JP2008230276A - Skeleton structure for transport machine - Google Patents

Skeleton structure for transport machine Download PDF

Info

Publication number
JP2008230276A
JP2008230276A JP2007068715A JP2007068715A JP2008230276A JP 2008230276 A JP2008230276 A JP 2008230276A JP 2007068715 A JP2007068715 A JP 2007068715A JP 2007068715 A JP2007068715 A JP 2007068715A JP 2008230276 A JP2008230276 A JP 2008230276A
Authority
JP
Japan
Prior art keywords
container
peripheral surface
skeleton
inner peripheral
skeleton member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007068715A
Other languages
Japanese (ja)
Inventor
Seiji Yamazaki
省二 山崎
Atsushi Mitsui
敦 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007068715A priority Critical patent/JP2008230276A/en
Publication of JP2008230276A publication Critical patent/JP2008230276A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a skeleton structure for a transport machine capable of filling powder and grains in a skeleton member without using a major device such as a vibration exciter, and applying paint in the inner peripheral surface of the skeleton member. <P>SOLUTION: This skeleton structure 10 comprises a container 13 storable in a hollow section 34 leaving a prescribed space S relative to the skeleton member 12 in a condition of storing the powder and grains 23 roughly, which contacts the inner peripheral surface 12a when the powder and grains 23 in a rough condition are filled tightly, and a clip 25 capable of retaining the container 13 while leaving the prescribed space S relative to the skeleton member 12 in a condition of storing the plurality of the powder and grains 23 roughly. The paint 35 applied to the inner peripheral surface 12a can be introduced in a clearance 46 between the inner peripheral surface of the skeleton member 12 and the container 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、衝撃が作用した際に、圧縮応力が発生する部位と引張応力が発生する部位とを備えた輸送機器用骨格構造に関する。   The present invention relates to a skeletal structure for a transportation device including a portion where compressive stress is generated and a portion where tensile stress is generated when an impact is applied.

車両などの輸送機器は、剛性を確保するために、中空状の骨格部材を備えている。この中空状の骨格部材のなかには、例えば、内部(すなわち、中空部)に粉粒体を充填させた輸送機器用骨格構造が知られている(例えば、特許文献1参照。)。
特開2003−267260公報
A transportation device such as a vehicle includes a hollow skeleton member in order to ensure rigidity. Among these hollow skeleton members, for example, a skeleton structure for a transportation device in which powders are filled inside (that is, a hollow portion) is known (see, for example, Patent Document 1).
JP 2003-267260 A

特許文献1の輸送機器用骨格構造は、骨格部材の中空部に粉粒体を充填し、両端を平板状の隔壁で閉じたものである。これにより、骨格部材に荷重が作用したときに、粉粒体で吸収エネルギーを高めることができる。
さらに、輸送機器用骨格構造は、骨格部材の中空部に粉粒体を充填することで、衝突時の吸収エネルギーを高めるとともに、骨格部材の強度・剛性を高めることができる。
The skeletal structure for a transport device of Patent Document 1 is such that a hollow part of a skeleton member is filled with powder and closed at both ends with flat partition walls. Thereby, when a load acts on the skeleton member, the absorbed energy can be increased by the granular material.
Furthermore, the skeletal structure for a transportation device can increase the energy absorption at the time of collision and increase the strength and rigidity of the skeletal member by filling the hollow portion of the skeleton member with powder particles.

ところで、骨格部材は防錆のために、骨格部材の内面にも塗装を施す必要がある。しかし、骨格部材の中空部に複数個の粉粒体が充填されている場合、骨格部材の内周面に塗料を塗布することができない。
そこで、骨格部材の中空部に複数個の粉粒体を充填する前に、骨格部材の内周面に塗料を塗布する必要がある。
By the way, the skeleton member needs to be coated on the inner surface of the skeleton member in order to prevent rust. However, when the hollow part of the skeleton member is filled with a plurality of powder particles, the paint cannot be applied to the inner peripheral surface of the skeleton member.
Therefore, before the hollow portion of the skeleton member is filled with a plurality of powder particles, it is necessary to apply a paint to the inner peripheral surface of the skeleton member.

ここで、骨格部材は、例えば、断面略コ字状の2部材をスポット溶接などで接合して中空状の筒体に組み付けられている。このため、骨格部材を組み付けた後に、骨格部材内に複数個の粉粒体を充填させることは困難である。
そこで、骨格部材を2部材で組み立てる前に、2部材のうちの一方の部材に複数個の粉粒体を配置し、その後、一方の部材に他方の部材を接合することで、骨格部材内に複数個の粉粒体を充填させている。
Here, for example, the skeleton member is assembled into a hollow cylindrical body by joining two members having a substantially U-shaped cross section by spot welding or the like. For this reason, after assembling the skeleton member, it is difficult to fill the skeleton member with a plurality of powder particles.
Therefore, before assembling the skeleton member with two members, by placing a plurality of powder particles on one of the two members, and then joining the other member to one member, A plurality of powder particles are filled.

一方、輸送機器、例えば自動車は、骨格部材を組み立てた後、骨格部材に塗料を塗布している。
よって、骨格部材の内周面に塗料を塗布した後に粉粒体を充填するためには、筒体に形成された骨格部材内に複数個の粉粒体を充填させる必要がある。
このため、骨格部材内に粉粒体を充填し難くなり、自動車の全体を振動させる加振装置など大掛かりな装置が必要となる。
On the other hand, in transportation equipment, for example, automobiles, a skeleton member is assembled and then a paint is applied to the skeleton member.
Therefore, in order to fill the granular material after applying the paint to the inner peripheral surface of the skeleton member, it is necessary to fill the skeleton member formed in the cylindrical body with a plurality of powder particles.
For this reason, it becomes difficult to fill the skeletal member with powder particles, and a large-scale device such as a vibration device for vibrating the entire automobile is required.

本発明は、加振装置などの大掛かりな装置を用いることなく骨格部材内に粉粒体を充填することができ、かつ、骨格部材の内周面に塗料を塗布することができる輸送機器用骨格構造を提供することを課題とする。   The present invention is a skeleton for transportation equipment that can fill a skeletal member with a granular material without using a large-scale device such as a vibration device and can apply a paint to the inner peripheral surface of the skeleton member. It is an object to provide a structure.

請求項1に係る発明は、輸送機器に用いられる骨格部材内に中空部が形成され、前記中空部の少なくとも一部に複数個の粉粒体が充填され、充填された粉粒体の両端をそれぞれ隔壁で支える輸送機器用骨格構造において、前記複数個の粉粒体を収納可能な容器と、前記容器を前記骨格部材の内周面に対して所定間隔をおいて保持可能な保持部材と、を備え、前記骨格部材の内周面と前記容器との間の空間に、前記内周面を塗布する塗料を導入可能としたことを特徴とする。   According to the first aspect of the present invention, a hollow portion is formed in a skeleton member used in a transportation device, and at least a part of the hollow portion is filled with a plurality of powder particles, and both ends of the filled powder particles are In the skeleton structure for transportation equipment each supported by a partition wall, a container capable of storing the plurality of powder particles, a holding member capable of holding the container at a predetermined interval with respect to an inner peripheral surface of the skeleton member, The paint for applying the inner peripheral surface can be introduced into the space between the inner peripheral surface of the skeleton member and the container.

請求項2に係る発明は、輸送機器に用いられる骨格部材内に中空部が形成され、前記中空部の少なくとも一部に複数個の粉粒体が密に充填され、密に充填された粉粒体の両端をそれぞれ隔壁で支える輸送機器用骨格構造において、前記複数個の粉粒体を粗に収納した状態で、前記骨格部材の内周面に対して所定間隔をおいて前記中空部に収納可能で、かつ、前記粗の粉粒体を密にしたとき前記内周面に接する容器と、前記複数個の粉粒体を粗に収納した状態で、前記容器を前記骨格部材の内周面に対して所定間隔をおいて保持可能な保持部材と、を備え、前記骨格部材の内周面と前記容器との間の空間に、前記内周面を塗布する塗料を導入可能としたことを特徴とする。   The invention according to claim 2 is a powder in which a hollow portion is formed in a skeleton member used in a transportation device, and a plurality of powder particles are densely filled in at least a part of the hollow portion, and the powder is densely filled. In a skeleton structure for transportation equipment in which both ends of the body are supported by partition walls, the plurality of powder particles are roughly stored, and are stored in the hollow portion at a predetermined interval with respect to the inner peripheral surface of the skeleton member. A container that is in contact with the inner peripheral surface when the coarse granular material is dense, and the inner peripheral surface of the skeleton member in a state in which the plurality of powder granular materials are roughly stored. A holding member that can be held at a predetermined interval, and a paint that applies the inner peripheral surface can be introduced into a space between the inner peripheral surface of the skeleton member and the container. Features.

請求項3に係る発明において、前記保持部材は、クリップであることを特徴とする。   The invention according to claim 3 is characterized in that the holding member is a clip.

請求項4に係る発明は、前記容器の両端にそれぞれ隔壁を設け、前記各隔壁に、前記塗料を前記中空部に導く第1透孔が形成されたことを特徴とする。   The invention according to claim 4 is characterized in that a partition is provided at each end of the container, and a first through hole is formed in each partition to guide the paint to the hollow portion.

請求項5に係る発明は、前記容器は熱軟化材料で形成されていることを特徴とする。   The invention according to claim 5 is characterized in that the container is formed of a heat softening material.

請求項6に係る発明は、前記容器と前記粉粒体との間に発泡材を設けたことを特徴とする。   The invention according to claim 6 is characterized in that a foam material is provided between the container and the granular material.

