JP2008228934A - Artery wall hardness evaluation system - Google Patents

Artery wall hardness evaluation system Download PDF

Info

Publication number
JP2008228934A
JP2008228934A JP2007071624A JP2007071624A JP2008228934A JP 2008228934 A JP2008228934 A JP 2008228934A JP 2007071624 A JP2007071624 A JP 2007071624A JP 2007071624 A JP2007071624 A JP 2007071624A JP 2008228934 A JP2008228934 A JP 2008228934A
Authority
JP
Japan
Prior art keywords
pressure
cuff
hardness
pulse wave
arterial wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007071624A
Other languages
Japanese (ja)
Other versions
JP4253683B2 (en
Inventor
Yoshiyuki Asai
義之 淺井
Hidehiko Komine
秀彦 小峰
Takashi Yokoi
孝志 横井
Yukiyoshi Saito
之良 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHISEI DEETAMU KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
SHISEI DEETAMU KK
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHISEI DEETAMU KK, National Institute of Advanced Industrial Science and Technology AIST filed Critical SHISEI DEETAMU KK
Priority to JP2007071624A priority Critical patent/JP4253683B2/en
Publication of JP2008228934A publication Critical patent/JP2008228934A/en
Application granted granted Critical
Publication of JP4253683B2 publication Critical patent/JP4253683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To accurately evaluate the vascular hardness easily anytime at home by anyone without requiring professional knowledge. <P>SOLUTION: The artery wall hardness evaluation system is composed of a cuff to be attached to a part of a living body; a cuff pressure sensor for sensing the pressure inside the cuff; a cuff pressure control part for the control to pressurize or depressurize the cuff based on the value detected by the cuff pressure sensor; and a data processing part for computing the amplitude of the cuff pressure pulse waves and blood pressure pulse waves based on the pulse waves detected by the cuff pressure sensor, and evaluating the hardness of the artery wall based on the computed pulse wave amplitude. The hardness of the artery wall is evaluated by a pressure/diameter characteristic curve, which is the relation between the cross sectional area of the blood vessel and the inner/outer pressure difference applied to the vascular wall, and is estimated from the waveform and amplitude of the pulse waves detected by the cuff. Further, the hardness of the vascular wall is evaluated with the function with which the pressure/diameter characteristic curve is differentiated from the detected pulse waves with regard to the inner/outer pressure difference, and by using an arctangent function or sigmoid function. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は動脈壁の硬さの状態を、病院等に設置された大がかりな装置や複雑なシステムを用いることなく、一般家庭でも簡易に評価することができるようにした動脈壁硬さ評価システムに関する。   The present invention relates to an arterial wall hardness evaluation system that can easily evaluate the state of arterial wall hardness in a general home without using a large-scale apparatus or a complicated system installed in a hospital or the like. .

従来、血管壁硬化度の評価技術として脈波伝播速度を計測する技術、血管を伝導する脈波の進行波と反射波との干渉を計測する技術がある。これらの技術による計測には大掛かりな装置を用いる必要があり、実際には病院など専門の施設で検査として受診する必要がある。また、これらの機器の操作には専門知識が必要である。   Conventionally, as a technique for evaluating the degree of vascular wall hardening, there are a technique for measuring a pulse wave propagation velocity, and a technique for measuring interference between a traveling wave of a pulse wave passing through a blood vessel and a reflected wave. It is necessary to use a large-scale device for the measurement by these techniques, and actually it is necessary to receive a medical examination as a test in a specialized facility such as a hospital. In addition, specialized knowledge is required to operate these devices.

それに対して特開平5−38331号公報、特開平5−38332号公報に開示された発明では、カフを用いた動脈硬化評価装置が提案されている。しかしながらこれらの発明では、カフ圧から検出した脈波の振幅の高さの変化の度合いを評価しているに過ぎない。   On the other hand, in the invention disclosed in Japanese Patent Laid-Open Nos. 5-38331 and 5-38332, an arteriosclerosis evaluation apparatus using a cuff is proposed. However, these inventions merely evaluate the degree of change in the height of the amplitude of the pulse wave detected from the cuff pressure.

また特開2004−223046号公報及び特開平7−124129号公報には、カフを用いた動脈硬化評価装置が提案されている。この発明では、動脈壁に加わる内力と外力の差と動脈径の関係を考慮した手法を提案している。カフにより検出した脈波の振幅と血圧を用いて、直接、血管壁の内外圧差と血管径の関係を導出している。この方法によると血管壁の内外圧差と血管径の関係として、予めある関数を仮定する必要があり、したがって得られる結果も必然的に前提とした関数に依存することとなる。このため、この推定方法が妥当であるかどうかの根拠に乏しいという問題がある。
特開平5−38331号公報 特開平5−38332号公報 特開2004−223046号公報 特開平7−124129号公報
JP-A-2004-223046 and JP-A-7-124129 propose an arteriosclerosis evaluation apparatus using a cuff. The present invention proposes a method that considers the relationship between the difference between the internal and external forces applied to the artery wall and the artery diameter. The relationship between the internal / external pressure difference of the blood vessel wall and the blood vessel diameter is directly derived using the amplitude and blood pressure of the pulse wave detected by the cuff. According to this method, it is necessary to assume a certain function in advance as the relationship between the internal / external pressure difference of the blood vessel wall and the blood vessel diameter, and thus the obtained result necessarily depends on the assumed function. For this reason, there is a problem that the basis for whether this estimation method is valid is poor.
Japanese Patent Laid-Open No. 5-38331 JP-A-5-38332 JP 2004-223046 A JP 7-124129 A

前記従来の手法により血管硬度を評価したい場合は、病院等の施設を訪れ、計測の都度代金を支払う必要がある。また、装置や施設の予定に合わせる必要性から時間的な束縛も必然的に生じる。そのため、誰でもいつでも自分の血管硬度を評価できるとは言えないのが現状である。   When it is desired to evaluate the blood vessel hardness by the conventional method, it is necessary to visit a facility such as a hospital and pay the price for each measurement. In addition, time constraints are inevitably generated due to the necessity of meeting the schedule of the apparatus and facility. For this reason, it cannot be said that anyone can always evaluate their own vascular hardness.

