JP2008226185A - Road monitoring system and road monitoring method - Google Patents

Road monitoring system and road monitoring method Download PDF

Info

Publication number
JP2008226185A
JP2008226185A JP2007067459A JP2007067459A JP2008226185A JP 2008226185 A JP2008226185 A JP 2008226185A JP 2007067459 A JP2007067459 A JP 2007067459A JP 2007067459 A JP2007067459 A JP 2007067459A JP 2008226185 A JP2008226185 A JP 2008226185A
Authority
JP
Japan
Prior art keywords
far
infrared
road monitoring
camera
road
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007067459A
Other languages
Japanese (ja)
Inventor
Hitoshi Nagai
均 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2007067459A priority Critical patent/JP2008226185A/en
Publication of JP2008226185A publication Critical patent/JP2008226185A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a road monitoring system and method for maintaining environmental performance of the road monitoring system with a far-infrared camera, without using a compensating means, such as, weather indicator or visible camera. <P>SOLUTION: An attenuation measurement apparatus 6 measures the attenuation of a far-infrared ray between a far-infrared ray projector 5 and a far-infrared camera 1, and image processor 2 is used for amplifying a video signal according to the attenuation, to adjust a threshold for determining the signal intensity, according to the attenuation. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、道路監視システム及び道路監視方法に関し、特に遠赤外線カメラによる自動車検出を行う道路監視システム及び道路監視方法に関する。   The present invention relates to a road monitoring system and a road monitoring method, and more particularly to a road monitoring system and a road monitoring method for detecting a vehicle using a far-infrared camera.

従来の道路監視システムは、道路上の走行車両の監視を行うためのカメラを遠赤外線カメラもしくは可視カメラを用いるものが多い。
しかし、両者の環境性能には差分があり、どちらのカメラを用いてシステムを構成すれば監視業務に有効なのかは一律でない。
例えば、特許文献1の第4ページに記されているように、照度・視程の低い環境(夜間等)では遠赤外線カメラによる構成が有効であるし、雨量の多い、あるいは高温の環境では可視カメラによる構成が有効である。この理由には、第一として、遠赤外線が水滴に吸収されやすい物理特性を持つことによる。また第二として、遠赤外線の放射が物体の温度に相関しているという物理特性を持つため、高温の環境下では監視映像における監視対象と背景とのコントラストが小さくなることによる。
Many conventional road monitoring systems use a far-infrared camera or a visible camera as a camera for monitoring a traveling vehicle on the road.
However, there is a difference in the environmental performance between the two, and it is not uniform which camera is used for monitoring work if the system is configured.
For example, as described on page 4 of Patent Document 1, a configuration using a far-infrared camera is effective in an environment with low illuminance and visibility (such as at night), and a visible camera in a rainy or high temperature environment. The configuration by is effective. This is because, first of all, far infrared rays have physical characteristics that are easily absorbed by water droplets. Second, since the far-infrared radiation has a physical characteristic that it correlates with the temperature of the object, the contrast between the monitoring object and the background in the monitoring image becomes small in a high-temperature environment.

このため、特許文献1記載の発明では、遠赤外線カメラと可視カメラとの両者を具備し、気象計測装置を用いて監視領域の環境を測定することにより、より適切なカメラの映像を選択して監視する方法を採っている。このことで、遠赤外線カメラの欠点を補強した道路監視システムを構成している。   For this reason, the invention described in Patent Document 1 includes both a far-infrared camera and a visible camera, and selects a more appropriate camera image by measuring the environment of the monitoring area using a weather measurement device. The method of monitoring is taken. This constitutes a road monitoring system that reinforces the shortcomings of far-infrared cameras.

このほかにも、例えば、特許文献2に開示されているように、遠赤外線カメラと可視カメラとの両者を具備し、可視カメラで監視映像上での監視対象の周辺領域を把握するとともに、周辺領域の温度分布を遠赤外線カメラで観測し、温度分布に応じて監視対象の検出を行うためのしきい値設定を行うことにより、監視対象の検出性能の劣化を防いでいる。このことにより、遠赤外線カメラの欠点を補強した道路監視システムを構成している。   In addition to this, for example, as disclosed in Patent Document 2, both a far-infrared camera and a visible camera are provided, and the peripheral area of the monitoring target on the monitoring video is grasped by the visible camera, By observing the temperature distribution in the region with a far-infrared camera and setting a threshold value for detecting the monitoring target according to the temperature distribution, deterioration of the detection performance of the monitoring target is prevented. This constitutes a road monitoring system that reinforces the shortcomings of far-infrared cameras.

