JP2008225351A - Malaria microscope, excitation filter for use in the same, and observation method of malaria plasmodia - Google Patents

Malaria microscope, excitation filter for use in the same, and observation method of malaria plasmodia Download PDF

Info

Publication number
JP2008225351A
JP2008225351A JP2007067096A JP2007067096A JP2008225351A JP 2008225351 A JP2008225351 A JP 2008225351A JP 2007067096 A JP2007067096 A JP 2007067096A JP 2007067096 A JP2007067096 A JP 2007067096A JP 2008225351 A JP2008225351 A JP 2008225351A
Authority
JP
Japan
Prior art keywords
light
filter
malaria
excitation
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007067096A
Other languages
Japanese (ja)
Inventor
Fumihiko Kawamoto
文彦 川本
Yoshiaki Tanaka
良明 田中
Yoshihiro Miyazaki
好弘 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Optical Co Ltd
Original Assignee
Kyowa Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Optical Co Ltd filed Critical Kyowa Optical Co Ltd
Priority to JP2007067096A priority Critical patent/JP2008225351A/en
Publication of JP2008225351A publication Critical patent/JP2008225351A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)
  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method which is capable of quickly, easily, and clearly observing malaria plasmodia with naked eyes by using a general optical microscope and applying a malaria rapid diagnosis method employing acridine orange staining. <P>SOLUTION: A malaria microscope uses: an excitation filter which has such spectral characteristics that the transmittance of light is ≤0.1% at least in a range of at least 510 to 720 nm and is ≥80% at least at about 460 nm and 490 nm being excitation wavelengths of acridine orange and rapidly falls in a range of about 490 to 510 nm; and an absorbing filter which completely cuts the light at least at ≤510 nm is used. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光学顕微鏡を使用してマラリア原虫を観察するための顕微鏡及びそれに使用する励起フィルター、並びにこれらを用いたマラリア原虫の観察方法に関するものである。   The present invention relates to a microscope for observing malaria parasites using an optical microscope, an excitation filter used therefor, and a method for observing malaria parasites using these.

マラリアは、マラリア原虫(Plasmodium)の感染に起因する世界で猛威をふるっている感染症の一つで、特有の熱発作とそれに続発する貧血、脾腫のほか多彩な病態を呈する疾患であり、アフリカ・南米・東南アジア等の蔓延地における感染者数は3億人以上、死者もアフリカの子供を中心に年間200万人以上と報告されている。   Malaria is one of the most prevalent infectious diseases in the world caused by Plasmodium infection. It is a disease that exhibits a variety of pathological conditions in addition to peculiar fever attacks and subsequent anemia and splenomegaly. It is reported that more than 300 million people have been infected in endemic areas such as South America and Southeast Asia, and the number of deaths has been reported to be over 2 million per year, mainly among African children.

WHOをはじめ多くの研究機関で、マラリアワクチンの開発・新しいマラリア治療薬の開発・媒介蚊の防除対策などのマラリア対策が推進されているが、いまだにマラリアを根絶するための具体的な解決方法は見いだされていない。さらに、マラリアの診断にも大きな問題が残されたままであり、現在でもマラリアの確定診断は、血液塗抹標本にギームザ染色法を適用してマラリア原虫の存在を証明する方法が最も確実とされている。   Many research institutions, including WHO, are promoting malaria countermeasures such as the development of malaria vaccines, the development of new antimalarial drugs, and the control of vector mosquitoes, but there are still specific solutions for eradicating malaria. Not found. In addition, major problems remain in the diagnosis of malaria, and even now, the most reliable method for the diagnosis of malaria is to apply the Giemsa staining to blood smears to prove the presence of protozoa. .

このギームザ染色法は、1902年にハンブルグ熱帯病研究所のグスタフ・ギームザ(Gustav Giemsa)が発表した方法であり、長い間使用されてきているが、判定に時間がかかること、診断精度が検査者の熟練度に大きく依存することなどの欠点を持つ。実際、マラリア蔓延地では、診断結果を知るのに何日も待たされることが多いという実情がある。   This Giemsa staining method was published by Gustav Giemsa of the Hamburg Institute for Tropical Diseases in 1902 and has been used for a long time. It has disadvantages such as being highly dependent on the skill level of In fact, in malaria endemic areas, there are many facts that people often have to wait for days to know the diagnosis.

これらの欠点を補う検査法として、IFA・ELISA法など各種の免疫学的診断法やDNAプローブを用いた診断法が開発されつつある。しかし、前者は、過去の感染も陽性となるため結果の判定が難しく、後者は、処理の複雑さと診断の精度の問題があり、いずれも実際のマラリア蔓延地における診断法として応用するには相当な改良が必要であって、フィールドにおける実際の日常検査法となるには至っていない。   As test methods to compensate for these drawbacks, various immunological diagnostic methods such as IFA / ELISA and diagnostic methods using DNA probes are being developed. However, it is difficult to judge the result of the former because the past infection is also positive, and the latter has problems of processing complexity and diagnostic accuracy, both of which are suitable for application as diagnostic methods in actual malaria epidemic areas. Improvement is necessary, and it has not become an actual daily inspection method in the field.

