JP2008232023A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2008232023A
JP2008232023A JP2007072879A JP2007072879A JP2008232023A JP 2008232023 A JP2008232023 A JP 2008232023A JP 2007072879 A JP2007072879 A JP 2007072879A JP 2007072879 A JP2007072879 A JP 2007072879A JP 2008232023 A JP2008232023 A JP 2008232023A
Authority
JP
Japan
Prior art keywords
ratio
sealed container
pressure
hermetic compressor
dimension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007072879A
Other languages
Japanese (ja)
Inventor
Yoichi Tamiya
洋一 田宮
Shigeo Osugi
重夫 大杉
Takuma Wada
拓真 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007072879A priority Critical patent/JP2008232023A/en
Publication of JP2008232023A publication Critical patent/JP2008232023A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hermetic compressor having high pressure proof fatigue strength of a welded part of a sealed vessel. <P>SOLUTION: In this hermetic compressor, a ratio of height H to inside diameter D (H/D) of a barrel part of the sealed vessel and a ratio of thickness t to inside diameter D (t/D) of the barrel part are set to a scope of dimension of -87.7 (t/D)<SP>2</SP>-13.8 (t/D)+1.91≤(H/D)≤-356 (t/D)<SP>2</SP>+35.6 (t/D)+0.792 or (H/D)≤-86.8 (t/D)<SP>2</SP>-4.70 (t/D)+1.79 and 3P<SB>max</SB>/σ<SB>B</SB>≤t/D (P<SB>max</SB>: maximum design pressure, σ<SB>B</SB>: tensile strength of a barrel material) to obtain strong effective pressure proof fatigue strength of the welded and joined part of the vessel. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は冷媒を圧縮する密閉型圧縮装置に関するものであり、特に密閉型圧縮機の密閉容器の胴と上下鏡板の溶接部における耐圧疲労強度を向上させる構造に関するものである。   The present invention relates to a hermetic compressor for compressing a refrigerant, and more particularly to a structure for improving pressure-resistant fatigue strength in a welded portion of a sealed container body and upper and lower end panels of a hermetic compressor.

この発明を適用できる型の従来の密閉型圧縮機においては、円筒状の胴部と、略半球状の上部鏡板と、下部鏡板とを溶接により接合した密閉容器の内部に、圧縮機構と電動機構とを備えた内部機構が配設されている(例えば、特許文献1参照)。電動機構は、電源ターミナル7に接続されているリード線を介して外部電源から供給される電力によって圧縮機構を駆動する。また、胴部の側面には冷媒(低圧)を吸入する吸入管が配置されており、上部鏡板には高圧に圧縮された冷媒(高圧)を吐出する吐出管が配置されている。   In a conventional hermetic compressor of the type to which the present invention can be applied, a compression mechanism and an electric mechanism are provided in a sealed container in which a cylindrical body, a substantially hemispherical upper end plate, and a lower end plate are joined by welding. The internal mechanism provided with these is arrange | positioned (for example, refer patent document 1). The electric mechanism drives the compression mechanism with electric power supplied from an external power source via a lead wire connected to the power supply terminal 7. Further, a suction pipe for sucking refrigerant (low pressure) is arranged on the side surface of the body part, and a discharge pipe for discharging refrigerant (high pressure) compressed to high pressure is arranged on the upper end plate.

冷媒は、冷凍サイクルにつながる吸入管から密閉容器内の圧縮機構に供給され、臨界圧力まで圧縮される。圧縮された冷媒は、密閉容器内に排出され、吐出管から冷凍サイクルへ吐出される。このため密閉容器内は高圧の冷媒で満たされることになる。なお冷媒としては、従来冷媒よりも臨界圧力の高い二酸化炭素などの自然冷媒を用いることを想定している。   The refrigerant is supplied from the suction pipe connected to the refrigeration cycle to the compression mechanism in the hermetic container and compressed to the critical pressure. The compressed refrigerant is discharged into the sealed container and discharged from the discharge pipe to the refrigeration cycle. For this reason, the inside of the sealed container is filled with a high-pressure refrigerant. As the refrigerant, it is assumed that a natural refrigerant such as carbon dioxide having a higher critical pressure than the conventional refrigerant is used.