また前記特許文献1、2に開示されているような技術では血管壁の特性まで考慮した測定は行っておらず、正確に血管壁の硬さを評価しているとはいえない。また、特許文献3に開示されているような技術では前記のように血管壁の硬さの評価手法として理論的な疑問があり、正確な血管壁の硬さを評価しているかについては大きな疑問がある。   Further, the techniques disclosed in Patent Documents 1 and 2 do not perform measurement in consideration of the characteristics of the blood vessel wall, and cannot be said to accurately evaluate the hardness of the blood vessel wall. Further, in the technique disclosed in Patent Document 3, there is a theoretical question as a method for evaluating the hardness of the blood vessel wall as described above, and it is a great question as to whether the hardness of the blood vessel wall is accurately evaluated. There is.

したがって本発明は一般の家庭内で、誰もが専門知識を必要とせず簡単に、いつでも血管硬度を評価でき、従来の類似技術に比して血管硬度をより精度よく評価することができる動脈壁硬さ評価システムを得ることを目的としている。   Therefore, the present invention can easily evaluate vascular hardness at any time without requiring specialized knowledge in a general household, and can more accurately evaluate vascular hardness compared to conventional similar techniques. The purpose is to obtain a hardness evaluation system.

本発明に係る動脈壁硬さ評価システムは前記課題を解決するため、生体の一部に装着するカフと、前記カフ内部の圧力を検出するカフ圧センサーと、前記カフ圧センサーの検出値に基づきカフを所定値に加圧、減圧制御するカフ圧制御手段と、前記カフ圧センサーにより検出した脈波に基づきカフ圧脈波と血圧脈波の振幅を計算し、その脈波振幅に基づき動脈壁の硬さの評価を行うデータ処理手段とからなることを特徴とする。   In order to solve the above problems, an arterial wall hardness evaluation system according to the present invention is based on a cuff attached to a part of a living body, a cuff pressure sensor for detecting a pressure inside the cuff, and a detection value of the cuff pressure sensor. Cuff pressure control means for pressurizing and depressurizing the cuff to a predetermined value, and calculating the amplitude of the cuff pressure pulse wave and the blood pressure pulse wave based on the pulse wave detected by the cuff pressure sensor, and based on the pulse wave amplitude, the arterial wall And data processing means for evaluating the hardness of the steel.

また、本発明に係る他の動脈壁硬さ評価システムは、前記動脈壁硬さ評価システムにおいて、前記動脈壁の硬さの評価を血管断面積と血管壁に加わる内外圧力差との関係である圧径特性曲線を推定して行う。また、前記動脈壁の硬さの評価をカフにより検出された脈波の形状及び振幅から推定して行う。また、前記動脈壁の硬さの評価を検出された脈波から、圧径特性曲線を内外圧差に関して微分した関数を推定して行う。また、前記動脈壁の硬さの評価を前記微分した圧径特性曲線を数値積分することで圧径特性曲線を推定する。また、前記動脈壁の硬さの評価を前記推定した圧径特性曲線に最適にフィットする関数を同定して、このときに決まるパラメータの値を用いて評価する。また前記関数として逆正接関数あるいはシグモイド関数を用いる。また、前記のような手法を用いることにより、体動など突発的な変動に対して動脈壁硬さの評価をロバストとしたものである。   Further, another arterial wall hardness evaluation system according to the present invention is a relationship between a blood vessel cross-sectional area and an internal / external pressure difference applied to the blood vessel wall in the arterial wall hardness evaluation system. This is done by estimating the pressure characteristic curve. The evaluation of the arterial wall hardness is performed by estimating the shape and amplitude of the pulse wave detected by the cuff. The evaluation of the stiffness of the artery wall is performed by estimating a function obtained by differentiating the pressure characteristic curve with respect to the internal / external pressure difference from the detected pulse wave. In addition, the pressure characteristic curve is estimated by numerically integrating the differentiated pressure characteristic curve to evaluate the hardness of the artery wall. Further, a function that optimally fits the evaluation of the stiffness of the arterial wall to the estimated pressure characteristic curve is identified and evaluated using the parameter value determined at this time. Further, an arctangent function or a sigmoid function is used as the function. In addition, by using the method as described above, the evaluation of the arterial wall hardness is made robust against sudden fluctuations such as body movements.

本発明は一般の家庭内で、誰もが専門知識を必要とせず簡単に、いつでも血管硬度を評価でき、従来の類似技術に比して血管硬度をより精度よく評価することができるようになる。   The present invention can easily evaluate blood vessel hardness at any time without requiring specialized knowledge in a general household, and can evaluate blood vessel hardness more accurately than conventional similar techniques. .

即ち本発明によれば、血圧測定と同じように上腕部に巻いたカフを加圧・減圧するだけで、家庭においても簡単に血管硬度を評価できる。したがって、心臓病や脳血管障害などにつながる動脈硬化を予防するために上腕動脈硬度をどこでもいつでも誰でも簡単に評価できるようになり、予防医学的観点から重要な技術を提供することができる。   That is, according to the present invention, blood vessel hardness can be easily evaluated at home by simply pressurizing and depressurizing the cuff wound around the upper arm as in blood pressure measurement. Therefore, anyone can easily evaluate brachial artery hardness anywhere and anytime to prevent arteriosclerosis leading to heart disease, cerebrovascular disorder, etc., and can provide an important technique from a preventive medical viewpoint.

