygen signal from the oxygen sensor 135b, etc. are input via the input port. . The engine ECU 24 also integrates various control signals for driving the engine 22, such as a drive signal to the fuel injection valve 126, a drive signal to the throttle motor 136 that adjusts the position of the throttle valve 124, and an igniter. The control signal to the ignition coil 138 and the control signal to the variable valve timing mechanism 150 that can change the opening / closing timing of the intake valve 128 are output via the output port. The engine ECU 24 is in communication with the hybrid electronic control unit 70, controls the operation of the engine 22 by a control signal from the hybrid electronic control unit 70, and outputs data related to the operation state of the engine 22 as necessary. . The engine ECU 24 also calculates the rotational speed of the crankshaft 26, that is, the rotational speed Ne of the engine 22 based on the crank position from the crank position sensor 140.

動力分配統合機構30は、外歯歯車のサンギヤ31と、このサンギヤ31と同心円上に配置された内歯歯車のリングギヤ32と、サンギヤ31に噛合すると共にリングギヤ32に噛合する複数のピニオンギヤ33と、複数のピニオンギヤ33を自転かつ公転自在に保持するキャリア34とを備え、サンギヤ31とリングギヤ32とキャリア34とを回転要素として差動作用を行なう遊星歯車機構として構成されている。動力分配統合機構30は、キャリア34にはエンジン22のクランクシャフト26が、サンギヤ31にはモータMG1が、リングギヤ32にはリングギヤ軸32aを介して減速ギヤ35がそれぞれ連結されており、モータMG1が発電機として機能するときにはキャリア34から入力されるエンジン22からの動力をサンギヤ31側とリングギヤ32側にそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア34から入力されるエンジン22からの動力とサンギヤ31から入力されるモータMG1からの動力を統合してリングギヤ32側に出力する。リングギヤ32に出力された動力は、リングギヤ軸32aからギヤ機構60およびデファレンシャルギヤ62を介して、最終的には車両の駆動輪63a,63bに出力される。   The power distribution and integration mechanism 30 includes an external gear sun gear 31, an internal gear ring gear 32 disposed concentrically with the sun gear 31, a plurality of pinion gears 33 that mesh with the sun gear 31 and mesh with the ring gear 32, A planetary gear mechanism is provided that includes a carrier 34 that holds a plurality of pinion gears 33 so as to rotate and revolve, and that performs differential action using the sun gear 31, the ring gear 32, and the carrier 34 as rotational elements. In the power distribution and integration mechanism 30, the crankshaft 26 of the engine 22 is connected to the carrier 34, the motor MG1 is connected to the sun gear 31, and the reduction gear 35 is connected to the ring gear 32 via the ring gear shaft 32a. When functioning as a generator, power from the engine 22 input from the carrier 34 is distributed according to the gear ratio between the sun gear 31 side and the ring gear 32 side, and when the motor MG1 functions as an electric motor, the engine input from the carrier 34 The power from 22 and the power from the motor MG1 input from the sun gear 31 are integrated and output to the ring gear 32 side. The power output to the ring gear 32 is finally output from the ring gear shaft 32a to the drive wheels 63a and 63b of the vehicle via the gear mechanism 60 and the differential gear 62.

モータMG1およびモータMG2は、いずれも発電機として駆動することができると共に電動機として駆動できる周知の同期発電電動機として構成されており、インバータ41,42を介してバッテリ50と電力のやりとりを行なう。インバータ41,42とバッテリ50とを接続する電力ライン54は、各インバータ41,42が共用する正極母線および負極母線として構成されており、モータMG1,MG2のいずれかで発電される電力を他のモータで消費することができるようになっている。したがって、バッテリ50は、モータMG1,MG2のいずれかから生じた電力や不足する電力により充放電されることになる。なお、モータMG1,MG2により電力収支のバランスをとるものとすれば、バッテリ50は充放電されない。モータMG1,MG2は、いずれもモータ用電子制御ユニット(以下、モータECUという)40により駆動制御されている。モータECU40には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する回転位置検出センサ43,44からの信号や図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流などが入力されており、モータECU40からは、インバータ41,42へのスイッチング制御信号が出力されている。モータECU40は、ハイブリッド用電子制御ユニット70と通信しており、ハイブリッド用電子制御ユニット70からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッド用電子制御ユニット70に出力する。なお、モータECU40は、回転位置検出センサ43,44からの信号に基づいてモータMG1,MG2の回転数Nm1,Nm2も演算している。   The motor MG1 and the motor MG2 are both configured as well-known synchronous generator motors that can be driven as generators and can be driven as motors, and exchange power with the battery 50 via inverters 41 and 42. The power line 54 connecting the inverters 41 and 42 and the battery 50 is configured as a positive electrode bus and a negative electrode bus shared by the inverters 41 and 42, and the electric power generated by one of the motors MG1 and MG2 It can be consumed by a motor. Therefore, battery 50 is charged / discharged by electric power generated from one of motors MG1 and MG2 or insufficient electric power. If the balance of electric power is balanced by the motors MG1 and MG2, the battery 50 is not charged / discharged. The motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as a motor ECU) 40. The motor ECU 40 detects signals necessary for driving and controlling the motors MG1 and MG2, such as signals from rotational position detection sensors 43 and 44 that detect the rotational positions of the rotors of the motors MG1 and MG2, and current sensors (not shown). The phase current applied to the motors MG1 and MG2 to be applied is input, and a switching control signal to the inverters 41 and 42 is output from the motor ECU 40. The motor ECU 40 is in communication with the hybrid electronic control unit 70, controls the driving of the motors MG1 and MG2 by a control signal from the hybrid electronic control unit 70, and, if necessary, data on the operating state of the motors MG1 and MG2. Output to the hybrid electronic control unit 70. The motor ECU 40 also calculates the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2 based on signals from the rotational position detection sensors 43 and 44.

バッテリ50は、バッテリ用電子制御ユニット(以下、バッテリECUという)52によって管理されている。バッテリECU52には、バッテリ50を管理するのに必要な信号、例えば、バッテリ50の端子間に設置された電圧センサ51aからの端子間電圧Vb,バッテリ50の出力端子に接続された電力ライン54に取り付けられた電流センサ51bからの充放電電流Ib,バッテリ50に取り付けられた温度センサ51cからの電池温度Tbなどが入力されており、必要に応じてバッテリ50の状態に関するデータを通信によりハイブリッド用電子制御ユニット70に出力する。また、バッテリECU52は、バッテリ50を管理するために、電圧センサ51aにより検出された端子間電圧Vbと電流センサ51bにより検出された充放電電流Ibとに基づいて充放電電力Pb(=Vb×Ib)を演算したり、電流センサ51bにより検出された充放電電流Ibの積算値に基づいて残容量(SOC)を演算したり、演算した残容量(SOC)と電池温度Tbとに基づいてバッテリ50を充放電してもよい最大許容電力である入出力制限Win,Woutを演算している。なお、バッテリ50の入出力制限Win,Woutは、電池温度Tbに基づいて入出力制限Win,Woutの基本値を設定し、バッテリ50の残容量(SOC)に基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定することができる。図3に電池温度Tbと入出力制限Win,Woutとの関係の一例を示し、図4にバッテリ50の残容量(SOC)と入出力制限Win,Woutの補正係数との関係の一例を示す。また、バッテリECU52は、演算したバッテリ50の残容量(SOC)に基づいてバッテリ50が充放電すべき電力としての充放電要求パワーPb*を設定している。   The battery 50 is managed by a battery electronic control unit (hereinafter referred to as a battery ECU) 52. The battery ECU 52 receives signals necessary for managing the battery 50, for example, an inter-terminal voltage Vb from the voltage sensor 51 a installed between the terminals of the battery 50, and a power line 54 connected to the output terminal of the battery 50. The charging / discharging current Ib from the attached current sensor 51b, the battery temperature Tb from the temperature sensor 51c attached to the battery 50, and the like are input. Output to the control unit 70. Further, the battery ECU 52 manages the battery 50 based on the charge / discharge power Pb (= Vb × Ib) based on the inter-terminal voltage Vb detected by the voltage sensor 51a and the charge / discharge current Ib detected by the current sensor 51b. ), The remaining capacity (SOC) is calculated based on the integrated value of the charge / discharge current Ib detected by the current sensor 51b, or the battery 50 is calculated based on the calculated remaining capacity (SOC) and the battery temperature Tb. The input / output limits Win and Wout, which are the maximum allowable power that may be charged and discharged, are calculated. The input / output limits Win and Wout of the battery 50 are set to basic values of the input / output limits Win and Wout based on the battery temperature Tb, and are input to the output limiting correction coefficient based on the remaining capacity (SOC) of the battery 50. It can be set by setting a correction coefficient for restriction and multiplying the basic value of the set input / output restrictions Win and Wout by the correction coefficient. FIG. 3 shows an example of the relationship between the battery temperature Tb and the input / output limits Win, Wout, and FIG. 4 shows an example of the relationship between the remaining capacity (SOC) of the battery 50 and the correction coefficients of the input / output limits Win, Wout. Further, the battery ECU 52 sets a charge / discharge required power Pb * as power to be charged / discharged by the battery 50 based on the calculated remaining capacity (SOC) of the battery 50.

ハイブリッド用電子制御ユニット70は、CPU72を中心とするマイクロプロセッサとして構成されており、CPU72の他に処理プログラムを記憶するROM74と、データを一時的に記憶するRAM76と、図示しない入出力ポートおよび通信ポートとを備える。ハイブリッド用電子制御ユニット70には、イグニッションスイッチ80からのイグニッション信号,シフトレバー81の操作位置を検出するシフトポジションセンサ82からのシフトポジションSP,アクセルペダル83の踏み込み量を検出するアクセルペダルポジションセンサ84からのアクセル開度Acc,ブレーキペダル85の踏み込み量を検出するブレーキペダルポジションセンサ86からのブレーキペダルポジションBP,車速センサ88からの車速Vなどが入力ポートを介して入力されている。ハイブリッド用電子制御ユニット70は、前述したように、エンジンECU24やモータECU40,バッテリECU52と通信ポートを介して接続されており、エンジンECU24やモータECU40,バッテリECU52と各種制御信号やデータのやりとりを行なっている。   The hybrid electronic control unit 70 is configured as a microprocessor centered on the CPU 72, and in addition to the CPU 72, a ROM 74 for storing processing programs, a RAM 76 for temporarily storing data, an input / output port and communication not shown. And a port. The hybrid electronic control unit 70 includes an ignition signal from an ignition switch 80, a shift position SP from a shift position sensor 82 that detects the operation position of the shift lever 81, and an accelerator pedal position sensor 84 that detects the amount of depression of the accelerator pedal 83. The accelerator pedal opening Acc from the vehicle, the brake pedal position BP from the brake pedal position sensor 86 for detecting the depression amount of the brake pedal 85, the vehicle speed V from the vehicle speed sensor 88, and the like are input via the input port. As described above, the hybrid electronic control unit 70 is connected to the engine ECU 24, the motor ECU 40, and the battery ECU 52 via the communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 40, and the battery ECU 52. ing.

こうして構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル83の踏み込み量に対応するアクセル開度Accと車速Vとに基づいて駆動軸としてのリングギヤ軸32aに出力すべき要求トルクを計算し、この要求トルクに対応する要求動力がリングギヤ軸32aに出力されるように、エンジン22とモータMG1とモータMG2とが運転制御される。エンジン22とモータMG1とモータMG2の運転制御としては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1とモータMG2とによってトルク変換されてリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや要求動力とバッテリ50の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ50の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分配統合機構30とモータMG1とモータMG2とによるトルク変換を伴って要求動力がリングギヤ軸32aに出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2からの要求動力に見合う動力をリングギヤ軸32aに出力するよう運転制御するモータ運転モードなどがある。   The hybrid vehicle 20 of the embodiment thus configured calculates the required torque to be output to the ring gear shaft 32a as the drive shaft based on the accelerator opening Acc and the vehicle speed V corresponding to the depression amount of the accelerator pedal 83 by the driver. Then, the operation of the engine 22, the motor MG1, and the motor MG2 is controlled so that the required power corresponding to the required torque is output to the ring gear shaft 32a. As operation control of the engine 22, the motor MG1, and the motor MG2, the operation of the engine 22 is controlled so that power corresponding to the required power is output from the engine 22, and all of the power output from the engine 22 is the power distribution and integration mechanism 30. Torque conversion operation mode for driving and controlling the motor MG1 and the motor MG2 so that the torque is converted by the motor MG1 and the motor MG2 and output to the ring gear shaft 32a, and the required power and the power required for charging and discharging the battery 50. The engine 22 is operated and controlled so that suitable power is output from the engine 22, and all or part of the power output from the engine 22 with charging / discharging of the battery 50 is the power distribution and integration mechanism 30, the motor MG1, and the motor. The required power is converted to the ring gear shaft 32 with torque conversion by MG2. Charge / discharge operation mode in which the motor MG1 and the motor MG2 are driven and controlled to be output to each other, and a motor operation mode in which the operation of the engine 22 is stopped and the power corresponding to the required power from the motor MG2 is output to the ring gear shaft 32a. and so on.