特開2000−2182号公報(第4頁〜第5頁、図1)JP 2000-2182 A (pages 4-5, FIG. 1)

このような従来の密閉型圧縮機の冷媒として使用されていた特定フロンと呼ばれるCFC(ChloroFluoroCarbon)は、成層圏のオゾン層破壊による環境破壊の要因となるため、1995年に全廃となった。また、指定フロンと呼ばれるHCFC(HydroChloroFluoroCarbon)および代替フロンと呼ばれるHFC(HydroFluoroCarbon)も地球温暖化の要因となるため2020年までに全廃される傾向となっている。   CFC (ChloroFluoroCarbon) called Specified CFC, which was used as a refrigerant for such conventional hermetic compressors, was abolished in 1995 because it causes environmental destruction due to the destruction of the ozone layer in the stratosphere. In addition, HCFC (HydroChloroFluoroCarbon) called designated chlorofluorocarbons and HFC (HydroFluoroCarbon) called alternative chlorofluorocarbons tend to be completely abolished by 2020 because they cause global warming.

このため、上記のような従来の冷媒に替わり、環境負荷の低い自然冷媒を密閉型圧縮機の冷媒として使用する動きが起こっている。しかしながら、自然冷媒の中には、上記のような従来冷媒の臨海圧力よりもはるかに高い臨海圧力を持つ冷媒もあり、このような従来よりも高い臨海圧力を持つ自然冷媒を使用する場合には、密閉型圧縮機の密閉容器の耐圧疲労強度をさらに向上させる必要がある。   For this reason, instead of the conventional refrigerant as described above, there is a movement to use a natural refrigerant having a low environmental load as a refrigerant of the hermetic compressor. However, some natural refrigerants have a seawater pressure much higher than the seawater pressure of conventional refrigerants as described above. When using natural refrigerants having a seawater pressure higher than that of the conventional refrigerants, Further, it is necessary to further improve the pressure fatigue strength of the hermetic container of the hermetic compressor.

従ってこの発明の目的は、密閉容器の耐圧疲労強度が高い密閉型圧縮機を得ることである。   Accordingly, an object of the present invention is to obtain a hermetic compressor in which the hermetic container has a high pressure fatigue strength.

この発明に係る密閉型圧縮機は、円筒状の胴部および上下の鏡板をそれぞれ溶接接合した密閉容器と、前記密閉容器の内部に配置された圧縮機構と、前記密閉容器の内部に配置され、前記圧縮機構を駆動する電動機構とを備えた密閉型圧縮機において、
前記密閉容器の胴部の高さ寸法Hと内直径寸法Dの比(H/D)および胴部の厚さ寸法tと内直径寸法Dの比(t/D)が、
-87.7(t/D)2 -13.8(t/D) +1.91 ≦ (H/D) ≦ -356(t/D)2 +35.6(t/D) +0.792
で表される範囲内にあり、かつ
3PmaxB ≦ (t/D)
ただし、Pmax:最大設計圧、σB:胴材料の引張強度
で表される範囲内にあることを特徴とする密閉型圧縮機。
A hermetic compressor according to the present invention is a sealed container in which a cylindrical body and upper and lower end plates are welded together, a compression mechanism disposed inside the sealed container, and disposed inside the sealed container, In a hermetic compressor provided with an electric mechanism for driving the compression mechanism,
The ratio of the height dimension H and the inner diameter dimension D of the sealed container (H / D) and the ratio of the thickness dimension t of the trunk and the inner diameter dimension D (t / D)
-87.7 (t / D) 2 -13.8 (t / D) +1.91 ≤ (H / D) ≤ -356 (t / D) 2 +35.6 (t / D) +0.792
And within the range represented by
3P max / σ B ≤ (t / D)
However, P max is the maximum design pressure, and σ B is in the range expressed by the tensile strength of the body material.