本発明は前記のように、一般の家庭内で、誰もが専門知識を必要とせず簡単に、いつでも血管硬度を精度良く評価できるようにする、という課題を、生体の一部に装着するカフと、前記カフ内部の圧力を検出するカフ圧センサーと、前記カフ圧センサーの検出値に基づきカフを所定値に加圧、減圧制御するカフ圧制御手段と、前記カフ圧センサーにより検出した脈波に基づきカフ圧脈波と血圧脈波の振幅を計算し、その脈波振幅に基づき動脈壁の硬さの評価を行うデータ処理手段とからなる   As described above, the present invention provides a cuff for attaching a part of a living body to the problem of enabling anyone to easily and accurately evaluate vascular hardness at any time without requiring specialized knowledge in a general household. A cuff pressure sensor for detecting the pressure inside the cuff, cuff pressure control means for pressurizing and depressurizing the cuff to a predetermined value based on a detection value of the cuff pressure sensor, and a pulse wave detected by the cuff pressure sensor And a data processing means for calculating the amplitude of the cuff pressure pulse wave and the blood pressure pulse wave and evaluating the stiffness of the arterial wall based on the pulse wave amplitude.

例えば図1に示すように、血管の直径は血管内から外へ向かう圧力と外から加わる圧力の差(内外圧差)および血管の材料特性で決定される。ここで内外圧差=内圧−外圧と定義する。負の内外圧差、即ち外圧が内圧より高いときには血管径は小さくなり、逆に正の内外圧差のときには血管は押し広げられる。したがって内外圧差が決まれば血管径は決まるので、血管径は内外圧差の関数として表すことができる。   For example, as shown in FIG. 1, the diameter of the blood vessel is determined by the difference between the pressure from the inside of the blood vessel to the outside and the pressure applied from the outside (internal / external pressure difference) and the material characteristics of the blood vessel. Here, the internal / external pressure difference = internal pressure−external pressure is defined. When the negative internal / external pressure difference, that is, when the external pressure is higher than the internal pressure, the blood vessel diameter becomes small, and conversely, when the positive internal / external pressure difference is positive, the blood vessel is expanded. Therefore, since the blood vessel diameter is determined when the internal / external pressure difference is determined, the blood vessel diameter can be expressed as a function of the internal / external pressure difference.

血管径が取りえる最大値には限界がある。このため、血管の径を内外圧差の関数として描画すると例えば図2に示すようなシグモイド関数曲線状となる。以降では、この関数曲線を「血管の圧径特性曲線」と呼ぶ。   There is a limit to the maximum value that the blood vessel diameter can take. Therefore, when the diameter of the blood vessel is drawn as a function of the internal / external pressure difference, for example, a sigmoid function curve as shown in FIG. 2 is obtained. Hereinafter, this function curve is referred to as a “blood vessel diameter characteristic curve”.

上記のような血管の圧径特性曲線に、血管壁組織の特性が反映される。例えば図3に示すように、血管壁を構成する組織が硬いと特性曲線のカーブは緩やかになり、組織が柔らかいとカーブが急になる。このことから、本発明では血管の圧径特性曲線を推定することで血管の硬さを評価するものであり、ここに本発明の特徴的な点がある。   The characteristics of the vascular wall tissue are reflected in the pressure characteristic curve of the blood vessel as described above. For example, as shown in FIG. 3, the curve of the characteristic curve becomes gentle if the tissue constituting the blood vessel wall is hard, and the curve becomes sharp if the tissue is soft. Therefore, in the present invention, the stiffness of the blood vessel is evaluated by estimating the pressure characteristic curve of the blood vessel, which is a characteristic point of the present invention.

この特性曲線を推定するためには種々の手法が考えられるが、次のような手順によっても適切に推定することができる。即ち以下に述べる手法では前記特性曲線を推定するため、計測にカフを用いるものである。カフによる計測は従来より一般家庭でも広く利用されており、簡易かつ非侵襲的であり、安価であるというメリットがある。   Various methods can be considered to estimate this characteristic curve, but it can also be estimated appropriately by the following procedure. That is, the method described below uses a cuff for measurement in order to estimate the characteristic curve. Cuff measurement has been widely used in ordinary homes, and has the advantage of being simple and non-invasive and inexpensive.

カフを用いた本発明による簡易型動脈壁硬さ評価システムの機能ブロック図を図4に示す。同図に示すように、システム全体の制御を行う制御部にはカフ圧制御部を備え、後述するような圧力センサーからの情報に応じてカフ圧の加圧・減圧の制御信号を生成する。このカフ圧制御部の設定に基づいて、カフを圧迫するための空気を送り込むポンプが制御され、生体の一部に装着して加圧、減圧を行うカフの圧力制御がなされる。このカフに伝わる脈波を圧力センサーで検出する。この圧力センサーによって前記のようにカフ圧制御が行われると共に、圧力センサーで検出した脈波に基づき、後述するような処理を行い、脈波振幅の計算、血管壁の硬さの評価等を行うようにしている。   A functional block diagram of a simplified arterial wall hardness evaluation system according to the present invention using a cuff is shown in FIG. As shown in the figure, the control unit that controls the entire system includes a cuff pressure control unit, and generates a cuff pressure pressurization / depressurization control signal according to information from a pressure sensor as described later. Based on the setting of the cuff pressure control unit, a pump that feeds air for compressing the cuff is controlled, and pressure control of the cuff that is attached to a part of the living body and pressurizes and depressurizes is performed. The pulse wave transmitted to this cuff is detected by a pressure sensor. The cuff pressure control is performed by the pressure sensor as described above, and the processing as described later is performed based on the pulse wave detected by the pressure sensor to calculate the pulse wave amplitude, evaluate the hardness of the blood vessel wall, and the like. I am doing so.

このシステムを用い、実際に動脈壁硬さ評価を行う際には最初にカフを、例えば人体の上腕等の、人体の一部に装着する。その後ポンプを駆動してカフの内圧を次第に高めるとともに、カフの内圧を逐次計測する。このときのサンプリング周波数は例えば1000Hz程度とする。圧力センサーで実際の圧力を検出しつつ、ヒトの最高血圧を若干上回る程度までカフに空気を注入し加圧する。このときの目標圧の目安はおよそ200mHg程度である。   When actually evaluating the arterial wall hardness using this system, a cuff is first attached to a part of the human body such as the upper arm of the human body. Thereafter, the pump is driven to gradually increase the internal pressure of the cuff, and the internal pressure of the cuff is sequentially measured. The sampling frequency at this time is about 1000 Hz, for example. While detecting the actual pressure with a pressure sensor, air is injected into the cuff and pressurized to a level slightly above the human maximum blood pressure. The target pressure at this time is about 200 mHg.