請求項7に係る発明は、前記容器と対向する前記骨格部材に第2透孔が形成され、この第2透孔と前記容器との間に板材が設けられたことを特徴とする。   The invention according to claim 7 is characterized in that a second through hole is formed in the skeleton member facing the container, and a plate material is provided between the second through hole and the container.

請求項1、請求2に係る発明では、複数個の粉粒体を収納する容器を備えた。そして、この容器を保持部材で保持することで、容器を骨格部材の内周面に対して所定間隔をおいて保持するようにした。
骨格部材の内周面と容器との間の空間に塗料を導入させて、内周面に塗料を塗布することができる。
In the invention which concerns on Claim 1, Claim 2, the container which accommodates a some granular material was provided. And this container was hold | maintained at predetermined intervals with respect to the internal peripheral surface of a frame | skeleton member by hold | maintaining with a holding member.
The paint can be applied to the inner peripheral surface by introducing the paint into the space between the inner peripheral surface of the skeleton member and the container.

よって、骨格部材の内周面に塗料を塗布する前工程において、粉粒体を骨格部材に収納することが可能になる。これにより、骨格部材を組み付ける前工程において、粉粒体を収納位置に配置し、その後、骨格部材を一体に組み付けることができる。
したがって、従来技術で説明した加振装置などの大掛かりな装置を用いることなく骨格部材内に粉粒体を充填することができ、かつ、骨格部材の内周面に塗料を塗布することができるという利点がある。
Therefore, it becomes possible to store the granular material in the skeleton member in the pre-process of applying the paint to the inner peripheral surface of the skeleton member. Thereby, in the pre-process which assembles | attaches a frame member, a granular material can be arrange | positioned in a storage position, and a frame member can be assembled | attached integrally after that.
Therefore, the granular material can be filled in the skeleton member without using a large-scale device such as the vibration device described in the prior art, and the paint can be applied to the inner peripheral surface of the skeleton member. There are advantages.

請求項3に係る発明では、保持部材としてクリップを用いた。クリップは、例えば、自動車などの生産工程で通常用いられる既存の部材である。
これにより、保持部材を容易に入手することができるので、輸送機器用骨格構造のコストを抑えることができるという利点がある。
In the invention according to claim 3, a clip is used as the holding member. The clip is an existing member usually used in a production process of an automobile or the like, for example.
Thereby, since a holding member can be obtained easily, there exists an advantage that the cost of the frame structure for transport equipment can be held down.

請求項4に係る発明では、容器の両端に隔壁を設けることで、複数個の粉粒体を支えることができる。
よって、骨格部材に荷重が作用したとき、隔壁で粉粒体を密閉状態に保持することができる。これにより、粉粒体内部に発生する圧力により、衝撃を良好に吸収することができ、吸収エネルギーを高めることができるという利点がある。
In the invention which concerns on Claim 4, a some granular material can be supported by providing a partition in the both ends of a container.
Therefore, when a load acts on the skeleton member, the granular material can be held in a sealed state by the partition walls. Thereby, there exists an advantage that an impact can be absorbed favorably by the pressure which generate | occur | produces inside a granular material, and absorption energy can be raised.

さらに、隔壁に第1透孔を形成したので、第1透孔から塗料を中空部に導くことができる。
これにより、骨格部材の内周面と容器との間の空間に塗料を良好に導入させて、内周面に塗料を良好に塗布することができるという利点がある。
Furthermore, since the first through hole is formed in the partition wall, the paint can be guided from the first through hole to the hollow portion.
Accordingly, there is an advantage that the paint can be satisfactorily introduced into the space between the inner peripheral surface of the skeleton member and the container, and the paint can be satisfactorily applied to the inner peripheral surface.

請求項5に係る発明では、容器を熱軟化材料で形成することで、例えば、骨格部材の内周面に塗布した塗料を乾燥する際に、乾燥する熱で容器を変形させることができる。
これにより、容器を、中空部に馴染むように変形させて、複数個の粉粒体を中空部全域に良好に充填させることができるという利点がある。
ここで、熱軟化材料とは、熱を加えることにより軟化する材料をいう。一例として、ポリプロピレン(PP)やポリエチレンテレフタレート(PET)などの熱可塑性樹脂が該当する。
In the invention which concerns on Claim 5, when a coating material apply | coated to the internal peripheral surface of a frame | skeleton member is dried by forming a container with a heat softening material, a container can be deform | transformed with the heat which dries.
Thereby, there exists an advantage that a container can be deform | transformed so that it may adapt to a hollow part, and a several powder body can be favorably filled in the whole hollow part.
Here, the thermosoftening material refers to a material that softens when heat is applied. As an example, a thermoplastic resin such as polypropylene (PP) or polyethylene terephthalate (PET) is applicable.

請求項6に係る発明では、容器と粉粒体との間に発泡材を設けた。よって、発泡材を発泡させることで、骨格部材に荷重が作用する前段階において、発泡材で粉粒体に押付力(すなわち、初期圧)を作用させることができる。
これにより、骨格部材内に充填した粉粒体で、輸送機器用骨格構造の強度・剛性を高めることができるという利点がある。
In the invention which concerns on Claim 6, the foaming material was provided between the container and the granular material. Therefore, by foaming the foam material, it is possible to apply a pressing force (that is, initial pressure) to the granular material with the foam material before the load acts on the skeleton member.
Thereby, there exists an advantage that the intensity | strength and rigidity of the frame structure for transport equipment can be improved with the granular material with which the frame member was filled.

請求項7に係る発明では、容器と対向する骨格部材に第2透孔を形成した。骨格部材に第2透孔を形成したので、第2透孔から塗料を中空部に導くことができる。
これにより、骨格部材の内周面と容器との間の空間に塗料を一層良好に導入させて、内周面に塗料を一層良好に塗布することができるという利点がある。
In the invention which concerns on Claim 7, the 2nd through-hole was formed in the frame | skeleton member facing a container. Since the second through hole is formed in the skeleton member, the paint can be guided from the second through hole to the hollow portion.
Thereby, there is an advantage that the paint can be more satisfactorily introduced into the space between the inner peripheral surface of the skeleton member and the container, and the paint can be more satisfactorily applied to the inner peripheral surface.

さらに、第2透孔と容器との間に板材を設けることで、第2透孔を板材で塞ぐことができる。よって、骨格部材に荷重が作用した際に、容器内の粉粒体が第2透孔から突出することを防ぐことができる。
このように、容器内の粉粒体が第2透孔から突出することを防いで、複数個の粉粒体の吸収エネルギーを高めることができるという利点がある。
Furthermore, a 2nd through-hole can be block | closed with a board | plate material by providing a board | plate material between a 2nd through-hole and a container. Therefore, it can prevent that the granular material in a container protrudes from a 2nd through-hole when a load acts on a skeleton member.
Thus, there exists an advantage that the granular material in a container can prevent protruding from a 2nd through-hole, and can improve the absorbed energy of a several granular material.

本発明を実施するための最良の形態を添付図に基づいて以下に説明する。
図1は本発明に係る輸送機器用骨格構造(第1実施の形態)を示す斜視図である。
輸送機器用骨格構造10は、輸送機器11としての自動車に用いられる骨格部材12と、骨格部材12内に設けられた容器13と、容器13内の左壁(左端)14(図2参照)に設けられた発泡材としての左発泡材21と、容器13内の右壁(右端)15(図2参照)に設けられた発泡材としての右発泡材22と、容器13内で、かつ左右の発泡材21,22間にブロック状に充填された複数個の粉粒体23と、容器13を骨格部材12に係止する保持部材としてのクリップ25(図2参照)と、容器13の左壁14に対向させて設けられた左隔壁(隔壁)26と、容器13の右壁15に対向させて設けられた右隔壁(隔壁)27とを備える。
The best mode for carrying out the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a perspective view showing a skeletal structure for a transportation device (first embodiment) according to the present invention.
The skeletal structure 10 for a transport device includes a skeleton member 12 used in an automobile as the transport device 11, a container 13 provided in the skeleton member 12, and a left wall (left end) 14 in the container 13 (see FIG. 2). The left foam material 21 as the provided foam material, the right foam material 22 as the foam material provided on the right wall (right end) 15 (see FIG. 2) in the container 13, the container 13 and the left and right A plurality of powder particles 23 filled in a block shape between the foam materials 21 and 22, a clip 25 (see FIG. 2) as a holding member for locking the container 13 to the skeleton member 12, and the left wall of the container 13 14 is provided with a left partition wall (partition wall) 26 provided to face 14 and a right partition wall (partition wall) 27 provided to face the right wall 15 of the container 13.

骨格部材12は、下半分を構成する下側部材31と、上半分を構成する上側部材32とを接合することで矩形状の筒体に形成された部材である。
下側部材31は、断面略コ字状に形成され、左側に張り出した左下フランジ31aと、右側に張り出した右下フランジ31bとを有する。
上側部材32は、断面略コ字状に形成され、左側に張り出した左上フランジ32aと、右側に張り出した右上フランジ32bとを有する。
The skeleton member 12 is a member formed in a rectangular cylindrical body by joining a lower member 31 constituting the lower half and an upper member 32 constituting the upper half.
The lower member 31 is formed in a substantially U-shaped cross section, and has a lower left flange 31a projecting to the left side and a lower right flange 31b projecting to the right side.
The upper member 32 is formed in a substantially U-shaped cross section, and has an upper left flange 32a projecting to the left side and an upper right flange 32b projecting to the right side.

下側部材31の左下フランジ31aと、上側部材32の左上フランジ32aとが、例えば、スポット溶接で接合されている。
同様に、下側部材31の右下フランジ31bと、上側部材32の右上フランジ32bとが、例えば、スポット溶接で接合されている。
The lower left flange 31a of the lower member 31 and the upper left flange 32a of the upper member 32 are joined by spot welding, for example.
Similarly, the lower right flange 31b of the lower member 31 and the upper right flange 32b of the upper member 32 are joined by spot welding, for example.

