JP2008225785A - Image recognition device - Google Patents

Image recognition device Download PDF

Info

Publication number
JP2008225785A
JP2008225785A JP2007062478A JP2007062478A JP2008225785A JP 2008225785 A JP2008225785 A JP 2008225785A JP 2007062478 A JP2007062478 A JP 2007062478A JP 2007062478 A JP2007062478 A JP 2007062478A JP 2008225785 A JP2008225785 A JP 2008225785A
Authority
JP
Japan
Prior art keywords
voxel
dimensional
image recognition
points
voxels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007062478A
Other languages
Japanese (ja)
Inventor
Kenichi Kitahama
謙一 北浜
Galpin Franck
フランク ガルパン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007062478A priority Critical patent/JP2008225785A/en
Publication of JP2008225785A publication Critical patent/JP2008225785A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image recognition device, recognizing the presence/absence of an object with good accuracy. <P>SOLUTION: This image recognition device 1 includes two cameras for imaging the object and a processing unit. The processing unit restores the surface shape of the object as a set of a number of dots on a three-dimensional space according to the pick-up images of the object by the respective cameras, divides the three-dimensional space including these restoring dots into voxels to generate a three-dimensional voxel group, and further slices the three-dimensional voxel group to be converted to a plurality of two-dimensional voxel groups. The processing unit counts restoring dots included in each voxel in the respective two-dimensional voxel groups, determines the probability of existence of the object in each voxel from the count, and recognizes the presence/absence of the object according to the result. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、対象物の撮像画像を用いて対象物を認識する画像認識装に関するものである。   The present invention relates to an image recognition device that recognizes an object using a captured image of the object.

従来の画像認識装置としては、例えば非特許文献1に記載されているように、物体の表面形状を点の集合として三次元空間上に復元し、その三次元空間の各ボクセルに点が存在するかどうかを検出するものが知られている。
FANG,S. AND CHEN,H.2000.Hardware AcceleratedVoxelization.Computers&Graphics 24,3(June),433-442.
As a conventional image recognition device, for example, as described in Non-Patent Document 1, a surface shape of an object is restored on a three-dimensional space as a set of points, and a point exists in each voxel of the three-dimensional space. Those that detect whether or not are known.
FANG, S. AND CHEN, H.2000.Hardware AcceleratedVoxelization.Computers & Graphics 24,3 (June), 433-442.

しかしながら、上記従来技術においては、以下の問題点が存在する。即ち、画像認識装置を例えばロボットに適用し、画像認識装置の認識結果に応じてロボットの移動経路を求める場合、ノイズ等の影響により誤って点が1つでも復元されると、本来ならば存在しないはずの場所に障害物が存在すると判断されてしまう。この場合には、ロボットの正しい移動経路が得られなくなる。   However, the following problems exist in the prior art. That is, when an image recognition device is applied to, for example, a robot and the movement path of the robot is obtained according to the recognition result of the image recognition device, if one point is erroneously restored due to the influence of noise or the like, it originally exists. It is judged that there is an obstacle in the place that should not be done. In this case, a correct movement path of the robot cannot be obtained.

本発明の目的は、対象物の有無を精度良く認識することができる画像認識装置を提供することである。   An object of the present invention is to provide an image recognition apparatus that can accurately recognize the presence or absence of an object.

本発明は、撮像部により取得した対象物の撮像画像を用いて対象物を認識する画像認識装置において、対象物の撮像画像に基づいて、対象物の表面に対応する複数の点を三次元空間上に復元する三次元復元手段と、三次元復元手段により復元された複数の点を含む三次元空間を複数のボクセルに分割する空間分割手段と、空間分割手段により分割して得られた各ボクセルに含まれる点の数をカウントし、各ボクセルにおける対象物の存在確率を決定する存在確率決定手段とを備えることを特徴とするものである。   The present invention provides an image recognition apparatus for recognizing an object using a captured image of the object acquired by an imaging unit, based on the captured image of the object, a plurality of points corresponding to the surface of the object in a three-dimensional space. 3D restoration means for restoring upward, space division means for dividing a 3D space including a plurality of points restored by the 3D restoration means into a plurality of voxels, and each voxel obtained by dividing by the space division means And existence probability determining means for counting the number of points included in the object and determining the existence probability of the object in each voxel.