また、特許文献3に開示されているように、遠赤外線カメラと可視カメラとの両者を具備し、可視カメラで監視映像上の背景(路面等)の日照の具合を観測し、背景からの赤外線の反射分を補正するためのしきい値設定を行うことにより、監視対象の検出性能の劣化を防いでいる。このことにより、遠赤外線カメラの欠点を補強した道路監視システムを構成している。   Further, as disclosed in Patent Document 3, both a far-infrared camera and a visible camera are provided, and the sunlight (background of the road surface, etc.) on the surveillance video is observed with the visible camera, and infrared rays from the background are observed. By setting a threshold value for correcting the amount of reflection, deterioration of the detection performance of the monitoring target is prevented. This constitutes a road monitoring system that reinforces the shortcomings of far-infrared cameras.

この他、特許文献4に開示されているように赤外投光器で監視対象を照射し、反射光を赤外線カメラで撮影しモニタすることが行われている。
特開2003−162795号公報 特開平10−255019号公報 特開2005−249529号公報 特開2002−114097号公報
In addition, as disclosed in Patent Document 4, an object to be monitored is irradiated with an infrared projector, and reflected light is photographed and monitored with an infrared camera.
JP 2003-162895 A Japanese Patent Laid-Open No. 10-255019 JP-A-2005-249529 JP 2002-114097 A

ところで、従来の技術による遠赤外線カメラを用いた道路監視システムの第1の問題点は、遠赤外線カメラのみでは必ずしも道路監視業務に十分な環境性能を維持した道路監視システムを構成することができず、高度な補償手段を持ったシステムを構成しなければならないということである。   By the way, the first problem of a road monitoring system using a far-infrared camera according to the prior art is that it is not always possible to configure a road monitoring system that maintains sufficient environmental performance for road monitoring work with only a far-infrared camera. This means that a system with advanced compensation means must be constructed.

例えば特許文献1記載の発明は、遠赤外線カメラのほかに気象計測装置と可視カメラをシステムの構成要件に加えなければならず、システム規模が大規模になってしまうとともに、これらのシステムを最適に運用するためのパラメータは観測地点の気象特性に依って多様に異なることから、システムの調整が困難になるという問題がある。   For example, in the invention described in Patent Document 1, a meteorological measurement device and a visible camera must be added to the system configuration requirements in addition to the far-infrared camera, which increases the system scale and optimizes these systems. Since the parameters for operation vary depending on the weather characteristics of the observation point, there is a problem that it is difficult to adjust the system.

また、例えば特許文献2記載の発明は、監視対照が可視カメラで撮影できるための条件が必要であり、ランプの点灯や街灯などによる照射が必須となるとともに、通年での、もしくは様々な監視地点における運用に支障がないようパラメータを設定・維持管理する必要がある。   In addition, for example, the invention described in Patent Document 2 requires a condition that the monitoring control can be taken with a visible camera, and lighting with a lamp or street light is indispensable. It is necessary to set and maintain the parameters so that there is no hindrance to the operation.

さらに、例えば特許文献3に開示されているように、日射に含まれる遠赤外線の背景からの反射量を可視カメラで観測するだけで除去する方法についても、監視映像における背景からの遠赤外線の放射量は、日照条件のみならず、気候条件、路面条件(乾燥、湿潤、凍結等)などに左右されるため、最終的には温度計や遠赤外線センサなど、前記反射量を含めた、背景からの遠赤外線の放射量を測定できる手段を用いる必要がある。このように、本例に記されているような、可視カメラの利用による遠赤外線カメラの環境条件の補償は困難である。   Furthermore, as disclosed in, for example, Patent Document 3, far infrared radiation from a background in a monitoring image is also used for removing a reflection amount from a far infrared background included in solar radiation only by observing with a visible camera. The amount depends not only on the sunshine conditions but also on the climatic conditions, road surface conditions (dry, wet, freezing, etc.). It is necessary to use a means capable of measuring the far-infrared radiation amount. Thus, it is difficult to compensate the environmental conditions of the far-infrared camera by using the visible camera as described in this example.

遠赤外線カメラを用いた道路監視システムの第2の問題点は、映像信号から監視対象を抽出する際の信号強度判定のしきい値を、映像信号の減衰度に応じて単に低減させるだけの方法は、映像信号の背景や監視対象の信号強度分布の変動の影響を受けてしまい、監視対象の検出性能を悪化させやすくなるということである。例えば、特許文献2記載の発明は、監視対象近傍の温度分布が低い場合、監視対象を抽出するための信号強度判定のしきい値を下げて、監視対象を抽出している。   A second problem of a road monitoring system using a far-infrared camera is a method of simply reducing a threshold value for signal strength determination when extracting a monitoring target from a video signal in accordance with the degree of attenuation of the video signal. This means that the detection performance of the monitoring target is easily deteriorated due to the influence of the background of the video signal and the fluctuation of the signal intensity distribution of the monitoring target. For example, in the invention described in Patent Document 2, when the temperature distribution in the vicinity of the monitoring target is low, the monitoring target is extracted by lowering the threshold value for signal strength determination for extracting the monitoring target.