密閉型圧縮機の密閉容器の胴部の高さ寸法Hと内直径寸法Dの比(H/D)と胴部の板厚寸法tと内直径寸法Dの比(t/D)を変化させることにより、ある範囲内の板厚寸法t、高さ寸法Hおよび内直径寸法Dを用いて、有効かつ最適な溶接部の耐圧疲労強度が設定でき、密閉容器の耐圧疲労強度が高い密閉型圧縮機を提供できる。   The ratio of the height H of the body of the sealed container of the hermetic compressor to the inner diameter D (H / D) and the ratio of the thickness t of the body to the inner diameter D (t / D) are changed. By using the thickness dimension t, height dimension H, and inner diameter dimension D within a certain range, it is possible to set effective and optimal pressure resistance fatigue strength of the welded part, and hermetic compression with high pressure resistance fatigue strength of the sealed container Can provide a machine.

実施の形態1.
この発明の密閉型圧縮機は、図1に示すように、円筒状の胴部1、略半球状の上部鏡板2、下部鏡板3から溶接接合4a、4bにより構成されている密閉容器101の内部に圧縮機構5と圧縮機構5を駆動する電動機構6を配設した構成となっている。密閉容器101の上部鏡板2および下部鏡板3と胴部1とは、溶接接合部4a、4bで接合されており、密閉容器101の密閉性を確保している。電動機構6は、電源ターミナル7と電源ターミナル7に接続されているリード線8を介して外部電源から供給される電力によって圧縮機構5を駆動する。また、胴部1の側面には冷媒(低圧)を吸入する吸入管9が設けられており、上部鏡板2には高圧に圧縮された冷媒(高圧)を吐出する吐出管10が設けられている。
Embodiment 1 FIG.
As shown in FIG. 1, the hermetic compressor according to the present invention includes a cylindrical body 1, an upper hemispherical end plate 2, and a lower end plate 3, which are formed by welding joints 4a and 4b. Further, a compression mechanism 5 and an electric mechanism 6 for driving the compression mechanism 5 are provided. The upper end plate 2 and the lower end plate 3 of the sealed container 101 and the body 1 are joined by weld joints 4a and 4b, and the hermeticity of the sealed container 101 is ensured. The electric mechanism 6 drives the compression mechanism 5 with electric power supplied from an external power source via the power terminal 7 and the lead wire 8 connected to the power terminal 7. In addition, a suction pipe 9 for sucking refrigerant (low pressure) is provided on the side surface of the body 1, and a discharge pipe 10 for discharging refrigerant (high pressure) compressed to high pressure is provided on the upper end plate 2. .

冷媒は、冷凍サイクルにつながる吸入管9から密閉容器101内の圧縮機構5に供給され、臨界圧力まで圧縮される。圧縮された冷媒は、密閉容器101内に排出され、吐出管10から冷凍サイクルへ吐出される。このため密閉容器101内は高圧の冷媒で満たされることになる。なお冷媒としては、従来冷媒よりも臨界圧力の高い二酸化炭素などの自然冷媒を用いることを想定している。   The refrigerant is supplied from the suction pipe 9 connected to the refrigeration cycle to the compression mechanism 5 in the hermetic container 101 and compressed to the critical pressure. The compressed refrigerant is discharged into the sealed container 101 and discharged from the discharge pipe 10 to the refrigeration cycle. For this reason, the inside of the sealed container 101 is filled with a high-pressure refrigerant. As the refrigerant, it is assumed that a natural refrigerant such as carbon dioxide having a higher critical pressure than the conventional refrigerant is used.