目標圧に到達した後、カフ内の空気を抜き一定速度で減圧する。減圧の速度は、減圧中に解析に十分な回数の拍動を記録できる速度とする。実際にはおよそ3mmHg/秒程度の減圧速度が目安である。図5にはこのような加圧及び減圧の作動を記録したカフ内圧の時系列データを示す。   After reaching the target pressure, the air in the cuff is evacuated and depressurized at a constant speed. The speed of depressurization is a speed at which a sufficient number of pulsations can be recorded during analysis. In practice, a pressure reduction rate of about 3 mmHg / second is a standard. FIG. 5 shows time-series data of the cuff internal pressure recording such pressurization and decompression operations.

以降では血管壁に加わる外圧として主にカフが締めつける圧力を想定する。したがって、以降では、血管壁に加わる内外圧差は血圧とカフ圧の差とみなす。上記のようにして記録したカフ内圧時系列データに帯域通過フィルターを適用し、脈波成分を抽出すると例えば図6に示すようなカフ脈波データが得られる。ここで通過周波数帯域はおよそ0.5Hzから10Hzとする。以降、これを「カフ圧脈波時系列」と呼ぶ。また、例えば図7に示すようなカフ圧脈波時系列の中で、局所最小値から次の局所最小値までの区間を1つのカフ圧脈波と呼ぶ。したがって、カフ圧脈波時系列は複数のカフ圧脈波が連なったものである。   In the following, it is assumed that the cuff is mainly tightened as the external pressure applied to the blood vessel wall. Therefore, hereinafter, the internal / external pressure difference applied to the blood vessel wall is regarded as the difference between the blood pressure and the cuff pressure. When a band pass filter is applied to the cuff internal pressure time-series data recorded as described above to extract a pulse wave component, for example, cuff pulse wave data as shown in FIG. 6 is obtained. Here, the pass frequency band is about 0.5 Hz to 10 Hz. Hereinafter, this is referred to as “cuff pressure pulse wave time series”. Further, for example, in the cuff pressure pulse wave time series as shown in FIG. 7, a section from the local minimum value to the next local minimum value is referred to as one cuff pressure pulse wave. Therefore, the cuff pressure pulse wave time series is a series of a plurality of cuff pressure pulse waves.

上記のようにして記録したカフ内圧時系列データに低域通過フィルターを適用し、例えば図8に示すようなカフ圧のベースラインを抽出する。このとき遮断周波数は0.5Hzとする。以降、これを「カフ圧ベースライン時系列」と呼ぶ。本発明ではこのようにして抽出した脈波成分のうち、カフの減圧過程に記録されたカフ圧脈波を用いて血管の圧径特性曲線を推定するものである。   A low-pass filter is applied to the cuff internal pressure time-series data recorded as described above, and for example, a cuff pressure baseline as shown in FIG. 8 is extracted. At this time, the cutoff frequency is 0.5 Hz. Hereinafter, this is referred to as “cuff pressure baseline time series”. In the present invention, the pressure characteristic curve of the blood vessel is estimated using the cuff pressure pulse wave recorded in the cuff decompression process among the pulse wave components extracted in this way.

図9に示すようにカフ圧脈波は血管径を反映する。外圧が一定のときに血圧が上昇すると血管壁に加わる内外圧差は正の方向に大きくなり、血管径は広がり、血管体積は増加する。このときカフの外側は伸縮しにくい素材で覆われているため、前記のような血管体積の増加はカフ体積の縮小を引き起こし、カフ内圧は上昇することとなる。逆に血圧の低下は、血管径の縮小及びカフ圧の低下につながる。   As shown in FIG. 9, the cuff pressure pulse wave reflects the blood vessel diameter. If the blood pressure rises when the external pressure is constant, the internal / external pressure difference applied to the blood vessel wall increases in the positive direction, the blood vessel diameter increases, and the blood vessel volume increases. At this time, since the outside of the cuff is covered with a material that is difficult to expand and contract, the increase in the blood vessel volume as described above causes a reduction in the cuff volume, and the cuff internal pressure increases. Conversely, a decrease in blood pressure leads to a decrease in blood vessel diameter and a decrease in cuff pressure.

上記のようなカフ圧脈波の大きさ・形状と内外圧差とは、例えば図10に示すように、血管の圧径特性曲線を介して関係づけることができる。このとき、異なる外圧のもとでは、同一の血圧の変化を伴う脈波であっても、異なる大きさのカフ圧脈波として計測される。例えば、図10において、外圧が大きいときに発生した血圧脈波1は、カフ圧脈波1として計測される。外圧が小さいときに発生した血圧脈波2はカフ圧脈波2として計測される。   The size / shape of the cuff pressure pulse wave and the internal / external pressure difference as described above can be related via a pressure characteristic curve of a blood vessel as shown in FIG. 10, for example. At this time, under different external pressures, even pulse waves with the same blood pressure change are measured as cuff pressure pulse waves of different magnitudes. For example, in FIG. 10, the blood pressure pulse wave 1 generated when the external pressure is large is measured as the cuff pressure pulse wave 1. The blood pressure pulse wave 2 generated when the external pressure is small is measured as the cuff pressure pulse wave 2.

ここで血圧脈波とカフ圧脈波のみが計測可能な量であり、内外圧差も既知である。しかし、血管の圧径特性曲線は未知であるため、前記図10において、各カフ圧脈波の縦軸方向の位置を決定することはできない。したがって、血圧脈波およびカフ圧脈波から血管の圧径特性曲線を直接推定することはできない。   Here, only the blood pressure pulse wave and the cuff pressure pulse wave are measurable quantities, and the internal / external pressure difference is also known. However, since the pressure characteristic curve of the blood vessel is unknown, the position of each cuff pressure pulse wave in the vertical axis direction cannot be determined in FIG. Therefore, it is not possible to directly estimate the pressure characteristic curve of the blood vessel from the blood pressure pulse wave and the cuff pressure pulse wave.