このような画像認識装置においては、復元された複数の点を含む三次元空間を複数のボクセルに分割し、各ボクセルに含まれる点の数をカウントし、各ボクセルにおける対象物の存在確率を決定する。このとき、ボクセルに含まれる復元点の数が多くなるほど、ボクセルにおける対象物の存在確率を高くする。そして、ボクセルにおける対象物の存在確率が所定値よりも低いときは、そのボクセルに含まれる復元点はノイズ等の影響により誤って復元されたものと判断し、当該ボクセルに対応する位置には対象物は存在していないとみなす。これにより、ノイズ等の影響を除外して、対象物の有無を精度良く認識することができる。   In such an image recognition device, a three-dimensional space including a plurality of restored points is divided into a plurality of voxels, the number of points included in each voxel is counted, and the existence probability of an object in each voxel is determined. To do. At this time, as the number of restoration points included in the voxel increases, the existence probability of the object in the voxel is increased. When the existence probability of the target object in the voxel is lower than the predetermined value, it is determined that the restoration point included in the voxel is erroneously restored due to the influence of noise or the like, and the position corresponding to the voxel is the target. It is considered that the thing does not exist. Thereby, it is possible to accurately recognize the presence or absence of an object by excluding the influence of noise or the like.

好ましくは、空間分割手段により分割して得られた複数のボクセルからなる三次元ボクセル群を複数の二次元ボクセル群に変換する手段を更に備え、存在確率決定手段は、各二次元ボクセル群毎に、各ボクセルに含まれる点の数をカウントする。このように三次元ボクセル群を二次元ボクセル群に変換することにより、各ボクセルに含まれる点の数のカウントする処理を、二次元画像の処理に好適なGPU等を用いて高速に行うことが可能となる。   Preferably, the apparatus further comprises means for converting a three-dimensional voxel group composed of a plurality of voxels obtained by dividing by the space dividing means into a plurality of two-dimensional voxel groups, and the existence probability determining means is provided for each two-dimensional voxel group. Count the number of points contained in each voxel. By converting a three-dimensional voxel group into a two-dimensional voxel group in this way, the processing for counting the number of points included in each voxel can be performed at high speed using a GPU or the like suitable for processing a two-dimensional image. It becomes possible.

また、好ましくは、空間分割手段は、撮像部から遠くなるにつれてボクセルのサイズが大きくなるように、復元された複数の点を含む三次元空間を複数のボクセルに分割する。この場合には、撮像部から遠く離れるほどボクセルの数が少なくなるので、存在確率決定手段の処理時間を短縮すると共に、存在確率データの格納に必要なメモリサイズを小さくすることができる。なお、撮像部から遠く離れた復元点については位置精度が低いため、撮像部から遠く離れたボクセルのサイズを大きくしても、対象物の有無の認識処理には殆ど支障は無い。   Preferably, the space dividing unit divides the three-dimensional space including the restored points into a plurality of voxels so that the size of the voxel increases as the distance from the imaging unit increases. In this case, since the number of voxels decreases as the distance from the imaging unit increases, the processing time of the existence probability determining means can be shortened, and the memory size required for storing the existence probability data can be reduced. In addition, since the position accuracy is low at a restoration point far from the imaging unit, even if the size of the voxel far from the imaging unit is increased, there is almost no problem in the recognition process of the presence / absence of the object.