本発明の発明者の一人である川本文彦は、上記のギームザ染色法に代わる新しい染色方法として、2つの蛍光色素を用いた原虫感染症の新しい染色診断法を検討した。この研究の結果については、非特許文献1と2を参照されたい。この新しい染色診断方法は、DAPI(4’, 6-diamidino-2-phenylindole)とPI(propidium iodide)の2つの蛍光色素を用いるものであって、DNAに結合するDAPIにより核(およびミトコンドリアDNA)を染め、次いで、DNAとRNAに結合するPIで染色するとDNA以外の核酸、すなわち細胞質のRNA(細胞質)が染色されて、容易に核と細胞質の弁別染色が可能となることを利用する。この方法を用いると、各種原虫類が極めて短時間に染色・観察され、特に、住血性原虫のマラリアやトリパノソーマ原虫などは、細胞質が赤く染まることで細胞の輪郭が明りょうとなり、また、従来のギームザ法と同様の形態として観察されることから容易にこれらを同定することができる。実験室内での観察では、この方法によりマラリアの各ステージの同定も可能であり、種類の鑑別もさほど難しくなく、ギームザ染色による観察結果とほぼ同様の結果を得ることができた。   Fumihiko Kawa, one of the inventors of the present invention, examined a new staining diagnosis method for protozoal infections using two fluorescent dyes as a new staining method in place of the above-mentioned Giemsa staining method. See Non-Patent Documents 1 and 2 for the results of this study. This new staining diagnosis method uses two fluorescent dyes, DAPI (4 ', 6-diamidino-2-phenylindole) and PI (propidium iodide), and nuclei (and mitochondrial DNA) by DAPI binding to DNA. And then staining with PI that binds to DNA and RNA makes use of the fact that nucleic acids other than DNA, that is, cytoplasmic RNA (cytoplasm), are stained, so that differential staining of the nucleus and cytoplasm becomes possible. When this method is used, various protozoa are stained and observed in a very short time.In particular, the cytoplasm of the schistosome protozoa, such as malaria and trypanosoma protozoa, becomes red, and the outline of the cell becomes clear. Since they are observed as the same form as the Giemsa method, these can be easily identified. In the laboratory observation, it was possible to identify each stage of malaria by this method, and the type discrimination was not so difficult, and almost the same result as that observed by Giemsa staining could be obtained.

このDAPI/PI法は、マラリアの簡易迅速診断法として応用が可能であるが、励起波長が紫外(UV)域にあるため、通常の光学顕微鏡を用いて蛍光染色された像をみる観察方法をとることは不可能であり、高価な蛍光顕微鏡の使用が必要となるが、熱帯のマラリア蔓延地域において高価な蛍光顕微鏡を多数備えることは、事実上不可能であるという事情があった。   This DAPI / PI method can be applied as a simple and rapid diagnostic method for malaria, but since the excitation wavelength is in the ultraviolet (UV) region, an observation method for observing fluorescently stained images using a normal optical microscope can be used. However, it is impossible to take an expensive fluorescent microscope, but it is practically impossible to provide a large number of expensive fluorescent microscopes in tropical malaria infested areas.

川本文彦は、更に研究を重ね、アクリジンオレンジ(AO)染色によるマラリアの迅速診断法を考案した。この研究成果は、非特許文献3と4に示されている。この新しい迅速診断法は、AOのB励起域の色素である性質を利用するものであり、高価な水銀ランプを使わなくとも干渉フィルターとハロゲンもしくはLED光源との簡単な組み合わせで観察を可能とするものである。その染色液の作製と染色方法を次に記載する。   Fumihiko Kawa has further researched and devised a rapid diagnosis method of malaria by staining with acridine orange (AO). The results of this research are shown in Non-Patent Documents 3 and 4. This new rapid diagnosis method utilizes the property of AO as a dye in the B excitation range, and enables observation with a simple combination of an interference filter and a halogen or LED light source without using an expensive mercury lamp. Is. The preparation of the staining solution and the staining method are described below.

〈染色液の作製方法〉
AOは、シグマ製のA−4921を10mg/mlとなるように0.1mol/lの滅菌済みトリス緩衝液(pH7.0〜7.5)に溶解しNaNを0.5〜1.0%(w/v)添加してストック液を作製する。緩衝液はリン酸緩衝液やPBSでもよい。これを滅菌水で100倍に希釈し染色液を作る。ストック液、染色液ともに冷暗所に保存するか、長時間使用しない場合には凍結保存する。
<Method for preparing staining solution>
AO is prepared by dissolving Sigma's A-4921 in 0.1 mol / l of sterilized Tris buffer (pH 7.0 to 7.5) so as to be 10 mg / ml, and NaN 3 in a range of 0.5 to 1.0. % (W / v) is added to make a stock solution. The buffer may be a phosphate buffer or PBS. This is diluted 100 times with sterile water to make a staining solution. Store both stock solution and staining solution in a cool dark place, or store frozen if not used for a long time.