しかしこの方法では、監視対象、背景それぞれの信号強度としきい値との差が小さくなるため、背景や監視対象の信号強度分布の変動の影響を受けた、しきい値近傍の強度の信号を誤検出する確率が高くなり、監視対象の検出性能を悪化させやすくなる。   However, in this method, the difference between the signal intensity of the monitored object and the background and the threshold value is small, so that the intensity signal near the threshold value affected by the fluctuation of the signal intensity distribution of the background or monitored object is erroneously detected. The probability of detection increases, and the detection performance of the monitoring target tends to deteriorate.

尚、特許文献4に記載の発明は移動する車両のヘッドライト等から赤外線を投光し赤外線カメラで撮影するので、定点監視をするには不都合である。
そこで、本発明の目的は、遠赤外線カメラを用いた道路監視システムの環境性能を、気象観測計や可視カメラなどの補償手段を用いずに維持することができる道路監視システム及び道路監視方法を提供することにある。
The invention described in Patent Document 4 is inconvenient for monitoring a fixed point because infrared rays are projected from a headlight or the like of a moving vehicle and photographed by an infrared camera.
Therefore, an object of the present invention is to provide a road monitoring system and a road monitoring method capable of maintaining the environmental performance of a road monitoring system using a far-infrared camera without using compensation means such as a meteorological observation meter and a visible camera. There is to do.

上記課題を解決するために、請求項1記載の発明は、遠赤外線カメラを用いて道路を走行する自動車を検出する道路監視システムにおいて、前記自動車を灯光する遠赤外線投光器を有し、前記遠赤外線カメラを用いて前記遠赤外線投光器から検出した遠赤外線の強度を測定する測定手段を有することを特徴とする。   In order to solve the above problem, the invention according to claim 1 is a road monitoring system for detecting a vehicle traveling on a road using a far-infrared camera, comprising a far-infrared projector that lights the vehicle, and the far-infrared light It has a measurement means which measures the intensity | strength of the far-infrared detected from the said far-infrared projector using the camera.

請求項1記載の発明によれば、自動車を灯光する遠赤外線投光器を有し、遠赤外線カメラを用いて遠赤外線投光器から検出した遠赤外線の強度を測定する測定手段を有することにより、遠赤外線カメラを用いた道路監視システムの環境性能を、気象観測計や可視カメラなどの補償手段を用いずに維持することができる。   According to the first aspect of the present invention, the far-infrared camera has the far-infrared projector that lights the automobile, and the measuring means that measures the intensity of the far-infrared detected from the far-infrared projector using the far-infrared camera. It is possible to maintain the environmental performance of the road monitoring system using the system without using compensation means such as a meteorological observation meter or a visible camera.

請求項2記載の発明は、請求項1記載の発明において、前記遠赤外線投光器から検出した遠赤外線の強度に応じて前記遠赤外線カメラの出力である映像信号を増幅する画像処理装置を有することを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the image processing apparatus further includes an image processing device that amplifies a video signal that is an output of the far-infrared camera according to the intensity of the far-infrared light detected from the far-infrared projector. Features.

請求項3記載の発明は、請求項1記載の発明において、前記遠赤外線投光器から検出した遠赤外線の強度に応じて前記遠赤外線カメラの出力である映像信号から特徴を抽出するためのしきい値を調整する画像処理装置を有することを特徴とする。   According to a third aspect of the present invention, in the first aspect of the present invention, the threshold for extracting features from the video signal that is the output of the far-infrared camera according to the intensity of the far-infrared detected from the far-infrared projector. And an image processing device for adjusting the image.

請求項4記載の発明は、遠赤外線カメラを用いて道路を走行する自動車を検出する道路監視方法において、前記自動車に遠赤外線を灯光し、前記遠赤外線カメラを用いて前記遠赤外線の強度を測定することを特徴とする。   According to a fourth aspect of the present invention, in the road monitoring method for detecting a vehicle traveling on a road using a far-infrared camera, the far-infrared light is lit on the vehicle, and the intensity of the far-infrared is measured using the far-infrared camera. It is characterized by doing.

請求項4記載の発明によれば、遠赤外線カメラを用いた道路監視システムの環境性能を、気象観測計や可視カメラなどの補償手段を用いずに維持することができる。   According to invention of Claim 4, the environmental performance of the road monitoring system using a far-infrared camera can be maintained, without using compensation means, such as a meteorological observation meter and a visible camera.

請求項5記載の発明は、請求項4記載の発明において、前記遠赤外線の強度に応じて前記遠赤外線カメラの出力である映像信号を増幅することを特徴とする。   According to a fifth aspect of the invention, in the fourth aspect of the invention, the video signal which is an output of the far-infrared camera is amplified according to the intensity of the far-infrared ray.