ここで図2に示すように、この発明の密閉型圧縮機においては、密閉容器101の円筒状の胴部1の高さ寸法をHとし、胴部1の内直径寸法をDとし、胴部の厚さ寸法をtとし、また密閉容器101の最大設計圧をPmaxとし、胴部1の材料の引張強度をσBとする。そして、胴部1の高さ寸法Hと内直径寸法Dとの比(H/D)を変化させて圧縮容器溶接部4a、4bの耐圧疲労強度比率Rの変化の様子を調べて見ると、図3のグラフに表す通りである。 Here, as shown in FIG. 2, in the hermetic compressor of the present invention, the height of the cylindrical body 1 of the hermetic container 101 is H, the inner diameter of the body 1 is D, and the body , T is the maximum design pressure of the sealed container 101, P max, and the tensile strength of the material of the body 1 is σ B. Then, by changing the ratio (H / D) between the height dimension H and the inner diameter dimension D of the body portion 1 and examining the change in the pressure fatigue strength ratio R of the compression vessel welds 4a and 4b, This is as shown in the graph of FIG.

図3は、胴部1の高さ寸法Hと内直径寸法Dの比(H/D)を横軸に表し、圧縮容器溶接部4a、4bの耐圧疲労強度比率Rを縦軸に表したグラフである。この耐圧疲労強度比率Rは、有限要素解析で得られた溶接接合部4a、4bの作用応力拡大係数から耐圧疲労強度を割り出して、t/D=0.0694における極大値を1としたときの強度の相対比較図である。   FIG. 3 is a graph in which the ratio (H / D) between the height dimension H and the inner diameter dimension D of the body portion 1 is represented on the horizontal axis, and the pressure fatigue strength ratio R of the compressed container welded portions 4a and 4b is represented on the vertical axis. It is. This pressure fatigue strength ratio R is calculated by calculating the pressure fatigue strength from the working stress intensity factor of the weld joints 4a and 4b obtained by finite element analysis, and the strength when the maximum value at t / D = 0.0694 is 1. It is a relative comparison figure.

この図3において、耐圧疲労強度比率RはH/Dの変化に対して最適強度(極大値)を有しており、t/Dの変化に対しても耐圧疲労強度比率が変動することを示している。したがって、胴の寸法H、D、tの組合せにより、強度上有効なH、D、tの寸法範囲が図4に示すように決定され、これは次の(式1)により表される。
-87.7(t/D)2-13.8(t/D)+1.91≦(H/D)≦-356(t/D)2+35.6(t/D)+0.792 ……(式1)
In FIG. 3, the pressure fatigue strength ratio R has an optimum strength (maximum value) with respect to changes in H / D, and the pressure fatigue strength ratio varies with changes in t / D. ing. Therefore, the effective dimension range of H, D, and t is determined as shown in FIG. 4 by the combination of the cylinder dimensions H, D, and t, which is expressed by the following (Equation 1).
-87.7 (t / D) 2 -13.8 (t / D) + 1.91 ≦ (H / D) ≦ −356 (t / D) 2 +35.6 (t / D) +0.792 …… (Formula 1)

図4において、図4の有効強度を示す寸法範囲は、最適強度(極大値)に対して、3%の変動幅を考慮することにより設定されている。ただし、耐圧静的強度の基準から、t/Dに関しては次の(式2)により表される制限が存在する。
3PmaxB ≦ (t/D) ……(式2)
In FIG. 4, the dimension range showing the effective strength in FIG. 4 is set by considering a fluctuation range of 3% with respect to the optimum strength (maximum value). However, there is a limitation expressed by the following (Equation 2) regarding t / D based on the standard of the withstand pressure static strength.
3P max / σ B ≤ (t / D) (Formula 2)