〈染色方法〉
末梢血の薄層塗抹標本をメタノール固定し、風乾する。染色方法は、染色液をカバーグラスに2、3滴載せ、逆さにして薄層塗抹標本に当てがうのみで、わずか1秒で済む。あるいは、ティッシュペーパーの上にカバーグラスを置き、染色液を載せて薄層塗抹標本を逆さに載せて染色してもよい。いずれもAO染色液を瞬時に拡散させるためで、染色むらが少なくなる。また、4種類の鑑別には塗抹の端の観察が重要なので、必ず1滴のAO液が塗抹の端に拡がるようにする。
<Dyeing method>
Peripheral blood thin-film smears are fixed in methanol and air-dried. The staining method requires only 1 second by placing a few drops of the staining solution on a cover glass and inverting it to apply it to the thin-layer smear. Alternatively, a cover glass may be placed on tissue paper, a staining solution may be placed, and the thin-layer smear may be placed upside down for staining. In either case, the AO staining solution is diffused instantaneously, so that uneven dyeing is reduced. In addition, since it is important to observe the edge of the smear for the four types of discrimination, be sure that one drop of the AO solution spreads to the edge of the smear.

AO染色ではDNAとRNAとが染色され、核は緑〜黄白色、細胞質は赤〜橙色に染まる。AO染色液を載せすぎると核も赤く染まり、逆に少ないと細胞質が赤く染まらないので注意を要する。   In AO staining, DNA and RNA are stained, the nucleus is stained green to yellowish white, and the cytoplasm is stained red to orange. Note that if the AO staining solution is put too much, the nucleus will also be dyed red, and if it is too little, the cytoplasm will not be dyed red.

特許文献1は、上記のアクリジンオレンジ(AO)染色を利用してマラリア原虫や住血性寄生虫等を迅速かつ簡単に観察をすることを可能とした顕微鏡を開示している。しかし、マラリア原虫を明りょうに観察するためには、使用する励起フィルターと吸収フィルターの特性が深く関係し、マラリア原虫の明りょうな観察の成否を決定することが知られている。   Patent Document 1 discloses a microscope that enables quick and easy observation of malaria parasites, schistosome parasites, and the like using the acridine orange (AO) staining described above. However, in order to clearly observe the malaria parasite, it is known that the characteristics of the excitation filter and the absorption filter used are closely related, and the success or failure of the clear observation of the malaria parasite is determined.

本発明の発明者達は、高価な蛍光顕微鏡を使用することなく、特許文献1に例示される普通の光学顕微鏡の使用を前提にアクリジンオレンジ(AO)染色法を適用してマラリア原虫を明りょうに観察することを可能とする迅速かつ簡単な方法について研究し、本発明を完成するに至った。   The inventors of the present invention apply the acridine orange (AO) staining method on the premise of using an ordinary optical microscope exemplified in Patent Document 1 without using an expensive fluorescent microscope, and clarify malaria parasites. The present invention has been completed by studying a quick and simple method that enables easy observation.

Kawamoto F, Kumada N: Fluorescence probes for detection of protozoan parasites. Parasitol Today 3: pp. 284-286, 1987Kawamoto F, Kumada N: Fluorescence probes for detection of protozoan parasites. Parasitol Today 3: pp. 284-286, 1987 川本文彦:蛍光色素による各種原虫感染症の迅速診断の試み、臨床検査 32:pp. 803-806, 1988Fumihiko Kawa: Trial of rapid diagnosis of various protozoal infections using fluorescent dyes, clinical examination 32: pp. 803-806, 1988 Kawamoto F: Rapid diagnosis of malaria by florescence microscopy with light microscope and interference filter. Lancet 337: pp. 200-202, 1992Kawamoto F: Rapid diagnosis of malaria by florescence microscopy with light microscope and interference filter. Lancet 337: pp. 200-202, 1992 Kawamoto F, Billingsley PF: Rapid diagnosis of malaria by florescence microscopy. Parasitol Today 8: pp. 69-71, 1992Kawamoto F, Billingsley PF: Rapid diagnosis of malaria by florescence microscopy. Parasitol Today 8: pp. 69-71, 1992 特開平9−179030号公報JP-A-9-179030

本発明は、一般の光学顕微鏡を使用して、アクリジンオレンジ(AO)染色によるマラリアの迅速診断法を適用して、マラリア原虫を肉眼で迅速、簡単、明りょうに観察することを可能する装置と方法を提供することを課題とするものである。   The present invention is an apparatus capable of observing malaria parasites quickly, easily and clearly with the naked eye by applying a rapid diagnosis method of malaria by acridine orange (AO) staining using a general optical microscope. It is an object to provide a method.