左下フランジ31aと左上フランジ32aとを接合するとともに、右下フランジ31bと右上フランジ32bとを接合することで、下側部材31および上側部材32が一体に連結されて骨格部材12が形成される。
骨格部材12は、断面略矩形状に形成され、内周面12aで中空部34が形成された筒状の部材である。
骨格部材12の内周面12aには塗料35が塗布されている。
By joining the lower left flange 31a and the upper left flange 32a, and joining the lower right flange 31b and the upper right flange 32b, the lower member 31 and the upper member 32 are integrally connected to form the skeleton member 12.
The skeleton member 12 is a cylindrical member that is formed in a substantially rectangular cross section and in which a hollow portion 34 is formed on the inner peripheral surface 12a.
A coating 35 is applied to the inner peripheral surface 12 a of the skeleton member 12.

図2は第1実施の形態に係る輸送機器用骨格構造を示す断面図、図3は発泡材を膨張させる前の輸送機器用骨格構造を示す断面図である。
容器13は、熱軟化材料で断面略矩形状に形成され、クリップ25で骨格部材12内に係止されている。
熱軟化材料は、熱を加えることにより軟化する材料であり、一例として、ポリプロピレン(PP)やポリエチレンテレフタレート(PET)などの熱可塑性樹脂が該当する。
この容器13の内部には、左壁14に隣接させて左発泡材21が収納され、右壁15に隣接させて右発泡材22が収納され、左右の発泡材21,22間に粉粒体23…が充填されている。
FIG. 2 is a cross-sectional view showing the skeletal structure for a transport device according to the first embodiment, and FIG. 3 is a cross-sectional view showing the skeleton structure for a transport device before the foam material is expanded.
The container 13 is formed of a heat softening material and has a substantially rectangular cross section, and is locked in the skeleton member 12 by a clip 25.
The thermosoftening material is a material that softens when heat is applied, and examples thereof include thermoplastic resins such as polypropylene (PP) and polyethylene terephthalate (PET).
In this container 13, a left foam material 21 is accommodated adjacent to the left wall 14, a right foam material 22 is accommodated adjacent to the right wall 15, and a granular material between the left and right foam materials 21, 22. 23... Are filled.

容器13は、図3に示すように左右の発泡材21,22が膨張(発泡)する前の状態において、複数個の粉粒体23を粗に収納可能で、かつ、図2に示すように左右の発泡材21,22が膨張されるとともに、容器13を熱軟化させることで、複数個の粉粒体23を密に充填可能に形成されている。   As shown in FIG. 3, the container 13 can roughly store a plurality of powder bodies 23 before the left and right foam materials 21 and 22 expand (foam), and as shown in FIG. 2. The left and right foam materials 21 and 22 are expanded and the container 13 is heat-softened, so that a plurality of powder particles 23 can be densely filled.

さらに、容器13は、図3に示すように複数個の粉粒体23を粗に収納した状態で、骨格部材12の内周面12aに対して所定間隔Sをおいて中空部34に収納可能で、かつ、図2に示すように左右の発泡材21,22を膨張させて粉粒体23…を密にしたとき内周面12aに接触可能に変形するものである。   Furthermore, the container 13 can be accommodated in the hollow portion 34 at a predetermined interval S with respect to the inner peripheral surface 12a of the skeleton member 12 in a state where a plurality of powder particles 23 are roughly accommodated as shown in FIG. In addition, as shown in FIG. 2, when the left and right foamed materials 21 and 22 are expanded to make the powder bodies 23 dense, the inner peripheral surface 12a is deformed so as to be in contact therewith.

具体的には、左右の発泡材21,22を熱(温度変化)で膨張させるとき、その熱で容器13が軟化して変形する。
容器13が変形することで、容器13を骨格部材12の内周面12aに馴染ませて、複数個の粉粒体23を中空部34の少なくとも一部34aに全域に亘って良好に充填させることができる。
Specifically, when the left and right foam materials 21 and 22 are expanded by heat (temperature change), the container 13 is softened and deformed by the heat.
By deforming the container 13, the container 13 is made to conform to the inner peripheral surface 12 a of the skeleton member 12, and the plurality of powder particles 23 are satisfactorily filled in at least a part 34 a of the hollow portion 34 over the entire area. Can do.

複数個の粉粒体23は、中空部34の少なくとも一部34aにブロック状に充填されたものである。
複数個の粉粒体23がブロック状に充填されることで、粉粒体ブロック24が形成される。
The plurality of powder particles 23 are filled in at least a part 34a of the hollow portion 34 in a block shape.
By filling a plurality of powder bodies 23 in a block shape, a powder body block 24 is formed.

粉粒体23…は、骨格部材12に荷重が作用して骨格部材12が変形したとき、粉粒体23内部に圧力を発生させて、荷重(衝撃エネルギー)を吸収するものである。
さらに、粉粒体23は、骨格部材12に充填されることで、骨格部材12の強度・剛性を高めるものである。
When the skeleton member 12 is deformed due to a load acting on the skeleton member 12, the powder particles 23 ... generate pressure inside the particle body 23 and absorb the load (impact energy).
Furthermore, the granular material 23 increases the strength and rigidity of the skeleton member 12 by filling the skeleton member 12.

粉粒体23としては、例えば、二酸化けい素(SiO)、酸化アルミニウム(Al:アルミナ)、シリカアルミナ、樹脂、ガラス、陶磁器が好適である。 As the granular material 23, for example, silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 : alumina), silica alumina, resin, glass, and ceramics are suitable.

容器13内の左壁14と粉粒体ブロック24の左端(両端のうちの一端)24a間に左発泡材21が設けられている。
左発泡材21は、内部に略球形の独立した多数の気泡が存在する多孔材料である。左発泡材21を加熱(温度変化)することで、気泡が膨張(発泡)して左発泡材21の体積が増加する。
A left foam material 21 is provided between the left wall 14 in the container 13 and the left end (one end of both ends) 24 a of the granular material block 24.
The left foam material 21 is a porous material having a large number of substantially spherical independent bubbles therein. When the left foam material 21 is heated (temperature change), the bubbles expand (foam) and the volume of the left foam material 21 increases.

容器13内の右壁15と粉粒体ブロック24の右端(両端のうちの他端)24b間に右発泡材22が設けられている。
右発泡材22は、左発泡材21と同様に、内部に略球形の独立した多数の気泡が存在する多孔材料である。右発泡材22を加熱(温度変化)することで、気泡が膨張(発泡)して右発泡材22の体積が増加する。
A right foam material 22 is provided between the right wall 15 in the container 13 and the right end (the other end of both ends) 24b of the powder block 24.
Like the left foam material 21, the right foam material 22 is a porous material having a large number of substantially spherical independent bubbles therein. When the right foam material 22 is heated (temperature change), the bubbles expand (foam) and the volume of the right foam material 22 increases.

左右の発泡材21,22を発泡させることで、骨格部材12に荷重が作用する前段階において、粉粒体23…に押付力(すなわち、初期圧)を作用させることができる。
これにより、骨格部材内に充填した粉粒体で、輸送機器用骨格構造の強度・剛性を高めることができる。
By foaming the left and right foam materials 21 and 22, a pressing force (that is, initial pressure) can be applied to the granular material 23... Before the load is applied to the skeleton member 12.
Thereby, the intensity | strength and rigidity of the frame structure for transport equipment can be improved with the granular material with which the frame member was filled.

左右の発泡材21,22および粉粒体23…を収納した容器13は、クリップ25で骨格部材12に係止されている。
クリップ25は、骨格部材12の下半分を構成する下側部材31のうち、下壁37に設けられた取付孔37aに係止可能な部材である。クリップ25は、例えば、自動車などの生産工程で通常用いられる既存の樹脂製クリップが用いられる。
既存のクリップを用いることで、保持部材を容易に入手することができ、輸送機器用骨格構造10のコストを抑えることができる。
The container 13 containing the left and right foam materials 21 and 22 and the granular material 23 is locked to the skeleton member 12 with a clip 25.
The clip 25 is a member that can be locked in a mounting hole 37 a provided in the lower wall 37 among the lower members 31 constituting the lower half of the skeleton member 12. As the clip 25, for example, an existing resin clip that is usually used in a production process of an automobile or the like is used.
By using an existing clip, the holding member can be easily obtained, and the cost of the framework structure 10 for transportation equipment can be suppressed.

クリップ25は、一例として、容器13の底壁17に設けられた頭部41と、頭部41から下方に延びた係止軸42と、係止軸42の途中に設けられた拡径部43と、係止軸42の先端部に設けられた係止爪44とを有する。   As an example, the clip 25 includes a head 41 provided on the bottom wall 17 of the container 13, a locking shaft 42 extending downward from the head 41, and a diameter-enlarged portion 43 provided in the middle of the locking shaft 42. And a locking claw 44 provided at the tip of the locking shaft 42.

下壁37の取付孔37aに係止爪44を係止させることで、係止爪44および拡径部43でクリップ25が下壁37に取り付けられる。この状態で、拡径部43は下壁37の内周面12aに当接している。
ここで、容器13は熱軟化材料で形成されている。よって、左右の発泡材21,22を膨張させるとともに容器13を加熱することで、図2に示すように、容器13の底壁17が拡径部43に倣って変形して下壁37の内周面12aに当接される。
By locking the locking claw 44 in the mounting hole 37 a of the lower wall 37, the clip 25 is attached to the lower wall 37 by the locking claw 44 and the enlarged diameter portion 43. In this state, the enlarged diameter portion 43 is in contact with the inner peripheral surface 12 a of the lower wall 37.
Here, the container 13 is formed of a heat softening material. Therefore, by expanding the left and right foam materials 21 and 22 and heating the container 13, the bottom wall 17 of the container 13 is deformed following the enlarged diameter portion 43 as shown in FIG. It abuts on the peripheral surface 12a.