請求項6記載の発明は、請求項4記載の発明において、前記遠赤外線の強度に応じて前記遠赤外線カメラの出力である映像信号から特徴を抽出するためのしきい値を調整することを特徴とする。   According to a sixth aspect of the invention, in the fourth aspect of the invention, a threshold value for extracting a feature from a video signal that is an output of the far-infrared camera is adjusted according to the intensity of the far-infrared ray. And

本発明による遠赤外線カメラを用いた道路監視システムは、遠赤外線投光器と、遠赤外線投光器から検出した遠赤外線の強度に応じて遠赤外線カメラから入力された映像信号を増幅した信号から監視対象を抽出する機能を有する画像処理装置とを含んで構成する。   A road monitoring system using a far-infrared camera according to the present invention extracts a monitoring target from a far-infrared projector and a signal obtained by amplifying a video signal input from the far-infrared camera according to the intensity of the far-infrared detected from the far-infrared projector. And an image processing apparatus having the function of

遠赤外線投光器から遠赤外線カメラまでを伝播する間の遠赤外線の減衰量を画像処理装置で測定するとともに、その減衰量に応じて映像信号を増幅し、この映像信号を、監視対象の抽出に供する。さらに、監視対象の抽出をする際の信号強度判定のしきい値を、前記減衰量に応じて調整する。すなわち、映像信号を増幅したために、背景からの遠赤外線の強度に対して、従来のしきい値では“対象あり”と判定してしまうのを防ぐよう、しきい値を高く設定する。   The far-infrared attenuation during propagation from the far-infrared projector to the far-infrared camera is measured by the image processing device, and the video signal is amplified according to the attenuation, and this video signal is used for extraction of the monitoring target. . Further, the threshold value for signal strength determination when extracting the monitoring target is adjusted according to the attenuation amount. That is, since the video signal is amplified, the threshold value is set higher than the far-infrared intensity from the background so as to prevent the conventional threshold value from being determined to be “target”.

その理由は、監視対象からの遠赤外線の減衰量に応じて映像信号を増幅し、この映像信号を監視対象の抽出に供するとともに、監視対象の抽出をする際の信号強度判定のしきい値を、前記減衰量に応じて調整することにより、監視対象、背景それぞれの信号強度としきい値との差が小さくなり、しきい値近傍の強度の信号を誤判定するのを防ぐことができるからである。   The reason is that the video signal is amplified according to the amount of attenuation of far infrared rays from the monitoring target, and this video signal is used for extraction of the monitoring target, and the threshold value for signal intensity determination when extracting the monitoring target is set. By adjusting according to the amount of attenuation, the difference between the signal intensity of the monitored object and the background and the threshold value can be reduced, and it is possible to prevent erroneous determination of a signal having an intensity near the threshold value. is there.

本発明によれば、自動車を灯光する遠赤外線投光器を有し、遠赤外線カメラを用いて遠赤外線投光器から検出した遠赤外線の強度を測定する測定手段を有することにより、遠赤外線カメラを用いた道路監視システムの環境性能を、気象観測計や可視カメラなどの補償手段を用いずに維持することができる。   According to the present invention, a road using a far-infrared camera has a far-infrared projector that lights a vehicle, and has a measuring unit that measures the intensity of far-infrared detected from the far-infrared projector using a far-infrared camera. The environmental performance of the monitoring system can be maintained without using compensation means such as a meteorological observation meter or a visible camera.

次に、本発明の一実施の形態について図面を参照して詳細に説明する。
図1は、本発明に係る道路監視システムの一実施の形態を示すブロック図である。
図1を参照すると本発明の一実施の形態は、遠赤外線カメラ1、画像処理装置2、道路監視装置3、減衰量測定装置6、遠赤外線投光器5を含んで構成される。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing an embodiment of a road monitoring system according to the present invention.
Referring to FIG. 1, an embodiment of the present invention includes a far-infrared camera 1, an image processing device 2, a road monitoring device 3, an attenuation measurement device 6, and a far-infrared projector 5.

遠赤外線投光器5は、遠赤外線カメラ1にその発光が写るよう相対位置を固定して設置され、一定出力の遠赤外線を発光する。
遠赤外線カメラ1は、監視範囲の遠赤外線映像信号を出力する。
減衰量測定器6は、入力された遠赤外線映像より任意の領域の信号強度を測定する。
画像処理装置2は、図示しないCPU、RAM、ROM、I/F等で構成され、次の二つの処理を行う。まず第1に、入力された減衰量情報に応じて、入力された遠赤外線映像の信号強度を増幅する。第2に、増幅された増幅された遠赤外線映像信号から、信号強度をもとに判定した監視対象の抽出を行い、監視対象に関する情報(検出位置、移動方向、移動速度など)を出力する。このとき、信号強度を判定するしきい値は、前記の減衰量情報をもとに適宜調整される。
The far-infrared projector 5 is installed with its relative position fixed so that the emitted light can be reflected in the far-infrared camera 1 and emits far-infrared light having a constant output.
The far-infrared camera 1 outputs a far-infrared video signal in the monitoring range.
The attenuation measuring device 6 measures the signal intensity in an arbitrary region from the input far-infrared image.
The image processing apparatus 2 includes a CPU, a RAM, a ROM, an I / F, and the like (not shown), and performs the following two processes. First, the signal intensity of the input far-infrared video is amplified according to the input attenuation amount information. Second, the monitoring target determined based on the signal intensity is extracted from the amplified far-infrared video signal, and information about the monitoring target (detection position, moving direction, moving speed, etc.) is output. At this time, the threshold value for determining the signal strength is appropriately adjusted based on the attenuation amount information.