本発明によれば、対象物の有無を精度良く認識することができる。これにより、例えば画像認識装置の認識結果を用いてロボットを任意の位置に移動させる場合に、ロボットの正しい移動経路を求めることが可能となる。   According to the present invention, the presence or absence of an object can be accurately recognized. Thereby, for example, when the robot is moved to an arbitrary position using the recognition result of the image recognition apparatus, it is possible to obtain a correct movement path of the robot.

以下、本発明に係わる画像認識装置の好適な実施形態について、図面を参照して詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, a preferred embodiment of an image recognition apparatus according to the present invention will be described in detail with reference to the drawings.

図1は、本発明に係わる画像認識装置の一実施形態を示す概略構成図である。同図において、本実施形態の画像認識装置1は、例えば産業用ロボット(図示せず)等に搭載されるものである。   FIG. 1 is a schematic configuration diagram showing an embodiment of an image recognition apparatus according to the present invention. In the figure, the image recognition apparatus 1 of this embodiment is mounted on, for example, an industrial robot (not shown).

同図において、画像認識装置1は、ロボット前方を撮像するカメラ2,3と、これらのカメラ2,3と接続された演算処理ユニット4とを備えている。カメラ2,3は、例えばCCDカメラであり、異なる2つの視点から対象物Aを撮像するようにロボットの両眼部(図示せず)に設けられている。カメラ2,3により対象物Aが撮像されると、その対象物Aの画像がカメラ2,3の撮像面2a,3aにそれぞれ投影される。   In FIG. 1, the image recognition apparatus 1 includes cameras 2 and 3 that image the front of the robot, and an arithmetic processing unit 4 connected to these cameras 2 and 3. The cameras 2 and 3 are, for example, CCD cameras, and are provided on both eyes (not shown) of the robot so as to image the object A from two different viewpoints. When the object A is imaged by the cameras 2 and 3, images of the object A are projected onto the imaging surfaces 2a and 3a of the cameras 2 and 3, respectively.

演算処理ユニット4は、カメラ2,3により取得した対象物Aの撮像画像を入力し、所定の画像処理を行い、ロボット前方に障害物や把持物体等が実際に存在しているかどうかを判定する。演算処理ユニット4による演算処理手順の詳細を図2に示す。   The arithmetic processing unit 4 inputs the captured image of the object A acquired by the cameras 2 and 3, performs predetermined image processing, and determines whether an obstacle, a gripping object, or the like actually exists in front of the robot. . The details of the arithmetic processing procedure by the arithmetic processing unit 4 are shown in FIG.

同図において、まず例えば三角測量の原理を利用したステレオ視を用いて、図3(a)に示すように、カメラ2,3により撮像された対象物Aの表面形状(凹凸)を多数の点Pの集合として三次元空間上に復元する(手順S51)。カメラ2,3の画像面2a,3aにおいて同一の点Pの対応付けを行うことで、三角測量の原理により奥行きを知ることができる。   In the figure, first, for example, by using stereo vision using the principle of triangulation, as shown in FIG. 3A, the surface shape (unevenness) of the object A imaged by the cameras 2 and 3 is displayed at a number of points. Restoration on the three-dimensional space as a set of P (step S51). By associating the same point P on the image planes 2a and 3a of the cameras 2 and 3, the depth can be known by the principle of triangulation.

続いて、図3(b)に示すように、手順S51で得られた全ての点(復元点)Pを含む三次元空間を小空間(ボクセル)Qに分割することにより、三次元的に配列された複数のボクセルQからなる三次元ボクセル群Rを生成する(手順S52)。これにより、全ての復元点Pは、何れかのボクセルQに含まれることとなる。   Subsequently, as shown in FIG. 3B, a three-dimensional array is obtained by dividing the three-dimensional space including all the points (restoration points) P obtained in step S51 into small spaces (voxels) Q. A three-dimensional voxel group R composed of the plurality of voxels Q is generated (procedure S52). As a result, all the restoration points P are included in any voxel Q.