一方、図3に示すように、左右の発泡材21,22や容器13が熱で変形する前の状態(すなわち、容器13内に粉粒体23…を粗に収納した状態)においては、容器13の底壁17が拡径部43で支えられる。
これにより、容器13は、下壁37が下壁37の内周面12aに対して拡径部43の厚さ寸法(所定間隔)Sだけ浮かせた状態に保たれる。
さらに、容器13の両側壁(図示せず)および頂壁16が、骨格部材12の内周面12aに対して所定間隔Sだけ離れた状態に保たれる。
On the other hand, as shown in FIG. 3, in the state before the left and right foam materials 21, 22 and the container 13 are deformed by heat (that is, a state in which the granular material 23 is roughly stored in the container 13), the container 13 bottom walls 17 are supported by the enlarged diameter portion 43.
Thereby, the container 13 is maintained in a state in which the lower wall 37 is floated by the thickness dimension (predetermined interval) S of the enlarged diameter portion 43 with respect to the inner peripheral surface 12 a of the lower wall 37.
Furthermore, both side walls (not shown) and the top wall 16 of the container 13 are kept in a state separated from the inner peripheral surface 12a of the skeleton member 12 by a predetermined distance S.

すなわち、容器13は、周壁全体が骨格部材12の内周面12aに対して所定間隔Sだけ離れた状態に保たれる。
容器13の周壁および骨格部材12の内周面12aで、中空部34の一部34aに矩形筒状の空間(空間)46が形成される。
That is, the container 13 is maintained in a state where the entire peripheral wall is separated from the inner peripheral surface 12 a of the skeleton member 12 by a predetermined distance S.
A rectangular cylindrical space (space) 46 is formed in a part 34 a of the hollow portion 34 on the peripheral wall of the container 13 and the inner peripheral surface 12 a of the skeleton member 12.

矩形筒状の空間46は、骨格部材12の内周面12aを塗布する塗料35(図2参照)が導入可能な空間である。
容器13の周壁全体を骨格部材12の内周面12aに対して所定間隔Sだけ離した理由は、図5(a)で詳しく説明する。
The rectangular cylindrical space 46 is a space into which a paint 35 (see FIG. 2) for applying the inner peripheral surface 12a of the skeleton member 12 can be introduced.
The reason why the entire peripheral wall of the container 13 is separated from the inner peripheral surface 12a of the skeleton member 12 by a predetermined distance S will be described in detail with reference to FIG.

容器13の左壁14に隣接させて左隔壁26が設けられている。
左隔壁26は、左壁14を介して左発泡材21に対向する略矩形状の平坦部51と、平坦部51の周縁52に設けられた上下左右の取付片53〜56(右取付片56は図1参照)とを有する。
A left partition wall 26 is provided adjacent to the left wall 14 of the container 13.
The left partition wall 26 includes a substantially rectangular flat portion 51 that faces the left foam material 21 via the left wall 14, and upper, lower, left, and right mounting pieces 53 to 56 (right mounting pieces 56) provided on the peripheral edge 52 of the flat portion 51. 1).

平坦部51には、周縁52の近傍に第1透孔58…(図1も参照)が形成されている。
第1透孔58…は、図2に示すように、左右の発泡材21,22を膨張させるとともに容器13を加熱させたとき、容器13の左壁14で塞がれた状態に保たれる。
In the flat portion 51, first through holes 58 (see also FIG. 1) are formed in the vicinity of the peripheral edge 52.
As shown in FIG. 2, the first through holes 58 are kept closed by the left wall 14 of the container 13 when the left and right foam materials 21 and 22 are expanded and the container 13 is heated. .

一方、図3に示すように、左右の発泡材21,22や容器13が熱で変形する前の状態(すなわち、容器13内に粉粒体23…を粗に収納した状態)において、第1透孔58…は、矩形状の空間46に開口する。
左隔壁26に第1透孔58…を形成することで、骨格部材12の内周面12aを塗布する塗料35を第1透孔58…を介して矩形状の空間46に導くことができる。
第1透孔58…を矩形状の空間46に開口させる理由は、図5(a)で詳しく説明する。
On the other hand, as shown in FIG. 3, in the state before the left and right foam materials 21, 22 and the container 13 are deformed by heat (that is, a state in which the granular material 23 is roughly accommodated in the container 13), the first The through holes 58... Open to the rectangular space 46.
By forming the first through holes 58... In the left partition wall 26, the paint 35 for applying the inner peripheral surface 12 a of the skeleton member 12 can be guided to the rectangular space 46 through the first through holes 58.
The reason why the first through holes 58 are opened in the rectangular space 46 will be described in detail with reference to FIG.

左隔壁26の上取付片53は、周縁52の上部から前方に張り出した取付片である。上取付片53は、内周面12aの上部位にボルトなどの締結部材(図示せず)で取り付けられている。
下取付片54は、周縁52の下部から前方に張り出した取付片である。下取付片54は、内周面12aの下部位にスポット溶接で接合されている。
The upper attachment piece 53 of the left partition wall 26 is an attachment piece projecting forward from the upper part of the peripheral edge 52. The upper attachment piece 53 is attached to the upper part of the inner peripheral surface 12a with a fastening member (not shown) such as a bolt.
The lower attachment piece 54 is an attachment piece that protrudes forward from the lower portion of the peripheral edge 52. The lower mounting piece 54 is joined to the lower part of the inner peripheral surface 12a by spot welding.

左取付片55は、周縁52の左部から前方に張り出した取付片である。左取付片55は、内周面12aの左部位にスポット溶接で接合されている。
図1に示す右取付片56は、周縁52の右部から前方に張り出した取付片である。右取付片56は、内周面12aの右部位にスポット溶接で接合されている。
The left attachment piece 55 is an attachment piece projecting forward from the left portion of the peripheral edge 52. The left attachment piece 55 is joined to the left part of the inner peripheral surface 12a by spot welding.
The right attachment piece 56 shown in FIG. 1 is an attachment piece that protrudes forward from the right portion of the peripheral edge 52. The right attachment piece 56 is joined to the right part of the inner peripheral surface 12a by spot welding.

このように、上取付片53を上部位に取り付け、下取付片54を下部位に接合し、左取付片55を左部位に接合し、右取付片56を右部位に接合することで、左隔壁26が骨格部材12に取り付けられる。   In this way, the upper attachment piece 53 is attached to the upper part, the lower attachment piece 54 is joined to the lower part, the left attachment piece 55 is joined to the left part, and the right attachment piece 56 is joined to the right part. A partition wall 26 is attached to the skeleton member 12.

容器13の右壁15に隣接させて右隔壁27が設けられている。
右隔壁27は、左隔壁26と同じ部材なので、各構成部に左隔壁26と同じ符号を付して説明を省略する。
A right partition wall 27 is provided adjacent to the right wall 15 of the container 13.
Since the right partition wall 27 is the same member as the left partition wall 26, the same reference numerals as those of the left partition wall 26 are assigned to the respective components and the description thereof is omitted.

容器13の左壁14に隣接して左隔壁26を設けることで、左隔壁26で左発泡材21を支えることができる。
容器13の右壁15に隣接して右隔壁27を設けることで、右隔壁27で右発泡材22を支えることができる。
By providing the left partition wall 26 adjacent to the left wall 14 of the container 13, the left foam material 21 can be supported by the left partition wall 26.
By providing the right partition wall 27 adjacent to the right wall 15 of the container 13, the right foam material 22 can be supported by the right partition wall 27.

よって、複数個の粉粒体23を、左右の発泡材21,22を介して左右の隔壁26,27で支えることができる。
これにより、骨格部材12に荷重が作用したとき、粉粒体23…を左右の隔壁26,27で密閉状態に保持することができる。したがって、粉粒体23内部に発生する圧力により吸収エネルギーを高めることができる。
Therefore, the plurality of powder bodies 23 can be supported by the left and right partition walls 26 and 27 via the left and right foam materials 21 and 22.
Thereby, when a load acts on the skeleton member 12, the granular materials 23 can be held in a sealed state by the left and right partition walls 26 and 27. Therefore, the absorbed energy can be increased by the pressure generated in the powder body 23.

以上説明したように、輸送機器用骨格構造10は、輸送機器11に用いられる骨格部材12内に中空部34が形成され、中空部34の少なくとも一部34aに複数個の粉粒体23がブロック状に充填され、粉粒体ブロック24の左端24aを左発泡材21および左隔壁26で支えるとともに、粉粒体ブロック24の右端24bを右発泡材22および右隔壁27で支えるように構成されている。   As described above, in the skeletal structure 10 for a transport device, the hollow portion 34 is formed in the skeleton member 12 used in the transport device 11, and a plurality of powder particles 23 are blocked in at least a part 34a of the hollow portion 34. The left end 24a of the powder block 24 is supported by the left foam material 21 and the left partition wall 26, and the right end 24b of the powder block 24 is supported by the right foam material 22 and the right partition wall 27. Yes.

これにより、左右の発泡材21,22を発泡させることで、骨格部材に荷重が作用する前段階において、粉粒体23…に押付力(初期圧)を良好に発生させた状態を保つことが可能である。
したがって、骨格部材12内に充填した粉粒体23…で、輸送機器用骨格構造10の強度・剛性を高めることができる。
Thereby, by foaming the left and right foam materials 21 and 22, it is possible to maintain a state in which the pressing force (initial pressure) is generated satisfactorily in the granular material 23... Before the load acts on the skeleton member. Is possible.
Therefore, the strength / rigidity of the skeletal structure 10 for transportation equipment can be increased by the powders 23 filled in the skeleton member 12.