道路監視装置3は、図示しないCPU、RAM、ROM、I/F等で構成され、入力された監視対象情報を分析し、道路監視業務に即した情報(渋滞情報など)を配信するほか、監視業務に関連する各種情報の配信・管理、道路監視システム全般の運用管理などを行う。   The road monitoring device 3 is composed of a CPU, RAM, ROM, I / F, etc. (not shown), analyzes input monitoring target information, and distributes information (congestion information, etc.) suitable for road monitoring work. Deliver and manage various information related to work, and manage the operation of the road monitoring system in general.

なお、図1に記した減推量測定装置6を画像処理装置2に繰り込み、ひとつの機能モジュールとして構成してもよい。また、道路監視装置3は前記に記したものに限定するものではなく、道路監視業務に供するために必要な機能を適当な構成で実現するものであればどのような機能・構成をとってもよい。   1 may be transferred to the image processing apparatus 2 and configured as one functional module. Further, the road monitoring device 3 is not limited to the one described above, and may have any function / configuration as long as the function necessary for providing road monitoring work is realized with an appropriate configuration.

次に図1に示した道路監視システムの動作について説明する。
図2は、図1に示した道路監視システムの動作を説明するためのフローチャートの一例である。
遠赤外線カメラ1では、遠赤外線投光器5の発光(ステップS1)と、監視対象を含む道路の撮影(ステップS2)と、監視対象4とを含んだ道路監視映像を画像処理装置2と減衰量測定器6とに出力する(ステップS3)。
減衰量測定器6では、入力された道路監視映像より、遠赤外線投光器5の映像を分離抽出し、遠赤外線の強度を測定して、遠赤外線投光器5発光出力との差分をとることにより、遠赤外線投光器5から発せられた遠赤外線が遠赤外線カメラ1に到達するまでの経路の減衰量を計測する(ステップS4)。
Next, the operation of the road monitoring system shown in FIG. 1 will be described.
FIG. 2 is an example of a flowchart for explaining the operation of the road monitoring system shown in FIG.
In the far-infrared camera 1, the image processing device 2 and the attenuation measurement are performed on the road monitoring video including the light emission of the far-infrared projector 5 (step S1), the shooting of the road including the monitoring target (step S2), and the monitoring target 4. To the device 6 (step S3).
The attenuation measuring device 6 separates and extracts the image of the far-infrared projector 5 from the input road monitoring image, measures the intensity of the far-infrared, and takes the difference from the light output of the far-infrared projector 5 to obtain the far-infrared projector 5. The attenuation of the path until the far infrared ray emitted from the infrared projector 5 reaches the far infrared camera 1 is measured (step S4).

この減衰量の情報は画像処理装置2に入力される(ステップS5)。
画像処理装置2は次の二つの処理を行う。まず第1に、減衰量測定器6から入力された減衰量情報をもとに、監視対象から遠赤外線カメラまでの経路における遠赤外線の減衰量を推定し、これに応じて、入力された道路監視映像の信号強度を増幅する(ステップS6)。
This attenuation amount information is input to the image processing apparatus 2 (step S5).
The image processing apparatus 2 performs the following two processes. First, based on the attenuation amount information input from the attenuation amount measuring device 6, the attenuation amount of the far infrared ray in the route from the monitoring target to the far infrared camera is estimated, and the input road is accordingly input. The signal intensity of the monitoring video is amplified (step S6).

第2に、増幅された道路監視映像信号の信号強度に基づいて監視対象の抽出を行い、監視対象に関する情報(検出位置、移動方向、移動速度など)を道路監視装置3に出力する(ステップS7)。   Secondly, a monitoring target is extracted based on the signal strength of the amplified road monitoring video signal, and information (detection position, moving direction, moving speed, etc.) regarding the monitoring target is output to the road monitoring device 3 (step S7). ).

このとき、監視対象か否かを判断するしきい値は、減衰量測定器6からの情報に基づいて適切な値に設定する(ステップS8)。   At this time, the threshold value for determining whether or not to be monitored is set to an appropriate value based on information from the attenuation measuring device 6 (step S8).

監視対象の前記道路監視装置3では、画像処理装置2から入力された監視対象情報を分析し、道路監視業務に即した情報(渋滞情報など)を配信するほか、監視業務に関連する各種情報の配信・管理、システムの運用管理などを行う(ステップS9、S10)。   The road monitoring device 3 to be monitored analyzes the monitoring target information input from the image processing device 2 and distributes information (congestion information, etc.) according to the road monitoring work, as well as various information related to the monitoring work. Distribution / management, system operation management, and the like are performed (steps S9 and S10).