次に、こうして構成された実施例のハイブリッド自動車20の動作、特に、エンジン22の運転を伴って走行する駆動制御とエンジン22を始動する始動制御とについて説明する。まず、駆動制御について説明し、その後に、始動制御について説明する。図5はハイブリッド用電子制御ユニット70により実行される駆動制御ルーチンの一例を示すフローチャートである。このルーチンは、所定時間毎(例えば数msec毎)に繰り返し実行される。   Next, the operation of the hybrid vehicle 20 of the embodiment configured as described above, particularly the drive control that travels with the operation of the engine 22 and the start control that starts the engine 22 will be described. First, drive control will be described, and then start control will be described. FIG. 5 is a flowchart showing an example of a drive control routine executed by the hybrid electronic control unit 70. This routine is repeatedly executed every predetermined time (for example, every several msec).

駆動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット70のCPU72は、まず、アクセルペダルポジションセンサ84からのアクセル開度Accや車速センサ88からの車速V,エンジン22の回転数Ne,モータMG1,MG2の回転数Nm1,Nm2,バッテリ50の充放電要求パワーPb*,バッテリ50の充放電電力Pb,バッテリ50の入出力制限Win,Woutなど制御に必要なデータを入力する処理を実行する(ステップS100)。ここで、エンジン22の回転数Neはクランクポジションセンサ140からの信号に基づいて演算されたものをエンジンECU24から通信により入力するものとした。また、モータMG1,MG2の回転数Nm1,Nm2は、回転位置検出センサ43,44により検出されたモータMG1,MG2の回転子の回転位置に基づいて演算されたものをモータECU40から通信により入力するものとした。さらに、バッテリ50の充放電電力Pbは、バッテリ50の端子間電圧Vbと充放電電流Ibとに基づいて演算されたものをバッテリECU52から通信により入力するものとした。バッテリ50の充放電要求パワーPb*は、バッテリ50の残容量(SOC)に基づいて設定されたものをバッテリECU52から通信により入力するものとした。また、バッテリ50の入出力制限Win,Woutは、バッテリ50の電池温度Tbとバッテリ50の残容量(SOC)とに基づいて設定されたものをバッテリECU52から通信により入力するものとした。   When the drive control routine is executed, first, the CPU 72 of the hybrid electronic control unit 70 first determines the accelerator opening Acc from the accelerator pedal position sensor 84, the vehicle speed V from the vehicle speed sensor 88, the rotational speed Ne of the engine 22, the motor MG1. , MG2 rotation speeds Nm1, Nm2, charge / discharge required power Pb * of the battery 50, charge / discharge power Pb of the battery 50, input / output limit Win, Wout of the battery 50, and the like. Step S100). Here, the rotational speed Ne of the engine 22 is calculated based on a signal from the crank position sensor 140 and is input from the engine ECU 24 by communication. Further, the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2 are input from the motor ECU 40 by communication from those calculated based on the rotational positions of the rotors of the motors MG1 and MG2 detected by the rotational position detection sensors 43 and 44. It was supposed to be. Further, the charge / discharge power Pb of the battery 50 is calculated based on the inter-terminal voltage Vb of the battery 50 and the charge / discharge current Ib and is input from the battery ECU 52 by communication. The charge / discharge required power Pb * of the battery 50 is set based on the remaining capacity (SOC) of the battery 50 and is input from the battery ECU 52 by communication. Further, the input / output limits Win and Wout of the battery 50 are set based on the battery temperature Tb of the battery 50 and the remaining capacity (SOC) of the battery 50 and are input from the battery ECU 52 by communication.

こうしてデータを入力すると、入力したアクセル開度Accと車速Vとに基づいて車両に要求されるトルクとして駆動輪63a,63bに連結された駆動軸としてのリングギヤ軸32aに出力すべき要求トルクTr*とエンジン22に要求される要求パワーPe*とを設定する(ステップS110)。要求トルクTr*は、実施例では、アクセル開度Accと車速Vと要求トルクTr*との関係を予め定めて要求トルク設定用マップとしてROM74に記憶しておき、アクセル開度Accと車速Vとが与えられると記憶したマップから対応する要求トルクTr*を導出して設定するものとした。図6に要求トルク設定用マップの一例を示す。要求パワーPe*は、設定した要求トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものからバッテリ50の充放電要求パワーPb*を減じて更にロスLossを加えたものとして計算することができる。なお、リングギヤ軸32aの回転数Nrは、車速Vに換算係数kを乗じること(Nr=k・V)によって求めたり、モータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで割ること(Nr=Nm2/Gr)によって求めることができる。   When the data is thus input, the required torque Tr * to be output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b as the torque required for the vehicle based on the input accelerator opening Acc and the vehicle speed V. And the required power Pe * required for the engine 22 is set (step S110). In the embodiment, the required torque Tr * is determined in advance by storing the relationship between the accelerator opening Acc, the vehicle speed V, and the required torque Tr * in the ROM 74 as a required torque setting map, and the accelerator opening Acc, the vehicle speed V, , The corresponding required torque Tr * is derived and set from the stored map. FIG. 6 shows an example of the required torque setting map. The required power Pe * can be calculated by multiplying the set required torque Tr * by the rotation speed Nr of the ring gear shaft 32a and subtracting the charge / discharge required power Pb * of the battery 50 and further adding loss Loss. . The rotational speed Nr of the ring gear shaft 32a is obtained by multiplying the vehicle speed V by a conversion factor k (Nr = k · V), or the rotational speed Nm2 of the motor MG2 is divided by the gear ratio Gr of the reduction gear 35 (Nr = Nm2 / Gr).

続いて、設定した要求パワーPe*に基づいてエンジン22を運転すべき運転ポイントとしての目標回転数Ne*と目標トルクTe*とを設定する(ステップS120)。この設定は、エンジン22を効率よく動作させる動作ラインと要求パワーPe*とに基づいて行なわれる。エンジン22の動作ラインの一例と目標回転数Ne*と目標トルクTe*とを設定する様子を図7に示す。図示するように、目標回転数Ne*と目標トルクTe*は、動作ラインと要求パワーPe*(Ne*×Te*)が一定の曲線との交点により求めることができる。   Subsequently, a target rotational speed Ne * and a target torque Te * are set as operating points at which the engine 22 should be operated based on the set required power Pe * (step S120). This setting is performed based on an operation line for efficiently operating the engine 22 and the required power Pe *. FIG. 7 shows an example of the operation line of the engine 22 and how the target rotational speed Ne * and the target torque Te * are set. As shown in the figure, the target rotational speed Ne * and the target torque Te * can be obtained from the intersection of the operation line and a curve with a constant required power Pe * (Ne * × Te *).

次に、入力したバッテリ50の充放電電力Pbから前回このルーチンで入力した充放電要求パワー(前回Pb*)を減じて電力偏差ΔPb(=Pb−前回Pb*)を計算し(ステップS130)、計算した電力偏差ΔPbが閾値Pref以上か否かを判定する(ステップS140)。後述するように、エンジン22はリングギヤ軸32aへの要求トルクTr*にリングギヤ軸32aの回転数Nrを乗じたものからバッテリ50の充放電要求パワーPb*を減じて更にロスLossを加えたものとして計算された要求パワーPe*が出力されるよう制御され、モータMG1,MG2はリングギヤ軸32aに要求トルクTr*が出力されるよう制御される。モータMG1,MG2はエンジン22に比して制御性が良いから、エンジン22から実際に出力されている実パワーが要求パワーPe*に一致していれば、バッテリ50の充放電電力Pbは充放電要求パワー(前回Pb*)に一致し、エンジン22の実パワーが要求パワーPe*に対して不足していると、充放電電力Pbと充放電要求パワー(前回Pb*)とに偏差が生じる。即ち、実パワーが要求パワーPe*に一致すると電力偏差ΔPbは値0となり、実パワーが要求パワーPe*に対して不足すると電力偏差ΔPbは値0よりも大きくなり、場合によっては閾値Pref以上になる。したがって、ステップS140の判定は、エンジン22の実パワーが要求パワーPe*に対して許容範囲を超えて不足しているか否かを判定するものとなる。閾値Prefは、要求パワーPe*に対する実パワーの許容範囲を定めるものであり、車両の仕様に応じて設定される。電力偏差ΔPbが閾値Pref未満のときには異常カウンタC1に値0をセットし(ステップS150)、電力偏差ΔPbが閾値Pref以上のときには異常カウンタC1を値1だけインクリメントする(ステップS160)。   Next, the power deviation ΔPb (= Pb−previous Pb *) is calculated by subtracting the charge / discharge request power (previous Pb *) previously input in this routine from the input charge / discharge power Pb of the battery 50 (step S130). It is determined whether or not the calculated power deviation ΔPb is greater than or equal to a threshold value Pref (step S140). As will be described later, it is assumed that the engine 22 is obtained by reducing the charge / discharge required power Pb * of the battery 50 by adding the required torque Tr * to the ring gear shaft 32a to the rotation speed Nr of the ring gear shaft 32a and further adding loss Loss. The calculated required power Pe * is controlled to be output, and the motors MG1 and MG2 are controlled to output the required torque Tr * to the ring gear shaft 32a. Since the motors MG1 and MG2 have better controllability than the engine 22, if the actual power actually output from the engine 22 matches the required power Pe *, the charge / discharge power Pb of the battery 50 is charged / discharged. If the required power (previous Pb *) matches the actual power of the engine 22 with respect to the required power Pe *, a deviation occurs between the charge / discharge power Pb and the required charge / discharge power (previous Pb *). That is, when the actual power matches the required power Pe *, the power deviation ΔPb becomes a value of 0. When the actual power is insufficient with respect to the required power Pe *, the power deviation ΔPb becomes larger than the value 0, and in some cases, exceeds the threshold value Pref. Become. Therefore, the determination in step S140 is to determine whether or not the actual power of the engine 22 is insufficient beyond the allowable range with respect to the required power Pe *. The threshold value Pref defines an allowable range of actual power with respect to the required power Pe *, and is set according to vehicle specifications. When the power deviation ΔPb is less than the threshold value Pref, the value 0 is set in the abnormality counter C1 (step S150), and when the power deviation ΔPb is greater than or equal to the threshold value Pref, the abnormality counter C1 is incremented by a value 1 (step S160).

そして、エンジン22の目標回転数Ne*とリングギヤ軸32aの回転数Nr(Nm2/Gr)と動力分配統合機構30のギヤ比ρとを用いて次式(1)によりモータMG1の目標回転数Nm1*を計算すると共に計算した目標回転数Nm1*と入力したモータMG1の回転数Nm1とに基づいて式(2)によりモータMG1から出力すべきトルクの仮の値である仮トルクTm1tmpを計算する(ステップS170)。ここで、式(1)は、動力分配統合機構30の回転要素に対する力学的な関係式である。エンジン22からパワーを出力している状態で走行しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図を図8に示す。図中、左のS軸はモータMG1の回転数Nm1であるサンギヤ31の回転数を示し、C軸はエンジン22の回転数Neであるキャリア34の回転数を示し、R軸はモータMG2の回転数Nm2を減速ギヤ35のギヤ比Grで除したリングギヤ32の回転数Nrを示す。式(1)は、この共線図を用いれば容易に導くことができる。なお、R軸上の2つの太線矢印は、モータMG1から出力されたトルクTm1がリングギヤ軸32aに作用するトルクと、モータMG2から出力されるトルクTm2が減速ギヤ35を介してリングギヤ軸32aに作用するトルクとを示す。また、式(2)は、モータMG1を目標回転数Nm1*で回転させるためのフィードバック制御における関係式であり、式(2)中、右辺第2項の「k1」は比例項のゲインであり、右辺第3項の「k2」は積分項のゲインである。   Then, using the target rotational speed Ne * of the engine 22, the rotational speed Nr (Nm2 / Gr) of the ring gear shaft 32 a and the gear ratio ρ of the power distribution and integration mechanism 30, the target rotational speed Nm1 of the motor MG1 is given by the following equation (1). * Is calculated, and based on the calculated target rotational speed Nm1 * and the input rotational speed Nm1 of the motor MG1, a temporary torque Tm1tmp, which is a temporary value of the torque to be output from the motor MG1, is calculated by Equation (2) ( Step S170). Here, Expression (1) is a dynamic relational expression for the rotating element of the power distribution and integration mechanism 30. FIG. 8 is a collinear diagram showing a dynamic relationship between the number of rotations and torque in the rotating elements of the power distribution and integration mechanism 30 when traveling with the power output from the engine 22. In the figure, the left S-axis indicates the rotation speed of the sun gear 31 that is the rotation speed Nm1 of the motor MG1, the C-axis indicates the rotation speed of the carrier 34 that is the rotation speed Ne of the engine 22, and the R-axis indicates the rotation speed of the motor MG2. The rotational speed Nr of the ring gear 32 obtained by dividing the number Nm2 by the gear ratio Gr of the reduction gear 35 is shown. Expression (1) can be easily derived by using this alignment chart. The two thick arrows on the R axis indicate that the torque Tm1 output from the motor MG1 acts on the ring gear shaft 32a and the torque Tm2 output from the motor MG2 acts on the ring gear shaft 32a via the reduction gear 35. Torque. Expression (2) is a relational expression in feedback control for rotating the motor MG1 at the target rotational speed Nm1 *. In Expression (2), “k1” in the second term on the right side is a gain of a proportional term. “K2” in the third term on the right side is the gain of the integral term.