本発明に係るマラリア顕微鏡用の励起フィルターは、フィルターを透過する光線の波長が、少なくとも510〜720nmの範囲では、該光線の透過率が0.1%以下の分光特性を有し、かつ、少なくともアクリジンオレンジの励起波長である460nm近傍と490nm近傍では光線を透過させる分光特性を有する、好ましくは、460nm近傍と490nm近傍では光線の透過率が80%以上の分光特性を有することを特徴とするものである。   The excitation filter for a malaria microscope according to the present invention has a spectral characteristic in which the transmittance of the light beam is 0.1% or less in the range where the wavelength of the light beam transmitted through the filter is at least 510 to 720 nm, and at least It has a spectral characteristic that transmits light in the vicinity of 460 nm and 490 nm, which are the excitation wavelengths of acridine orange, and preferably has a spectral characteristic in which the light transmittance is 80% or more in the vicinity of 460 nm and 490 nm. It is.

本発明に係るマラリア顕微鏡用の励起フィルターは、フィルターを透過する光線の波長が、少なくとも510〜720nmの範囲では、該光線の透過率が0.1%以下の分光特性を有し、かつ、少なくともアクリジンオレンジの励起波長である460nm近傍と490nm近傍では光線の透過率が80%以上の分光特性を有し、かつ、490nm近傍から510nmの範囲内で透過率が急激に下降することを特徴とするものである。   The excitation filter for a malaria microscope according to the present invention has a spectral characteristic in which the transmittance of the light beam is 0.1% or less in the range where the wavelength of the light beam transmitted through the filter is at least 510 to 720 nm, and at least The light transmittance is about 80% or more in the vicinity of 460 nm and the vicinity of 490 nm, which are the excitation wavelengths of acridine orange, and the transmittance falls sharply in the range from about 490 nm to 510 nm. Is.

本発明に係るマラリア顕微鏡用の励起フィルターは、フィルターを透過する光線の波長が、少なくとも510〜720nmの範囲では、該光線の透過率が0.1%以下の分光特性を有し、かつ、少なくとも400〜490nmの範囲では、該光線の透過率が80%以上の分光特性を有し、490nmから510nmの範囲内で透過率が急激に下降することを特徴とするものである。   The excitation filter for a malaria microscope according to the present invention has a spectral characteristic in which the transmittance of the light beam is 0.1% or less in the range where the wavelength of the light beam transmitted through the filter is at least 510 to 720 nm, and at least In the range of 400 to 490 nm, the transmittance of the light beam has a spectral characteristic of 80% or more, and the transmittance sharply falls in the range of 490 to 510 nm.

本発明に係るマラリア顕微鏡は、上記のいずれかの励起フィルターと、フィルターを透過する光線の波長が少なくとも510nm以下の波長の可視光線の範囲では該光線を完全にカットする吸収フィルターを用いることを特徴とするものである。   The malaria microscope according to the present invention uses any one of the above-described excitation filters and an absorption filter that completely cuts the light rays in the range of visible light having a wavelength of at least 510 nm or less. It is what.

本発明に係るマラリア顕微鏡は、光源よりの光を集光させる集光レンズ筒を経た光を所望角度に反射せしめるミラー筒と、かかる反射された光を通すステージと、対物レンズと、接眼レンズとを具備し、前記ステージ下部のコンデンサー部には励起フィルターを、眼鏡筒部には吸収フィルターを各々切り換え自在に配置してなる光学顕微鏡において、該励起フィルターが上記のいずれかの励起フィルターであり、かつ、該吸収フィルターを透過する光線の波長が少なくとも510nm以下の波長の範囲では該光線を完全にカットする吸収フィルターを用いることを特徴とするものである。   A malaria microscope according to the present invention includes a mirror tube that reflects light through a condenser lens tube that collects light from a light source at a desired angle, a stage through which the reflected light passes, an objective lens, and an eyepiece lens. An optical filter in which an excitation filter is disposed in the condenser section below the stage and an absorption filter is disposed in the spectacle tube section in a switchable manner, and the excitation filter is any one of the above excitation filters, In addition, an absorption filter that completely cuts off the light beam in the wavelength range of at least 510 nm or less is used.

本発明に係るマラリア原虫を観察する方法は、光源から該励起フィルターを通過させてアクリジンオレンジの励起波長の光線を生じさせ、該光線をアクリジンオレンジ溶液により染色された血液の塗抹標本に照射して蛍光波長の励起発光線を生じさせ、該励起発光線を該吸収フィルターに入れて通過させ、該吸収フィルターを通過した光線によりマラリア原虫を観察する方法において、該励起フィルターとして、上記のいずれかの励起フィルターを用い、かつ、吸収フィルターとして、フィルターを透過する光線の波長が少なくとも510nm以下の波長の範囲では該光線を完全にカットする吸収フィルターを用いることを特徴とするものである。   In the method for observing the Plasmodium according to the present invention, a light source is passed through the excitation filter to generate a light beam having an excitation wavelength of acridine orange, and the light smear is applied to a blood smear stained with an acridine orange solution. In the method of generating an excitation emission line having a fluorescence wavelength, passing the excitation emission line through the absorption filter, and observing the malaria parasite by the light beam that has passed through the absorption filter, the excitation filter is any one of the above An excitation filter is used, and as an absorption filter, an absorption filter that completely cuts off the light beam in the wavelength range of at least 510 nm or less is used.