なお、画像処理装置の第1の動作である道路監視映像の信号強度の増幅に際し、信号強度を必ずしも直線的に増幅させる必要はなく、例えば弱い信号と強い信号との間で増幅率に差分を設けてもよい。このようにすることにより、検出すべき遠赤外線投光器および監視対象と、背景との信号強度との差分をより強調させた道路監視映像を得ることができる。   In addition, when amplifying the signal intensity of the road monitoring video, which is the first operation of the image processing apparatus, it is not always necessary to linearly amplify the signal intensity. For example, a difference in the amplification factor between a weak signal and a strong signal is used. It may be provided. In this way, it is possible to obtain a road monitoring video in which the difference between the far-infrared projector and the monitoring target to be detected and the signal intensity between the background and the background is further emphasized.

次に図1に示した道路監視システムの動作について、図3(a)〜(c)に示す道路監視映像信号の信号強度分布の変化を参照して説明する。   Next, the operation of the road monitoring system shown in FIG. 1 will be described with reference to changes in the signal intensity distribution of the road monitoring video signal shown in FIGS.

図3(a)は遠赤外線カメラの監視領域が良好な環境下(晴天時など)にあるときの、道路監視映像信号の信号強度分布の例を示す。図3(b)は遠赤外線カメラの監視領域が悪環境下(雨天時など)にあるときの、道路監視映像信号の信号強度分布の例を示す。図3(c)は、図3(b)の状態での道路監視映像信号を、遠赤外線の減衰量に応じて増幅したときの信号強度分布の例を示す。また、図3(a)〜(c)において、信号強度の分布曲線の左側ピークは遠赤外線投光器の映像信号を示す。また、信号強度の分布曲線の右側ピークは監視対象(自動車など)の映像信号を示す。   FIG. 3A shows an example of the signal intensity distribution of the road monitoring video signal when the monitoring area of the far-infrared camera is in a favorable environment (such as when the weather is clear). FIG. 3B shows an example of the signal intensity distribution of the road monitoring video signal when the far-infrared camera monitoring area is in a bad environment (such as rainy weather). FIG. 3C shows an example of the signal intensity distribution when the road monitoring video signal in the state of FIG. 3B is amplified according to the amount of attenuation of far infrared rays. 3A to 3C, the left peak of the signal intensity distribution curve indicates the video signal of the far-infrared projector. The right peak of the signal intensity distribution curve indicates a video signal of a monitoring target (such as an automobile).

図3(a)において、遠赤外線カメラが検出すべき、遠赤外線投光器および監視対象の信号強度(それぞれPi1、Po1と略す)は、本実施例において画像処理装置に設定されたしきい値Ps1以上であり、また背景の信号強度Pu1はPs1以下となっている。これが、図3(b)においては、悪環境下による遠赤外線の減衰のため、遠赤外線投光器、監視対象および背景の信号強度(それぞれPi2、Po2、Pu2と略す)は図に示すように減衰している。   In FIG. 3A, the far-infrared projector and the signal intensity to be monitored (abbreviated as Pi1 and Po1 respectively) to be detected by the far-infrared camera are equal to or higher than the threshold value Ps1 set in the image processing apparatus in this embodiment. The background signal intensity Pu1 is equal to or lower than Ps1. In FIG. 3B, this is because the far-infrared projector, the monitoring target, and the background signal intensity (abbreviated as Pi2, Po2, and Pu2 respectively) are attenuated as shown in FIG. ing.

このため、このままの状態で遠赤外線投光器および監視対象を識別するためにはしきい値を減衰量にあわせてPs2まで下げる必要がある。
しかし、従来の技術のように、しきい値を単に下げただけの場合、監視対象および背景の信号強度としきい値との差は図3(a)に比べて小さくなる。つまり、数式(1)及び数式(2)で表される。
Therefore, in order to identify the far-infrared projector and the monitoring target in this state, it is necessary to lower the threshold value to Ps2 in accordance with the attenuation amount.
However, when the threshold value is simply lowered as in the prior art, the difference between the signal intensity of the monitoring target and the background and the threshold value is smaller than that in FIG. That is, it is expressed by the formula (1) and the formula (2).

(Po2−Ps2)<(Po1−Ps1) …(1)   (Po2-Ps2) <(Po1-Ps1) (1)

(Pu2−Ps2)<(Pu1−Ps1) …(2)   (Pu2-Ps2) <(Pu1-Ps1) (2)

となる。このため、しきい値近傍の強度の信号を誤判定しやすくなる。 It becomes. For this reason, it becomes easy to erroneously determine a signal having an intensity near the threshold.