従って、本発明においては、胴部1の高さ寸法Hと内直径寸法Dの比(H/D)および胴部1の厚さ寸法tと内直径寸法Dの比(t/D)が、上述の2つの式(式1)および(式2)により表される範囲内となるように構成されていて、この範囲内の板厚寸法t、高さ寸法Hおよび内直径寸法Dを用いて、有効かつ最適な溶接部の耐圧疲労強度が設定でき、密閉容器の耐圧疲労強度が高い密閉型圧縮機を提供できるのである。   Accordingly, in the present invention, the ratio (H / D) of the height dimension H and the inner diameter dimension D of the trunk portion 1 and the ratio (t / D) of the thickness dimension t and the inner diameter dimension D of the trunk portion 1 are: It is comprised so that it may become in the range represented by the above-mentioned two formulas (Formula 1) and (Formula 2), and the thickness dimension t, the height dimension H, and the internal diameter dimension D within this range are used. Therefore, it is possible to provide a hermetic compressor in which the effective and optimum pressure-resistant fatigue strength of the welded portion can be set, and the pressure-resistant fatigue strength of the sealed container is high.

実施の形態2.
図5は、図3と同様に、胴部1の高さ寸法Hと内直径寸法Dの比(H/D)を横軸に表し、圧縮容器溶接部4a、4bの耐圧疲労強度比率Rを縦軸に表したグラフである。図6は、図4と同様に、胴部1の厚さ寸法tと内直径寸法Dの比(t/D)を横軸に表し、胴部1の高さ寸法Hと内直径寸法Dの比(H/D)を縦軸に表したグラフである。
Embodiment 2. FIG.
FIG. 5 shows the ratio (H / D) of the height dimension H to the inner diameter dimension D (H / D) on the horizontal axis in the same manner as FIG. 3, and the pressure fatigue strength ratio R of the compression vessel welds 4a and 4b is shown. It is a graph represented on the vertical axis. FIG. 6 shows the ratio (t / D) of the thickness dimension t and the inner diameter dimension D of the body portion 1 on the horizontal axis, as in FIG. It is a graph which expressed ratio (H / D) on the vertical axis | shaft.

この耐圧疲労強度比率は有限要素解析で得られた溶接接合部4a,4bの作用応力拡大係数から耐圧疲労強度を割り出して、t/D=0.0694における極大値を1としたときの強度の相対比較図である。   This pressure fatigue strength ratio is a relative comparison of the strengths when the maximum value at t / D = 0.0694 is set to 1 by calculating the pressure fatigue strength from the working stress intensity factor of the welded joints 4a and 4b obtained by finite element analysis. FIG.

この図5において、耐圧疲労強度比率はH/Dの変化に対して最適強度(極大値)を有しており、t/Dの変化に対しても耐圧疲労強度比率が変動することを示している。したがって、胴の寸法H,D,tの組合せにより、最適強度を示すH,D,tの寸法関係が図6に示すように決定される。
(H/D) ≦ -86.8(t/D)2 -4.70(t/D) +1.79 ……(式3)
In FIG. 5, the pressure fatigue strength ratio has the optimum strength (maximum value) with respect to the change in H / D, and the pressure fatigue strength ratio varies with the change in t / D. Yes. Accordingly, the dimensional relationship between H, D, and t indicating the optimum strength is determined as shown in FIG. 6 by the combination of the cylinder dimensions H, D, and t.
(H / D) ≤ -86.8 (t / D) 2 -4.70 (t / D) +1.79 (Equation 3)

ただし、耐圧静的強度の基準から、t/Dに関しては、
3PmaxB ≦ t/D (Pmax:最大設計圧、σB:胴材料の引張強度) ……(式2)
の制限が存在する。
However, from the standard of withstand pressure static strength,
3P max / σ B ≤ t / D (P max : Maximum design pressure, σ B : Tensile strength of shell material) ...... (Formula 2)
There are limitations.

従って、胴部と上下鏡板とを溶接接合した溶接部の最適耐圧疲労強度を示す寸法関係が
上の(式3)と(式2)とを満足するように決定される。
Therefore, the dimensional relationship indicating the optimum pressure-resistant fatigue strength of the welded portion in which the body portion and the upper and lower end panels are welded together is determined so as to satisfy the above (Equation 3) and (Equation 2).