続いて、図3(c)に示すように、手順S52で得られた三次元ボクセル群Rをスライスすることで、複数のボクセルQがマトリクス状に配列されてなる二次元ボクセル群Sを複数生成する(手順S53)。つまり、三次元ボクセル群Rを複数の二次元ボクセル群Sに変換する。   Subsequently, as shown in FIG. 3C, by slicing the three-dimensional voxel group R obtained in step S52, a plurality of two-dimensional voxel groups S in which a plurality of voxels Q are arranged in a matrix are generated. (Procedure S53). That is, the three-dimensional voxel group R is converted into a plurality of two-dimensional voxel groups S.

続いて、二次元ボクセル群Sにおける各ボクセルQに含まれる復元点Pの数をカウントし、そのカウント数に応じて各ボクセルSに対象物Aが存在する確率(存在確率)を決定する(手順S54)。このとき、ボクセルSに含まれる復元点Qの数が多くに従って、例えば線形的または指数関数的に存在確率を高くする。   Subsequently, the number of restoration points P included in each voxel Q in the two-dimensional voxel group S is counted, and the probability (existence probability) that the object A exists in each voxel S is determined according to the count number (procedure) S54). At this time, the existence probability is increased, for example, linearly or exponentially as the number of restoration points Q included in the voxel S increases.

二次元ボクセル群Sは、1枚の二次元画像とみなして処理することができる。従って、本処理は、例えば二次元画像を高速で処理することが可能とされるGPU(Graphic Processing Unit)を用いて実行する。このとき、各ボクセルQに含まれる復元点Pの数は、例えば図4に示すように輝度の階調値として表わされる。   The two-dimensional voxel group S can be processed as a single two-dimensional image. Therefore, this processing is executed using, for example, a GPU (Graphic Processing Unit) that can process a two-dimensional image at high speed. At this time, the number of restoration points P included in each voxel Q is represented as a gradation value of luminance, for example, as shown in FIG.

続いて、手順S53で得られた各ボクセルQの存在確率データを、各ボクセルQの位置データと共にメモリ(図示せず)に記憶させる(手順S55)。   Subsequently, the existence probability data of each voxel Q obtained in step S53 is stored in a memory (not shown) together with the position data of each voxel Q (step S55).

続いて、全てのボクセルPにおける対象物Aの存在確率を求めたかどうかを判断し(手順S55)、全ボクセルPにおける対象物Aの存在確率が未だ求められていないときは、他の二次元ボクセル群Sについて上記の手順S54,S55を繰り返し実行する。一方、全ボクセルPにおける対象物Aの存在確率が求められたときは、メモリ(図示せず)に記憶された各ボクセルQの存在確率データを読み出し、カメラ2,3の撮像範囲内に障害物や把持物体等があるかどうかを判断する(手順S57)。その判断は、具体的に以下のようにして行う。   Subsequently, it is determined whether or not the existence probabilities of the objects A in all the voxels P have been obtained (step S55). If the existence probabilities of the objects A in all the voxels P have not yet been obtained, other two-dimensional voxels are obtained. The above steps S54 and S55 are repeated for the group S. On the other hand, when the existence probabilities of the objects A in all the voxels P are obtained, the existence probability data of each voxel Q stored in the memory (not shown) is read, and the obstacles are within the imaging range of the cameras 2 and 3. Or whether there is a gripping object or the like (step S57). The determination is specifically made as follows.

即ち、実際に障害物等が存在する位置では、その位置に対応するボクセルQに含まれる復元点Pの数が多くなる。しかし、上記の手順S51において、カメラ2,3間で同一の点の対応がうまくとれていないと、本来ならば障害物等が存在しない位置に対応するボクセルQに復元点Pがノイズ等として出てくることがある。ただし、このノイズ等による復元点Pはまとまって出ることは無い。   That is, at a position where an obstacle or the like actually exists, the number of restoration points P included in the voxel Q corresponding to the position increases. However, in the above step S51, if the correspondence between the same points is not taken well between the cameras 2 and 3, the restoration point P appears as noise or the like in the voxel Q corresponding to the position where no obstacle or the like originally exists. May come. However, the restoration point P due to this noise or the like does not come together.