そこで、図3(c)に示すように、減衰した映像信号を、減衰量に応じて増幅する。例えば減衰量と同じ分だけ映像信号を増幅することで、増幅後の監視対象および背景の信号強度(それぞれPo3、Pu3と略す)は、Po3=Po1、Pu3=Po1となる。したがって、増幅後の監視対象および背景を識別するためのしきい値Ps3をPs1と同じ値に設定して、良好な環境下と同じしきい値で監視対象を抽出することができる。このとき、数式(3)、(4)は、   Therefore, as shown in FIG. 3C, the attenuated video signal is amplified according to the attenuation amount. For example, by amplifying the video signal by the same amount as the attenuation, the signal intensity of the monitored object and the background (abbreviated as Po3 and Pu3, respectively) after amplification is Po3 = Po1 and Pu3 = Po1. Therefore, it is possible to set the threshold value Ps3 for identifying the monitored object and background after amplification to the same value as Ps1, and to extract the monitored object with the same threshold value as in a favorable environment. At this time, Equations (3) and (4) are

(Po3−Ps3)=(Po1−Ps1) …(3)   (Po3-Ps3) = (Po1-Ps1) (3)

(Pu3−Ps3)=(Pu1−Ps1) …(4)   (Pu3-Ps3) = (Pu1-Ps1) (4)

であるため、監視対象および背景の信号強度としきい値との差も良好な環境下と同じ大きさに保たれる。 Therefore, the difference between the signal intensity of the monitoring target and the background and the threshold value is also maintained at the same level as in a favorable environment.

以上において、遠赤外線カメラの監視領域における遠赤外線の減衰量を直接測定し、該減衰量に応じて赤外線カメラの映像信号を増幅した信号を用いて監視対象を抽出するとともに、監視対象を抽出する際のしきい値を調整することで、遠赤外線カメラを用いた道路監視システムの環境性能を、気象観測計や可視カメラなどの補償手段を用いずに維持することができる。
〔発明の効果〕
本発明の第1の効果は、可視カメラや気象観測計などの高度な補償手段に依らずに、遠赤外線カメラを用いた道路監視システムの環境性能を維持することができることである。
In the above, the attenuation amount of the far infrared ray in the monitoring region of the far infrared camera is directly measured, and the monitoring target is extracted using the signal obtained by amplifying the video signal of the infrared camera according to the attenuation amount, and the monitoring target is extracted. By adjusting the threshold value, the environmental performance of the road monitoring system using the far-infrared camera can be maintained without using compensation means such as a meteorological observation meter or a visible camera.
〔The invention's effect〕
The first effect of the present invention is that the environmental performance of a road monitoring system using a far-infrared camera can be maintained without depending on sophisticated compensation means such as a visible camera or a meteorological observation meter.

その理由は、赤外線投光器を用いるとともに、監視対象を監視する遠赤外線カメラを、監視対象からの遠赤外線の減衰量測定にも併用することで、該減衰量を容易に測定できるからである。   This is because the amount of attenuation can be easily measured by using an infrared projector and also using a far-infrared camera for monitoring the monitoring target for measuring the amount of attenuation of the far-infrared from the monitoring target.

第2の効果は、 従来、遠赤外線カメラを用いた道路監視システムが有していた、映像信号から監視対象を抽出する際の信号強度判定のしきい値を、映像信号の減衰度に応じて単に低減させるだけの方法に比べ、監視対象の検出性能を良好に維持できることである。   The second effect is that, according to the attenuation level of the video signal, a threshold value for signal strength determination in the past when a monitoring target is extracted from a video signal, which has been conventionally used in a road monitoring system using a far infrared camera, The detection performance of the monitoring target can be maintained better than the method of simply reducing.

なお、上述した実施の形態は、本発明の好適な実施の形態の一例を示すものであり、本発明はそれに限定されることなく、その要旨を逸脱しない範囲内において、種々変形実施が可能である。   The above-described embodiment shows an example of a preferred embodiment of the present invention, and the present invention is not limited thereto, and various modifications can be made without departing from the scope of the invention. is there.

本発明に係る道路監視システムの一実施の形態を示すブロック図である。1 is a block diagram showing an embodiment of a road monitoring system according to the present invention. 図1に示した道路監視システムの動作を説明するためのフローチャートの一例である。It is an example of the flowchart for demonstrating operation | movement of the road monitoring system shown in FIG. (a)〜(c)は、道路監視映像信号の信号強度分布の変化を示す図である。(A)-(c) is a figure which shows the change of the signal strength distribution of a road monitoring video signal.