そこで本発明では例えば図11に示すように、カフ圧脈波を用いて血管の圧径特性曲線を推定するために、以下の手順を取ることを提案する。まず、カフ圧脈波から血管の圧径特性曲線を内外圧差に関して微分した曲線を推定する。以降では、この曲線を微分圧径特性曲線と呼ぶ。次に、微分圧径特性曲線を数値積分することで、血管の圧径特性曲線を推定する。   Therefore, in the present invention, for example, as shown in FIG. 11, it is proposed to take the following procedure in order to estimate the radial characteristic curve of the blood vessel using the cuff pressure pulse wave. First, a curve obtained by differentiating the pressure characteristic curve of the blood vessel with respect to the internal / external pressure difference is estimated from the cuff pressure pulse wave. Hereinafter, this curve is referred to as a differential pressure characteristic curve. Next, the differential pressure-intensity characteristic curve is numerically integrated to estimate the blood vessel pressure-intensity characteristic curve.

前記のような微分圧径特性曲線を推定する方法として、以下に示すような2通りの方法が考えられる。   As a method for estimating the differential pressure characteristic curve as described above, the following two methods are conceivable.

方法1:
まず抽出したカフ圧脈波の振幅を求める。例えば図12に示すように、カフ圧脈波の始点(局所最小値)から最大値点までの高さを振幅とする。あるカフ圧脈波の振幅と脈圧(=収縮期血圧と拡張期血圧の差)の比は、血管の圧径特性曲線のある区間における平均の傾きの推定値となる。
Method 1:
First, the amplitude of the extracted cuff pressure pulse wave is obtained. For example, as shown in FIG. 12, the height from the start point (local minimum value) of the cuff pressure pulse wave to the maximum value point is used as the amplitude. The ratio between the amplitude and pulse pressure (= difference between systolic blood pressure and diastolic blood pressure) of a certain cuff pressure pulse wave is an estimated value of the average slope in a certain section of the vascular pressure characteristic curve.

図13にそのときの例を示す。ある内外圧差が血管に加わっているときに生じた血圧脈波1は、血管の圧径特性曲線を反映したカフ圧脈波1として計測される。カフ圧脈波の振幅と脈圧を用いて圧径特性曲線上に線分1を構成する。線分1の傾きは、線分1が構成される区間における圧径特性曲線の平均の傾きに一致する。以降、この区間をこの脈波に対する脈波区間と呼ぶ。各脈波区間の幅は脈圧に一致する。同様にして、各脈波の脈波区間内の圧径特性曲線の平均の傾きを求める。   FIG. 13 shows an example at that time. A blood pressure pulse wave 1 generated when a certain internal / external pressure difference is applied to the blood vessel is measured as a cuff pressure pulse wave 1 reflecting a pressure-diameter characteristic curve of the blood vessel. A line segment 1 is formed on the pressure characteristic curve using the amplitude and pulse pressure of the cuff pressure pulse wave. The slope of the line segment 1 matches the average slope of the radial characteristic curve in the section in which the line segment 1 is configured. Hereinafter, this section is referred to as a pulse wave section for this pulse wave. The width of each pulse wave section corresponds to the pulse pressure. Similarly, the average inclination of the pressure characteristic curve in the pulse wave section of each pulse wave is obtained.

各脈波の図13の線分1に相当する線分について、各線分の始点をX軸上にそろえて表示したものを図14に示す。任意の内外圧差PmmHgにおける圧径特性曲線の微分値は、内外圧差Pを含む全ての脈波区間の平均の傾きの平均値として定義する。   FIG. 14 shows the line segment corresponding to the line segment 1 of FIG. 13 of each pulse wave, with the start points of the line segments aligned on the X axis. The differential value of the pressure-diameter characteristic curve at an arbitrary internal / external pressure difference PmmHg is defined as an average value of an average slope of all pulse wave sections including the internal / external pressure difference P.

例として図15に、内外圧差がPmmHgであるときの圧径特性曲線の微分値を求める場合を示す。ここで、脈波区間1、2、3が内外圧差Pを含む脈波区間である。内外圧差Pにおける圧径特性曲線の微分値は、線分1、2、3の傾きの平均値として求める。上記の手法を用い、いろいろな内外圧差の値に対する血管の圧径特性曲線の微分値を求める。これにより、微分圧径特性曲線を推定する。   As an example, FIG. 15 shows a case where the differential value of the pressure characteristic curve when the internal / external pressure difference is PmmHg is obtained. Here, the pulse wave sections 1, 2, and 3 are pulse wave sections including the internal / external pressure difference P. The differential value of the pressure-diameter characteristic curve at the internal / external pressure difference P is obtained as the average value of the slopes of the line segments 1, 2, and 3. Using the above-described method, differential values of the vascular pressure-diameter characteristic curve with respect to various internal and external pressure difference values are obtained. As a result, a differential pressure characteristic curve is estimated.

方法2:
例えば図16に示すように、抽出したカフ圧脈波の始点となる局所最小値から最大値までの区間を考慮する。この区間は、血圧脈波の拡張期血圧から収縮期血圧までの過程に対応する。図17に示すように、血圧脈波1、カフ圧脈波1の該当区間を用いて曲線1を構成する。曲線1は、血管の圧径特性曲線の一部分を推定したものと見なすことができる。図18は、各脈波の前記図17の曲線1に相当する線分について、各曲線の始点をX軸上にそろえて表示したものである。
Method 2:
For example, as shown in FIG. 16, a section from the local minimum value to the maximum value that is the starting point of the extracted cuff pressure pulse wave is considered. This section corresponds to the process from the diastolic blood pressure to the systolic blood pressure of the blood pressure pulse wave. As shown in FIG. 17, the curve 1 is configured using the corresponding sections of the blood pressure pulse wave 1 and the cuff pressure pulse wave 1. Curve 1 can be considered as an estimate of a portion of the vascular pressure characteristic curve. FIG. 18 shows the line segments of each pulse wave corresponding to the curve 1 in FIG. 17 with the start points of the curves aligned on the X axis.

