JP2008228987A - Biological state detecting apparatus - Google Patents

Biological state detecting apparatus Download PDF

Info

Publication number
JP2008228987A
JP2008228987A JP2007072769A JP2007072769A JP2008228987A JP 2008228987 A JP2008228987 A JP 2008228987A JP 2007072769 A JP2007072769 A JP 2007072769A JP 2007072769 A JP2007072769 A JP 2007072769A JP 2008228987 A JP2008228987 A JP 2008228987A
Authority
JP
Japan
Prior art keywords
biological information
detection
biological
waveform
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007072769A
Other languages
Japanese (ja)
Inventor
Tetsuro Shirakata
哲朗 白形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2007072769A priority Critical patent/JP2008228987A/en
Publication of JP2008228987A publication Critical patent/JP2008228987A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To shorten a time needed for detection of biological information, such as a heartbeat of a living body object while improving the detection accuracy of the biological information. <P>SOLUTION: A biological state detecting apparatus 10 comprises: a biological sensor unit 11 for detecting heartbeat or a state amount related to the heartbeat (biological information); a transformation processing part 23 for performing Fourier transformation of a detection signal of the biological sensor unit 11 in a prescribed period with cutout interval Δt; a biological information detection part 24 for detecting the biological information from a frequency waveform generated by the transformation processing part 23; a prediction value calculation part 26 for calculating a predicted heart rate Bp from a detection result of the biological information in the past; and a cutout interval setting part 27 for calculating the cutout interval Δt(s) = (60/bp)x(2+α) on the basis of a prescribed coefficient α in the ranges of 0 to 1, and a predicted heart rate Bp((60s)<SP>-1</SP>). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、生体状態検出装置に関する。   The present invention relates to a biological state detection device.

従来、例えば車両のシートに設けられたセンサより、乗員の体温や血圧や脈拍等を検出し、乗員の生体情報を取得する装置が知られている(例えば、特許文献1参照)。
また、従来、例えば検査対象者の生体信号を互いに異なる複数の所定期間毎でフーリエ変換して各周波数成分を出力し、各周波数成分毎に呼吸や心拍の生体情報を検出する装置が知られている(例えば、特許文献2参照)。
特開2000−99867号公報 特開2000−300529号公報
2. Description of the Related Art Conventionally, for example, an apparatus that detects the occupant's body temperature, blood pressure, pulse, or the like from a sensor provided on a vehicle seat and acquires the occupant's biological information is known (see, for example, Patent Document 1).
Further, conventionally, for example, a device is known that performs Fourier transform on a biological signal of a subject to be inspected and outputs each frequency component for each of a plurality of different predetermined periods, and detects biological information such as breathing and heartbeat for each frequency component. (For example, refer to Patent Document 2).
JP 2000-99867 A JP 2000-300529 A

ところで、上記従来技術に係る装置において、生体情報を検出する際に、相対的に短い期間でのフーリエ変換によって高速に検出を行うと共に、相対的に長い期間でのフーリエ変換によって高精度に検出を行い、これら複数の検出結果を表示する場合には、高精度の検出処理に起因して、迅速な検出が困難になると共に、複数の検出結果が表示されることで、これらの検出結果を迅速に認識および評価することが困難となる虞がある。
本発明は上記事情に鑑みてなされたもので、生体対象物の心拍等の生体情報の検出精度を向上させつつ、検出に要する時間を短縮することが可能な生体状態検出装置を提供することを目的としている。
By the way, in the apparatus according to the above prior art, when detecting biological information, high-speed detection is performed by Fourier transform in a relatively short period, and detection is performed with high accuracy by Fourier transform in a relatively long period. When these multiple detection results are displayed, due to the high-precision detection process, rapid detection becomes difficult, and the multiple detection results are displayed so that these detection results can be quickly displayed. It may be difficult to recognize and evaluate.
The present invention has been made in view of the above circumstances, and provides a biological state detection device capable of reducing the time required for detection while improving the detection accuracy of biological information such as a heartbeat of a biological object. It is aimed.

上記課題を解決して係る目的を達成するために、本発明の第1態様に係る生体状態検出装置は、生体対象物の状態に係る状態量を検出する状態量検出手段(例えば、実施の形態での各圧電素子14,16)と、前記状態量検出手段により検出された前記状態量の信号を所定期間でフーリエ変換して周波数成分を出力するフーリエ変換手段(例えば、実施の形態での変換処理部23および切出間隔設定部27)と、前記周波数成分に基づき前記生体対象物の生体情報を検出する生体情報検出手段(例えば、実施の形態での生体情報検出部24)とを備え、前記フーリエ変換手段は、前記生体情報検出手段によって過去に検出された前記生体情報に基づき、前記所定期間を変更可能である。   In order to solve the above problems and achieve the object, the biological state detection apparatus according to the first aspect of the present invention is a state quantity detection unit (for example, an embodiment) that detects a state quantity related to the state of a biological object. Fourier transform means (for example, conversion in the embodiment) which outputs a frequency component by Fourier transforming each state element signal detected by the state quantity detection means in a predetermined period. A processing unit 23 and a cut-out interval setting unit 27), and biological information detection means (for example, the biological information detection unit 24 in the embodiment) that detects biological information of the biological object based on the frequency component, The Fourier transform means can change the predetermined period based on the biological information detected in the past by the biological information detection means.