加えて、左右の発泡材21,22を発泡させることで、例えば、輸送機器用骨格構造10に荷重が矢印(図2参照)の方向に作用した場合、骨格部材12内に充填した粉粒体23…を左右の発泡材21,22で密閉状態に保持することができる。
粉粒体23…を密閉状態に保持することで、粉粒体23内部に発生する圧力により、衝撃を良好に吸収することができる。
In addition, by foaming the left and right foam materials 21 and 22, for example, when a load acts on the skeletal structure 10 for transport equipment in the direction of the arrow (see FIG. 2), the granular material filled in the skeleton member 12 Can be held in a sealed state by the left and right foam materials 21 and 22.
By holding the powder particles 23 in a sealed state, the impact can be favorably absorbed by the pressure generated inside the powder particles 23.

つぎに、輸送機器用骨格構造10を組み付ける工程を図4〜図5に基づいて説明する。
図4(a),(b)は第1実施の形態に係る骨格部材内に粉粒体を収納する工程を説明する図である。
(a)において、骨格部材12の下半分を構成する下側部材31に一定間隔をおいて左右の隔壁26,27を取り付ける(接合する)。
容器13内に左右の発泡材21,22を収納するとともに、左右の発泡材21,22間に粉粒体23…を粗に収納する。
Next, the process of assembling the skeletal structure 10 for transportation equipment will be described with reference to FIGS.
4 (a) and 4 (b) are diagrams illustrating a process of housing the powder body in the skeleton member according to the first embodiment.
In (a), the left and right partition walls 26 and 27 are attached (joined) to the lower member 31 constituting the lower half of the skeleton member 12 at a predetermined interval.
The left and right foam materials 21 and 22 are accommodated in the container 13, and the granular material 23 is roughly accommodated between the left and right foam materials 21 and 22.

この容器13をクリップ25で下側部材31の下壁37に係止する。容器13の底壁17は、クリップ25(具体的には、拡径部43)の厚さ寸法(所定間隔)Sだけ浮かせた状態に保たれる。
骨格部材12の上半分を構成する上側部材32を矢印Aの如く下側部材31に取り付ける(接合する)。
The container 13 is locked to the lower wall 37 of the lower member 31 with the clip 25. The bottom wall 17 of the container 13 is kept in a state of being floated by the thickness dimension (predetermined interval) S of the clip 25 (specifically, the enlarged diameter portion 43).
The upper member 32 constituting the upper half of the skeleton member 12 is attached (joined) to the lower member 31 as indicated by an arrow A.

(b)において、骨格部材12内に中空部34が形成され、中空部34の少なくとも一部34aに容器13が収納される。
容器13は、周壁全体が骨格部材12の内周面12aに対して所定間隔Sだけ離れた状態に保持される。
容器13の周壁および骨格部材12の内周面12aで、中空部34の一部34aに矩形筒状の空間46が形成される。
In (b), a hollow portion 34 is formed in the skeleton member 12, and the container 13 is accommodated in at least a part 34 a of the hollow portion 34.
The container 13 is held in a state in which the entire peripheral wall is separated from the inner peripheral surface 12 a of the skeleton member 12 by a predetermined distance S.
A rectangular cylindrical space 46 is formed in a part 34 a of the hollow portion 34 on the peripheral wall of the container 13 and the inner peripheral surface 12 a of the skeleton member 12.

矩形筒状の空間46は、左隔壁26の第1透孔58…を介して左隔壁26の外側空間34Cに連通されるとともに、右隔壁27の第1透孔58…を介して右隔壁27の外側空間34Dに連通される。
左隔壁26の外側空間34Cおよび右隔壁27の外側空間34Dは骨格部材12の外部に連通される。
The rectangular cylindrical space 46 communicates with the outer space 34C of the left partition wall 26 through the first through holes 58 of the left partition wall 26 and the right partition wall 27 through the first through holes 58 of the right partition wall 27. The outer space 34D is communicated with.
The outer space 34 </ b> C of the left partition wall 26 and the outer space 34 </ b> D of the right partition wall 27 communicate with the outside of the skeleton member 12.

図5(a),(b)は第1実施の形態に係る骨格部材の内周面に塗料を塗布する工程を説明する図である。
(a)において、輸送機器用骨格構造10を塗料35内に浸漬することで、塗料35が左隔壁26の第1透孔58…を介して矢印Bの如く矩形筒状の空間46内に導入する。
同様に、塗料35が右隔壁27の第1透孔58…を介して矢印Cの如く矩形筒状の空間46内に導入する。
導入した塗料35を、骨格部材12の内周面12aに塗布することができる。
FIGS. 5A and 5B are diagrams illustrating a process of applying a paint to the inner peripheral surface of the skeleton member according to the first embodiment.
In (a), the skeletal structure 10 for transportation equipment is immersed in the paint 35 so that the paint 35 is introduced into the rectangular cylindrical space 46 as indicated by the arrow B through the first through holes 58 of the left partition wall 26. To do.
Similarly, the paint 35 is introduced into the rectangular cylindrical space 46 as indicated by the arrow C through the first through holes 58 of the right partition wall 27.
The introduced paint 35 can be applied to the inner peripheral surface 12 a of the skeleton member 12.

(b)において、内周面12aに塗布した塗料35を乾燥する際に、乾燥熱で容器13を軟化させるとともに、左右の発泡材21,22を膨張させる。
容器13を骨格部材12の内周面12aに馴染ませて、粉粒体23を中空部34の少なくとも一部34a(図5(a)参照)の全域に良好に充填させることができる。
これにより、輸送機器用骨格構造10を組み付ける工程が完了する。
In (b), when the paint 35 applied to the inner peripheral surface 12a is dried, the container 13 is softened by drying heat and the left and right foam materials 21, 22 are expanded.
The container 13 can be made to conform to the inner peripheral surface 12 a of the skeleton member 12, and the granular material 23 can be satisfactorily filled in the entire region of at least a part 34 a (see FIG. 5A) of the hollow portion 34.
Thereby, the process of assembling the frame structure 10 for transportation equipment is completed.

以上説明したように、輸送機器用骨格構造10によれば、骨格部材12内に粉粒体23を収納した状態で、骨格部材12の内周面12aに塗料35を塗布することができる。
よって、図4(a)〜(b)に示すように、骨格部材12の内周面12aに塗料35を塗布する前工程において、粉粒体23を骨格部材12に収納することが可能になる。
As described above, according to the skeletal structure 10 for a transport device, the paint 35 can be applied to the inner peripheral surface 12 a of the skeleton member 12 in a state where the granular material 23 is housed in the skeleton member 12.
Therefore, as shown in FIGS. 4A to 4B, it is possible to store the granular material 23 in the skeleton member 12 in the previous step of applying the paint 35 to the inner peripheral surface 12 a of the skeleton member 12. .

これにより、骨格部材12を組み付ける前工程において、粉粒体23…を収納位置に配置し、その後、骨格部材12を一体に組み付けることができる。
したがって、従来技術で説明した加振装置(図示せず)などの大掛かりな装置を用いることなく骨格部材12内に粉粒体23…を充填することができ、かつ、骨格部材12の内周面12aに塗料35を塗布することができる。
Thereby, in the pre-process which assembles frame member 12, granular material 23 ... can be arranged in an accommodation position, and skeleton member 12 can be assembled integrally after that.
Therefore, the granular material 23 can be filled in the skeleton member 12 without using a large-scale device such as the vibration device (not shown) described in the prior art, and the inner peripheral surface of the skeleton member 12 The coating material 35 can be applied to 12a.

以下、第2〜第5の実施の形態の輸送機器用骨格構造を図6〜図10に基づいて説明する。なお、第2〜第5の実施の形態の輸送機器用骨格構造において第1実施の形態の部材と同一類似部材については同じ符号を付して説明を省略する。   Hereinafter, the skeletal structure for a transport device according to the second to fifth embodiments will be described with reference to FIGS. In addition, in the frame structure for transportation equipment of the second to fifth embodiments, the same reference numerals are given to the same similar members as the members of the first embodiment, and the description thereof is omitted.

(第2実施の形態)
図6は本発明に係る輸送機器用骨格構造(第2実施の形態)を示す断面図である。
第2実施の形態の輸送機器用骨格構造60は、骨格部材12に下壁透孔(第2透孔)62が形成され、下壁透孔62と容器13との間に底壁板材(板材)63が設けられたもので、その他の構成は第1実施の形態の輸送機器用骨格構造10と同様である。
(Second Embodiment)
FIG. 6 is a cross-sectional view showing a skeletal structure for a transport device (second embodiment) according to the present invention.
In the frame structure 60 for a transport device according to the second embodiment, a lower wall through hole (second through hole) 62 is formed in the frame member 12, and a bottom wall plate (plate material) is formed between the lower wall through hole 62 and the container 13. ) 63 is provided, and the other configuration is the same as that of the skeletal structure 10 for transportation equipment according to the first embodiment.

下壁透孔62は、下側部材31の下壁37のうち、容器13と対向する部位に形成されている。
下側部材31は、骨格部材12の下半分を構成する部材である。
底壁板材63は、容器13の底壁17のうち、下壁透孔62に対向する部位に設けられている。
The lower wall through hole 62 is formed in a portion of the lower wall 37 of the lower member 31 that faces the container 13.
The lower member 31 is a member constituting the lower half of the skeleton member 12.
The bottom wall plate 63 is provided in a portion of the bottom wall 17 of the container 13 that faces the lower wall through hole 62.