任意の内外圧差PmmHgにおける圧径特性曲線の微分値は次の方法で求める。まず、内外圧差Pを含む全ての脈波区間で構成された曲線のP近傍における傾きを計算する。次に、これらの傾きの平均値を計算する。この傾きの平均値を、内外圧差Pにおける圧径特性曲線の微分値とする。内外圧差がPmmHgのときにおける圧径特性曲線の微分値を求める場合の例を図19に示す。   The differential value of the radial characteristic curve at an arbitrary internal / external pressure difference PmmHg is obtained by the following method. First, the slope in the vicinity of P of the curve constituted by all pulse wave sections including the internal / external pressure difference P is calculated. Next, the average value of these slopes is calculated. The average value of the slope is set as the differential value of the pressure characteristic curve at the internal / external pressure difference P. An example of obtaining a differential value of the pressure characteristic curve when the internal / external pressure difference is PmmHg is shown in FIG.

この例では、内外圧差Pを含む脈波区間は3区間あり、各脈波区間において構成された曲線は、曲線1、2、3である。内外圧差Pにおける曲線1、2、3の傾きはそれぞれ傾き1、2、3である。圧径特性曲線の内外圧差Pにおける微分値は、傾き1、2、3の平均値として求められる。 上記の手法により、他の内外圧差の値に対する血管の圧径特性曲線の微分値を同様にして求める。これにより、微分圧径特性曲線を推定する。
このようにして微分圧径特性曲線が得られた後、その数値積分を計算し、圧径特性曲線を求める。以上の方法で血管の圧径特性曲線を推定することができる。
In this example, there are three pulse wave sections including the internal / external pressure difference P, and the curves formed in each pulse wave section are curves 1, 2, and 3. The slopes of the curves 1, 2, and 3 in the internal / external pressure difference P are slopes 1, 2, and 3, respectively. The differential value of the pressure characteristic curve in the internal / external pressure difference P is obtained as an average value of the gradients 1, 2, and 3. The differential value of the vascular pressure-diameter characteristic curve with respect to other values of the internal / external pressure difference is similarly obtained by the above method. As a result, a differential pressure characteristic curve is estimated.
After the differential pressure characteristic curve is obtained in this way, the numerical integration is calculated to obtain the pressure characteristic curve. The pressure characteristic curve of the blood vessel can be estimated by the above method.

前記のような血管の圧径特性曲線から血管壁の硬さを評価するために、本発明においては、推定された血管の圧径特性曲線に最もよくフィットする関数を決定し、このとき同定されたパラメータの値を用いて評価する。その手法として以下に示すような2通りの方法が考えられる。但し、同様にして更に種々の関数を用いた手法が考えられる。   In order to evaluate the hardness of the blood vessel wall from the pressure characteristic curve of the blood vessel as described above, in the present invention, a function that best fits the estimated blood pressure characteristic curve of the blood vessel is determined and identified at this time. Evaluate using the value of the selected parameter. As the method, the following two methods can be considered. However, similarly, a method using various functions can be considered.

方法1:
得られた血管の圧径特性曲線に最もよくフィットする逆正接関数を例えば図20のように求める。このときに用いる式は、

Figure 2008228934
である。 Method 1:
An arc tangent function that best fits the obtained blood vessel pressure characteristic curve is obtained as shown in FIG. The formula used at this time is
Figure 2008228934
It is.

この関数のフィッティングにより同定されたパラメータの値を用いて動脈硬化度を評価する。その際には例えばBが小さいと血管壁は硬く、大きいと柔らかいと判断することができる。   The degree of arteriosclerosis is evaluated using the value of the parameter identified by the fitting of this function. In that case, for example, when B is small, it can be determined that the blood vessel wall is hard, and when B is large, it is soft.

方法2:
得られた血管の圧径特性曲線に最もよくフィットするシグモイド関数を例えば図21のように求める。このとき用いる式は、

Figure 2008228934
である。この関数のフィッティングにより同定されたパラメータの値を用いて動脈硬化度を評価する。その際には例えばBが小さいと血管壁は硬く、大きいと柔らかいと判断することができる。 Method 2:
For example, a sigmoid function that best fits the obtained blood pressure characteristic curve is obtained as shown in FIG. The formula used at this time is
Figure 2008228934
It is. The degree of arteriosclerosis is evaluated using the value of the parameter identified by the fitting of this function. In that case, for example, when B is small, it can be determined that the blood vessel wall is hard, and when B is large, it is soft.

本発明で提案する上記の動脈壁硬さ評価手法は、体動など突発的な変動に対して次の3つの理由でシステム特性が安定しロバストである。即ち、第1の理由として、微分圧径特性曲線を推定するときに、複数の脈波情報を統合するためである。また、第2の理由として、圧径特性曲線を推定するために行う微分圧径特性曲線の数値積分計算がローパスフィルタの役割を果たす。更に、第3の理由として、血管壁の硬さを評価するために行う圧径特性曲線への関数フィッティングの計算が、ノイズ要素の除去に寄与するためである。   The arterial wall hardness evaluation method proposed in the present invention is stable and robust with respect to sudden fluctuations such as body movement for the following three reasons. That is, the first reason is to integrate a plurality of pieces of pulse wave information when estimating the differential pressure characteristic curve. As a second reason, numerical integration calculation of the differential pressure characteristic curve performed for estimating the pressure characteristic curve serves as a low-pass filter. Furthermore, as a third reason, the calculation of the function fitting to the pressure-diameter characteristic curve performed for evaluating the hardness of the blood vessel wall contributes to the removal of noise elements.

上記のようにして本発明は、従来より血圧測定で広く使用されているカフを用い、一般家庭でも例えば図22に示すようにして、動脈壁硬さ評価を容易に行うことができるようになる。   As described above, according to the present invention, the arterial wall hardness can be easily evaluated by using a cuff that has been widely used in blood pressure measurement conventionally, as shown in FIG. .