本発明によれば、従来の方法と比較して、マラリア原虫を簡易、迅速、明りょうに観察することを実現すると共に、そのための安価な機器を提供するものであり、世界中のマラリア研究と医療、特に開発途上国におけるマラリア対策と医療に大きな貢献をするものである。   According to the present invention, compared to conventional methods, it is possible to observe malaria parasites simply, quickly and clearly, and to provide an inexpensive device for that purpose. It makes a significant contribution to medical care, especially malaria control and medical care in developing countries.

[実施例1]
図1は、本発明を実施する上で使用される光学顕微鏡1とそれに使用される光源の全体構成を示す図である。顕微鏡の光源としては、ハロゲンランプもしくはLEDランプを内装し顕微鏡とは別体の光源部2を利用した。この光源部2の側面には、集光レンズ3を内装した集光レンズ筒4が取り付けられている。光学顕微鏡1は、その下部に、集光レンズ筒3からの光を反射する鏡5を内装したミラー筒6が設けられており、その上部には、ミラー筒6からの反射光を通過させるコンデンサレンズ7が検体を戴置させるステージ8の下部に設けられ、更に、対物レンズ9と単眼または双眼の眼鏡筒部10、接眼レンズ11を内装した接眼筒部を具備している。上記の構成の光学顕微鏡において、コンデンサレンズ7の下部には励起フィルター12を、眼鏡筒部10の下部には、吸収フィルター13をそれぞれ交換可能に配置する。
[Example 1]
FIG. 1 is a diagram showing an entire configuration of an optical microscope 1 used for carrying out the present invention and a light source used therefor. As a light source of the microscope, a halogen lamp or an LED lamp was incorporated, and a light source unit 2 separate from the microscope was used. A condensing lens cylinder 4 having a condensing lens 3 is attached to the side surface of the light source unit 2. The optical microscope 1 is provided at its lower part with a mirror cylinder 6 having a mirror 5 that reflects light from the condenser lens cylinder 3, and at the upper part thereof is a condenser that allows the reflected light from the mirror cylinder 6 to pass therethrough. The lens 7 is provided below the stage 8 on which the specimen is placed, and further includes an eyepiece tube portion in which an objective lens 9, a monocular or binocular eyeglass tube portion 10, and an eyepiece lens 11 are housed. In the optical microscope having the above configuration, the excitation filter 12 is disposed below the condenser lens 7, and the absorption filter 13 is disposed below the spectacle barrel 10 so as to be replaceable.

上記の吸収フィルターとして、フィルターを透過する光線の波長が少なくとも510nm以下の波長の可視光線の範囲では透過率0.001%程度となるものを用いた。また、上記の励起フィルターとしては、510〜720nmの範囲では、透過率が0.1%以下の分光特性を有し、かつ、400〜490nmの範囲では、透過率が80%以上の分光特性を有し、490nmから510nmの範囲内で透過率が急激に下降するものを用いた。図2−1は、本発明に係る吸収フィルターと比較例の分光特性を示し、図2−2は、これらの分光特性を対数目盛で示したものである。   As the absorption filter, a filter having a transmittance of about 0.001% in the range of visible light having a wavelength of at least 510 nm or less is used. The excitation filter has a spectral characteristic of a transmittance of 0.1% or less in the range of 510 to 720 nm, and a spectral characteristic of a transmittance of 80% or more in the range of 400 to 490 nm. And having a transmittance that falls sharply within a range of 490 nm to 510 nm. FIG. 2-1 shows the spectral characteristics of the absorption filter according to the present invention and the comparative example, and FIG. 2-2 shows these spectral characteristics on a logarithmic scale.

患者より採取した血液を塗った塗抹標本スライドグラスにアクリジンオレンジ(AO)染色液を適量塗付したカバーグラスを重ねて密着させ、塗抹標本の血液を蛍光染色して検体を作成する。次に、この検体を上記光学顕微鏡のステージ8上の所定位置に固定する。   A cover glass coated with an appropriate amount of acridine orange (AO) staining solution is placed on and closely adhered to a smear sample slide glass coated with blood collected from a patient, and the sample blood is fluorescently stained to prepare a specimen. Next, this specimen is fixed at a predetermined position on the stage 8 of the optical microscope.