そこで、ボクセルQにおける対象物の存在確率が予め設定された閾値よりも高いときは、そのボクセルQに含まれる復元点Pは正規のもの(実復元点)であり、当該ボクセルQに対応する位置に障害物等が存在するものと判断する。一方、ボクセルQにおける対象物の存在確率が予め設定された閾値よりも低いときは、そのボクセルQに含まれる復元点Pはノイズ等の影響により誤って生成されたものであり、当該ボクセルQに対応する位置には障害物等が存在しないものと判断する。   Therefore, when the existence probability of the object in the voxel Q is higher than a preset threshold value, the restoration point P included in the voxel Q is a normal one (actual restoration point), and the position corresponding to the voxel Q. It is determined that there are obstacles. On the other hand, when the existence probability of the object in the voxel Q is lower than a preset threshold value, the restoration point P included in the voxel Q is erroneously generated due to the influence of noise or the like. It is determined that there is no obstacle or the like at the corresponding position.

以上において、手順S51は、対象物の撮像画像に基づいて、対象物の表面に対応する複数の点を三次元空間上に復元する三次元復元手段を構成する。手順S52は、三次元復元手段により復元された複数の点を含む三次元空間を複数のボクセルに分割する空間分割手段を構成する。手順S53は、空間分割手段により分割して得られた複数のボクセルからなる三次元ボクセル群を複数の二次元ボクセル群に変換する手段を構成する。手順S56は、空間分割手段により分割して得られた各ボクセルに含まれる点の数をカウントし、各ボクセルにおける対象物の存在確率を決定する存在確率決定手段を構成する。   In the above, the procedure S51 constitutes a three-dimensional restoration unit that restores a plurality of points corresponding to the surface of the object on the three-dimensional space based on the captured image of the object. Step S52 constitutes a space dividing unit that divides a three-dimensional space including a plurality of points restored by the three-dimensional restoration unit into a plurality of voxels. Step S53 constitutes means for converting a three-dimensional voxel group composed of a plurality of voxels obtained by dividing by the space dividing means into a plurality of two-dimensional voxel groups. Step S56 constitutes existence probability determining means for counting the number of points included in each voxel obtained by dividing by the space dividing means and determining the existence probability of the object in each voxel.

以上のように本実施形態にあっては、各ボクセルQに含まれる復元点Pの数をカウントし、そのカウント数から各ボクセルQにおける実復元点つまり対象物Aの存在確率を求め、その存在確率に基づいて各ボクセルQに対応する位置に対象物Aが存在するかどうかを判断する。従って、ノイズ等の影響を除外して対象物Aの存在が判断されることになるため、対象物Aの有無を精度良く認識することができる。   As described above, in the present embodiment, the number of restoration points P included in each voxel Q is counted, and the actual restoration point in each voxel Q, that is, the existence probability of the object A is obtained from the counted number. It is determined whether or not the object A exists at a position corresponding to each voxel Q based on the probability. Accordingly, since the presence of the object A is determined without the influence of noise or the like, the presence or absence of the object A can be accurately recognized.

従って、例えばロボットが移動するときに、ロボットの進路に実際には障害物が無いにも拘わらず、誤って障害物があると認識して、その位置をよけるような移動経路をとるという不具合を防止することができる。或いはロボットが何らかの物体を把持するときに、実際には把持物体が無いにも拘わらず、誤って把持物体があると認識して、それを掴むように動作するという不具合を防止することも可能となる。   Therefore, for example, when a robot moves, it is recognized that there is an obstacle in the course of the robot, but there is actually an obstacle, and a movement path is taken to avoid the position. Can be prevented. Or, when the robot grips some object, it is possible to prevent the malfunction that it is recognized that there is actually a gripping object and there is no gripping object and operates to grip it. Become.