Nm1*=Ne*・(1+ρ)/ρ-(Nm2/Gr)/ρ (1)
Tm1tmp=ρ・Te*/(1+ρ)+k1(Nm1*-Nm1)+k2∫(Nm1*-Nm1)dt (2)
Nm1 * = Ne * ・ (1 + ρ) / ρ- (Nm2 / Gr) / ρ (1)
Tm1tmp = ρ ・ Te * / (1 + ρ) + k1 (Nm1 * -Nm1) + k2∫ (Nm1 * -Nm1) dt (2)

続いて、式(3)および式(4)を共に満たすモータMG1から出力してもよりトルクの上下限としてのトルク制限Tm1min,Tm1maxを設定し(ステップS180、設定した仮トルクTm1tmpを式(5)によりトルク制限Tm1min,Tm1maxで制限してモータMG1のトルク指令Tm1*を設定する(ステップS190)。ここで、式(3)はモータMG1やモータMG2によりリングギヤ軸32aに出力されるトルクの総和が値0から要求トルクTr*までの範囲内となる関係であり、式(4)はモータMG1とモータMG2とにより入出力される電力の総和が入出力制限Win,Woutの範囲内となる関係である。トルク制限Tm1min,Tm1maxの一例を図9に示す。トルク制限Tm1min,Tm1maxは、図中斜線で示した領域内のトルク指令Tm1*の最大値と最小値として求めることができる。   Subsequently, torque limits Tm1min and Tm1max are set as upper and lower torque limits even if output from the motor MG1 satisfying both the expressions (3) and (4) (step S180, the set temporary torque Tm1tmp is expressed by the expression (5)). The torque command Tm1 * of the motor MG1 is set by limiting the torque with the torque limits Tm1min and Tm1max (step S190), where equation (3) is the sum of the torques output to the ring gear shaft 32a by the motor MG1 and the motor MG2. Is within the range from the value 0 to the required torque Tr *, and Equation (4) is a relationship in which the sum of the power input and output by the motors MG1 and MG2 is within the range of the input / output limits Win and Wout. An example of torque limits Tm1min and Tm1max is shown in Fig. 9. Torque limits Tm1min and Tm1 ax can be determined as the maximum value and the minimum value of the torque command Tm1 * in the region indicated by oblique lines in FIG.

0≦−Tm1/ρ+Tm2・Gr≦Tr* (3)
Win≦Tm1・Nm1+Tm2・Nm2≦Wout (4)
Tm1*=max(min(Tm1tmp,Tm1max),Tm1min) (5)
0 ≦ −Tm1 / ρ + Tm2, Gr ≦ Tr * (3)
Win ≦ Tm1 / Nm1 + Tm2 / Nm2 ≦ Wout (4)
Tm1 * = max (min (Tm1tmp, Tm1max), Tm1min) (5)

そして、要求トルクTr*に設定したトルク指令Tm1*を動力分配統合機構30のギヤ比ρで除したものを加えて更に減速ギヤ35のギヤ比Grで除してモータMG2から出力すべきトルクの仮の値である仮トルクTm2tmpを次式(6)により計算すると共に(ステップS200)、バッテリ50の入出力制限Win,Woutと設定したトルク指令Tm1*に現在のモータMG1の回転数Nm1を乗じて得られるモータMG1の消費電力(発電電力)との偏差をモータMG2の回転数Nm2で割ることによりモータMG2から出力してもよいトルクの上下限としてのトルク制限Tm2min,Tm2maxを次式(7)および式(8)により計算すると共に(ステップS210)、設定した仮トルクTm2tmpを式(9)によりトルク制限Tm2min,Tm2maxで制限してモータMG2のトルク指令Tm2*を設定する(ステップS220)。ここで、式(6)は、図8の共線図から容易に導くことができる。   Then, the torque command Tm1 * set as the required torque Tr * is divided by the gear ratio ρ of the power distribution and integration mechanism 30 and further divided by the gear ratio Gr of the reduction gear 35 to obtain the torque to be output from the motor MG2. A temporary torque Tm2tmp, which is a temporary value, is calculated by the following equation (6) (step S200), and the input / output limits Win and Wout of the battery 50 and the set torque command Tm1 * are multiplied by the current rotational speed Nm1 of the motor MG1. The torque limits Tm2min and Tm2max as upper and lower limits of the torque that may be output from the motor MG2 by dividing the deviation from the power consumption (generated power) of the motor MG1 obtained by the number of revolutions Nm2 of the motor MG2 ) And formula (8) (step S210) and the set temporary torque Tm2tmp is calculated by formula (9). Click restriction Tm2min, to limit to set a torque command Tm2 * of the motor MG2 by Tm2max (step S220). Here, Equation (6) can be easily derived from the alignment chart of FIG.

Tm2tmp=(Tr*+Tm1*/ρ)/Gr (6)
Tm2min=(Win-Tm1*・Nm1)/Nm2 (7)
Tm2max=(Wout-Tm1*・Nm1)/Nm2 (8)
Tm2*=max(min(Tm2tmp,Tm2max),Tm2min) (9)
Tm2tmp = (Tr * + Tm1 * / ρ) / Gr (6)
Tm2min = (Win-Tm1 * ・ Nm1) / Nm2 (7)
Tm2max = (Wout-Tm1 * ・ Nm1) / Nm2 (8)
Tm2 * = max (min (Tm2tmp, Tm2max), Tm2min) (9)

こうしてエンジン22の目標回転数Ne*や目標トルクTe*,モータMG1,MG2のトルク指令Tm1*,Tm2*を設定すると、エンジン22の目標回転数Ne*と目標トルクTe*についてはエンジンECU24に、モータMG1,MG2のトルク指令Tm1*,Tm2*についてはモータECU40にそれぞれ送信し(ステップS230)、駆動制御ルーチンを終了する。目標回転数Ne*と目標トルクTe*とを受信したエンジンECU24は、エンジン22が目標回転数Ne*と目標トルクTe*とによって示される運転ポイントで運転されるようにエンジン22における吸入空気量制御や燃料噴射制御,点火制御などの制御を行なう。また、トルク指令Tm1*,Tm2*を受信したモータECU40は、トルク指令Tm1*でモータMG1が駆動されると共にトルク指令Tm2*でモータMG2が駆動されるようインバータ41,42のスイッチング素子のスイッチング制御を行なう。こうした制御により、バッテリ50の入出力制限Win,Woutの範囲内でエンジン22を効率よく運転して駆動軸としてのリングギヤ軸32aに要求トルクTr*を出力して走行することができる。以上、駆動制御ルーチンについて説明した。   Thus, when the target engine speed Ne *, the target torque Te *, and the torque commands Tm1 *, Tm2 * of the motors MG1, MG2 are set, the target engine speed Ne * and the target torque Te * of the engine 22 are set in the engine ECU 24. The torque commands Tm1 * and Tm2 * for the motors MG1 and MG2 are transmitted to the motor ECU 40 (step S230), and the drive control routine ends. The engine ECU 24 that has received the target rotational speed Ne * and the target torque Te * controls the intake air amount in the engine 22 so that the engine 22 is operated at the operating point indicated by the target rotational speed Ne * and the target torque Te *. Controls such as fuel injection control and ignition control. The motor ECU 40 that has received the torque commands Tm1 * and Tm2 * controls the switching elements of the inverters 41 and 42 so that the motor MG1 is driven by the torque command Tm1 * and the motor MG2 is driven by the torque command Tm2 *. To do. By such control, the engine 22 can be efficiently operated within the range of the input / output limits Win and Wout of the battery 50, and the required torque Tr * can be output to the ring gear shaft 32a as a drive shaft to travel. The drive control routine has been described above.

次に、エンジン22の始動制御について説明する。図10は、実施例のハイブリッド用電子制御ユニット70により実行される始動制御ルーチンの一例を示すフローチャートである。このルーチンは、エンジン22の始動が要求されたときに実行される。   Next, start control of the engine 22 will be described. FIG. 10 is a flowchart illustrating an example of a start control routine executed by the hybrid electronic control unit 70 according to the embodiment. This routine is executed when the engine 22 is requested to start.

始動制御ルーチンが実行されると、ハイブリッド用電子制御ユニット70のCPU72は、まず、アクセルペダルポジションセンサ84からのアクセル開度Accや車速センサ88からの車速V,エンジン22の回転数Ne,モータMG1,MG2の回転数Nm1,Nm2,バッテリ50の入出力制限Win,Woutなど制御に必要なデータを入力し(ステップS300)、入力したアクセル開度Accと車速Vとに基づいて図6の要求トルク設定用マップを用いてリングギヤ軸32aに出力すべき要求トルクTr*を設定する(ステップS310)。なお、エンジン22の回転数NeやモータMG1,MG2の回転数Nm1,Nm2,バッテリ50の入出力制限Win,Woutについては前述した。   When the start control routine is executed, the CPU 72 of the hybrid electronic control unit 70 firstly, the accelerator opening Acc from the accelerator pedal position sensor 84, the vehicle speed V from the vehicle speed sensor 88, the rotational speed Ne of the engine 22, the motor MG1. , MG2 rotational speeds Nm1, Nm2, input / output limits Win, Wout of the battery 50, and other data necessary for control are input (step S300), and the required torque shown in FIG. 6 is based on the input accelerator opening Acc and vehicle speed V. The required torque Tr * to be output to the ring gear shaft 32a is set using the setting map (step S310). The rotational speed Ne of the engine 22, the rotational speeds Nm1 and Nm2 of the motors MG1 and MG2, and the input / output limits Win and Wout of the battery 50 have been described above.

続いて、始動時のトルクマップとエンジン22の始動開始からの経過時間tとに基づいてモータMG1のトルク指令Tm1*を設定する(ステップS320)。エンジン22の始動時にモータMG1のトルク指令Tm1*に設定するトルクマップの一例とエンジン22の回転数Neの変化の様子の一例とを図11に示す。実施例のトルクマップは、エンジン22の始動指示がなされた時間t1の直後からレート処理を用いて比較的大きなトルクをトルク指令Tm1*に設定してエンジン22の回転数Neを迅速に増加させる。エンジン22の回転数Neが共振回転数帯を通過したか共振回転数帯を通過するのに必要な時間以降の時間t2にエンジン22を安定して回転数N1(例えば800rpmなど)以上でモータリングすることができるトルクをトルク指令Tm1*に設定し、電力消費や駆動軸としてのリングギヤ軸32aにおける反力を小さくする。そして、エンジン22の回転数Neが回転数N1よりも大きい回転数N2(例えば1000rpmなど)以上となった時刻t3からその状態(Ne≧N2)が所定時間継続した時刻t4にエンジン22が完爆したと判定されたときに発電用のトルクをトルク指令Tm1*に設定する。ここで、回転数N1は、エンジン22の燃料噴射制御や点火制御を開始する回転数である。   Subsequently, the torque command Tm1 * of the motor MG1 is set based on the torque map at the start and the elapsed time t from the start of the engine 22 (step S320). FIG. 11 shows an example of a torque map that is set in the torque command Tm1 * of the motor MG1 when the engine 22 is started, and an example of how the rotational speed Ne of the engine 22 changes. In the torque map of the embodiment, a relatively large torque is set in the torque command Tm1 * using rate processing immediately after the time t1 when the engine 22 is instructed to start, and the rotational speed Ne of the engine 22 is rapidly increased. The engine 22 is stably motored at a rotational speed N1 (for example, 800 rpm) or more at a time t2 after the rotational speed Ne of the engine 22 has passed the resonant rotational speed band or after the time necessary for passing through the resonant rotational speed band. The torque that can be generated is set in the torque command Tm1 * to reduce the power consumption and the reaction force in the ring gear shaft 32a as the drive shaft. Then, the engine 22 is completely exploded from the time t3 when the rotational speed Ne of the engine 22 is equal to or higher than the rotational speed N2 (for example, 1000 rpm) higher than the rotational speed N1 to the time t4 when the state (Ne ≧ N2) continues for a predetermined time. When it is determined that the torque is generated, the power generation torque is set in the torque command Tm1 *. Here, the rotational speed N1 is the rotational speed at which the fuel injection control and the ignition control of the engine 22 are started.