次に、光源部2の電源を入れて光源から発光させ、この光を集光レンズ筒4で集光させて、光学顕微鏡1のミラー筒6に導く。ミラー筒6内の反射鏡5により反射された光は、励起フィルター12を通過することにより、510〜720nmの範囲の光線は透過率0.1%以下にカットされて検体に照射される。そうすると、検体中のマラリア原虫の核DNAが励起して520nm近傍に発光し、肉眼では黄色に観察される蛍光を発する。また、上記照射により、検体中のマラリア原虫の細胞質RNAが励起して630nm近傍に発光し、肉眼では赤色に観察される蛍光を発する。   Next, the light source unit 2 is turned on to emit light from the light source, and this light is condensed by the condenser lens tube 4 and guided to the mirror tube 6 of the optical microscope 1. The light reflected by the reflecting mirror 5 in the mirror cylinder 6 passes through the excitation filter 12, so that the light beam in the range of 510 to 720 nm is cut to a transmittance of 0.1% or less and irradiated to the specimen. As a result, the nuclear DNA of the malaria parasite in the sample is excited and emits light in the vicinity of 520 nm, and emits fluorescence that is observed in yellow with the naked eye. In addition, due to the irradiation, the cytoplasmic RNA of the malaria parasite in the sample is excited and emits light near 630 nm, and emits fluorescence that is observed in red with the naked eye.

励起フィルターを通過した光は、コンデンサレンズ7でコンデンスされ対物レンズ9を通過して吸収フィルター13に達するが、吸収フィルター13を通過する際に、510nm以下の可視光線は透過率が0.001%程度となるまでに吸収される。マラリア原虫からの上記の蛍光光線は極めて弱いので、肉眼による観察の際に、背景となる他の波長の光が強いとこれらの蛍光光線を観察することができないし、マラリア原虫の核DNAと細胞質RNAに上記のB励起を起こす青色も邪魔となるので、これらをすべて吸収フィルターによりカットするのである。   The light that has passed through the excitation filter is condensed by the condenser lens 7, passes through the objective lens 9, and reaches the absorption filter 13. When passing through the absorption filter 13, visible light having a wavelength of 510 nm or less has a transmittance of 0.001%. Absorbed to a degree. The above-mentioned fluorescent light from plasmodium is extremely weak, so when observing with the naked eye, if the light of other wavelengths as background is strong, these fluorescent light cannot be observed, and nuclear DNA and cytoplasm of plasmodium Since the blue color causing the B excitation in RNA is also in the way, they are all cut by an absorption filter.

こうして、接眼レンズを通して見る肉眼には、マラリア原虫の核DNAが励起して発した黄色の蛍光とマラリア原虫の細胞質RNAが励起して発した赤色の蛍光とが暗視野の中に明確に浮かび上がり、マラリア原虫の存在を明りょうに確認することができるのである。   Thus, with the naked eye viewed through the eyepiece, yellow fluorescence emitted by excitation of malaria parasite nuclear DNA and red fluorescence emitted by excitation of malaria parasite cytoplasmic RNA clearly appear in the dark field. The presence of malaria parasites can be clearly confirmed.

図3は、本発明により観察されるマラリア原虫の観察写真であり、図4は、比較例の観察写真であって、それぞれ、明るく光る3個のマラリア原虫が写し出されている。   FIG. 3 is an observation photograph of the malaria parasite observed according to the present invention, and FIG. 4 is an observation photograph of the comparative example, in which three malaria parasites that are brightly lit are projected.

なお、以上の実施例1では、ハロゲンランプもしくはLEDランプを内装した光源を用いたが、これに限定されるものではなく、太陽の直射光、タングステン光源等を利用することもできる。   In the first embodiment described above, the light source having a halogen lamp or LED lamp incorporated therein is used. However, the present invention is not limited to this, and solar direct light, tungsten light source, or the like can also be used.

本発明は、医療機器、医療関連の研究機器などの産業上の分野において、利用可能である。   The present invention can be used in industrial fields such as medical devices and medical-related research devices.

本発明に係る励起フィルターと吸収フィルターを装填された光学顕微鏡とそれに使用される光源の全体構成図である。1 is an overall configuration diagram of an optical microscope loaded with an excitation filter and an absorption filter according to the present invention and a light source used therefor. 本発明に係る吸収フィルターと比較例の分光特性を示した図である。It is the figure which showed the spectral characteristic of the absorption filter which concerns on this invention, and a comparative example. 本発明に係る吸収フィルターと比較例の分光特性を、特に対数目盛を用いて示したものである。The spectral characteristic of the absorption filter which concerns on this invention, and a comparative example is shown using especially the logarithmic scale. 本発明により観察されるマラリア原虫の観察写真である。It is an observation photograph of the malaria parasite observed by the present invention. 比較例のフィルターを用いた際に観察されるマラリア原虫の観察写真である。It is an observation photograph of the malaria parasite observed when the filter of a comparative example is used.