さらに、本発明の第2態様に係る生体状態検出装置では、前記フーリエ変換手段は、前記所定期間であるΔt(s)を、ゼロ以上かつ1以下の所定係数であるαと、前記生体情報検出手段によって過去に検出された前記生体情報に基づく次回の処理での生体情報の予測値Bp((60s)−1)とを用いた所定数式(Δt=(60/Bp)×(2+α))により設定する。 Furthermore, in the biological state detection device according to the second aspect of the present invention, the Fourier transform means sets Δt (s), which is the predetermined period, to α, which is a predetermined coefficient that is greater than or equal to zero and less than or equal to 1, and the biological information detection By a predetermined formula (Δt = (60 / Bp) × (2 + α)) using a predicted value Bp ((60 s) −1 ) of biological information in the next process based on the biological information detected in the past by the means. Set.

本発明の第1態様に係る生体状態検出装置によれば、状態量検出手段により検出された状態量の信号をフーリエ変換する際に、生体情報検出手段によって過去に検出された生体情報によるフィードバック処理によってフーリエ変換の時間領域を設定することから、検出精度を向上させるために時間領域が過剰に長くなってしまったり、検出に要する時間を短縮するために時間領域が過剰に短くなって所望の検出精度を確保することができなくなることを防止することができる。
さらに、本発明の第2態様に係る生体状態検出装置によれば、所定数式(Δt=(60/Bp)×(2+α))により、所定周期(2+α)に対して、フーリエ変換の所定期間であるΔt(s)が生体情報の予測値Bp((60s)−1)に応じて変化することになり、過去に検出された生体情報に応じてフーリエ変換の時間領域が適切に設定される。
なお、所定周期(2+α)は、ゼロ以上かつ1以下の所定係数であるαに応じて、2以上かつ3以下となり、例えば2未満ではフーリエ変換の時間領域が過剰に短くなって誤差が増大してしまい、例えば3よりも大きい場合には生体情報が有する揺らぎ成分によって誤差が増大することになる。
According to the biological state detection device of the first aspect of the present invention, when the signal of the state quantity detected by the state quantity detection unit is Fourier-transformed, feedback processing based on biological information detected in the past by the biological information detection unit Since the time domain of Fourier transform is set by, the time domain becomes excessively long in order to improve detection accuracy, or the time domain is excessively shortened in order to shorten the time required for detection. It can be prevented that the accuracy cannot be ensured.
Furthermore, according to the biological state detection device according to the second aspect of the present invention, a predetermined mathematical formula (Δt = (60 / Bp) × (2 + α)) and a predetermined period (2 + α) with a predetermined period of Fourier transform. A certain Δt (s) changes according to the predicted value Bp ((60s) −1 ) of the biological information, and the time domain of Fourier transform is appropriately set according to the biological information detected in the past.
The predetermined period (2 + α) is 2 or more and 3 or less depending on α, which is a predetermined coefficient of 0 or more and 1 or less. For example, if it is less than 2, the time domain of Fourier transform becomes excessively short and the error increases. For example, if it is larger than 3, the error increases due to the fluctuation component of the biological information.