従来の密閉型圧縮機の圧縮容器構造を示す断面図である。It is sectional drawing which shows the compression container structure of the conventional hermetic compressor. この発明に係る圧縮容器の寸法関係を示す断面図である。It is sectional drawing which shows the dimensional relationship of the compression container which concerns on this invention. この発明の実施の形態1による圧縮容器溶接部の耐圧疲労強度比Rと胴部の高さ寸法Hと内直径寸法Dの比(H/D)の関係を示した図である。It is the figure which showed the relationship (H / D) of the pressure fatigue strength ratio R of the compression vessel welding part by Embodiment 1 of this invention, the height dimension H of a trunk | drum, and the inner diameter dimension D. FIG. この発明の実施の形態1による圧縮容器溶接部の有効強度を示すH,D,tの範囲を示した図である。It is the figure which showed the range of H, D, t which shows the effective strength of the compression container welding part by Embodiment 1 of this invention. この発明の実施の形態2による圧縮容器溶接部の耐圧疲労強度比Rと胴部の高さ寸法Hと内直径寸法Dの比(H/D)の関係を示した図である。It is the figure which showed the relationship (H / D) of the pressure-resistant fatigue strength ratio R of the compression container welding part by Embodiment 2 of this invention, the height dimension H of a trunk | drum, and the inner diameter dimension D. FIG. この発明の実施の形態2による圧縮容器溶接部の最適強度(極大値)を示すH,D,tの関係を示した図である。It is the figure which showed the relationship of H, D, t which shows the optimal intensity | strength (maximum value) of the compression container welding part by Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 胴部、2 上部鏡板、3 下部鏡板、4a、4b 溶接接合部、5 圧縮機構、6 電動機構、7 電源ターミナル、8 リード線、9 吸入管、10 吐出管 101 密閉容器。   DESCRIPTION OF SYMBOLS 1 Body part, 2 Upper end plate, 3 Lower end plate, 4a, 4b Welded joint part, 5 Compression mechanism, 6 Electric mechanism, 7 Power supply terminal, 8 Lead wire, 9 Intake pipe, 10 Discharge pipe 101 Sealed container.

Claims (2)