また、多数の復元点Pを含む三次元ボクセル群Rをスライスして2次元ボクセル群Sを生成するので、GPU等を用いて、各ボクセルQにおける対象物Aの存在確率を決定する処理を高速に行うことができる。これにより、障害物や把持物体等の認識に要する時間を短縮することが可能となる。   In addition, since the two-dimensional voxel group S is generated by slicing the three-dimensional voxel group R including a large number of restoration points P, the processing for determining the existence probability of the object A in each voxel Q using a GPU or the like is performed at high speed. Can be done. As a result, it is possible to reduce the time required for recognizing an obstacle or a gripped object.

なお、本発明は、上記実施形態に限定されるものではない。例えば上記実施形態では、多数の復元点Pが含まれる三次元空間を全て同じサイズのボクセルQに分割するようにしたが、カメラ2,3から遠い位置にある復元点Pは、カメラ2,3に近い位置にある復元点Pに比べて位置精度が低い。このため、カメラ2,3から遠い位置にあるボクセルQのサイズとカメラ2,3に近い位置にあるボクセルQのサイズとを必ずしも同等にする必要は無い。   The present invention is not limited to the above embodiment. For example, in the above embodiment, the three-dimensional space including a large number of restoration points P is all divided into voxels Q of the same size, but the restoration points P located far from the cameras 2 and 3 are the cameras 2 and 3. The position accuracy is lower than that of the restoration point P at a position close to. For this reason, the size of the voxel Q located far from the cameras 2 and 3 and the size of the voxel Q located near the cameras 2 and 3 are not necessarily equal.

そこで、図2に示す手順S52において、各復元点Pを含む三次元空間をボクセルQに分割する際には、図5に示すように、カメラ2,3から遠く離れるにつれてボクセルQのサイズを大きくしても良い。このとき、カメラ2,3の何れか一方の画像面を基準にして、カメラ2,3の画像面に投影されたボクセルサイズが一定値(e×e)になるように、各ボクセルQのサイズを設定するのが望ましい。   Therefore, when dividing the three-dimensional space including each restoration point P into voxels Q in step S52 shown in FIG. 2, the size of the voxel Q is increased with increasing distance from the cameras 2 and 3, as shown in FIG. You may do it. At this time, the size of each voxel Q is set so that the voxel size projected on the image planes of the cameras 2 and 3 becomes a constant value (e × e) with reference to one of the image planes of the cameras 2 and 3. It is desirable to set.

この場合には、カメラ2,3から遠く離れるほど、1つの2次元ボクセル群Sに含まれるボクセルQの数が少なくなるので、対象物Aの認識に要する時間を一層短縮することができる。また、対象物Aの認識処理に必要なメモリ(前述)として小容量メモリを使用可能となるので、コスト的にも有利となる。   In this case, since the number of voxels Q included in one two-dimensional voxel group S decreases as the distance from the cameras 2 and 3 increases, the time required to recognize the object A can be further shortened. Further, since a small-capacity memory can be used as the memory (described above) necessary for the recognition processing of the object A, it is advantageous in terms of cost.

また、上記実施形態では、演算処理ユニット4がロボットに搭載されているものとしたが、演算処理ユニット4をロボット以外の箇所に設置しても良い。この場合には、カメラ2,3による撮像画像を無線通信によりロボットから演算処理ユニットに送り、更に演算処理ユニットによる処理結果を同様に無線通信によりロボットに送るようにすれば良い。   Moreover, in the said embodiment, although the arithmetic processing unit 4 shall be mounted in the robot, you may install the arithmetic processing unit 4 in locations other than a robot. In this case, an image captured by the cameras 2 and 3 may be sent from the robot to the arithmetic processing unit by wireless communication, and the processing result by the arithmetic processing unit may be similarly sent to the robot by wireless communication.

さらに、本発明の画像認識装置は、ロボット以外、例えば車両等にも適用可能であることは言うまでもない。   Furthermore, it goes without saying that the image recognition apparatus of the present invention can be applied to a vehicle other than a robot, for example.