以下、本発明の一実施形態に係る生体状態検出装置について添付図面を参照しながら説明する。
本実施の形態による生体状態検出装置10は、例えば図1に示すように、車両の乗員の生体情報(例えば、乗員の生命徴候として全身状態の把握の基本となる身体的な情報であって、心臓の拍動(心拍)および呼吸数および血圧および体温等)のうち、例えば心拍あるいは心拍に係る状態量を検出する生体センサユニット11を備え、この生体センサユニット11は、例えば、車両用シート12のシートクッション13の内部に設けられたケーブル型の第1圧電素子14と、車両用シート12のシートバック15の内部に設けられたケーブル型の第2圧電素子16と、処理装置17とを備えて構成されている。
そして、処理装置17は、フィルタ処理部21と、波形領域抽出部22と、変換処理部23と、生体情報検出部24と、生体情報記憶部25と、予測値演算部26と、切出間隔設定部27とを備えて構成されている。
Hereinafter, a biological state detection device according to an embodiment of the present invention will be described with reference to the accompanying drawings.
The biological state detection device 10 according to the present embodiment is, for example, as shown in FIG. 1, the biological information of a vehicle occupant (for example, physical information that is the basis for grasping the whole body state as a vital sign of the occupant, Among the heart beats (heartbeat), respiration rate, blood pressure, body temperature, etc.), for example, a biosensor unit 11 is provided for detecting a heartbeat or a state quantity related to the heartbeat. The biosensor unit 11 is, for example, a vehicle seat 12. A cable-type first piezoelectric element 14 provided in the seat cushion 13, a cable-type second piezoelectric element 16 provided in the seat back 15 of the vehicle seat 12, and a processing device 17. Configured.
The processing device 17 includes a filter processing unit 21, a waveform region extraction unit 22, a conversion processing unit 23, a biological information detection unit 24, a biological information storage unit 25, a predicted value calculation unit 26, and a cutting interval. And a setting unit 27.

各圧電素子14,16は、例えばケーブル型の圧電素子であって、シートクッション13の内部に配置された2つの第1圧電素子14は、シートクッション13に当接する乗員の臀部および大腿部からシートクッション13に作用する乗員の皮膚表面に伝わる微小振動の時間変化(例えば、乗員の心臓の拍動に係る周期的な圧力変動等)を検出し、シートバック15の内部に配置された第2圧電素子16は、シートバック15に当接する乗員の背中からシートバック15に作用する乗員の皮膚表面に伝わる微小振動の時間変化(例えば、乗員の心臓の拍動に係る周期的な圧力変動等)を検出する。   Each of the piezoelectric elements 14 and 16 is, for example, a cable-type piezoelectric element, and the two first piezoelectric elements 14 arranged inside the seat cushion 13 are from the occupant's buttocks and thighs that contact the seat cushion 13. A second vibration disposed on the inside of the seat back 15 is detected by detecting a temporal change of minute vibrations transmitted to the occupant's skin surface acting on the seat cushion 13 (for example, periodic pressure fluctuation related to the pulsation of the occupant's heart). The piezoelectric element 16 changes with time of minute vibrations transmitted from the back of the occupant in contact with the seat back 15 to the skin surface of the occupant acting on the seat back 15 (for example, periodic pressure fluctuations related to the heartbeat of the occupant). Is detected.

処理装置17のフィルタ処理部21は、例えばバンドパスフィルタ等により、各圧電素子14,16により時系列データとして得られた検出信号から所定振動数帯域幅、例えば人体の固有振動数(例えば、4〜8Hz等)を含む帯域の波形成分を抽出して波形領域抽出部22へ出力する。   The filter processing unit 21 of the processing device 17 uses, for example, a bandpass filter or the like from a detection signal obtained as time series data by the piezoelectric elements 14 and 16, for example, a predetermined frequency bandwidth, for example, the natural frequency of the human body (for example, 4 The waveform components in the band including ˜8 Hz are extracted and output to the waveform region extraction unit 22.

波形領域抽出部22は、フィルタ処理部21により抽出された波形成分に対して、予め設定された所定時間間隔(例えば、6s等)、あるいは、切出間隔設定部27から出力される切出間隔Δt(s)に応じた波形領域を抽出して変換処理部23へ出力する。   The waveform area extraction unit 22 sets a predetermined time interval (for example, 6 s) set in advance with respect to the waveform component extracted by the filter processing unit 21, or a cutout interval output from the cutout interval setting unit 27. A waveform region corresponding to Δt (s) is extracted and output to the conversion processing unit 23.

変換処理部23は、波形領域抽出部22により抽出された波形領域を、例えばフーリエ変換等の直交変換によって周波数成分に分解し、乗員の体圧または体表面の微小振動の時間変化を示す波形を、周波数分布を示す周波数波形へと変換して生体情報検出部24へ出力する。   The conversion processing unit 23 decomposes the waveform region extracted by the waveform region extraction unit 22 into frequency components by, for example, orthogonal transformation such as Fourier transform, and generates a waveform indicating temporal changes in the occupant's body pressure or minute vibrations on the body surface. Then, it is converted into a frequency waveform indicating the frequency distribution and output to the biological information detection unit 24.