血管の内外圧差を説明する図である。It is a figure explaining the internal and external pressure difference of the blood vessel. 血管の圧径特性曲線の例を示す図である。It is a figure which shows the example of the pressure diameter characteristic curve of the blood vessel. 血管の硬さにより圧径特性曲線が変化する例を示す図である。It is a figure which shows the example which a pressure-diameter characteristic curve changes with the hardness of the blood vessel. 本発明のシステム構成図である。It is a system configuration diagram of the present invention. カフ圧時系列データ例を示す図である。It is a figure which shows the cuff pressure time series data example. 時系列のカフ圧について帯域通過フィルターを通した後のカフ圧脈波を示す図である。It is a figure which shows the cuff pressure pulse wave after passing the band pass filter about the time series cuff pressure. カフ圧脈波時系列の中で、一つのカフ圧脈波区間を示す図である。It is a figure which shows one cuff pressure pulse wave area in a cuff pressure pulse wave time series. カフ内圧時系列データに低域通過フィルターを適用した後のカフ圧を示す図である。It is a figure which shows the cuff pressure after applying a low-pass filter to cuff internal pressure time series data. カフ圧脈波が血管系を反映している状態を示す図である。It is a figure which shows the state in which the cuff pressure pulse wave reflects the vascular system. 血圧脈波とカフ圧脈波の関係の概念図である。It is a conceptual diagram of the relationship between a blood pressure pulse wave and a cuff pressure pulse wave. カフ圧脈波を用いて血管の圧径特性曲線を推定する態様を示す図である。It is a figure which shows the aspect which estimates the radial diameter characteristic curve of the blood vessel using a cuff pressure pulse wave. カフ圧脈波振幅を示す図である。It is a figure which shows a cuff pressure pulse wave amplitude. カフ圧脈波の振幅と脈圧の比が血管の圧径特性曲線のある区間における平均の傾きの推定値となることを示す図である。It is a figure which shows that the ratio of the amplitude of a cuff pressure pulse wave and pulse pressure becomes an estimated value of the average inclination in a certain section of a vascular pressure-diameter characteristic curve. 各脈波の脈拍管内の圧径特性曲線の平均の傾きを求める時の態様を示す図である。It is a figure which shows the aspect at the time of calculating | requiring the average inclination of the pressure characteristic curve in the vascular tube of each pulse wave. 任意の内外圧差における圧径特性曲線の微分値が、内外圧差を含む全ての脈波区間の平均の傾きの平気値として表されることを示す図である。It is a figure which shows that the differential value of the pressure-diameter characteristic curve in arbitrary internal / external pressure difference is represented as a mean value of the average inclination of all the pulse wave sections including the internal / external pressure difference. 抽出したカフ圧脈波の始点となる局所最小値から最大値までの区間を示す図である。It is a figure which shows the area from the local minimum value used as the starting point of the extracted cuff pressure pulse wave to the maximum value. 血圧脈波とカフ圧脈波の該当区間を用いて曲線1を構成する態様を示す図である。It is a figure which shows the aspect which comprises the curve 1 using the applicable area of a blood pressure pulse wave and a cuff pressure pulse wave. 前記曲線1に相当する線分を、各曲線の始点をX軸上にそろえて表示した例を示す図である。It is a figure which shows the example which displayed the line segment equivalent to the said curve 1 with the starting point of each curve aligned on the X-axis. 内外圧差がPmmHgの時の圧径特性曲線の微分値を求める場合を示す図である。It is a figure which shows the case where the differential value of the diameter characteristic curve when an internal-external pressure difference is PmmHg is calculated | required. 得られた血管の圧径特性曲線に最もよくフィットする逆正接関数の例である。It is an example of an arc tangent function that best fits the obtained vascular pressure characteristic curve. 得られた血管の圧径特性曲線に最もよくフィットするシグモイド逆正接関数の例である。It is an example of a sigmoid arc tangent function that best fits the obtained blood vessel pressure characteristic curve. 本発明の実施の状態を示す図である。It is a figure which shows the state of implementation of this invention.

Claims (8)

生体の一部に装着するカフと、
前記カフ内部の圧力を検出するカフ圧センサーと、
前記カフ圧センサーの検出値に基づきカフを所定値に加圧、減圧制御するカフ圧制御手段と、
前記カフ圧センサーにより検出した脈波に基づきカフ圧脈波と血圧脈波の振幅を計算し、その脈波振幅に基づき動脈壁の硬さの評価を行うデータ処理手段とからなることを特徴とする動脈壁硬さ評価システム。
A cuff attached to a part of the living body,
A cuff pressure sensor for detecting the pressure inside the cuff;
Cuff pressure control means for pressurizing and depressurizing the cuff to a predetermined value based on a detection value of the cuff pressure sensor;
It comprises data processing means for calculating the amplitude of the cuff pressure pulse wave and the blood pressure pulse wave based on the pulse wave detected by the cuff pressure sensor and evaluating the hardness of the arterial wall based on the pulse wave amplitude. Arterial wall hardness evaluation system.
前記動脈壁の硬さの評価は、血管断面積と血管壁に加わる内外圧力差との関係である圧径特性曲線を推定して評価することを特徴とする請求項1記載の動脈壁硬さ評価システム。   2. The arterial wall hardness according to claim 1, wherein the evaluation of the arterial wall hardness is performed by estimating a radial characteristic curve that is a relationship between a blood vessel cross-sectional area and an internal / external pressure difference applied to the blood vessel wall. Evaluation system. 前記動脈壁の硬さの評価は、カフにより検出された脈波の形状及び振幅から推定して評価することを特徴とする請求項1記載の動脈壁硬さ評価システム。   2. The arterial wall hardness evaluation system according to claim 1, wherein the evaluation of the arterial wall hardness is performed by estimating from the shape and amplitude of the pulse wave detected by the cuff. 前記動脈壁の硬さの評価は、検出された脈波から、圧径特性曲線を内外圧差に関して微分した関数を推定して評価することを特徴とする請求項1記載の動脈壁硬さ評価システム。   2. The arterial wall hardness evaluation system according to claim 1, wherein the evaluation of the arterial wall hardness is performed by estimating a function obtained by differentiating the pressure characteristic curve with respect to the internal / external pressure difference from the detected pulse wave. . 前記動脈壁の硬さの評価は、前記微分した圧径特性曲線を数値積分することで圧径特性曲線を推定して評価することを特徴とする請求項4記載の動脈壁硬さ評価システム。   5. The arterial wall hardness evaluation system according to claim 4, wherein the evaluation of the hardness of the arterial wall is performed by estimating the pressure-diameter characteristic curve by numerically integrating the differentiated pressure-diameter characteristic curve. 前記動脈壁の硬さの評価は、前記推定した圧径特性曲線に最適にフィットする関数を同定して、このときに決まるパラメータの値を用いて評価することを特徴とする請求項2記載の動脈壁硬さ評価システム。   The evaluation of the hardness of the arterial wall is performed by identifying a function that optimally fits the estimated pressure-diameter characteristic curve and using a parameter value determined at this time. Arterial wall hardness evaluation system. 前記関数は逆正接関数あるいはシグモイド関数であることを特徴とする請求項6記載の動脈壁硬さ評価システム。   The arterial wall hardness evaluation system according to claim 6, wherein the function is an arctangent function or a sigmoid function. 前記動脈壁の硬さの評価は、請求項4,請求項5,請求項6の方法を用いることにより,体動など突発的な変動に対して動脈壁硬さの評価をロバストとしたことを特徴とする請求項7記載の動脈壁硬さ評価システム。   The evaluation of the stiffness of the arterial wall is based on the fact that the evaluation of the stiffness of the arterial wall is made robust against sudden fluctuations such as body movements by using the methods of claims 4, 5 and 6. The arterial wall hardness evaluation system according to claim 7, wherein:
JP2007071624A 2007-03-19 2007-03-19 Arterial wall hardness evaluation system Expired - Fee Related JP4253683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071624A JP4253683B2 (en) 2007-03-19 2007-03-19 Arterial wall hardness evaluation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071624A JP4253683B2 (en) 2007-03-19 2007-03-19 Arterial wall hardness evaluation system