本発明に係わる画像認識装置の一実施形態を示す概略構成図である。1 is a schematic configuration diagram illustrating an embodiment of an image recognition apparatus according to the present invention. 図1に示した演算処理ユニットによる演算処理手順の詳細を示すフローチャートである。It is a flowchart which shows the detail of the arithmetic processing procedure by the arithmetic processing unit shown in FIG. 図2に示した三次元復元処理、空間分割処理及びスライス処理を概念的に示す図である。FIG. 3 is a diagram conceptually illustrating a three-dimensional restoration process, a space division process, and a slice process illustrated in FIG. 2. 図2に示した存在確率決定処理を概念的に示す図である。It is a figure which shows notionally the existence probability determination process shown in FIG. 図2に示した空間分割処理の変形例を概念的に示す図である。It is a figure which shows notionally the modification of the space division process shown in FIG.

符号の説明Explanation of symbols

1…画像認識装置、2,3…カメラ(撮像部)、4…演算処理ユニット(三次元復元手段、空間分割手段、存在確率決定手段)、A…対象物、P…復元点、Q…ボクセル、R…三次元ボクセル群、S…二次元ボクセル群。   DESCRIPTION OF SYMBOLS 1 ... Image recognition apparatus, 2, 3 ... Camera (imaging part), 4 ... Arithmetic processing unit (three-dimensional reconstruction means, space division means, existence probability determination means), A ... Object, P ... Restoration point, Q ... Voxel , R ... three-dimensional voxel group, S ... two-dimensional voxel group.

Claims (3)

撮像部により取得した対象物の撮像画像を用いて前記対象物を認識する画像認識装置において、
前記対象物の撮像画像に基づいて、前記対象物の表面に対応する複数の点を三次元空間上に復元する三次元復元手段と、
前記三次元復元手段により復元された複数の点を含む三次元空間を複数のボクセルに分割する空間分割手段と、
前記空間分割手段により分割して得られた各ボクセルに含まれる点の数をカウントし、前記各ボクセルにおける前記対象物の存在確率を決定する存在確率決定手段とを備えることを特徴とする画像認識装置。
In the image recognition apparatus for recognizing the object using a captured image of the object acquired by the imaging unit,
Based on a captured image of the object, three-dimensional restoration means for restoring a plurality of points corresponding to the surface of the object on a three-dimensional space;
Space dividing means for dividing a three-dimensional space including a plurality of points restored by the three-dimensional restoration means into a plurality of voxels;
Image recognition comprising: presence probability determining means for counting the number of points included in each voxel obtained by the space dividing means and determining the existence probability of the object in each voxel apparatus.
前記空間分割手段により分割して得られた前記複数のボクセルからなる三次元ボクセル群を複数の二次元ボクセル群に変換する手段を更に備え、
前記存在確率決定手段は、前記各二次元ボクセル群毎に、前記各ボクセルに含まれる点の数をカウントすることを特徴とする請求項1記載の画像認識装置。
Means for converting a three-dimensional voxel group consisting of the plurality of voxels obtained by dividing by the space dividing means into a plurality of two-dimensional voxel groups;
The image recognition apparatus according to claim 1, wherein the existence probability determining unit counts the number of points included in each voxel for each two-dimensional voxel group.
前記空間分割手段は、前記撮像部から遠くなるにつれて前記ボクセルのサイズが大きくなるように、前記復元された複数の点を含む三次元空間を複数のボクセルに分割することを特徴とする請求項1または2記載の画像認識装置。   The space dividing unit divides a three-dimensional space including the restored points into a plurality of voxels so that the size of the voxel increases as the distance from the imaging unit increases. Or the image recognition apparatus of 2.
JP2007062478A 2007-03-12 2007-03-12 Image recognition device Pending JP2008225785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062478A JP2008225785A (en) 2007-03-12 2007-03-12 Image recognition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062478A JP2008225785A (en) 2007-03-12 2007-03-12 Image recognition device