生体情報検出部24は、例えば、変換処理部23により生成された周波数波形に対するパターンマッチングにより、検出対象である心拍等の生体情報の基本波成分に対応する周波数を基本周波数とする倍数周波数に対応する周波数成分、つまり高調波成分に対応する各波形成分により構成されるパターン波形を生成する。そして、複数のパターン波形のうち、変換処理部23から出力される周波数波形に最も良く近似されるパターン波形を検出し、このパターン波形を構成する各波形成分の周波数に基づいて、検出対象である心拍等の生体情報を検出する。   The biological information detection unit 24 corresponds to a multiple frequency having, as a fundamental frequency, a frequency corresponding to a fundamental wave component of biological information such as a heartbeat that is a detection target by pattern matching on the frequency waveform generated by the conversion processing unit 23, for example. A pattern waveform composed of each waveform component corresponding to the frequency component to be processed, that is, the harmonic component is generated. A pattern waveform that best approximates the frequency waveform output from the conversion processing unit 23 is detected from among the plurality of pattern waveforms, and the detection target is based on the frequency of each waveform component constituting the pattern waveform. Detect biological information such as heartbeats.

例えば心拍等の生体情報を検出対象とした場合に、生体情報検出部24は、所定範囲(例えば、30〜180回/分)内での複数の適宜の心拍数毎に対して、各心拍数に応じた周波数(例えば、基本周波数および高調波成分等)と、変換処理部23から出力される周波数波形の包絡線波形に応じた振幅とを有する波形成分からなるパターン波形を生成する。そして、各パターン波形と、変換処理部23により生成された周波数波形とのマッチングの程度を、距離関数等の評価関数により評価し、例えば距離(dB)が最小値となるパターン波形が周波数波形に最も良く近似されると判定して、このパターン波形に対応する心拍数を、検出対象である生体情報として設定する。   For example, when biometric information such as a heartbeat is a detection target, the biometric information detection unit 24 detects each heart rate for each of a plurality of appropriate heart rates within a predetermined range (for example, 30 to 180 times / minute). A pattern waveform including a waveform component having a frequency (for example, a fundamental frequency, a harmonic component, etc.) corresponding to the frequency and an amplitude corresponding to the envelope waveform of the frequency waveform output from the conversion processing unit 23 is generated. Then, the degree of matching between each pattern waveform and the frequency waveform generated by the conversion processing unit 23 is evaluated by an evaluation function such as a distance function. For example, a pattern waveform having a minimum distance (dB) is converted into a frequency waveform. It is determined that the approximation is best, and the heart rate corresponding to this pattern waveform is set as the biological information that is the detection target.

生体情報記憶部25は、生体情報検出部24により検出される生体情報の履歴を記憶する。
予測値演算部26は、生体情報記憶部25に記憶された過去の生体情報の検出結果から所定の信頼度を有するデータを抽出し、例えばこれらのデータの平均値等によって、次回の検出処理における生体情報の予測値、例えば予測心拍数Bp(bpm:(60s)−1)を算出する。
The biological information storage unit 25 stores a history of biological information detected by the biological information detection unit 24.
The predicted value calculation unit 26 extracts data having a predetermined reliability from the detection result of the past biometric information stored in the biometric information storage unit 25. For example, the predicted value calculation unit 26 uses the average value of these data in the next detection process. A predicted value of biological information, for example, a predicted heart rate Bp (bpm: (60 s) −1 ) is calculated.

切出間隔設定部27は、予測値演算部26により演算された生体情報の予測値、例えば予測心拍数Bpと、ゼロ以上かつ1以下の所定係数αとに基づく下記数式(1)により、次回の処理での波形領域抽出部22により抽出される波形領域を設定するデータ抽出時間幅、つまり切出間隔Δt(s)を算出する。
なお、下記数式(1)において、所定値(2+α)は、心拍数の算出に最低限必要な拍動回数である2回(2周期)と、心拍数の算出の確実性を増大させるための拍動回数である3回(3周期)との間で、所定係数αに応じて変動する値であって、例えば所定値(2+α)の代わりに2未満の値を採用するとフーリエ変換の時間領域が過剰に短くなって生体情報の検出誤差が増大してしまい、例えば所定値(2+α)の代わりに3よりも大きい値を採用すると生体情報が有する揺らぎ成分によって誤差が増大することになる。
The cut-out interval setting unit 27 uses the following mathematical formula (1) based on the predicted value of the biological information calculated by the predicted value calculation unit 26, for example, the predicted heart rate Bp, and a predetermined coefficient α that is greater than or equal to zero and less than or equal to 1 next time. In this process, the data extraction time width for setting the waveform region extracted by the waveform region extraction unit 22, that is, the extraction interval Δt (s) is calculated.
In the following formula (1), the predetermined value (2 + α) is 2 times (2 cycles) which is the minimum number of beats necessary for calculating the heart rate, and increases the certainty of heart rate calculation. A value that fluctuates according to a predetermined coefficient α between 3 times (3 cycles) that is the number of pulsations. For example, if a value less than 2 is used instead of the predetermined value (2 + α), the time domain of Fourier transform Becomes excessively short and increases the detection error of the biological information. For example, if a value larger than 3 is used instead of the predetermined value (2 + α), the error increases due to the fluctuation component of the biological information.