モータMG1のトルク指令Tm1*を設定すると、要求トルクTr*とモータMG1のトルク指令Tm1*と動力分配統合機構30のギヤ比ρと減速ギヤ35のギヤ比Grとに基づいてモータMG2の仮トルクTm2tmpを前述した式(6)により計算すると共に(ステップS330)、モータMG2のトルク制限Tm2min,Tm2maxを前述した式(7)および式(8)により計算し(ステップS340)、前述した式(9)により仮トルクTm2tmpをトルク制限Tm2min,Tm2maxで制限してモータMG2のトルク指令Tm2*を設定して(ステップS350)、設定したモータMG1,MG2のトルク指令Tm1*,Tm2*をモータECU40に送信する(ステップS360)。図12はエンジン22をモータリングしている最中における動力分配統合機構30の各回転要素の回転数とトルクとの力学的な関係を示す共線図である。図中、左のS軸はモータMG1の回転数Nm1であるサンギヤ31の回転数を示し、C軸はエンジン22の回転数Neであるキャリア34の回転数を示し、R軸はモータMG2の回転数Nm2に減速ギヤ35のギヤ比Grを乗じたリングギヤ32の回転数Nrを示す。図12中のR軸上の2つの太線矢印は、モータMG1からトルク指令Tm1*のトルクを出力してエンジン22をクランキングする際に駆動軸としてのリングギヤ軸32aに作用する反力としてのトルクと、モータMG2から出力されるトルクTm2*が減速ギヤ35を介してリングギヤ軸32aに作用するトルクとを示している。このようにモータMG2のトルク指令Tm2*を設定することにより、モータMG2から、モータMG1によりエンジン22をモータリングする際に駆動軸としてのリングギヤ軸32aに作用する反力としてのトルクを受け持つと共に運転者が要求する要求トルクTr*に基づくトルクを出力することができる。   When the torque command Tm1 * of the motor MG1 is set, the temporary torque of the motor MG2 based on the required torque Tr *, the torque command Tm1 * of the motor MG1, the gear ratio ρ of the power distribution and integration mechanism 30, and the gear ratio Gr of the reduction gear 35. Tm2tmp is calculated by the above-described equation (6) (step S330), and torque limits Tm2min and Tm2max of the motor MG2 are calculated by the above-described equation (7) and equation (8) (step S340). ) To limit the temporary torque Tm2tmp with the torque limits Tm2min and Tm2max and set the torque command Tm2 * of the motor MG2 (step S350), and transmit the set torque commands Tm1 * and Tm2 * of the motors MG1 and MG2 to the motor ECU 40 (Step S360). FIG. 12 is a collinear diagram showing a dynamic relationship between the rotational speed and torque of each rotary element of the power distribution and integration mechanism 30 during motoring of the engine 22. In the figure, the left S-axis indicates the rotation speed of the sun gear 31 that is the rotation speed Nm1 of the motor MG1, the C-axis indicates the rotation speed of the carrier 34 that is the rotation speed Ne of the engine 22, and the R-axis indicates the rotation speed of the motor MG2. The rotational speed Nr of the ring gear 32 obtained by multiplying the number Nm2 by the gear ratio Gr of the reduction gear 35 is shown. In FIG. 12, two thick arrows on the R axis indicate torque as a reaction force acting on the ring gear shaft 32a as the drive shaft when the torque of the torque command Tm1 * is output from the motor MG1 and the engine 22 is cranked. And the torque Tm2 * output from the motor MG2 acts on the ring gear shaft 32a via the reduction gear 35. By setting the torque command Tm2 * of the motor MG2 in this way, the motor MG2 takes over the torque as a reaction force that acts on the ring gear shaft 32a as the drive shaft when the engine 22 is motored by the motor MG1 and operates. Torque based on the required torque Tr * requested by the person can be output.

そして、エンジン22の回転数Neが燃料噴射制御と点火制御とを開始する回転数としての所定回転数N1以上か否かを判定する(ステップS370)。エンジン22のモータリングを開始した直後を考えると、エンジン22の回転数Neは所定回転数N1未満と判定されてステップS300に戻ってステップS300〜S370の処理を繰り返す。エンジン22のモータリングが継続されてエンジン22の回転数Neが所定回転数N1以上となると、エンジン22の燃料噴射制御や点火制御を開始していなければ(ステップS380)、燃料噴射制御と点火制御の開始指示をエンジンECU24に送信する(ステップS390)。これにより、燃焼噴射制御と点火制御の開始指示を受けたエンジンECU24は、エンジン22が始動されるよう燃焼噴射制御と点火制御とを開始する。   Then, it is determined whether or not the rotational speed Ne of the engine 22 is equal to or higher than a predetermined rotational speed N1 as the rotational speed at which the fuel injection control and the ignition control are started (step S370). Considering immediately after the motoring of the engine 22 is started, it is determined that the rotational speed Ne of the engine 22 is less than the predetermined rotational speed N1, the process returns to step S300, and the processes of steps S300 to S370 are repeated. When the motoring of the engine 22 is continued and the engine speed Ne becomes equal to or higher than the predetermined engine speed N1, the fuel injection control and the ignition control are not performed unless the fuel injection control and the ignition control of the engine 22 are started (step S380). Is sent to the engine ECU 24 (step S390). As a result, the engine ECU 24 that has received an instruction to start the combustion injection control and the ignition control starts the combustion injection control and the ignition control so that the engine 22 is started.

エンジン22の燃料噴射制御と点火制御が開始された以降には、エンジン22の回転数Neと回転数N1よりも大きい回転数N2とを比較し(ステップS400)、エンジン22の回転数Neが回転数N2未満のときには異常カウンタC2を値1だけインクリメントして(ステップS410)、ステップS300に戻ってステップS300〜S400の処理を繰り返す。一方、エンジン22の回転数Neが回転数N2以上のときには、異常カウンタC2を値0に設定し(ステップS420)、その状態(Ne≧N2)が所定時間(例えば0.5秒など)継続したか否かを判定し(ステップS430)、所定時間継続していないときには未だエンジン22は完爆していないと判断してステップS300に戻って処理を繰り返し、所定時間継続したときにはエンジン22が完爆したと判断して本ルーチンを終了する。   After the fuel injection control and ignition control of the engine 22 are started, the rotational speed Ne of the engine 22 is compared with the rotational speed N2 larger than the rotational speed N1 (step S400), and the rotational speed Ne of the engine 22 rotates. When the number is less than the number N2, the abnormality counter C2 is incremented by 1 (step S410), the process returns to step S300, and the processes of steps S300 to S400 are repeated. On the other hand, when the rotational speed Ne of the engine 22 is equal to or higher than the rotational speed N2, the abnormality counter C2 is set to 0 (step S420), and the state (Ne ≧ N2) continues for a predetermined time (for example, 0.5 seconds). (Step S430), if the engine 22 has not continued for a predetermined time, it is determined that the engine 22 has not yet completely exploded, and the process returns to step S300 to repeat the process. It is determined that the routine has been completed, and this routine is terminated.

次に、図5の駆動制御ルーチンや図10の始動制御ルーチンでハイブリッド用電子制御ユニット70から送信された各種設定値や制御指示を受信したエンジンECU24によるエンジン22の運転制御について説明する。エンジン22の運転制御は、図5の駆動制御ルーチンで設定される異常カウンタC1と図10の始動制御ルーチンで設定される異常カウンタC2とを用いるエンジン22の異常の判定を伴って行なわれる。図13は、エンジンECU24により実行されるエンジン制御ルーチンの一例を示すフローチャートである。このルーチンは、ハイブリッド用電子制御ユニット70から各種設定値や制御指示を受信したときに実行される。   Next, the operation control of the engine 22 by the engine ECU 24 that has received various set values and control instructions transmitted from the hybrid electronic control unit 70 in the drive control routine of FIG. 5 and the start control routine of FIG. 10 will be described. Operation control of the engine 22 is performed with determination of abnormality of the engine 22 using the abnormality counter C1 set in the drive control routine of FIG. 5 and the abnormality counter C2 set in the start control routine of FIG. FIG. 13 is a flowchart showing an example of an engine control routine executed by the engine ECU 24. This routine is executed when various set values and control instructions are received from the hybrid electronic control unit 70.

エンジン制御ルーチンが実行されると、エンジンECU24のCPU24aは、まず、エンジン22の目標回転数Ne*や目標トルクTe*,エンジン22を始動する際の燃料噴射制御や点火制御の開始指示,異常カウンタC1,C2,燃料残量センサ23aからの燃料残量Frなどの制御や異常判定に必要なデータを入力する処理を実行する(ステップS500)。ここで、目標回転数Ne*や目標トルクTe*,燃料噴射制御や点火制御の開始指示,異常カウンタC1,C2は、図5の駆動制御ルーチンや図10の始動制御ルーチンで設定されたものをハイブリッド用電子制御ユニット70から通信により入力するものとした。   When the engine control routine is executed, the CPU 24a of the engine ECU 24 first starts the target rotational speed Ne * and the target torque Te * of the engine 22, a start instruction for fuel injection control and ignition control when starting the engine 22, and an abnormality counter. A process of inputting data necessary for control and abnormality determination of the remaining fuel amount Fr from the C1, C2 and remaining fuel amount sensor 23a is executed (step S500). Here, the target rotational speed Ne *, the target torque Te *, the fuel injection control and ignition control start instructions, and the abnormality counters C1 and C2 are set in the drive control routine of FIG. 5 or the start control routine of FIG. Input from the electronic control unit for hybrid 70 by communication.

こうしてデータを入力すると、図5の駆動制御ルーチンで設定された目標回転数Ne*と目標トルクTe*を入力したときにはエンジン22が目標回転数Ne*と目標トルクTe*とで示される運転ポイントで運転されるよう目標吸入空気量Q*(目標スロットル開度)を設定し、図10の始動制御ルーチンで送信された燃料噴射制御や点火制御の開始指示を入力したときにはエンジン22が良好な始動性をもって始動されるよう目標吸入空気量Q*を設定する(ステップS510)。   When the data is input in this way, when the target rotational speed Ne * and the target torque Te * set in the drive control routine of FIG. 5 are input, the engine 22 is operated at the operating point indicated by the target rotational speed Ne * and the target torque Te *. When the target intake air amount Q * (target throttle opening) is set so as to be operated and the start instruction of fuel injection control or ignition control transmitted in the start control routine of FIG. 10 is input, the engine 22 has good startability. The target intake air amount Q * is set so that the engine is started (step S510).

続いて、入力した異常カウンタC1と閾値α1,α2とを比較すると共に入力した異常カウンタC2と閾値β1,β2とを比較する(ステップS520〜S550)。ここで、閾値α1,α2は、図5の駆動制御ルーチンによるエンジン22の出力異常を段階的に判定するためのものであり、例えば、閾値α1はエンジン22の出力異常を確定するために駆動制御ルーチンで異常カウンタC1のインクリメントが7〜8秒程度継続したときの値として設定され、閾値α2はエンジン22の出力異常を確定する前の出力異常のおそれを判定するために異常カウンタC1のインクリメントが4〜5秒程度継続したときの値として設定されている。また、閾値β1,β2は、図10の始動制御ルーチンによるエンジン22の始動異常を段階的に判定するためのものであり、例えば、閾値β1はエンジン22の始動異常を確定するために始動制御ルーチンで異常カウンタC2のインクリメントが7〜8秒程度継続したときの値として設定され、閾値β2はエンジン22の始動異常を確定する前の始動異常のおそれを判定するために異常カウンタC2のインクリメントが4〜5秒程度継続したときの値として設定されている。ステップS540で異常カウンタC1が閾値α2未満と判定されると共にステップS550で異常カウンタC2が閾値β2未満と判定されたときには、ステップS510で設定された目標吸入空気量Q*を用いてエンジン22を運転制御して(ステップS580)、本ルーチンを終了する。エンジン22の運転制御は、具体的には、目標吸入空気量Q*で吸気されるようスロットルモータ136の駆動制御すると共にエアフローメータ148からの吸入空気量Qairに基づいて所定空燃比となるよう燃料噴射弁126を制御し、点火プラグ130が圧縮行程の所定タイミングで点火されるよう制御することにより行なわれる。一方、異常カウンタC1が閾値α1以上と判定されたときにはエンジン22の出力異常を確定し、ステップS530で異常カウンタC2が閾値β1以上と判定されたときにはエンジン22の始動異常を確定して(ステップS590)、本ルーチンを終了する。   Subsequently, the input abnormality counter C1 is compared with the threshold values α1 and α2, and the input abnormality counter C2 is compared with the threshold values β1 and β2 (steps S520 to S550). Here, the threshold values α1 and α2 are for stepwise determination of the output abnormality of the engine 22 by the drive control routine of FIG. 5, for example, the threshold value α1 is drive control for determining the output abnormality of the engine 22. The routine is set as a value when the increment of the abnormality counter C1 continues for about 7 to 8 seconds, and the threshold α2 is incremented to determine the possibility of an output abnormality before the output abnormality of the engine 22 is determined. It is set as a value when it lasts for about 4 to 5 seconds. Further, the threshold values β1 and β2 are used for stepwise determination of the start abnormality of the engine 22 by the start control routine of FIG. 10. For example, the threshold value β1 is a start control routine for determining the start abnormality of the engine 22. Is set as a value when the increment of the abnormality counter C2 continues for about 7 to 8 seconds, and the threshold value β2 is set to 4 to determine the possibility of a start abnormality before the start abnormality of the engine 22 is determined. It is set as a value when it lasts for about 5 seconds. When it is determined in step S540 that the abnormality counter C1 is less than the threshold value α2 and in step S550, it is determined that the abnormality counter C2 is less than the threshold value β2, the engine 22 is operated using the target intake air amount Q * set in step S510. Control is performed (step S580), and this routine is terminated. Specifically, the operation of the engine 22 is controlled by controlling the drive of the throttle motor 136 so that the air is sucked with the target intake air amount Q *, and the fuel is set to a predetermined air-fuel ratio based on the intake air amount Qair from the air flow meter 148. This is done by controlling the injection valve 126 and controlling the ignition plug 130 to be ignited at a predetermined timing in the compression stroke. On the other hand, when the abnormality counter C1 is determined to be equal to or greater than the threshold value α1, the output abnormality of the engine 22 is determined. When the abnormality counter C2 is determined to be equal to or greater than the threshold value β1 in step S530, the engine 22 is determined to be abnormal for start (step S590). ), This routine is terminated.