円筒状の胴部と上下の鏡板とをそれぞれ溶接接合した密閉容器、前記密閉容器の内部に配置された圧縮機構および前記密閉容器の内部に配置され、前記圧縮機構を駆動する電動機構を備えた密閉型圧縮機において、
前記密閉容器において、胴部の高さ寸法Hと内直径寸法Dの比(H/D)および胴部の厚さ寸法tと内直径寸法Dの比(t/D)を変化させることにより、胴部と上下鏡板とを溶接接合した溶接部の有効耐圧疲労強度を示す寸法範囲が
-87.7(t/D)2 -13.8(t/D) +1.91 ≦ (H/D) ≦ -356(t/D)2 +35.6(t/D) +0.792
であり、
3PmaxB ≦ t/D (Pmax:最大設計圧、σB:胴材料の引張強度)
を満足することを特徴とした密閉型圧縮機。
A sealed container in which a cylindrical body and upper and lower end plates are joined by welding, a compression mechanism disposed inside the sealed container, and an electric mechanism disposed inside the sealed container and driving the compression mechanism In a hermetic compressor,
In the closed container, by changing the ratio (H / D) of the height dimension H and the inner diameter dimension D of the trunk part and the ratio (t / D) of the thickness dimension t and the inner diameter dimension D of the trunk part, There is a dimensional range that shows the effective pressure fatigue strength of the welded part where the body and upper and lower end panels are welded together.
-87.7 (t / D) 2 -13.8 (t / D) +1.91 ≤ (H / D) ≤ -356 (t / D) 2 +35.6 (t / D) +0.792
And
3P max / σ B ≤ t / D (P max : Maximum design pressure, σ B : Tensile strength of barrel material)
A hermetic compressor characterized by satisfying
円筒状の胴部と上下の鏡板とをそれぞれ溶接接合した密閉容器、前記密閉容器の内部に配置された圧縮機構および前記密閉容器の内部に配置され、前記圧縮機構を駆動する電動機構を備えた密閉型圧縮機において、
前記密閉容器において、胴部の高さ寸法Hと内直径寸法Dの比(H/D)および胴部の厚さ寸法tと内直径寸法Dの比(t/D)を変化させることにより、胴部と上下鏡板とを溶接接合した溶接部の最適耐圧疲労強度を示す寸法関係が
(H/D) ≦ -86.8(t/D)2 -4.70(t/D) +1.79
であり、
3PmaxB ≦ t/D (Pmax:最大設計圧、σB:胴材料の引張強度)
を満足することを特徴とした密閉型圧縮機。
A sealed container in which a cylindrical body and upper and lower end plates are joined by welding, a compression mechanism disposed inside the sealed container, and an electric mechanism disposed inside the sealed container and driving the compression mechanism In a hermetic compressor,
In the closed container, by changing the ratio (H / D) of the height dimension H and the inner diameter dimension D of the trunk part and the ratio (t / D) of the thickness dimension t and the inner diameter dimension D of the trunk part, There is a dimensional relationship indicating the optimum pressure-resistant fatigue strength of the welded part where the body and upper and lower end panels are welded together
(H / D) ≤ -86.8 (t / D) 2 -4.70 (t / D) +1.79
And
3P max / σ B ≤ t / D (P max : Maximum design pressure, σ B : Tensile strength of barrel material)
A hermetic compressor characterized by satisfying
JP2007072879A 2007-03-20 2007-03-20 Hermetic compressor Pending JP2008232023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072879A JP2008232023A (en) 2007-03-20 2007-03-20 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072879A JP2008232023A (en) 2007-03-20 2007-03-20 Hermetic compressor

Publications (1)

Publication Number Publication Date
JP2008232023A true JP2008232023A (en) 2008-10-02

Family

ID=39905129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072879A Pending JP2008232023A (en) 2007-03-20 2007-03-20 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP2008232023A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682934A (en) * 2014-03-26 2016-06-15 凸版印刷株式会社 Counterfeit prevention medium, and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105682934A (en) * 2014-03-26 2016-06-15 凸版印刷株式会社 Counterfeit prevention medium, and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP3821113B2 (en) Heat exchange tube
WO2005098902A3 (en) High-pressure sodium lamp
TW201040393A (en) Screw compressor
JP2008232023A (en) Hermetic compressor
WO2018025861A1 (en) Pressure container, compressor provided with pressure container, and method for manufacturing pressure container
JP2006336472A (en) Hermetic compressor
JP2010038086A (en) Hermetic compressor
JP2010038087A (en) Hermetic compressor
JP2006342676A (en) Hermetic compressor
JP2002317766A (en) Hermetic compressor
JP2009180168A (en) Hermetic type compressor
GB2381960A (en) Refrigerant compressor and pressure-resistant vessel
JP3144747B2 (en) compressor
JP5297131B2 (en) Hermetic compressor, refrigeration cycle equipment
JP2001173559A (en) Compressor
JP2010144747A (en) Joint structure and compressor using the joint structure
JP2002031060A (en) Hermetic compressor
JP2014202118A (en) Compressor
JP2007255359A (en) Hermetic compressor
WO2018138772A1 (en) Closed-type compressor
JP2006077701A (en) Hermetic-type compressor
JP2010038085A (en) Hermetic compressor
JP2002317767A (en) Hermetic compressor
CN105927500B (en) A kind of bent axle of refrigeration compressor
WO2019111620A1 (en) Electric compressor