Figure 2008228987
Figure 2008228987

例えば図2(a),(b)に示すように、各圧電素子14,16から出力される検出信号(電圧値)の時間変化を示す適宜の波形Pにおいて、拍動回数の1回(1周期)に相当する切出間隔Δt(s)により抽出される波形領域によれば、1周期未満の包絡線波形EVが得られるだけである。
これに対して、例えば図2(c),(d)に示すように、拍動回数の2回(2周期)に相当する切出間隔Δt(s)により抽出される波形領域によれば、少なくとも1周期より長い包絡線波形が得られ、例えば図2(e),(f)に示すように、拍動回数の3回(3周期)に相当する切出間隔Δt(s)により抽出される波形領域によれば、少なくとも2周期より長い包絡線波形が得られる。
For example, as shown in FIGS. 2 (a) and 2 (b), in an appropriate waveform P indicating the time change of the detection signals (voltage values) output from the piezoelectric elements 14 and 16, the number of beats is one (1). According to the waveform region extracted by the cut-out interval Δt (s) corresponding to (period), only the envelope waveform EV of less than one period is obtained.
On the other hand, for example, as shown in FIGS. 2C and 2D, according to the waveform region extracted by the cut-out interval Δt (s) corresponding to two beats (two cycles), An envelope waveform longer than at least one period is obtained, and extracted, for example, by a cutting interval Δt (s) corresponding to three beats (three periods) as shown in FIGS. 2 (e) and 2 (f). According to the waveform region, an envelope waveform longer than at least two periods is obtained.

本実施の形態による生体状態検出装置10は上記構成を備えており、次に、この生体状態検出装置10の動作、特に、各圧電素子14,16から出力される検出信号に基づき、心拍等の生体情報を検出する処理について説明する。
なお、以下の処理は、例えば車両が事故に遭遇したとき、あるいは、エアバッグ装置等の乗員保護装置が作動したとき、あるいは、居眠り検知や覚醒度判定等において、適宜の制御装置から生体情報の検出要求が出力された場合に実行される。
先ず、例えば図3に示すステップS01においては、各圧電素子14,16により検出される乗員の体圧または体表面の微小振動の時間変化の検出信号を取得する。
The biological state detection device 10 according to the present embodiment has the above-described configuration. Next, based on the operation of the biological state detection device 10, in particular, detection signals output from the piezoelectric elements 14 and 16, heartbeats and the like. Processing for detecting biological information will be described.
Note that the following processing is performed, for example, when the vehicle encounters an accident, when an occupant protection device such as an air bag device is activated, or when detecting the drowsiness or determining the degree of arousal from the appropriate control device. It is executed when a detection request is output.
First, for example, in step S01 shown in FIG. 3, a detection signal of a time change of the occupant's body pressure or minute vibrations on the body surface detected by the piezoelectric elements 14 and 16 is acquired.

そして、ステップS02においては、取得した検出信号から人体の固有振動数(例えば、4〜8Hz等)を含む所定振動数帯域幅の波形成分を抽出すると共に、切出間隔Δtに初期値として所定時間間隔(例えば、6s等)を設定する。
そして、ステップS03においては、切出間隔Δtに応じた波形領域を抽出する。
そして、ステップS04においては、抽出した所定波形成分を、例えばフーリエ変換等の直交変換によって周波数成分に分解し、時系列データの波形を、周波数分布の周波数波形へと変換する。
In step S02, a waveform component having a predetermined frequency bandwidth including the natural frequency (eg, 4 to 8 Hz) of the human body is extracted from the acquired detection signal, and a predetermined time is set as an initial value for the cut interval Δt. An interval (for example, 6 s) is set.
In step S03, a waveform region corresponding to the cutting interval Δt is extracted.
In step S04, the extracted predetermined waveform component is decomposed into frequency components by, for example, orthogonal transformation such as Fourier transform, and the waveform of the time series data is converted into a frequency waveform of frequency distribution.

そして、ステップS05においては、検出対象である心拍等の生体情報に対する複数の適宜値毎に、各適宜値に対応する周波数を基本周波数とする倍数周波数に対応する高調波成分により構成されるパターン波形を生成し、複数のパターン波形のうち、周波数波形に最も良く近似されるパターン波形を検出し、このパターン波形を構成する各波形成分のピーク位置の間隔、つまり各ピーク位置での周波数の差に基づいて、検出対象である生体情報(例えば、心拍数)を検出する。   And in step S05, the pattern waveform comprised by the harmonic component corresponding to the multiple frequency which makes the frequency corresponding to each appropriate value a fundamental frequency for every some appropriate value with respect to biometric information, such as a heartbeat which is a detection target, The pattern waveform that best approximates the frequency waveform is detected from the multiple pattern waveforms, and the interval between the peak positions of each waveform component that makes up this pattern waveform, that is, the frequency difference at each peak position, is detected. Based on this, biological information (for example, heart rate) that is a detection target is detected.