異常カウンタC1が閾値α2以上で閾値α1未満と判定されたり異常カウンタC2が閾値β2以上で閾値β1未満と判定されたときには、エンジン22に出力異常や始動異常のおそれがあると判断し、入力した燃料残量Frが所定量Fref未満か否かを判定し(ステップS560)、燃料残量Frが所定量Fref以上のときには、ステップS510で設定された目標吸入空気量Q*を所定量ΔQだけ増量して目標吸入空気量Q*を再設定し(ステップS570)、再設定した目標吸入空気量Q*でエンジン22を運転制御して(ステップS580)、本ルーチンを終了する。異常カウンタC1が閾値α2以上で閾値α1未満のときに目標吸入空気量Q*を増量すると、エンジン22の実パワーが大きくなるから、図5の駆動制御ルーチンのステップS130で計算される電力偏差ΔPbは小さくなり、電力偏差ΔPbが閾値Pref以下となると、異常カウンタC1は値0にリセットされる。また、異常カウンタC2が閾値β2以上で閾値β1未満のときに目標吸入空気量Q*を増量すると、エンジン22の燃焼状態が良好となり、図10の始動制御ルーチンのステップS400でエンジン22の回転数Neが回転数N2以上となると、異常カウンタC2は値0にリセットされる。このように、異常カウンタC1が閾値α2以上で閾値α1未満のときや異常カウンタC2が閾値β2以上で閾値β1未満のときに目標吸入空気量Q*を増量することにより、エンジン22の一時的な燃焼不良によって異常カウンタC1,C2が閾値α1,β1までインクリメントされて異常が確定されてしまうのを抑制しているのである。これにより、エンジン22の異常の誤判定を抑制することができる。また、所定量Frefは、燃料タンク23内が燃料切れ寸前の状態にあるかを判定するための閾値である。   When the abnormality counter C1 is determined to be greater than or equal to the threshold value α2 and less than the threshold value α1, or when the abnormality counter C2 is determined to be greater than or equal to the threshold value β2 and less than the threshold value β1, it is determined that there is a risk of output abnormality or start abnormality in the engine 22 It is determined whether the remaining fuel amount Fr is less than the predetermined amount Fref (step S560). When the remaining fuel amount Fr is equal to or greater than the predetermined amount Fref, the target intake air amount Q * set in step S510 is increased by the predetermined amount ΔQ. Then, the target intake air amount Q * is reset (step S570), the operation of the engine 22 is controlled with the reset target intake air amount Q * (step S580), and this routine ends. If the target intake air amount Q * is increased when the abnormality counter C1 is greater than or equal to the threshold value α2 and less than the threshold value α1, the actual power of the engine 22 increases, so that the power deviation ΔPb calculated in step S130 of the drive control routine of FIG. When the power deviation ΔPb becomes equal to or smaller than the threshold value Pref, the abnormality counter C1 is reset to 0. Further, if the target intake air amount Q * is increased when the abnormality counter C2 is equal to or larger than the threshold value β2 and less than the threshold value β1, the combustion state of the engine 22 becomes good, and the engine speed is increased in step S400 of the start control routine of FIG. When Ne becomes equal to or higher than the rotation speed N2, the abnormality counter C2 is reset to a value of zero. Thus, when the abnormal counter C1 is greater than or equal to the threshold α2 and less than the threshold α1, or when the abnormal counter C2 is greater than or equal to the threshold β2 and less than the threshold β1, the target intake air amount Q * is increased to temporarily The abnormality counters C1 and C2 are incremented to the threshold values α1 and β1 due to the combustion failure, thereby suppressing the abnormality. Thereby, erroneous determination of abnormality of the engine 22 can be suppressed. Further, the predetermined amount Fref is a threshold value for determining whether or not the fuel tank 23 is in a state just before the fuel runs out.

一方、燃料残量Frが所定量Fref未満と判定されると、ステップS510で設定した目標吸入空気量Q*を維持してエンジン22を運転制御して(ステップS580)、本ルーチンを終了する。いま、図5の駆動制御ルーチンが実行されている最中に燃料残量Frが所定量Fref未満でエンジン22への燃料の供給が断続的になり、エンジン22が正常燃焼と燃焼不良とを繰り返している状態を考える。この状態で目標吸入空気量Q*を増量すると、エンジン22から出力されるトルクが大きく変動するから、図5の駆動制御ルーチンのステップS140で電力偏差ΔPbが閾値Pref未満の判定と電力偏差ΔPbが閾値Pref以上の判定とが繰り返される場合がる。電力偏差ΔPbが閾値Pref以上のときには異常カウンタC1は値0にリセットされるから、燃料残量Frが所定量Fref未満(燃料切れ寸前)のときには完全に燃料切れとなるまで異常カウンタC1が閾値α1未満の状態(エンジン22の出力異常が確定されない状態)が長時間に亘って継続し、浄化装置134の触媒が異常な高温となるなどの不具合を招く場合が考えられる。実施例では、異常カウンタC1が閾値α2以上で閾値α1未満のときに燃料残量Frが所定量Fref未満のときには、吸入空気量Q*を増量しないから、エンジン22の出力異常の確定が遅れることに基づく上述したエンジン22の不具合の発生を抑制することができる。次に、図10の始動制御ルーチンが実行されている最中に燃料残量Frが所定量Fref未満でエンジン22への燃料の供給が断続的になり、エンジン22が正常燃焼と燃焼不良とを繰り返している状態を考える。この状態で目標吸入空気量Q*を増量すると、エンジン22から出力されるトルクが大きく変動するから、図10の始動制御ルーチンのステップS400でエンジン22の回転数Neが回転数N2未満の判定と回転数Neが回転数N2以上の判定とが繰り返される場合がある。エンジン22の回転数Neが回転数N2以上のときには異常カウンタC2は値0にリセットされるから、燃料残量Frが所定量Fref未満(燃料切れ寸前)のときには完全に燃料切れとなるまで異常カウンタC2が閾値β1未満の状態(エンジン22の始動異常が確定されない状態)が長時間に亘って継続し、浄化装置134の触媒が異常な高温となるなどの不具合を招く場合が考えられる。実施例では、異常カウンタC2が閾値β2以上で閾値β1未満のときに燃料残量Frが所定量Fref未満のときには、吸入空気量Q*を増量しないから、エンジン22の始動異常の確定が遅れることに基づく上述したエンジン22の不具合の発生を抑制することができる。   On the other hand, when it is determined that the remaining fuel amount Fr is less than the predetermined amount Fref, the engine 22 is operated and controlled while maintaining the target intake air amount Q * set in step S510 (step S580), and this routine is terminated. Now, while the drive control routine of FIG. 5 is being executed, the fuel supply to the engine 22 becomes intermittent when the fuel remaining amount Fr is less than the predetermined amount Fref, and the engine 22 repeats normal combustion and poor combustion. Think of the state you are in. If the target intake air amount Q * is increased in this state, the torque output from the engine 22 fluctuates greatly. Therefore, in step S140 of the drive control routine of FIG. 5, the determination that the power deviation ΔPb is less than the threshold value Pref and the power deviation ΔPb are The determination above the threshold value Pref may be repeated. When the power deviation ΔPb is equal to or greater than the threshold value Pref, the abnormality counter C1 is reset to the value 0. Therefore, when the remaining fuel amount Fr is less than the predetermined amount Fref (before fuel shortage), the abnormality counter C1 is set to the threshold value α1 until the fuel is completely exhausted. It is conceivable that a state of less than that (a state in which an abnormality in the output of the engine 22 is not determined) continues for a long time, leading to problems such as an abnormally high temperature of the catalyst of the purification device 134. In the embodiment, since the intake air amount Q * is not increased when the remaining fuel amount Fr is less than the predetermined amount Fref when the abnormality counter C1 is greater than or equal to the threshold value α2 and less than the threshold value α1, the determination of the output abnormality of the engine 22 is delayed. The occurrence of the above-described malfunction of the engine 22 based on the above can be suppressed. Next, while the start control routine of FIG. 10 is being executed, the supply of fuel to the engine 22 is intermittent when the fuel remaining amount Fr is less than the predetermined amount Fref, and the engine 22 performs normal combustion and poor combustion. Consider the state of repetition. If the target intake air amount Q * is increased in this state, the torque output from the engine 22 fluctuates greatly. Therefore, in step S400 of the start control routine of FIG. 10, it is determined that the rotational speed Ne of the engine 22 is less than the rotational speed N2. The determination that the rotational speed Ne is equal to or higher than the rotational speed N2 may be repeated. When the rotational speed Ne of the engine 22 is equal to or higher than the rotational speed N2, the abnormality counter C2 is reset to a value of 0. Therefore, when the remaining fuel amount Fr is less than the predetermined amount Fref (immediately before the fuel runs out), the abnormal counter is used until the fuel is completely exhausted. It is conceivable that a state where C2 is less than the threshold value β1 (a state where the start abnormality of the engine 22 is not determined) continues for a long time, leading to problems such as an abnormally high temperature of the catalyst of the purification device 134. In the embodiment, if the remaining fuel amount Fr is less than the predetermined amount Fref when the abnormality counter C2 is equal to or larger than the threshold value β2 and less than the threshold value β1, the intake air amount Q * is not increased, so that the start abnormality determination of the engine 22 is delayed. The occurrence of the above-described malfunction of the engine 22 based on the above can be suppressed.

以上説明した実施例のハイブリッド自動車20によれば、図5の駆動制御ルーチンで電力偏差ΔPbが閾値Pref以上(エンジン22の実パワーが要求パワーPe*に対して不足)のときには異常カウンタC1を値1だけインクリメントし電力偏差ΔPbが閾値Pref未満のときには異常カウンタC1を値0にリセットしてこの異常カウンタC1が閾値α1以上のときにエンジン22の出力異常を確定するものとして、異常カウンタC1が閾値α1未満で閾値α1よりも小さい閾値α2以上のときに燃料残量Frが燃料切れ寸前の所定量Fref以上のときには吸入空気量Q*の増量を伴ってエンジン22を運転制御し、燃料残量Frが所定量Fref未満のときには吸入空気量Q*を増量しないでエンジン22を運転制御するから、燃料残量Frが所定量Fref以上のときにはエンジン22の一時的な燃焼不良によって異常が確定されてしまうのを抑制でき、燃料残量Frが所定量Fref未満のときには異常の確定が遅れることに基づくエンジン22の不具合(浄化装置134の触媒が異常な高温になるなどの不具合)の発生を抑制することができる。   According to the hybrid vehicle 20 of the embodiment described above, when the power deviation ΔPb is equal to or greater than the threshold value Pref (the actual power of the engine 22 is insufficient with respect to the required power Pe *) in the drive control routine of FIG. When the power deviation ΔPb is less than the threshold value Pref by incrementing by 1, the abnormality counter C1 is reset to the value 0, and when the abnormality counter C1 is greater than or equal to the threshold value α1, the abnormality abnormality of the engine 22 is determined. When the fuel remaining amount Fr is equal to or greater than a predetermined amount Fref just before the fuel shortage when less than α1 and smaller than the threshold α1, the engine 22 is controlled to operate with an increase in the intake air amount Q *, and the fuel remaining amount Fr is controlled. Is less than the predetermined amount Fref, the operation of the engine 22 is controlled without increasing the intake air amount Q *. When Fr is equal to or greater than the predetermined amount Fref, it is possible to prevent the abnormality from being determined due to a temporary combustion failure of the engine 22, and when the remaining fuel amount Fr is less than the predetermined amount Fref, the determination of the abnormality is delayed. Occurrence of defects (problems such as an abnormally high temperature of the catalyst of the purification device 134) can be suppressed.