底壁板材63は、左右の発泡材21,22が膨張した状態において、下壁透孔62を塞いだ位置に保持される。
よって、例えば、輸送機器用骨格構造10に荷重が矢印の方向に作用した場合、骨格部材12内に充填した粉粒体23…を密閉状態に保持することができる。
粉粒体23…を密閉状態に保持することで、粉粒体23内部に発生する圧力により、衝撃を良好に吸収することができる。
The bottom wall plate material 63 is held at a position where the lower wall through-hole 62 is closed in a state where the left and right foam materials 21 and 22 are expanded.
Therefore, for example, when a load acts on the skeletal structure 10 for transport equipment in the direction of the arrow, the granular materials 23 filled in the skeleton member 12 can be held in a sealed state.
By holding the powder particles 23 in a sealed state, the impact can be favorably absorbed by the pressure generated inside the powder particles 23.

一方、左右の発泡材が膨張する前の状態において、図7(a)に示すように、底壁板材63は、下壁透孔62から離れた位置に保持されている。
よって、矩形筒状の空間46が下壁透孔62を介して骨格部材12の外部に連通された状態に保たれる。
On the other hand, in the state before the left and right foamed materials expand, the bottom wall plate 63 is held at a position away from the lower wall through-hole 62 as shown in FIG.
Therefore, the rectangular cylindrical space 46 is kept in communication with the outside of the skeleton member 12 through the lower wall through-hole 62.

つぎに、第2実施の形態の輸送機器用骨格構造60を組み付ける工程を図7に基づいて説明する。
図7(a),(b)は第2実施の形態に係る輸送機器用骨格構造の組付工程を説明する図である。
(a)において、骨格部材12内に中空部34が形成され、中空部34の少なくとも一部34aに容器13が収納される。
容器13は、周壁全体が骨格部材12の内周面12aに対して所定間隔Sだけ離れた状態に保持される。
よって、底壁板材63を下壁透孔62から離れた位置に保持することができる。
Next, the process of assembling the transport equipment skeleton structure 60 of the second embodiment will be described with reference to FIG.
FIGS. 7A and 7B are views for explaining the assembly process of the skeleton structure for a transport device according to the second embodiment.
In (a), a hollow portion 34 is formed in the skeleton member 12, and the container 13 is accommodated in at least a part 34 a of the hollow portion 34.
The container 13 is held in a state in which the entire peripheral wall is separated from the inner peripheral surface 12 a of the skeleton member 12 by a predetermined distance S.
Therefore, the bottom wall plate 63 can be held at a position away from the lower wall through hole 62.

容器13の周壁および骨格部材12の内周面12aで、中空部34の一部34aに矩形筒状の空間46が形成される。
矩形筒状の空間46は、左隔壁26の第1透孔58…を介して左隔壁26の外側空間34Cに連通されるとともに、右隔壁27の第1透孔58…を介して右隔壁27の外側空間34Dに連通される。
A rectangular cylindrical space 46 is formed in a part 34 a of the hollow portion 34 on the peripheral wall of the container 13 and the inner peripheral surface 12 a of the skeleton member 12.
The rectangular cylindrical space 46 communicates with the outer space 34C of the left partition wall 26 through the first through holes 58 of the left partition wall 26 and the right partition wall 27 through the first through holes 58 of the right partition wall 27. The outer space 34D is communicated with.

左隔壁26の外側空間34Cおよび右隔壁27の外側空間34Dは骨格部材12の外部に連通される。
さらに、矩形筒状の空間46が下壁透孔62を介して骨格部材12の外部に連通される。
The outer space 34 </ b> C of the left partition wall 26 and the outer space 34 </ b> D of the right partition wall 27 communicate with the outside of the skeleton member 12.
Further, the rectangular cylindrical space 46 is communicated with the outside of the skeleton member 12 through the lower wall through hole 62.

よって、輸送機器用骨格構造60を塗料35内に浸漬することで、塗料35が左隔壁26の第1透孔58…を介して矢印Bの如く矩形筒状の空間46内に導入する。
同様に、塗料35が右隔壁27の第1透孔58…を介して矢印Cの如く矩形筒状の空間46内に導入する。
Therefore, by immersing the skeletal structure 60 for transportation equipment in the paint 35, the paint 35 is introduced into the rectangular cylindrical space 46 as indicated by an arrow B through the first through holes 58 of the left partition wall 26.
Similarly, the paint 35 is introduced into the rectangular cylindrical space 46 as indicated by the arrow C through the first through holes 58 of the right partition wall 27.

同時に、下壁透孔62を介して矢印Dの如く矩形筒状の空間46内に導入する。
このように、塗料35を第1透孔58…および下壁透孔62を介して矩形筒状の空間46内に導入することで、矩形筒状の空間46に塗料35を良好に導入させて、内周面12aに塗料を一層良好に塗布することができる。
At the same time, it is introduced into the rectangular cylindrical space 46 as indicated by the arrow D through the lower wall through hole 62.
In this way, by introducing the paint 35 into the rectangular cylindrical space 46 through the first through holes 58... And the lower wall through holes 62, the paint 35 can be satisfactorily introduced into the rectangular cylindrical space 46. The paint can be applied to the inner peripheral surface 12a even better.

(b)において、塗料を乾燥する際に、乾燥熱で容器13を軟化させるとともに、左右の発泡材21,22を膨張させる。
容器13を骨格部材12の内周面12aに馴染ませて、粉粒体23を中空部34の少なくとも一部34a(図7(a)参照)の全域に良好に充填させることができる。
この際に、容器13の底壁17が、骨格部材12の下壁37に押し付けられる。よって、底壁板材63が下壁透孔62を塞いだ位置に保持される。
これにより、輸送機器用骨格構造60を組み付ける工程が完了する。
In (b), when the paint is dried, the container 13 is softened by drying heat and the left and right foam materials 21 and 22 are expanded.
The container 13 can be made to conform to the inner peripheral surface 12a of the skeleton member 12, and the granular material 23 can be satisfactorily filled in at least a part 34a (see FIG. 7A) of the hollow portion 34.
At this time, the bottom wall 17 of the container 13 is pressed against the lower wall 37 of the skeleton member 12. Therefore, the bottom wall plate 63 is held at a position where the lower wall through hole 62 is closed.
Thereby, the process of assembling the frame structure 60 for transportation equipment is completed.

以上説明したように、第2実施の形態の輸送機器用骨格構造60によれば、第1実施の形態の輸送機器用骨格構造10と同様の効果を得ることができる。   As described above, according to the transportation device skeleton structure 60 of the second embodiment, the same effects as those of the transportation device skeleton structure 10 of the first embodiment can be obtained.

さらに、第2実施の形態の輸送機器用骨格構造60によれば、骨格部材12に下壁透孔62を形成することで、塗料35を第1透孔58…および下壁透孔62を介して矩形筒状の空間46内に導入することで、矩形筒状の空間46に塗料35を良好に導入させて、内周面12aに塗料35を一層良好に塗布することができる。   Furthermore, according to the skeletal structure 60 for transportation equipment of the second embodiment, the coating 35 is passed through the first through holes 58 and the lower wall through holes 62 by forming the lower wall through holes 62 in the skeleton member 12. Introducing into the rectangular cylindrical space 46 allows the paint 35 to be satisfactorily introduced into the rectangular cylindrical space 46 so that the paint 35 can be more satisfactorily applied to the inner peripheral surface 12a.

加えて、第2実施の形態の輸送機器用骨格構造60によれば、容器13の底壁17に底壁板材63を設けることで、左右の発泡材21,22を膨張させたとき、底壁板材63で下壁透孔62を塞ぐことができる。
よって、骨格部材12に荷重が作用した際に、粉粒体23…が下壁透孔62から突出することを防ぐことができる。
このように、粉粒体23…が下壁透孔62から突出することを防いで、粉粒体23…の吸収エネルギーを確保することができる。
In addition, according to the skeletal structure 60 for transportation equipment of the second embodiment, when the left and right foam materials 21 and 22 are expanded by providing the bottom wall plate 63 on the bottom wall 17 of the container 13, the bottom wall The lower wall through hole 62 can be closed with the plate material 63.
Therefore, when a load acts on the skeleton member 12, it is possible to prevent the powder particles 23 from protruding from the lower wall through-hole 62.
Thus, it is possible to prevent the powder particles 23 from protruding from the lower wall through-hole 62 and to secure the absorbed energy of the powder particles 23.

(第3実施の形態)
図8は本発明に係る輸送機器用骨格構造(第3実施の形態)を示す断面図である。
第3実施の形態の輸送機器用骨格構造70は、骨格部材12の上壁36に上壁透孔(第2透孔)72が形成され、上壁透孔72と容器13との間に頂壁板材(板材)73が設けられたもので、その他の構成は第2実施の形態の輸送機器用骨格構造60と同様である。
(Third embodiment)
FIG. 8 is a cross-sectional view showing a skeletal structure for a transportation device (third embodiment) according to the present invention.
In the skeleton structure 70 for a transport device according to the third embodiment, an upper wall through hole (second through hole) 72 is formed in the upper wall 36 of the skeleton member 12, and the top wall 36 is located between the upper wall through hole 72 and the container 13. A wall plate material (plate material) 73 is provided, and the other configuration is the same as that of the skeletal structure 60 for transportation equipment according to the second embodiment.

上壁透孔72は、上側部材32の上壁36のうち、容器13の頂壁16と対向する部位に形成されている。
上側部材32は、骨格部材12の上半分を構成する部材である。
頂壁板材73は、容器13の頂壁16のうち、上壁透孔72に対向する部位に設けられている。
The upper wall through hole 72 is formed in a portion of the upper wall 36 of the upper member 32 that faces the top wall 16 of the container 13.
The upper member 32 is a member constituting the upper half of the skeleton member 12.
The top wall plate material 73 is provided in a portion of the top wall 16 of the container 13 that faces the upper wall through hole 72.