Publications (2)

Publication Number Publication Date
JP2008228934A true JP2008228934A (en) 2008-10-02
JP4253683B2 JP4253683B2 (en) 2009-04-15

Family

ID=39902474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071624A Expired - Fee Related JP4253683B2 (en) 2007-03-19 2007-03-19 Arterial wall hardness evaluation system

Country Status (1)

Country Link
JP (1) JP4253683B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032293A1 (en) * 2008-09-17 2010-03-25 独立行政法人産業技術総合研究所 Arterial wall hardness evaluation system
JP2010119854A (en) * 2008-11-21 2010-06-03 Pulsion Medical Systems Ag Apparatus and method for determining physiologic parameter
JP2012130362A (en) * 2010-12-17 2012-07-12 A & D Co Ltd Arterial vessel examination apparatus
US8696580B2 (en) 2008-09-01 2014-04-15 The Doshisha Arteriosclerosis evaluating apparatus
WO2020121377A1 (en) * 2018-12-10 2020-06-18 国立大学法人東海国立大学機構 Biological information measurement device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8696580B2 (en) 2008-09-01 2014-04-15 The Doshisha Arteriosclerosis evaluating apparatus
WO2010032293A1 (en) * 2008-09-17 2010-03-25 独立行政法人産業技術総合研究所 Arterial wall hardness evaluation system
US9730594B2 (en) 2008-09-17 2017-08-15 National Institute Of Advance Industrial Science And Technology Arterial-wall stiffness evaluation system
JP2010119854A (en) * 2008-11-21 2010-06-03 Pulsion Medical Systems Ag Apparatus and method for determining physiologic parameter
JP2012130362A (en) * 2010-12-17 2012-07-12 A & D Co Ltd Arterial vessel examination apparatus
WO2020121377A1 (en) * 2018-12-10 2020-06-18 国立大学法人東海国立大学機構 Biological information measurement device

Also Published As

Publication number Publication date
JP4253683B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
WO2010032293A1 (en) Arterial wall hardness evaluation system
JP5016718B2 (en) Atherosclerosis evaluation device
KR101577343B1 (en) The Apparatus and Method for estimating blood pressure
EP1306049A3 (en) Arteriosclerosis-degree evaluating apparatus
JP4253683B2 (en) Arterial wall hardness evaluation system
CN107106125B (en) System and method for measuring arterial parameters
US6669646B1 (en) Arteriosclerosis evaluating apparatus
JP4813815B2 (en) Vascular sclerosis calculating device and vascular sclerosis calculating program
US20040171941A1 (en) Blood flow amount estimating apparatus
Bazan et al. A new high-resolution spectral approach to noninvasively evaluate wall deformations in arteries
JP4873998B2 (en) Vascular elasticity measurement device
JP2007090003A (en) Ultrasonic diagnostic apparatus and controlling method thereof
JP7175304B2 (en) SHUNT SOUND ANALYZER AND METHOD, COMPUTER PROGRAM AND STORAGE MEDIUM
CN111263613B (en) Risk determination for coronary artery disease
JP4627418B2 (en) Vascular sclerosis evaluation apparatus, vascular sclerosis calculation apparatus, and vascular sclerosis calculation program
JP2008168055A (en) Stroke volume estimating apparatus
JP5016717B2 (en) Atherosclerosis evaluation device
Joseph et al. Non-invasive estimation of arterial compliance
JP5092885B2 (en) Electronic blood pressure monitor
KR20060078207A (en) The system and method for a cardiovascular diagnosis monitoring
JP5006509B2 (en) Pulse wave velocity measurement method for measuring pulse wave velocity in a pulse wave velocity measuring device
JP4606836B2 (en) Vascular sclerosis calculating device and vascular sclerosis calculating program
Xu et al. Online continuous measurement of arterial pulse pressure and pressure waveform using ultrasound
KR101504547B1 (en) Aortic Obstruction Measuring Method using Pulse Diagnosis
JP4490727B2 (en) Pulse wave transit time measuring apparatus and method of using the same

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20080627

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20080801

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20081006

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20081204

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120130

LAPS Cancellation because of no payment of annual fees