また、実施例のハイブリッド自動車20によれば、図10の始動制御ルーチンでエンジン22の燃料噴射制御と点火制御を開始してからエンジン22の回転数Neが回転数N2未満のときには異常カウンタC2を値1だけインクリメントし回転数Neが回転数N2以上のときには異常カウンタC2を値0にリセットしてこの異常カウンタC2が閾値β1以上のときにエンジン22の始動異常を確定するものとして、異常カウンタC2が閾値β1未満で閾値β1よりも小さい閾値β2以上のときに燃料残量Frが燃料切れ寸前の所定量Fref以上のときには吸入空気量Q*の増量を伴ってエンジン22を運転制御し、燃料残量Frが所定量Fref未満のときには吸入空気量Q*を増量しないでエンジン22を運転制御するから、燃料残量Frが所定量Fref以上のときにはエンジン22の一時的な燃焼不良によって異常が確定されてしまうのを抑制でき、燃料残量Frが所定量Fref未満のときには異常の確定が遅れることに基づくエンジン22の不具合(浄化装置134の触媒が異常な高温になるなどの不具合)の発生を抑制することができる。   Further, according to the hybrid vehicle 20 of the embodiment, the abnormality counter C2 is set when the rotational speed Ne of the engine 22 is less than the rotational speed N2 after starting the fuel injection control and the ignition control of the engine 22 in the start control routine of FIG. When the revolution number Ne is incremented by 1 and the revolution speed Ne is equal to or greater than the revolution speed N2, the abnormality counter C2 is reset to a value 0, and when the abnormality counter C2 is greater than or equal to the threshold value β1, the engine 22 startup abnormality is determined. When the fuel remaining amount Fr is equal to or greater than the predetermined amount Fref immediately before the fuel shortage when the fuel amount Fr is equal to or greater than the threshold value β2 that is less than the threshold value β1 and less than the threshold value β1, the operation of the engine 22 is controlled with an increase in the intake air amount Q *. When the amount Fr is less than the predetermined amount Fref, the operation of the engine 22 is controlled without increasing the intake air amount Q *. When the fuel amount is greater than or equal to the predetermined amount Fref, it is possible to prevent the abnormality from being determined due to a temporary combustion failure of the engine 22, and when the remaining fuel amount Fr is less than the predetermined amount Fref, a malfunction of the engine 22 based on the delay in determining the abnormality ( It is possible to suppress the occurrence of problems such as an abnormally high temperature of the catalyst of the purification device 134.

実施例のハイブリッド自動車20では、図13のエンジン制御ルーチンにおけるエンジン22の異常の判定を図5の駆動制御ルーチンと図10の始動制御ルーチンの両方に適用するものとしたが、いずれか一方のみに適用するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the determination of the abnormality of the engine 22 in the engine control routine of FIG. 13 is applied to both the drive control routine of FIG. 5 and the start control routine of FIG. It may be applied.

実施例のハイブリッド自動車20では、上述した式(3),(4)を満たす範囲内でモータMG1の仮トルクTm1tmpを制限するトルク制限Tm1min,Tm1maxを求めてモータMG1のトルク指令Tm1*を設定すると共に式(7),(8)によりトルク制限Tm2min,Tm2maxを求めてモータMG2のトルク指令Tm2*を設定したが、式(3),(4)を満たす範囲内によるトルク制限Tm1min,Tm1maxの制限を受けることなくモータトルクTm1tmpをそのままモータMG1のトルク指令Tm1*として設定すると共にこのトルク指令Tm1*を用いて式(7),(8)によりトルク制限Tm2min,Tm2maxを求めてモータMG2のトルク指令Tm2*を設定するものとしても構わない。この他、モータMG2の回転数Nm2や予想モータ回転数Nm2estを用いてバッテリ50の入出力制限Win,Woutの範囲内でモータMG1,MG2のトルク指令Tm1*Tm2*を設定するものであれば、如何なる手法を用いるものとしても構わない。   In the hybrid vehicle 20 of the embodiment, torque limits Tm1min and Tm1max for limiting the temporary torque Tm1tmp of the motor MG1 within the range satisfying the above-described formulas (3) and (4) are obtained, and the torque command Tm1 * of the motor MG1 is set. At the same time, the torque limits Tm2min and Tm2max are obtained from the equations (7) and (8), and the torque command Tm2 * of the motor MG2 is set. The motor torque Tm1tmp is set as it is as the torque command Tm1 * of the motor MG1, and the torque limit Tm2min and Tm2max are obtained from the equations (7) and (8) using the torque command Tm1 *. Tm2 * may be set. In addition, if the torque command Tm1 * Tm2 * of the motors MG1, MG2 is set within the range of the input / output limits Win, Wout of the battery 50 using the rotational speed Nm2 of the motor MG2 and the expected motor rotational speed Nm2est, Any method may be used.

実施例のハイブリッド自動車20では、減速ギヤ35を介して駆動軸としてのリングギヤ軸32aにモータMG2を取り付けるものとしたが、リングギヤ軸32aにモータMG2を直接取り付けるものとしてもよいし、減速ギヤ35に代えて2段変速や3段変速,4段変速などの変速機を介してリングギヤ軸32aにモータMG2を取り付けるものとしても構わない。   In the hybrid vehicle 20 of the embodiment, the motor MG2 is attached to the ring gear shaft 32a as the drive shaft via the reduction gear 35. However, the motor MG2 may be directly attached to the ring gear shaft 32a, or Instead, the motor MG2 may be attached to the ring gear shaft 32a via a transmission such as a 2-speed, 3-speed, or 4-speed.

実施例のハイブリッド自動車20では、モータMG2の動力を減速ギヤ35により変速してリングギヤ軸32aに出力するものとしたが、図14の変形例のハイブリッド自動車120に例示するように、モータMG2の動力をリングギヤ軸32aが接続された車軸(駆動輪63a,63bが接続された車軸)とは異なる車軸(図14における車輪64a,64bに接続された車軸)に接続するものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power of the motor MG2 is changed by the reduction gear 35 and output to the ring gear shaft 32a. However, as illustrated in the hybrid vehicle 120 of the modified example of FIG. May be connected to an axle (an axle connected to the wheels 64a and 64b in FIG. 14) different from an axle to which the ring gear shaft 32a is connected (an axle to which the drive wheels 63a and 63b are connected).

実施例のハイブリッド自動車20では、エンジン22の動力を動力分配統合機構30を介して駆動輪63a,63bに接続された駆動軸としてのリングギヤ軸32aに出力するものとしたが、図15の変形例のハイブリッド自動車220に例示するように、エンジン22のクランクシャフト26に接続されたインナーロータ232と駆動輪63a,63bに動力を出力する駆動軸に接続されたアウターロータ234とを有し、エンジン22の動力の一部を駆動軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機230を備えるものとしてもよい。   In the hybrid vehicle 20 of the embodiment, the power of the engine 22 is output to the ring gear shaft 32a as the drive shaft connected to the drive wheels 63a and 63b via the power distribution and integration mechanism 30, but the modified example of FIG. The hybrid vehicle 220 includes an inner rotor 232 connected to the crankshaft 26 of the engine 22 and an outer rotor 234 connected to a drive shaft that outputs power to the drive wheels 63a and 63b. A counter-rotor motor 230 that transmits a part of the power to the drive shaft and converts the remaining power into electric power may be provided.

実施例では、本発明をエンジン22と動力分配統合機構30とモータMG1,MG2とを備えるハイブリッド自動車に適用して説明したが、ハイブリッド自動車に限定されるものではなく、動力源として内燃機関のみを搭載する自動車に適用するものとしてもよい。   In the embodiment, the present invention is applied to a hybrid vehicle including the engine 22, the power distribution and integration mechanism 30, and the motors MG1 and MG2. However, the present invention is not limited to the hybrid vehicle, and only the internal combustion engine is used as a power source. The present invention may be applied to an automobile to be mounted.

また、こうした自動車に適用するものに限定されるものではなく、自動車以外の車両の形態としても構わない。さらに、こうした車両の制御方法の形態としてもよい。   Moreover, it is not limited to what is applied to such a motor vehicle, It does not matter as forms of vehicles other than a motor vehicle. Furthermore, it is good also as a form of the control method of such a vehicle.