そして、ステップS06においては、生体情報の検出結果を記憶する。
そして、ステップS07においては、終了指示が有るか否かを判定する。
この判定結果が「YES」の場合には、一連の処理を終了する。
一方、この判定結果が「NO」の場合には、ステップS08に進む。
そして、ステップS08においては、記憶された生体情報の検出結果うち、所定の信頼度を有するデータは存在するか否かを判定する。
なお、この判定処理では、例えば過去に得られた心拍数の所定時間(例えば、1分程度等)の母集団から平均値を算出し、この平均値と検出結果の差が所定範囲、例えば±20(bpm:(60s)−1)等であれば、所定の信頼度が得られていると判定する。
この判定結果が「NO」の場合には、上述したステップS03に戻る。
一方、この判定結果が「YES」の場合には、ステップS09に進む。
In step S06, the detection result of the biological information is stored.
In step S07, it is determined whether there is an end instruction.
If the determination result is “YES”, the series of processes is terminated.
On the other hand, if this determination is “NO”, the flow proceeds to step S08.
In step S08, it is determined whether or not there is data having a predetermined reliability among the detection results of the stored biological information.
In this determination process, for example, an average value is calculated from a population of heart rate obtained in the past for a predetermined time (for example, about 1 minute), and the difference between the average value and the detection result is within a predetermined range, for example, ± If it is 20 (bpm: (60 s) −1 ) or the like, it is determined that a predetermined reliability is obtained.
If this determination is “NO”, the flow returns to step S 03 described above.
On the other hand, if this determination is “YES”, the flow proceeds to step S 09.

そして、ステップS09においては、所定の信頼度を有する生体情報の検出結果に基づき、例えば平均値等によって、次回の検出処理における生体情報の予測値、例えば予測心拍数Bp(bpm:(60s)−1)を算出する。
そして、ステップS10においては、上記数式(1)により、次回の処理での切出間隔Δt(s)を算出し、上述したステップS03に戻る。
In step S09, based on the detection result of the biological information having a predetermined reliability, the predicted value of the biological information in the next detection processing, for example, the predicted heart rate Bp (bpm: (60s) − 1 ) is calculated.
In step S10, the cut-out interval Δt (s) in the next process is calculated by the above formula (1), and the process returns to the above-described step S03.

これにより、例えば所定係数αを1とし、所定周期(2+α)を3(周期)に固定した場合であっても、例えば図4(a),(b)に示す各圧電素子14,16から出力される検出信号(電圧値)の時間変化を示す適宜の波形Pのように、切出間隔Δt(s)つまりフーリエ変換の時間領域は、予測心拍数Bp(bpm:(60s)−1)に応じて変化することになる。
そして、例えば図5に示す実施例のように、平均心拍数が64(bpm:(60s)−1)である場合に、各圧電素子14,16から得られた検出信号に対し、切出間隔Δtを1〜10(s)に亘って変化させた時の心拍数の検出誤差から分かるように、切出間隔Δt=3、つまり拍動回数で約2.8回(周期)に相当する場合に検出誤差が最小となり、例えば切出間隔Δt=2未満、つまり拍動回数で約1.9回(周期)未満ではフーリエ変換の時間領域が過剰に短くなって生体情報の検出誤差が増大してしまい、例えば切出間隔Δt=3よりも大きい値、つまり拍動回数で3回(周期)よりも大きい値では、生体情報が有する揺らぎ成分によって誤差が増大することになる。
Thus, for example, even when the predetermined coefficient α is set to 1 and the predetermined period (2 + α) is fixed to 3 (period), for example, output from each of the piezoelectric elements 14 and 16 shown in FIGS. Like the appropriate waveform P indicating the time change of the detected signal (voltage value), the cut-out interval Δt (s), that is, the time domain of the Fourier transform is the predicted heart rate Bp (bpm: (60s) −1 ). It will change accordingly.
For example, when the average heart rate is 64 (bpm: (60 s) −1 ) as in the embodiment shown in FIG. 5, the extraction interval is detected with respect to the detection signals obtained from the piezoelectric elements 14 and 16. As can be seen from the detection error of the heart rate when Δt is changed over 1 to 10 (s), the extraction interval Δt = 3, that is, the number of beats corresponds to about 2.8 times (cycle) For example, if the extraction interval is less than Δt = 2, that is, if the number of pulsations is less than about 1.9 times (cycles), the time domain of Fourier transform becomes excessively short and the detection error of biological information increases. For example, if the value is larger than the extraction interval Δt = 3, that is, if the number of pulsations is larger than 3 (periods), the error increases due to the fluctuation component of the biological information.