符号の説明Explanation of symbols

1 遠赤外線カメラ
2 画像処理装置
3 道路監視装置
4 車両
5 遠赤外線投光器
6 減衰量測定装置
DESCRIPTION OF SYMBOLS 1 Far-infrared camera 2 Image processing device 3 Road monitoring device 4 Vehicle 5 Far-infrared projector 6 Attenuation measuring device

Claims (6)

遠赤外線カメラを用いて道路を走行する自動車を検出する道路監視システムにおいて、
前記自動車を灯光する遠赤外線投光器を有し、前記遠赤外線カメラを用いて前記遠赤外線投光器から検出した遠赤外線の強度を測定する測定手段を有することを特徴とする道路監視システム。
In a road monitoring system that detects a car traveling on a road using a far-infrared camera,
A road monitoring system comprising a far-infrared projector for lighting the automobile, and measuring means for measuring the intensity of the far-infrared detected from the far-infrared projector using the far-infrared camera.
前記遠赤外線投光器から検出した遠赤外線の強度に応じて前記遠赤外線カメラの出力である映像信号を増幅する画像処理装置を有することを特徴とする請求項1記載の道路監視システム。   The road monitoring system according to claim 1, further comprising an image processing device that amplifies a video signal that is an output of the far-infrared camera in accordance with a far-infrared intensity detected from the far-infrared projector. 前記遠赤外線投光器から検出した遠赤外線の強度に応じて前記遠赤外線カメラの出力である映像信号から特徴を抽出するためのしきい値を調整する画像処理装置を有することを特徴とする請求項1記載の道路監視システム。   2. The image processing apparatus according to claim 1, further comprising: an image processing device that adjusts a threshold value for extracting a feature from a video signal that is an output of the far-infrared camera in accordance with an intensity of far-infrared detected from the far-infrared projector. The described road monitoring system. 遠赤外線カメラを用いて道路を走行する自動車を検出する道路監視方法において、
前記自動車に遠赤外線を灯光し、前記遠赤外線カメラを用いて前記遠赤外線の強度を測定することを特徴とする道路監視方法。
In a road monitoring method for detecting a car traveling on a road using a far-infrared camera,
A road monitoring method characterized in that far-infrared light is lit on the automobile and the intensity of the far-infrared light is measured using the far-infrared camera.
前記遠赤外線の強度に応じて前記遠赤外線カメラの出力である映像信号を増幅することを特徴とする請求項4記載の道路監視方法。   5. The road monitoring method according to claim 4, wherein a video signal which is an output of the far-infrared camera is amplified in accordance with the intensity of the far-infrared ray. 前記遠赤外線の強度に応じて前記遠赤外線カメラの出力である映像信号から特徴を抽出するためのしきい値を調整することを特徴とする請求項4記載の道路監視方法。   5. The road monitoring method according to claim 4, wherein a threshold value for extracting a feature from a video signal which is an output of the far infrared camera is adjusted according to the intensity of the far infrared ray.
JP2007067459A 2007-03-15 2007-03-15 Road monitoring system and road monitoring method Withdrawn JP2008226185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067459A JP2008226185A (en) 2007-03-15 2007-03-15 Road monitoring system and road monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067459A JP2008226185A (en) 2007-03-15 2007-03-15 Road monitoring system and road monitoring method

Publications (1)

Publication Number Publication Date
JP2008226185A true JP2008226185A (en) 2008-09-25

Family

ID=39844662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067459A Withdrawn JP2008226185A (en) 2007-03-15 2007-03-15 Road monitoring system and road monitoring method

Country Status (1)

Country Link
JP (1) JP2008226185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171013A (en) * 2013-03-01 2014-09-18 Yc Solution Inc Abnormal behavior on road monitoring system, program, and monitoring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014171013A (en) * 2013-03-01 2014-09-18 Yc Solution Inc Abnormal behavior on road monitoring system, program, and monitoring method

Similar Documents

Publication Publication Date Title
US8953839B2 (en) Recognition object detecting apparatus
JP5462609B2 (en) Stop line recognition device
JP5375814B2 (en) Exposure control device
US9519841B2 (en) Attached matter detector and vehicle equipment control apparatus
US20110200258A1 (en) Lane-marker recognition system with improved recognition-performance
US20120300074A1 (en) Detection apparatus and detection method
JP2016511393A5 (en)
JP6944525B2 (en) Image correction for motorcycle banking
WO2016125377A1 (en) Image-processing device and vehicle system
JP2011220866A (en) Spectrum measuring apparatus
US10397497B1 (en) Solar invariant imaging system for object detection
JP2019107971A (en) Vehicle control device, method, and program
JP2010163131A (en) Road surface state discriminating device
JP2010139563A5 (en)
US20210056331A1 (en) Looking away determination device, looking away determination system, looking away determination method, and storage medium
JP6970568B2 (en) Vehicle peripheral monitoring device and peripheral monitoring method
KR101428388B1 (en) Apparatus and method for emergency braking
KR101979928B1 (en) System and method for estimating distance of front vehicle
JP6739074B2 (en) Distance measuring device
JP7259644B2 (en) Target object recognition device, target object recognition method and program
JP2009149190A (en) Headlamp device for vehicle
JP2008226185A (en) Road monitoring system and road monitoring method
JP2012138688A (en) Method of determining exposure control value of on-vehicle camera
JP2008005017A (en) Observation apparatus in vehicle interior for measuring illuminance on the basis of imaged image
US11072336B2 (en) Method and device for identifying a road condition

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100601