ここで、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明する。実施例では、エンジン22が「内燃機関」に相当し、電力偏差ΔPbが閾値Pref以上(エンジン22の実パワーが要求パワーPe*に対して不足)のときには異常カウンタC1を値1だけインクリメントし電力偏差ΔPbが閾値Pref未満のときには異常カウンタC1を値0にリセットする図5の駆動制御ルーチンのステップS130〜S160の処理を実行するハイブリッド用電子制御ユニット70やエンジン22を始動する際の燃料噴射制御や点火制御を開始した後にエンジン22の回転数Neが回転数N2未満のときには異常カウンタC2を値1だけインクリメントしエンジン22の回転数Neが回転数N2以上のときには異常カウンタC2を値0にリセットする図10の始動制御ルーチンのステップS400〜S420の処理を実行するハイブリッド用電子制御ユニット70が「燃焼状態検出推定手段」に相当し、異常カウンタC1と閾値α1,α2との比較によりエンジン22の出力異常を段階的に判定し、異常カウンタC2と閾値β1,β2との比較によりエンジン22の始動異常を段階的に判定する図13のエンジン制御ルーチンのステップS520〜S550,S590の処理を実行するエンジンECU24が「異常判定手段」に相当し、燃料残量センサ23aが「燃料残量検出手段」に相当し、異常カウンタC1が閾値α2以上で閾値α1未満のときや異常カウンタC2が閾値β2以上で閾値β1未満のときに燃料残量Frが所定量Fref以上のときには目標吸入空気量Q*の増量を伴ってエンジン22を運転制御し燃料残量Frが所定量Fref未満のときには目標吸入空気量Q*の増量を伴わずにエンジン22を運転制御する図13のエンジン制御ルーチンのステップS560〜S580の処理を実行するエンジンECU24が「異常判定時制御手段」に相当する。また、動力分配統合機構30とモータMG1とが「電力動力入出力手段」に相当し、モータMG2が「電動機」に相当する。また、モータMG1が「発電機」に相当し、動力分配統合機構30が「3軸式動力入出力手段」に相当する。また、対ロータ電動機230も「電力動力入出力手段」に相当する。ここで、「内燃機関」としては、ガソリンまたは軽油などの炭化水素系の燃料により動力を出力する内燃機関に限定されるものではなく、水素エンジンなど如何なるタイプの内燃機関であっても構わない。「燃焼状態検出推定手段」としては、電力偏差ΔPbが閾値Pref以上のときには異常カウンタC1を値1だけインクリメントし電力偏差ΔPbが閾値Pref未満のときには異常カウンタC1を値0にリセットしたり、エンジン22を始動する際の燃料噴射制御や点火制御を開始した後にエンジン22の回転数Neが回転数N2未満のときには異常カウンタC2を値1だけインクリメントしエンジン22の回転数Neが回転数N2以上のときには異常カウンタC2を値0にリセットするものに限定されるものではなく、内燃機関から出力されるトルクを直接検出したりエンジン22からのトルク反力を受けるモータMG1から出力されるトルクにより内燃機関から出力されるトルクを推定するなど、内燃機関の燃焼状態を検出または推定するものであれば如何なるものとしても構わない。「異常判定手段」としては、異常カウンタC1と閾値α1,α2との比較によりエンジン22の出力異常を段階的に判定し、異常カウンタC2と閾値β1,β2との比較によりエンジン22の始動異常を段階的に判定するものに限定されるものではなく、内燃機関の通常とは異なる非通常燃焼状態が検出または推定されたとき、その非通常燃焼状態の継続時間に基づいて内燃機関の異常を段階的に判定するものであれば如何なるものとしても構わない。「燃料残量検出手段」としては、燃料残量センサ23aに限定されるものではなく、燃料残量を検出するものであれば如何なるものであっても構わない。「異常判定時制御手段」としては、異常カウンタC1が閾値α2以上で閾値α1未満のときや異常カウンタC2が閾値β2以上で閾値β1未満のときに燃料残量Frが所定量Fref以上のときには目標吸入空気量Q*の増量を伴ってエンジン22を運転制御し燃料残量Frが所定量Fref未満のときには目標吸入空気量Q*の増量を伴わずにエンジン22を運転制御するものに限定されるものではなく、異常判定手段により内燃機関の異常のおそれが判定されたときに異常を確定するに先立って、燃料残量検出手段により検出された燃料残量が燃料切れ寸前の所定量以上のときには内燃機関への吸入空気量の増量を伴って内燃機関を運転制御し、燃料残量検出手段により検出された燃料残量が所定量未満のときには吸入空気量の増量を伴わずに内燃機関を運転制御するものであれば如何なるものとしても構わない。また、「電力動力入出力手段」としては、動力分配統合機構30とモータMG1とを組み合わせたものや対ロータ電動機230に限定されるされるものではなく、車軸に連結された駆動軸に接続されると共に該駆動軸とは独立に回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記駆動軸と前記出力軸とに動力を入出力可能なものであれば如何なるものとしても構わない。「電動機」としては、同期発電電動機として構成されたモータMG2に限定されるものではなく、誘導電動機など、駆動軸に動力を入出力可能なものであれば如何なるタイプの電動機であっても構わない。「発電機」としては、同期発電電動機として構成されたモータMG1に限定されるものではなく、誘導電動機など、動力を入出力可能なものであれば如何なるタイプの発電機としても構わない。「3軸式動力入出力手段」としては、上述の動力分配統合機構30に限定されるものではなく、ダブルピニオン式の遊星歯車機構を用いるものや複数の遊星歯車機構を組み合わせて4以上の軸に接続されるものやデファレンシャルギヤのように遊星歯車とは異なる作動作用を有するものなど、駆動軸と出力軸と発電機の回転軸との3軸に接続され3軸のうちのいずれかに軸に入出力される動力に基づいて残余の軸に動力を入出力するものであれば如何なるものとしても構わない。なお、実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。即ち、課題を解決するための手段の欄に記載した発明についての解釈はその欄の記載に基づいて行なわれるべきものであり、実施例は課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎないものである。   Here, the correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problems will be described. In the embodiment, when the engine 22 corresponds to an “internal combustion engine” and the power deviation ΔPb is equal to or greater than the threshold value Pref (the actual power of the engine 22 is insufficient with respect to the required power Pe *), the abnormality counter C1 is incremented by a value of 1 When the deviation ΔPb is less than the threshold value Pref, fuel injection control when starting the hybrid electronic control unit 70 or the engine 22 for executing the processing of steps S130 to S160 of the drive control routine of FIG. When the engine speed Ne is less than the engine speed N2, the abnormal counter C2 is incremented by a value of 1. When the engine speed Ne is greater than the engine speed N2, the engine counter 22 is reset to a value of 0. Steps S400 to S420 of the start control routine of FIG. The hybrid electronic control unit 70 to be executed corresponds to the “combustion state detection estimating means”, and the output abnormality of the engine 22 is determined step by step by comparing the abnormality counter C1 with the threshold values α1 and α2, and the abnormality counter C2 and the threshold value β1. , Β2, and the engine ECU 24 that executes the processing of steps S520 to S550 and S590 of the engine control routine of FIG. The sensor 23a corresponds to “fuel remaining amount detecting means”, and when the abnormality counter C1 is greater than or equal to the threshold α2 and less than the threshold α1, or when the abnormality counter C2 is greater than or equal to the threshold β2 and less than the threshold β1, the remaining fuel amount Fr is a predetermined amount Fref. In the above case, when the engine 22 is controlled to operate with an increase in the target intake air amount Q * and the remaining fuel amount Fr is less than the predetermined amount Fref. The engine ECU 24 that executes the processing of steps S560 to S580 of the engine control routine of FIG. 13 for controlling the operation of the engine 22 without increasing the target intake air amount Q * corresponds to “abnormality determination control means”. The power distribution and integration mechanism 30 and the motor MG1 correspond to “power power input / output means”, and the motor MG2 corresponds to “electric motor”. Further, the motor MG1 corresponds to a “generator”, and the power distribution and integration mechanism 30 corresponds to a “3-axis power input / output unit”. Further, the counter-rotor motor 230 also corresponds to “power power input / output means”. Here, the “internal combustion engine” is not limited to an internal combustion engine that outputs power using a hydrocarbon fuel such as gasoline or light oil, and may be any type of internal combustion engine such as a hydrogen engine. As the “combustion state detection estimating means”, when the power deviation ΔPb is greater than or equal to the threshold value Pref, the abnormality counter C1 is incremented by a value of 1. When the power deviation ΔPb is less than the threshold value Pref, the abnormality counter C1 is reset to a value of 0, or When the engine speed Ne is less than the engine speed N2 after starting the fuel injection control or ignition control when starting the engine, the abnormal counter C2 is incremented by 1 and when the engine speed Ne is greater than the engine speed N2. The abnormality counter C2 is not limited to the one that resets the value to 0. The torque output from the motor MG1 that directly detects the torque output from the internal combustion engine or receives the torque reaction force from the engine 22 is output from the internal combustion engine. Detect or estimate the combustion state of an internal combustion engine, such as estimating the output torque Anything can be used. As the “abnormality determination means”, output abnormality of the engine 22 is determined in a stepwise manner by comparing the abnormality counter C1 with the threshold values α1, α2, and a start abnormality of the engine 22 is determined by comparing the abnormality counter C2 with the threshold values β1, β2. It is not limited to the stepwise judgment. When an abnormal combustion state different from the normal combustion state of the internal combustion engine is detected or estimated, the abnormality of the internal combustion engine is staged based on the duration of the abnormal combustion state. Any judgment can be made as long as it is determined automatically. The “remaining fuel amount detecting means” is not limited to the remaining fuel amount sensor 23a, and any device that detects the remaining fuel amount may be used. As the “abnormality determination control means”, when the abnormality counter C1 is greater than or equal to the threshold α2 and less than the threshold α1, or when the abnormality counter C2 is greater than or equal to the threshold β2 and less than the threshold β1, the target fuel amount Fr is greater than or equal to the predetermined amount Fref. When the engine 22 is controlled to operate with an increase in the intake air amount Q * and the remaining fuel amount Fr is less than the predetermined amount Fref, the engine 22 is controlled to operate without increasing the target intake air amount Q *. When the remaining amount of fuel detected by the remaining fuel amount detecting means is greater than or equal to a predetermined amount immediately before the fuel runs out before the abnormality is determined when the abnormality determining portion determines that there is a possibility of abnormality of the internal combustion engine. When the operation of the internal combustion engine is controlled with an increase in the amount of intake air to the internal combustion engine, and the remaining amount of fuel detected by the remaining fuel amount detection means is less than a predetermined amount, an increase in the intake air amount is accompanied. May be any as long as it controls the operation of the internal combustion engine. Further, the “power power input / output means” is not limited to a combination of the power distribution and integration mechanism 30 and the motor MG1 or the anti-rotor motor 230, but is connected to a drive shaft connected to an axle. And connected to the output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft, and capable of inputting / outputting power to / from the drive shaft and the output shaft with input / output of electric power and power. It doesn't matter what. The “motor” is not limited to the motor MG2 configured as a synchronous generator motor, and may be any type of motor as long as it can input and output power to the drive shaft, such as an induction motor. . The “generator” is not limited to the motor MG1 configured as a synchronous generator motor, and may be any type of generator such as an induction motor that can input and output power. The “three-axis power input / output means” is not limited to the power distribution / integration mechanism 30 described above, but a mechanism using a double pinion planetary gear mechanism or a combination of a plurality of planetary gear mechanisms and four or more shafts. Connected to the three shafts, such as those connected to the shaft and those having a different operation action from the planetary gear such as a differential gear, and connected to the three shafts of the drive shaft, the output shaft, and the rotating shaft of the generator. As long as the power is input / output to / from the remaining shafts based on the power input / output to / from the power source, any method may be used. The correspondence between the main elements of the embodiment and the main elements of the invention described in the column of means for solving the problem is the same as that of the embodiment described in the column of means for solving the problem. It is an example for specifically explaining the best mode for doing so, and does not limit the elements of the invention described in the column of means for solving the problem. In other words, the interpretation of the invention described in the column of means for solving the problem should be made based on the description of the column, and the examples are those of the invention described in the column of means for solving the problem. It is only a specific example.

以上、本発明を実施するための最良の形態について実施例を用いて説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   The best mode for carrying out the present invention has been described with reference to the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made without departing from the gist of the present invention. Of course, it can be implemented in the form.

本発明は、自動車産業に利用可能である。   The present invention is applicable to the automobile industry.

本発明の一実施例であるハイブリッド自動車20の構成の概略を示す構成図である。1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 according to an embodiment of the present invention. エンジン22の構成の概略を示す構成図である。2 is a configuration diagram showing an outline of the configuration of an engine 22. FIG. バッテリ50における電池温度Tbと入出力制限Win,Woutとの関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the battery temperature Tb in the battery 50, and the input / output restrictions Win and Wout. バッテリ50の残容量(SOC)と入出力制限Win,Woutの補正係数との関係の一例を示す説明図である。It is explanatory drawing which shows an example of the relationship between the remaining capacity (SOC) of the battery 50, and the correction coefficient of input / output restrictions Win and Wout. 実施例のハイブリッド用電子制御ユニット70により実行される駆動制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the drive control routine performed by the electronic control unit for hybrids 70 of an Example. 要求トルク設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for request | requirement torque setting. エンジン22の動作ラインの一例と目標回転数Ne*と目標トルクTe*とを設定する様子を示す説明図である。It is explanatory drawing which shows a mode that an example of the operating line of the engine 22, the target rotational speed Ne *, and the target torque Te * are set. エンジン22からパワーを出力している状態で走行しているときの動力分配統合機構30の回転要素における回転数とトルクとの力学的な関係を示す共線図の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a collinear diagram showing a dynamic relationship between the number of rotations and torque in a rotating element of a power distribution and integration mechanism 30 when traveling with power output from an engine 22; トルク制限Tm1min,Tm1maxを設定する様子を説明する説明図である。It is explanatory drawing explaining a mode that torque limitation Tm1min and Tm1max are set. 実施例のハイブリッド用電子制御ユニット70により実行される始動制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the starting control routine performed by the electronic control unit for hybrids 70 of an Example. 始動時のトルクマップの一例を示す説明図である。It is explanatory drawing which shows an example of the torque map at the time of starting. エンジン22をモータリングしている最中における動力分配統合機構30の各回転要素の回転数とトルクとの力学的な関係を示す共線図の一例を示す説明図である。FIG. 3 is an explanatory diagram showing an example of a collinear diagram showing a dynamic relationship between the rotational speed and torque of each rotary element of the power distribution and integration mechanism 30 during motoring of the engine 22. 実施例のエンジンECU24により実行されるエンジン制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the engine control routine performed by engine ECU24 of an Example. 変形例のハイブリッド自動車120の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 120 according to a modification. 変形例のハイブリッド自動車220の構成の概略を示す構成図である。FIG. 11 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 220 of a modified example.

符号の説明Explanation of symbols

20,120,220 ハイブリッド自動車、22 エンジン、23 燃料タンク、23a 燃料残量センサ、24 エンジン用電子制御ユニット(エンジンECU)、24a CPU、24b ROM、24c RAM、26 クランクシャフト、28 ダンパ、30 動力分配統合機構、31 サンギヤ、32 リングギヤ、32a リングギヤ軸、33 ピニオンギヤ、34 キャリア、35 減速ギヤ、40 モータ用電子制御ユニット(モータECU)、41,42 インバータ、43,44 回転位置検出センサ、50 バッテリ、51a 電圧センサ、51b 電流センサ、51c 温度センサ、52 バッテリ用電子制御ユニット(バッテリECU)、54 電力ライン、60 ギヤ機構、62 デファレンシャルギヤ、63a,63b 駆動輪、64a,64b 車輪、70 ハイブリッド用電子制御ユニット、72 CPU、74 ROM、76 RAM、80 イグニッションスイッチ、81 シフトレバー、82 シフトポジションセンサ、83 アクセルペダル、84 アクセルペダルポジションセンサ、85 ブレーキペダル、86 ブレーキペダルポジションセンサ、88 車速センサ、122 エアクリーナ、124 スロットルバルブ、126 燃料噴射弁、128 吸気バルブ、130 点火プラグ、132 ピストン、134 浄化装置、136,スロットルモータ、138 イグニッションコイル、140 クランクポジションセンサ、142 水温センサ、143 圧力センサ、144 カムポジションセンサ、146 スロットルバルブポジションセンサ、148 エアフローメータ、149 温度センサ、150 可変バルブタイミング機構、230 対ロータ電動機、232 インナーロータ 234 アウターロータ、MG1,MG2 モータ。   20, 120, 220 Hybrid vehicle, 22 engine, 23 fuel tank, 23a fuel remaining amount sensor, 24 engine electronic control unit (engine ECU), 24a CPU, 24b ROM, 24c RAM, 26 crankshaft, 28 damper, 30 power Distribution and integration mechanism, 31 sun gear, 32 ring gear, 32a ring gear shaft, 33 pinion gear, 34 carrier, 35 reduction gear, 40 motor electronic control unit (motor ECU), 41, 42 inverter, 43, 44 rotational position detection sensor, 50 battery , 51a Voltage sensor, 51b Current sensor, 51c Temperature sensor, 52 Battery electronic control unit (battery ECU), 54 Power line, 60 Gear mechanism, 62 Differential gear, 63a, 63b Drive wheel , 64a, 64b wheel, 70 hybrid electronic control unit, 72 CPU, 74 ROM, 76 RAM, 80 ignition switch, 81 shift lever, 82 shift position sensor, 83 accelerator pedal, 84 accelerator pedal position sensor, 85 brake pedal, 86 Brake Pedal Position Sensor, 88 Vehicle Speed Sensor, 122 Air Cleaner, 124 Throttle Valve, 126 Fuel Injection Valve, 128 Intake Valve, 130 Spark Plug, 132 Piston, 134 Purifier, 136, Throttle Motor, 138 Ignition Coil, 140 Crank Position Sensor, 142 Water temperature sensor, 143 Pressure sensor, 144 Cam position sensor, 146 Throttle valve position sensor, 148 Airflow Meter, 149 temperature sensor, 150 a variable valve timing mechanism, 230 pair-rotor motor, 232 an inner rotor 234 outer rotor, MG1, MG2 motor.