上述したように、本実施の形態による生体状態検出装置10によれば、各圧電素子14,16から出力される検出信号(電圧値)の時間変化を示す波形をフーリエ変換する際に、過去に検出された生体情報によるフィードバック処理によってフーリエ変換の時間領域、つまり切出間隔Δt(s)を設定することから、生体情報の検出精度を向上させるためにフーリエ変換の時間領域が過剰に長くなってしまったり、生体情報の検出に要する時間を短縮するためにフーリエ変換の時間領域が過剰に短くなって生体情報の所望の検出精度を確保することができなくなることを防止することができる。
さらに、切出間隔Δt(s)を設定する上記数式(1)において、所定周期(2+α)を2以上かつ3以下とすることによって、例えばフーリエ変換の時間領域が過剰に短くなって誤差が増大してしまったり、例えば生体情報が有する揺らぎ成分によって誤差が増大することを防止して、フーリエ変換の時間領域を適切に設定することができる。
As described above, according to the biological state detection device 10 according to the present embodiment, when the waveform indicating the time change of the detection signals (voltage values) output from the piezoelectric elements 14 and 16 is Fourier transformed in the past. Since the Fourier transform time domain, that is, the extraction interval Δt (s) is set by feedback processing using the detected biometric information, the time domain of the Fourier transform becomes excessively long in order to improve the detection accuracy of the biometric information. It is possible to prevent the time required for detecting biometric information from being shortened, and the time domain of Fourier transform from becoming excessively short, so that the desired detection accuracy of biometric information cannot be ensured.
Further, in the above formula (1) for setting the cutting interval Δt (s), by setting the predetermined period (2 + α) to 2 or more and 3 or less, for example, the time domain of the Fourier transform becomes excessively short and the error increases. For example, it is possible to prevent the error from increasing due to the fluctuation component of the biological information, and appropriately set the time domain of the Fourier transform.

なお、上述した実施の形態においては、各圧電素子14,16を備えるとしたが、これに限定されず、乗員の体圧または体表面の微小振動の時間変化を検出する適宜の感圧素子であってもよい。   In the above-described embodiment, the piezoelectric elements 14 and 16 are provided. However, the present invention is not limited to this, and an appropriate pressure-sensitive element that detects temporal changes in the body pressure of the occupant or the minute vibrations on the body surface is used. There may be.

本発明の実施の形態に係る生体状態検出装置の構成図である。It is a block diagram of the biological condition detection apparatus which concerns on embodiment of this invention. 図2(a)〜(f)は各圧電素子から出力される検出信号(電圧値)の波形Pと切出間隔Δtに応じた包絡線波形EVとを示す図である。2A to 2F are diagrams showing a waveform P of a detection signal (voltage value) output from each piezoelectric element and an envelope waveform EV corresponding to the cut-out interval Δt. 本発明の実施の形態に係る生体状態検出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the biological condition detection apparatus which concerns on embodiment of this invention. 図4(a),(b)は各圧電素子から出力される検出信号(電圧値)の波形Pの予測心拍数Bpと切出間隔Δtとを示す図である。4A and 4B are diagrams showing the predicted heart rate Bp and the cut-out interval Δt of the waveform P of the detection signal (voltage value) output from each piezoelectric element. 平均心拍数が64(bpm:(60s)−1)である場合に各圧電素子から出力される検出信号(電圧値)の波形に対し、切出間隔Δtを1〜10(s)に亘って変化させた時の心拍数の検出誤差を示す図である。With respect to the waveform of the detection signal (voltage value) output from each piezoelectric element when the average heart rate is 64 (bpm: (60 s) −1 ), the cutting interval Δt is set to 1 to 10 (s). It is a figure which shows the detection error of the heart rate when making it change.

符号の説明Explanation of symbols

10 生体状態検出装置
14 第1圧電素子(状態量検出手段)
16 第2圧電素子(状態量検出手段)
23 変換処理部(フーリエ変換手段)
24 生体情報検出部(生体情報検出手段)
27 切出間隔設定部(フーリエ変換手段)
DESCRIPTION OF SYMBOLS 10 Living body state detection apparatus 14 1st piezoelectric element (state quantity detection means)
16 Second piezoelectric element (state quantity detection means)
23 Conversion processing unit (Fourier transform means)
24 Biological information detection unit (biological information detection means)
27 Cutting interval setting unit (Fourier transform means)

Claims (2)