符号の説明Explanation of symbols

1 光学顕微鏡
2 光源部
3 集光レンズ
4 集光レンズ筒
5 反射鏡
6 ミラー筒
7 コンデンサレンズ
8 ステージ
9 対物レンズ
10 眼鏡筒部
11 接眼レンズ
12 励起フィルター
13 吸収フィルター
DESCRIPTION OF SYMBOLS 1 Optical microscope 2 Light source part 3 Condensing lens 4 Condensing lens cylinder 5 Reflecting mirror 6 Mirror cylinder 7 Condenser lens 8 Stage 9 Objective lens 10 Eyeglass cylinder part 11 Eyepiece 12 Excitation filter 13 Absorption filter

Claims (7)

フィルターを透過する光線の波長が、少なくとも510〜720nmの範囲では、該光線の透過率が0.1%以下の分光特性を有し、かつ、少なくともアクリジンオレンジの励起波長である460nm近傍と490nm近傍では光線を透過させる分光特性を有することを特徴とするマラリア顕微鏡用の励起フィルター。   When the wavelength of light passing through the filter is in the range of at least 510 to 720 nm, the transmittance of the light has a spectral characteristic of 0.1% or less, and at least the excitation wavelength of acridine orange is around 460 nm and around 490 nm. Then, an excitation filter for a malaria microscope characterized by having a spectral characteristic that transmits light. フィルターを透過する光線の波長が、少なくとも510〜720nmの範囲では、該光線の透過率が0.1%以下の分光特性を有し、かつ、少なくともアクリジンオレンジの励起波長である460nm近傍と490nm近傍では光線の透過率が80%以上の分光特性を有することを特徴とするマラリア顕微鏡用の励起フィルター。   When the wavelength of light passing through the filter is in the range of at least 510 to 720 nm, the transmittance of the light has a spectral characteristic of 0.1% or less, and at least the excitation wavelength of acridine orange is around 460 nm and around 490 nm. Then, an excitation filter for a malaria microscope characterized by having a spectral characteristic of a light transmittance of 80% or more. フィルターを透過する光線の波長が、少なくとも510〜720nmの範囲では、該光線の透過率が0.1%以下の分光特性を有し、かつ、少なくともアクリジンオレンジの励起波長である460nm近傍と490nm近傍では光線の透過率が80%以上の分光特性を有し、かつ、490nm近傍から510nmの範囲内で透過率が急激に下降することを特徴とするマラリア顕微鏡用の励起フィルター。   When the wavelength of light passing through the filter is in the range of at least 510 to 720 nm, the transmittance of the light has a spectral characteristic of 0.1% or less, and at least the excitation wavelength of acridine orange is around 460 nm and around 490 nm. Then, an excitation filter for a malaria microscope, characterized in that the light transmittance has a spectral characteristic of 80% or more, and the transmittance sharply falls within a range from about 490 nm to 510 nm. フィルターを透過する光線の波長が、少なくとも510〜720nmの範囲では、該光線の透過率が0.1%以下の分光特性を有し、かつ、少なくとも400〜490nmの範囲では、該光線の透過率が80%以上の分光特性を有し、490nmから510nmの範囲内で透過率が急激に下降することを特徴とするマラリア顕微鏡用の励起フィルター。   When the wavelength of light passing through the filter is at least in the range of 510 to 720 nm, the light transmittance is 0.1% or less, and in the range of at least 400 to 490 nm, the transmittance of the light is obtained. Excitation filter for a malaria microscope, characterized by having a spectral characteristic of 80% or more and having a sharp drop in transmittance in the range of 490 nm to 510 nm. 請求項1から4までのいずれかの請求項に記載された励起フィルターと、フィルターを透過する光線の波長が少なくとも510nm以下の波長の可視光線の範囲では該光線を完全にカットする吸収フィルターを用いることを特徴とするマラリア顕微鏡。   The excitation filter according to any one of claims 1 to 4 and an absorption filter that completely cuts off the light beam in the range of visible light having a wavelength of at least 510 nm or less. A malaria microscope characterized by that. 光源よりの光を集光させる集光レンズ筒を経た光を所望角度に反射せしめるミラー筒と、かかる反射された光を通すステージと、対物レンズと、接眼レンズとを具備し、前記ステージ下部のコンデンサー部には励起フィルターを、眼鏡筒部には吸収フィルターを各々切り換え自在に配置してなる光学顕微鏡において、
該励起フィルターが請求項1から4までのいずれかの請求項に記載された励起フィルターであり、かつ、該吸収フィルターを透過する光線の波長が少なくとも510nm以下の波長の範囲では該光線を完全にカットする吸収フィルターを用いることを特徴とするマラリア顕微鏡。
A mirror cylinder that reflects light from a light source through a condenser lens cylinder that collects light at a desired angle; a stage that transmits the reflected light; an objective lens; and an eyepiece; In an optical microscope in which an excitation filter is arranged in the condenser part and an absorption filter is arranged in the eyeglass tube part in a switchable manner,
The excitation filter is the excitation filter according to any one of claims 1 to 4, and the light beam transmitted through the absorption filter is completely at least within a wavelength range of 510 nm or less. A malaria microscope characterized by using an absorption filter for cutting.
光源から該励起フィルターを通過させてアクリジンオレンジの励起波長の光線を生じさせ、該光線をアクリジンオレンジ溶液により染色された血液の塗抹標本に照射して蛍光波長の励起発光線を生じさせ、該励起発光線を該吸収フィルターに入れて通過させ、該吸収フィルターを通過した光線によりマラリア原虫を観察する方法において、
該励起フィルターとして、請求項1から4までのいずれかの請求項に記載された励起フィルターを用い、かつ、吸収フィルターとして、フィルターを透過する光線の波長が少なくとも510nm以下の波長の範囲では該光線を完全にカットする吸収フィルターを用いることを特徴とするマラリア原虫を観察する方法。
A light source passes through the excitation filter to generate a light beam having an excitation wavelength of acridine orange, and the light is applied to a smear of blood stained with an acridine orange solution to generate an excitation emission line having a fluorescence wavelength. In a method of observing protozoan malaria by light passing through the absorption filter and passing through the absorption filter,
The excitation filter according to any one of claims 1 to 4 is used as the excitation filter, and the light beam passing through the filter as the absorption filter is at least 510 nm or less in the wavelength range. A method of observing malaria parasites, characterized by using an absorption filter that completely cuts out the material.
JP2007067096A 2007-03-15 2007-03-15 Malaria microscope, excitation filter for use in the same, and observation method of malaria plasmodia Pending JP2008225351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067096A JP2008225351A (en) 2007-03-15 2007-03-15 Malaria microscope, excitation filter for use in the same, and observation method of malaria plasmodia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067096A JP2008225351A (en) 2007-03-15 2007-03-15 Malaria microscope, excitation filter for use in the same, and observation method of malaria plasmodia