よって、輸送機器用骨格構造70を塗料35内に浸漬することで、塗料35を第1透孔58…および下壁透孔62を介して矩形筒状の空間46内に導入するとともに、上壁透孔72を介して矩形筒状の空間46内に導入することができる。
これにより、矩形筒状の空間46に塗料35を良好に導入させて、内周面12aに塗料35を一層良好に塗布することができる。
Therefore, by immersing the skeleton structure 70 for transportation equipment in the paint 35, the paint 35 is introduced into the rectangular cylindrical space 46 through the first through holes 58 and the lower wall through holes 62, and the upper wall It can be introduced into the rectangular cylindrical space 46 through the through hole 72.
Thereby, the coating material 35 can be satisfactorily introduced into the rectangular cylindrical space 46, and the coating material 35 can be applied more satisfactorily to the inner peripheral surface 12a.

さらに、容器13の頂壁16に頂壁板材73を設けることで、左右の発泡材21,22を膨張させたとき、頂壁板材73で上壁透孔72を塞ぐことができる。
よって、骨格部材12に荷重が作用した際に、粉粒体23…が上壁透孔72から突出することを防ぐことができる。
このように、粉粒体23…が上壁透孔72から突出することを防いで、粉粒体23…の吸収エネルギーを確保することができる。
Furthermore, by providing the top wall plate material 73 on the top wall 16 of the container 13, when the left and right foam materials 21 and 22 are expanded, the top wall plate material 73 can close the upper wall through-hole 72.
Therefore, when a load acts on the skeleton member 12, it is possible to prevent the powder particles 23 from protruding from the upper wall through-hole 72.
In this way, it is possible to prevent the powder particles 23 from protruding from the upper wall through-hole 72, and to secure the absorbed energy of the powder particles 23.

加えて、第3実施の形態の輸送機器用骨格構造70によれば、第2実施の形態の輸送機器用骨格構造60と同様の効果を得ることができる。   In addition, according to the skeletal structure for transportation equipment 70 of the third embodiment, the same effect as that of the skeleton structure 60 for transportation equipment of the second embodiment can be obtained.

(第4実施の形態)
図9は本発明に係る輸送機器用骨格構造(第4実施の形態)を示す断面図である。
第4実施の形態の輸送機器用骨格構造80は、骨格部材12の一方の側壁38に一方の側壁透孔(第2透孔)82,82が形成され、一方の側壁透孔82,82と容器13との間に一方の側壁板材(板材)85が設けられ、骨格部材12の他方の側壁39に他方の側壁透孔(第2透孔)83,83が形成され、他方の側壁透孔83,83と容器13との間に他方の側壁板材(板材)86が設けられたもので、その他の構成は第1実施の形態の輸送機器用骨格構造10と同様である。
(Fourth embodiment)
FIG. 9 is a cross-sectional view showing a skeletal structure for a transport device (fourth embodiment) according to the present invention.
In the skeleton structure 80 for transportation equipment according to the fourth embodiment, one side wall through hole (second through hole) 82, 82 is formed on one side wall 38 of the skeleton member 12. One side wall plate material (plate material) 85 is provided between the container 13 and the other side wall through hole (second through hole) 83, 83 is formed on the other side wall 39 of the skeleton member 12. The other side wall plate material (plate material) 86 is provided between 83 and 83 and the container 13, and the other structure is the same as that of the skeleton structure 10 for transportation equipment of the first embodiment.

よって、輸送機器用骨格構造80を塗料35内に浸漬することで、塗料35を一方の側壁透孔82,82および他方の側壁透孔83,83を介して矩形筒状の空間46内に導入することができる。
これにより、矩形筒状の空間46に塗料35を良好に導入させて、内周面12aに塗料35を一層良好に塗布することができる。
Therefore, by immersing the skeleton structure 80 for transportation equipment in the paint 35, the paint 35 is introduced into the rectangular cylindrical space 46 through the one side wall through holes 82 and 82 and the other side wall through holes 83 and 83. can do.
Thereby, the coating material 35 can be satisfactorily introduced into the rectangular cylindrical space 46, and the coating material 35 can be applied more satisfactorily to the inner peripheral surface 12a.

さらに、容器13の一方の側壁18に一方の側壁板材85を設けることで、図2に示す左右の発泡材21,22を膨張させたとき、一方の側壁板材85で一方の側壁透孔82,82を塞ぐことができる。
同様に、容器13の他方の側壁19に他方の側壁板材86を設けることで、図2に示す左右の発泡材21,22を膨張させたとき、他方の側壁板材86で他方の側壁透孔83,83を塞ぐことができる。
Further, when the left and right foam materials 21 and 22 shown in FIG. 2 are expanded by providing one side wall plate material 85 on one side wall 18 of the container 13, one side wall through hole 82, 82 can be closed.
Similarly, by providing the other side wall plate member 86 on the other side wall 19 of the container 13, when the left and right foam materials 21 and 22 shown in FIG. 2 are expanded, the other side wall plate material 86 uses the other side wall through hole 83. , 83 can be blocked.

(第5実施の形態)
図10は本発明に係る輸送機器用骨格構造(第5実施の形態)を示す断面図である。
第5実施の形態の輸送機器用骨格構造90は、第4実施の形態の一方の壁板材85および他方の壁板材86をそれぞれ一方の壁板材92および他方の壁板材93に代えたもので、その他の構成は第4実施の形態の輸送機器用骨格構造80と同様である。
(Fifth embodiment)
FIG. 10 is a cross-sectional view showing a skeletal structure for a transportation device according to the present invention (fifth embodiment).
The frame structure 90 for transportation equipment of the fifth embodiment is obtained by replacing one wall plate material 85 and the other wall plate material 86 of the fourth embodiment with one wall plate material 92 and the other wall plate material 93, respectively. Other configurations are the same as those of the framework structure 80 for transportation equipment according to the fourth embodiment.

一方の壁板材92および他方の壁板材93は、容器13を成形する際に、頂壁16や底壁17に一体成形されたものである。
容器を成形する際に、一方の壁板材92および他方の壁板材93を一体成形することができるので、一方の壁板材92および他方の壁板材93を取り付ける工程を省くことができる。
これにより、製造工程の簡略化を図ることができ、生産性の向上を図ることができる。
One wall plate member 92 and the other wall plate member 93 are formed integrally with the top wall 16 and the bottom wall 17 when the container 13 is formed.
When molding the container, the one wall plate material 92 and the other wall plate material 93 can be integrally formed, so that the step of attaching the one wall plate material 92 and the other wall plate material 93 can be omitted.
Thereby, a manufacturing process can be simplified and productivity can be improved.

なお、前記第1〜第4の実施の形態では、輸送機器用骨格構造10,60,70,80,90を適用する輸送機器11として自動車を例示したが、これに限らないで、輸送機器用骨格構造10,60,70,80,90を鉄道、船舶、航空機、オートバイなどの他の輸送機器に適用することも可能である。   In the first to fourth embodiments, the automobile is exemplified as the transport device 11 to which the transport device skeleton structure 10, 60, 70, 80, 90 is applied. However, the present invention is not limited to this. The skeletal structure 10, 60, 70, 80, 90 can also be applied to other transportation equipment such as railroads, ships, airplanes, and motorcycles.

また、前記第1〜第4の実施の形態では、左右の発泡材21,22を加熱(温度変化)により膨張(発泡)する部材として説明したが、これに限らないで、マイクロウエーブや化学反応などで膨張(発泡)する発泡材を用いることも可能である。   In the first to fourth embodiments, the left and right foam materials 21 and 22 have been described as members that expand (foam) by heating (temperature change). However, the present invention is not limited to this. It is also possible to use a foam material that expands (foams) due to the above.

本発明は、骨格部材内に粉粒体を充填した輸送機器用骨格構造を備えた自動車などへの適用に好適である。   INDUSTRIAL APPLICABILITY The present invention is suitable for application to an automobile or the like provided with a skeletal structure for transportation equipment in which a skeleton member is filled with powder particles.

本発明に係る輸送機器用骨格構造(第1実施の形態)を示す斜視図である。It is a perspective view which shows the frame | skeleton structure (1st Embodiment) for transport equipment which concerns on this invention. 第1実施の形態に係る輸送機器用骨格構造を示す断面図である。It is sectional drawing which shows the frame structure for transport apparatuses which concerns on 1st Embodiment. 発泡材を膨張させる前の輸送機器用骨格構造を示す断面図である。It is sectional drawing which shows the frame | skeleton structure for transportation equipment before expanding a foaming material. 第1実施の形態に係る骨格部材内に粉粒体を収納する工程を説明する図である。It is a figure explaining the process of accommodating a granular material in the frame | skeleton member which concerns on 1st Embodiment. 第1実施の形態に係る骨格部材の内周面に塗料を塗布する工程を説明する図である。It is a figure explaining the process of apply | coating a coating material to the internal peripheral surface of the frame member which concerns on 1st Embodiment. 本発明に係る輸送機器用骨格構造(第2実施の形態)を示す断面図である。It is sectional drawing which shows the frame | skeleton structure for transport equipment (2nd Embodiment) which concerns on this invention. 第2実施の形態に係る輸送機器用骨格構造の組付工程を説明する図である。It is a figure explaining the assembly | attachment process of the frame structure for transport apparatuses which concerns on 2nd Embodiment. 本発明に係る輸送機器用骨格構造(第3実施の形態)を示す断面図である。It is sectional drawing which shows the frame | skeleton structure (3rd Embodiment) for transport equipment which concerns on this invention. 本発明に係る輸送機器用骨格構造(第4実施の形態)を示す断面図である。It is sectional drawing which shows the frame | skeleton structure (4th Embodiment) for transport equipment concerning this invention. 本発明に係る輸送機器用骨格構造(第5実施の形態)を示す断面図である。It is sectional drawing which shows the frame | skeleton structure (5th Embodiment) for the transport equipment which concerns on this invention.