生体対象物の状態に係る状態量を検出する状態量検出手段と、
前記状態量検出手段により検出された前記状態量の信号を所定期間でフーリエ変換して周波数成分を出力するフーリエ変換手段と、
前記周波数成分に基づき前記生体対象物の生体情報を検出する生体情報検出手段とを備え、
前記フーリエ変換手段は、前記生体情報検出手段によって過去に検出された前記生体情報に基づき、前記所定期間を変更可能であることを特徴とする生体状態検出装置。
State quantity detection means for detecting a state quantity relating to the state of the biological object;
Fourier transform means for Fourier-transforming a signal of the state quantity detected by the state quantity detection means in a predetermined period and outputting a frequency component;
Biological information detection means for detecting biological information of the biological object based on the frequency component,
The biological state detection apparatus, wherein the Fourier transform means can change the predetermined period based on the biological information detected in the past by the biological information detection means.
前記フーリエ変換手段は、前記所定期間であるΔt(s)を、ゼロ以上かつ1以下の所定係数であるαと、前記生体情報検出手段によって過去に検出された前記生体情報に基づく次回の処理での生体情報の予測値Bp((60s)−1)とを用いた所定数式
(Δt=(60/Bp)×(2+α))
により設定することを特徴とする請求項1に記載の生体状態検出装置。
In the next processing based on the biological information detected in the past by the biological information detecting means, the Fourier transforming means sets Δt (s), which is the predetermined period, to α, which is a predetermined coefficient not less than zero and not more than 1. The predetermined mathematical formula (Δt = (60 / Bp) × (2 + α)) using the predicted value Bp ((60 s) −1 ) of the biological information of
The biological state detection device according to claim 1, wherein the biological state detection device is set according to claim 1.
JP2007072769A 2007-03-20 2007-03-20 Biological state detecting apparatus Withdrawn JP2008228987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072769A JP2008228987A (en) 2007-03-20 2007-03-20 Biological state detecting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007072769A JP2008228987A (en) 2007-03-20 2007-03-20 Biological state detecting apparatus

Publications (1)

Publication Number Publication Date
JP2008228987A true JP2008228987A (en) 2008-10-02

Family

ID=39902522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072769A Withdrawn JP2008228987A (en) 2007-03-20 2007-03-20 Biological state detecting apparatus

Country Status (1)

Country Link
JP (1) JP2008228987A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018011948A (en) * 2016-07-12 2018-01-25 国立大学法人秋田大学 Biological signal analysis apparatus, biological signal analysis method, and biological signal analysis system
JP7472741B2 (en) 2020-09-28 2024-04-23 サクサ株式会社 Pulse rate measuring device and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018011948A (en) * 2016-07-12 2018-01-25 国立大学法人秋田大学 Biological signal analysis apparatus, biological signal analysis method, and biological signal analysis system
JP7018621B2 (en) 2016-07-12 2022-02-14 国立大学法人秋田大学 Biosignal analysis device, biosignal analysis method and biosignal analysis system
JP7472741B2 (en) 2020-09-28 2024-04-23 サクサ株式会社 Pulse rate measuring device and program

Similar Documents

Publication Publication Date Title
JP4505619B2 (en) Psychosomatic state judgment system
JP4645259B2 (en) Blood pressure measurement device
JP6579890B2 (en) Fatigue meter
KR20040101941A (en) Sleepiness level detection device
JP2010142456A (en) Heartbeat detecting apparatus
JP6513005B2 (en) Fatigue meter
JP6312193B2 (en) Awakening device and seat
JP6602248B2 (en) Electronic blood pressure monitor
JP2007061490A (en) Occupant condition detecting device
US10803335B2 (en) Emotion estimating apparatus
JP4452145B2 (en) Heart rate detector
JP2016123594A (en) Device and method of estimating autonomic nerve activity
JP2008228987A (en) Biological state detecting apparatus
JP2005218595A (en) Psychic stress evaluation method and apparatus
JP2011183050A (en) Driver diagnostic device
JP2010131061A (en) Drowsiness detector
JP4609539B2 (en) Sleepiness detection device
JP2016047305A (en) Consciousness state estimation device and program
JPH1071137A (en) Device and method for displaying degree of stress
JP2018191780A (en) State estimation device, information processing device, and state estimation system
JP6218267B2 (en) Vascular viscoelasticity evaluation apparatus, vascular viscoelasticity evaluation method and program
WO2012056546A1 (en) Degree of wakefulness adjudication device, degree of wakefulness adjudication method, and degree of wakefulness adjudication program
JP2004073520A (en) Morbidity diagnosing apparatus, and program
JP5812265B2 (en) Autonomic nerve state evaluation system
JP4797646B2 (en) Arousal level estimation device and arousal level estimation method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601