Publications (1)

Publication Number Publication Date
JP2008225785A true JP2008225785A (en) 2008-09-25

Family

ID=39844341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062478A Pending JP2008225785A (en) 2007-03-12 2007-03-12 Image recognition device

Country Status (1)

Country Link
JP (1) JP2008225785A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003254A (en) * 2008-06-23 2010-01-07 Hitachi Ltd Image processing apparatus
WO2020017111A1 (en) * 2018-07-20 2020-01-23 ソニー株式会社 Agent, presence probability map creation method, agent action control method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192199A (en) * 1993-12-27 1995-07-28 Fuji Heavy Ind Ltd Travel guide device for vehicle
JPH0997337A (en) * 1995-09-29 1997-04-08 Fuji Heavy Ind Ltd Trespasser monitor device
JP2004108980A (en) * 2002-09-19 2004-04-08 Fujitsu Ten Ltd Image processing method
JP2006011880A (en) * 2004-06-25 2006-01-12 Sony Corp Environmental map creation method and device, and mobile robot device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07192199A (en) * 1993-12-27 1995-07-28 Fuji Heavy Ind Ltd Travel guide device for vehicle
JPH0997337A (en) * 1995-09-29 1997-04-08 Fuji Heavy Ind Ltd Trespasser monitor device
JP2004108980A (en) * 2002-09-19 2004-04-08 Fujitsu Ten Ltd Image processing method
JP2006011880A (en) * 2004-06-25 2006-01-12 Sony Corp Environmental map creation method and device, and mobile robot device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003254A (en) * 2008-06-23 2010-01-07 Hitachi Ltd Image processing apparatus
JP4615038B2 (en) * 2008-06-23 2011-01-19 日立オートモティブシステムズ株式会社 Image processing device
WO2020017111A1 (en) * 2018-07-20 2020-01-23 ソニー株式会社 Agent, presence probability map creation method, agent action control method, and program

Similar Documents

Publication Publication Date Title
US9602796B2 (en) Technologies for improving the accuracy of depth cameras
CN106709895B (en) Image generation method and apparatus
JP4943034B2 (en) Stereo image processing device
US20140240467A1 (en) Image processing method and apparatus for elimination of depth artifacts
JP6570296B2 (en) Image processing apparatus, image processing method, and program
TW201118791A (en) System and method for obtaining camera parameters from a plurality of images, and computer program products thereof
JP7184050B2 (en) Encoding device, encoding method, decoding device, and decoding method
US8538079B2 (en) Apparatus capable of detecting location of object contained in image data and detection method thereof
WO2018216341A1 (en) Information processing device, information processing method, and program
US20140161313A1 (en) Tracking device
TW201436552A (en) Method and apparatus for increasing frame rate of an image stream using at least one higher frame rate image stream
TW201434010A (en) Image processor with multi-channel interface between preprocessing layer and one or more higher layers
CN111553940A (en) Depth image portrait edge optimization method and processing device
US9323995B2 (en) Image processor with evaluation layer implementing software and hardware algorithms of different precision
TWI402479B (en) Depth detection method and system using thereof
JP6577595B2 (en) Vehicle external recognition device
JP2008225785A (en) Image recognition device
KR101696086B1 (en) Method and apparatus for extracting object region from sonar image
JP6412372B2 (en) Information processing apparatus, information processing system, information processing apparatus control method, and program
CN109564688B (en) Method and apparatus for codeword boundary detection to generate a depth map
JP4946535B2 (en) Image recognition device
WO2021098666A1 (en) Hand gesture detection method and device, and computer storage medium
CN114638891A (en) Target detection positioning method and system based on image and point cloud fusion
KR102672992B1 (en) Method for determining whether camera is contaminated in real time and device using the same
JP2008225788A (en) Image processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809