符号の説明Explanation of symbols

10,60,70,80,90…輸送機器用骨格構造、11…輸送機器、12…骨格部材、12a…内周面、13…容器、14…左壁(両端のうちの左端)、15…右壁(両端のうちの右端)、21…左発泡材(発泡材)、22…右発泡材(発泡材)、23…粉粒体、24…粉粒体ブロック、24a,24b…左右端(両端)、25…クリップ(保持部材)、26…左隔壁(隔壁)、27…右隔壁(隔壁)、34…中空部、34a…中空部の少なくとも一部、35…塗料、37…下壁、58…第1透孔、62…下壁透孔(第2透孔)、72…上壁透孔(第2透孔)、63…底壁板材(板材)、73…頂壁板材(板材)、82…一方の側壁透孔(第2透孔)、83…他方の側壁透孔(第2透孔)、85,92…一方の側壁板材(板材)、86,93…他方の側壁板材(板材)、S…所定間隔。   DESCRIPTION OF SYMBOLS 10,60,70,80,90 ... Skeletal structure for transport equipment, 11 ... Transport equipment, 12 ... Skeletal member, 12a ... Inner peripheral surface, 13 ... Container, 14 ... Left wall (left end of both ends), 15 ... Right wall (right end of both ends), 21 ... left foam material (foam material), 22 ... right foam material (foam material), 23 ... powder body, 24 ... powder block, 24a, 24b ... left and right end ( (Both ends), 25 ... clip (holding member), 26 ... left partition (partition), 27 ... right partition (partition), 34 ... hollow part, 34a ... at least part of the hollow part, 35 ... paint, 37 ... lower wall, 58 ... 1st through hole, 62 ... Lower wall through hole (second through hole), 72 ... Upper wall through hole (second through hole), 63 ... Bottom wall plate material (plate material), 73 ... Top wall plate material (plate material) 82 ... One side wall through hole (second through hole), 83 ... The other side wall through hole (second through hole), 85, 92 ... One side wall plate material (plate material), 86, 3 ... the other side wall sheet (plate material), S ... predetermined intervals.

Claims (7)

輸送機器に用いられる骨格部材内に中空部が形成され、前記中空部の少なくとも一部に複数個の粉粒体が充填され、充填された粉粒体の両端をそれぞれ隔壁で支える輸送機器用骨格構造において、
前記複数個の粉粒体を収納可能な容器と、
前記容器を前記骨格部材の内周面に対して所定間隔をおいて保持可能な保持部材と、を備え、
前記骨格部材の内周面と前記容器との間の空間に、前記内周面を塗布する塗料を導入可能としたことを特徴とする輸送機器用骨格構造。
A skeleton for a transportation device in which a hollow portion is formed in a skeleton member used in a transportation device, a plurality of powder particles are filled in at least a part of the hollow portion, and both ends of the filled powder material are supported by partition walls, respectively. In structure
A container capable of storing the plurality of powder particles;
A holding member capable of holding the container at a predetermined interval with respect to the inner peripheral surface of the skeleton member,
A skeleton structure for transportation equipment, wherein a coating material for applying the inner peripheral surface can be introduced into a space between the inner peripheral surface of the skeleton member and the container.
輸送機器に用いられる骨格部材内に中空部が形成され、前記中空部の少なくとも一部に複数個の粉粒体が密に充填され、密に充填された粉粒体の両端をそれぞれ隔壁で支える輸送機器用骨格構造において、
前記複数個の粉粒体を粗に収納した状態で、前記骨格部材の内周面に対して所定間隔をおいて前記中空部に収納可能で、かつ、前記粗の粉粒体を密にしたとき前記内周面に接する容器と、
前記複数個の粉粒体を粗に収納した状態で、前記容器を前記骨格部材の内周面に対して所定間隔をおいて保持可能な保持部材と、を備え、
前記骨格部材の内周面と前記容器との間の空間に、前記内周面を塗布する塗料を導入可能としたことを特徴とする輸送機器用骨格構造。
A hollow portion is formed in a skeleton member used in a transportation device, and at least a part of the hollow portion is densely filled with a plurality of powder particles, and both ends of the densely packed powder particles are supported by partition walls, respectively. In the framework for transportation equipment,
In a state in which the plurality of powder particles are roughly stored, the hollow powder can be stored in the hollow portion at a predetermined interval with respect to the inner peripheral surface of the skeleton member, and the coarse powder particles are made dense. Sometimes a container in contact with the inner peripheral surface;
A holding member capable of holding the container at a predetermined interval with respect to the inner peripheral surface of the skeleton member in a state in which the plurality of powder particles are roughly stored,
A skeleton structure for transportation equipment, wherein a coating material for applying the inner peripheral surface can be introduced into a space between the inner peripheral surface of the skeleton member and the container.
前記保持部材は、クリップであることを特徴とする請求項1または請求項2に記載の輸送機器用骨格構造。   The skeleton structure for a transportation device according to claim 1, wherein the holding member is a clip. 前記容器の両端にそれぞれ隔壁を設け、
前記各隔壁に、前記塗料を前記中空部に導く第1透孔が形成されたことを特徴とする請求項1〜3のいずれか一項に記載の輸送機器用骨格構造。
A partition is provided at each end of the container,
The skeletal structure for a transportation device according to any one of claims 1 to 3, wherein each partition wall is formed with a first through hole that guides the paint to the hollow portion.
前記容器は熱軟化材料で形成されていることを特徴とする請求項1〜4のいずれか一項に記載の輸送機器用骨格構造。   The said container is formed with the heat softening material, The frame | skeleton structure for transport apparatuses as described in any one of Claims 1-4 characterized by the above-mentioned. 前記容器と前記粉粒体との間に発泡材を設けたことを特徴とする請求項4または請求項5に記載の輸送機器用骨格構造。   The framework for transportation equipment according to claim 4 or 5, wherein a foaming material is provided between the container and the granular material. 前記容器と対向する前記骨格部材に第2透孔が形成され、
この第2透孔と前記容器との間に板材が設けられたことを特徴とする請求項1〜6のいずれか一項に記載の輸送機器用骨格構造。
A second through hole is formed in the skeletal member facing the container;
The frame structure for transportation equipment according to any one of claims 1 to 6, wherein a plate material is provided between the second through hole and the container.
JP2007068715A 2007-03-16 2007-03-16 Skeleton structure for transport machine Pending JP2008230276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007068715A JP2008230276A (en) 2007-03-16 2007-03-16 Skeleton structure for transport machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007068715A JP2008230276A (en) 2007-03-16 2007-03-16 Skeleton structure for transport machine

Publications (1)

Publication Number Publication Date
JP2008230276A true JP2008230276A (en) 2008-10-02

Family

ID=39903606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007068715A Pending JP2008230276A (en) 2007-03-16 2007-03-16 Skeleton structure for transport machine

Country Status (1)

Country Link
JP (1) JP2008230276A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189781A (en) * 2010-03-12 2011-09-29 Fuji Heavy Ind Ltd Method for manufacturing vehicle body structure and vehicle body structure
JP2011255745A (en) * 2010-06-08 2011-12-22 Fuji Heavy Ind Ltd Method for manufacturing vehicle body structure
JP2013086640A (en) * 2011-10-18 2013-05-13 Mazda Motor Corp Vehicle frame structure
CN112512902A (en) * 2018-09-19 2021-03-16 奥迪股份公司 Container device for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011189781A (en) * 2010-03-12 2011-09-29 Fuji Heavy Ind Ltd Method for manufacturing vehicle body structure and vehicle body structure
JP2011255745A (en) * 2010-06-08 2011-12-22 Fuji Heavy Ind Ltd Method for manufacturing vehicle body structure
JP2013086640A (en) * 2011-10-18 2013-05-13 Mazda Motor Corp Vehicle frame structure
CN112512902A (en) * 2018-09-19 2021-03-16 奥迪股份公司 Container device for vehicle

Similar Documents

Publication Publication Date Title
KR100284884B1 (en) Composite Laminate Beams Used in Automobile Body Construction
US8361589B2 (en) Structural reinforcement system
EP2401191B1 (en) Structural reinforcement system
EP3093222B1 (en) Structural reinforcement system
US8087916B2 (en) Holding jig for a foamable material
JP2008230276A (en) Skeleton structure for transport machine
WO1998021060A1 (en) Composite laminate automotive structures
EP1931555A1 (en) Structural reinforcement for vehicles
JP2006282099A (en) Fiber-reinforced resin structure
JP4455531B2 (en) Car body rear structure
JPWO2005003588A1 (en) Skeletal structure member for transport machinery
JP5103039B2 (en) Frame structure for transportation equipment
JP2003182630A (en) Hollow panel reinforcing structure
JP5707933B2 (en) Method for producing hollow structure provided with foam reinforcing member
JP2008230272A (en) Skeleton structure for transport machine
JP2001018834A (en) Reinforcement member for hollow car body frame
JP2002037122A (en) Outer panel reinforcing structure for automobile body
JP5655561B2 (en) Hollow structure provided with foam reinforcing member and method for manufacturing the same
JP5655559B2 (en) Hollow structure provided with foam reinforcing member and method for manufacturing the same
JP5377931B2 (en) Plastic molded product
JP4598661B2 (en) Manufacturing method of side wall part of freezer
JP2008230275A (en) Skeleton structure for transport machine
JP2023541533A (en) insulation element
KR20210050513A (en) Devices for reinforcing, sealing or damping structural elements
KR20220122109A (en) Filler between two panels of vehicles