Publications (1)

Publication Number Publication Date
JP2008225351A true JP2008225351A (en) 2008-09-25

Family

ID=39844006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067096A Pending JP2008225351A (en) 2007-03-15 2007-03-15 Malaria microscope, excitation filter for use in the same, and observation method of malaria plasmodia

Country Status (1)

Country Link
JP (1) JP2008225351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039746A1 (en) 2008-09-02 2010-04-15 NGK Spark Plug Co., Ltd., Nagoya-shi Gas sensor and gas sensor unit
JP2018025640A (en) * 2016-08-09 2018-02-15 オリンパス株式会社 microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039746A1 (en) 2008-09-02 2010-04-15 NGK Spark Plug Co., Ltd., Nagoya-shi Gas sensor and gas sensor unit
JP2018025640A (en) * 2016-08-09 2018-02-15 オリンパス株式会社 microscope

Similar Documents

Publication Publication Date Title
US8481282B2 (en) Method for detecting the presence of anisotropic crystals in undiluted whole blood
CN107003242B (en) System and method for controlling imaging depth in tissue using fluorescence microscope with ultraviolet excitation after staining with fluorescent agent
US9046473B2 (en) Method and apparatus for detecting the presence of intraerythrocytic parasites
Gardner et al. Rapid virus diagnosis: application of immunofluorescence
US8423104B2 (en) Haemozoin detection
Diaspro et al. Multi-photon excitation microscopy
CN109154569A (en) For the method and apparatus to non-biopsy tissues imaging samples
BR112014016072B1 (en) method and system for detecting a plasmodium infection in a blood sample
Masters History of the optical microscope in cell biology and medicine
Tauer Advantages and risks of multiphoton microscopy in physiology
Diaspro et al. Two-photon excitation fluorescence microscopy
JP2016161946A (en) Surgical microscope
JP2008225351A (en) Malaria microscope, excitation filter for use in the same, and observation method of malaria plasmodia
US20100105022A1 (en) Analyzing biological cell material based on different interactions between illumination light and cell components
Cai et al. Super-resolution imaging of flat-mounted whole mouse cornea
Ishmukhametov et al. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes
US10838185B2 (en) Microscopic systems and methods for observation of living cells and organisms
World Health Organization Fluorescence microscopy for disease diagnosis and environmental monitoring
Harrington Microscopy of 4 pathogenic enteric protozoan parasites: A review
JPH03266809A (en) Vertical fluorescent microscope for ultraviolet range
Frost An economical microfluorescence set-up for detection of tetracyclines in bone
Agabani et al. Fluorescence microscopy using a light microscope fitted with an interference filter for the diagnosis of malaria
Firdous Laser scanning optical investigations of dengue virus infection from antibody fluorescence of human blood
Batista et al. Characterization of porcine eyes based on autofluorescence lifetime imaging
Rivero-Segura et al. Microscopy Principles in the Diagnosis of Epidemic Diseases