Claims (7)

燃料の供給を受けて該燃料の燃焼により動力を出力する内燃機関を備える車両であって、
前記内燃機関の燃焼状態を検出または推定する燃焼状態検出推定手段と、
前記燃焼状態検出推定手段により前記内燃機関の通常とは異なる非通常燃焼状態が検出または推定されたとき、該非通常燃焼状態の継続時間に基づいて該内燃機関の異常を段階的に判定する異常判定手段と、
燃料残量を検出する燃料残量検出手段と、
前記異常判定手段により前記内燃機関の異常のおそれが判定されたときに該異常を確定するに先立って、前記燃料残量検出手段により検出された燃料残量が燃料切れ寸前の所定量以上のときには前記内燃機関への吸入空気量の増量を伴って該内燃機関を運転制御し、前記燃料残量検出手段により検出された燃料残量が前記所定量未満のときには吸入空気量の増量を伴わずに前記内燃機関を運転制御する異常判定時制御手段と
を備える車両。
A vehicle including an internal combustion engine that receives supply of fuel and outputs power by combustion of the fuel,
Combustion state detection estimating means for detecting or estimating the combustion state of the internal combustion engine;
Abnormality determination for stepwise determining abnormality of the internal combustion engine based on the duration of the abnormal combustion state when the abnormal combustion state of the internal combustion engine different from normal is detected or estimated by the combustion state detection estimation unit Means,
Fuel remaining amount detecting means for detecting the remaining amount of fuel;
When the abnormality determination means determines that there is a possibility of abnormality of the internal combustion engine, prior to determining the abnormality, when the remaining fuel amount detected by the remaining fuel amount detection means is greater than or equal to a predetermined amount before the fuel shortage Operation control of the internal combustion engine is performed with an increase in the intake air amount to the internal combustion engine, and the increase in the intake air amount is not performed when the remaining fuel amount detected by the remaining fuel amount detecting means is less than the predetermined amount. A vehicle comprising: an abnormality determination time control means for controlling the operation of the internal combustion engine.
前記異常判定手段は、前記燃焼状態検出推定手段により前記非通常燃焼状態が第1所定時間に亘って継続して検出または推定されたときに前記内燃機関の異常を確定する手段であり、前記燃焼状態検出推定手段により前記非通常燃焼状態が前記第1所定時間よりも短い第2所定時間に亘って継続して検出または推定されたときに前記内燃機関の異常のおそれを判定する手段である請求項1記載の車両。   The abnormality determining means is means for determining an abnormality of the internal combustion engine when the non-normal combustion state is continuously detected or estimated over a first predetermined time by the combustion state detection estimating means. A means for determining a possibility of abnormality of the internal combustion engine when the non-normal combustion state is continuously detected or estimated over a second predetermined time shorter than the first predetermined time by the state detection estimating means. Item 1. The vehicle according to item 1. 請求項1または2記載の車両であって、
前記内燃機関をモータリングするモータリング手段と、
前記内燃機関の始動が要求されたときには、該内燃機関がモータリングされるよう前記モータリング手段を制御すると共に該モータリングした後に該内燃機関の燃料噴射制御と点火制御とを開始する始動制御手段と、を備え、
前記燃焼状態検出推定手段は、前記燃料噴射制御と前記点火制御とが開始された後の前記内燃機関の回転数またはトルクを検出または推定する手段であり、
前記異常判定手段は、前記検出または推定された内燃機関の回転数またはトルクに基づいて該内燃機関の始動異常を判定する手段である
車両。
The vehicle according to claim 1 or 2,
Motoring means for motoring the internal combustion engine;
When the start of the internal combustion engine is required, the start control means controls the motoring means so that the internal combustion engine is motored and starts fuel injection control and ignition control of the internal combustion engine after the motoring. And comprising
The combustion state detection estimating means is means for detecting or estimating the rotational speed or torque of the internal combustion engine after the fuel injection control and the ignition control are started,
The abnormality determination unit is a unit that determines a start abnormality of the internal combustion engine based on the detected or estimated rotation speed or torque of the internal combustion engine.
請求項1ないし3いずれか記載の車両であって、
前記内燃機関に要求される要求動力に基づいて該内燃機関を運転制御する運転制御手段を備え、
前記燃焼状態検出推定手段は、前記内燃機関から出力されている動力を検出または推定する手段であり、
前記異常判定手段は、前記検出または推定された内燃機関から出力されている動力に基づいて該内燃機関の出力異常を判定する手段である
車両。
A vehicle according to any one of claims 1 to 3,
An operation control means for controlling the operation of the internal combustion engine based on required power required for the internal combustion engine;
The combustion state detection estimating means is means for detecting or estimating power output from the internal combustion engine,
The abnormality determination means is means for determining an output abnormality of the internal combustion engine based on the power output from the detected or estimated internal combustion engine.
請求項1ないし4いずれか記載の車両であって、
車軸に接続された駆動軸と該駆動軸に対して独立して回転可能に前記内燃機関の出力軸に接続され、電力と動力の入出力を伴って前記駆動軸と前記出力軸とに動力を入出力可能な電力動力入出力手段と、
前記駆動軸に動力を入出力可能な電動機と
を備える車両。
The vehicle according to any one of claims 1 to 4,
A drive shaft connected to the axle and an output shaft of the internal combustion engine are connected to the output shaft of the internal combustion engine so as to be rotatable independently of the drive shaft, and power is supplied to the drive shaft and the output shaft with input and output of power and power Power input / output means capable of input / output;
A vehicle comprising: an electric motor capable of inputting and outputting power to the drive shaft.
前記電力動力入出力手段は、動力を入出力可能な発電機と、前記内燃機関の出力軸と前記発電機の回転軸と前記駆動軸の3軸に接続され該3軸のうちいずれか2軸に入出力される動力に基づいて残余の1軸に動力を入出力する3軸式動力入出力手段とを備える手段である請求項5記載の車両。   The power power input / output means is connected to three axes of a generator capable of inputting / outputting power, an output shaft of the internal combustion engine, a rotating shaft of the generator and the drive shaft, and any two of the three shafts. The vehicle according to claim 5, further comprising: a three-axis power input / output means for inputting / outputting power to / from the remaining one shaft based on the power input / output to / from the vehicle. 燃料の供給を受けて該燃料の燃焼により動力を出力する内燃機関を備える車両の制御方法であって、
(a)前記内燃機関が通常とは異なる非通常燃焼状態にあるとき、該非通常燃焼状態の継続時間に基づいて該内燃機関の異常を段階的に判定し、
(b)前記内燃機関の異常のおそれが判定されたときに該異常を確定するに先立って、燃料残量が燃料切れ寸前の所定量以上のときには前記内燃機関への吸入空気量の増量を伴って該内燃機関を運転制御し、燃料残量が前記所定量未満のときには吸入空気量の増量を伴わずに前記内燃機関を運転制御する
車両の制御方法。
A control method for a vehicle including an internal combustion engine that receives supply of fuel and outputs power by combustion of the fuel,
(A) When the internal combustion engine is in a non-normal combustion state different from normal, the abnormality of the internal combustion engine is determined stepwise based on the duration of the non-normal combustion state;
(B) Prior to establishing the abnormality when it is determined that there is a possibility of abnormality of the internal combustion engine, an increase in the amount of intake air to the internal combustion engine is accompanied when the remaining amount of fuel is equal to or greater than a predetermined amount immediately before the fuel runs out. A control method for a vehicle that controls the operation of the internal combustion engine and controls the operation of the internal combustion engine without increasing the intake air amount when the remaining fuel amount is less than the predetermined amount.
JP2007075348A 2007-03-22 2007-03-22 Vehicle and control method thereof Pending JP2008232072A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007075348A JP2008232072A (en) 2007-03-22 2007-03-22 Vehicle and control method thereof
PCT/JP2008/055123 WO2008114826A1 (en) 2007-03-22 2008-03-19 Vehicle and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075348A JP2008232072A (en) 2007-03-22 2007-03-22 Vehicle and control method thereof

Publications (1)

Publication Number Publication Date
JP2008232072A true JP2008232072A (en) 2008-10-02

Family

ID=39765930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075348A Pending JP2008232072A (en) 2007-03-22 2007-03-22 Vehicle and control method thereof

Country Status (2)

Country Link
JP (1) JP2008232072A (en)
WO (1) WO2008114826A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184512A (en) * 2012-03-06 2013-09-19 Toyota Motor Corp Abnormality determination device of vehicle
JP2017511437A (en) * 2014-04-07 2017-04-20 ジーイー・アビエイション・システムズ・エルエルシー Method for slowly starting a reciprocating engine using a pneumatic starter while diagnosing the presence of a static pressure lock

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102270990B1 (en) * 2017-12-15 2021-07-01 닛산 지도우샤 가부시키가이샤 Hybrid vehicle control method and control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325744A (en) * 1991-04-26 1992-11-16 Hitachi Ltd Elctronically controlled fuel injection system
JP2006274937A (en) * 2005-03-29 2006-10-12 Toyota Motor Corp Device for judging abnormality of internal combustion engine and method for judging abnormality of internal combustion engine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337192A (en) * 1999-05-27 2000-12-05 Hitachi Ltd Engine control device
JP3918761B2 (en) * 2003-04-02 2007-05-23 株式会社デンソー Abnormal diagnosis of internal combustion engine
JP2006329172A (en) * 2005-05-30 2006-12-07 Toyota Motor Corp Vehicle and its control method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04325744A (en) * 1991-04-26 1992-11-16 Hitachi Ltd Elctronically controlled fuel injection system
JP2006274937A (en) * 2005-03-29 2006-10-12 Toyota Motor Corp Device for judging abnormality of internal combustion engine and method for judging abnormality of internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013184512A (en) * 2012-03-06 2013-09-19 Toyota Motor Corp Abnormality determination device of vehicle
US9382867B2 (en) 2012-03-06 2016-07-05 Toyota Jidosha Kabushiki Kaisha Abnormality determination device of vehicle and abnormality determination method
JP2017511437A (en) * 2014-04-07 2017-04-20 ジーイー・アビエイション・システムズ・エルエルシー Method for slowly starting a reciprocating engine using a pneumatic starter while diagnosing the presence of a static pressure lock
US10830199B2 (en) 2014-04-07 2020-11-10 Ge Aviation Systems Llc Method for slow starting a reciprocating engine

Also Published As

Publication number Publication date
WO2008114826A1 (en) 2008-09-25

Similar Documents

Publication Publication Date Title
JP4183013B1 (en) Vehicle and control method thereof
JP4293266B2 (en) Hybrid car
JP2010179780A (en) Hybrid vehicle and control method for the same
JP2007302185A (en) Power output device, its control method, and vehicle
JP2009280094A (en) Power output device and method of controlling the same, and vehicle
JP5217991B2 (en) Hybrid vehicle and control method thereof
JP5904131B2 (en) Hybrid vehicle control device and hybrid vehicle
JP5245899B2 (en) Hybrid vehicle and control method thereof
JP4730329B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP2005320941A (en) Power output device, automobile having the power output device, and method of controlling the power output device
JP4196960B2 (en) Power output apparatus, automobile equipped with the same, and control method therefor
JP5352539B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP2010105626A (en) Vehicle and control method therefor
JP2007223403A (en) Power output device, its control method, and vehicle
JP2010083319A (en) Hybrid vehicle and method for controlling the same
JP2007309113A (en) Power output device, vehicle mounted with the device and control method of power output device
JP2008232072A (en) Vehicle and control method thereof
JP5310492B2 (en) INTERNAL COMBUSTION ENGINE DEVICE, ITS CONTROL METHOD, AND VEHICLE
JP2010202137A (en) Hybrid vehicle and control method thereof
JP2009274628A (en) Hybrid vehicle and its control method
JP2009279965A (en) Hybrid vehicle and method of controlling the same
JP2008247098A (en) Power output unit, control method therefor, and vehicle
JP5796440B2 (en) Idling learning device for hybrid vehicles
JP2006329172A (en) Vehicle and its control method
JP4962404B2 (en) Internal combustion engine device and vehicle, and control method for internal combustion engine device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406