JP2008225332A - Imaging lens - Google Patents

Imaging lens Download PDF

Info

Publication number
JP2008225332A
JP2008225332A JP2007066722A JP2007066722A JP2008225332A JP 2008225332 A JP2008225332 A JP 2008225332A JP 2007066722 A JP2007066722 A JP 2007066722A JP 2007066722 A JP2007066722 A JP 2007066722A JP 2008225332 A JP2008225332 A JP 2008225332A
Authority
JP
Japan
Prior art keywords
lens
imaging
focal length
image side
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007066722A
Other languages
Japanese (ja)
Inventor
Tomohiko Baba
友彦 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007066722A priority Critical patent/JP2008225332A/en
Publication of JP2008225332A publication Critical patent/JP2008225332A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging lens which constitutes a lens unit used for a cellular phone or a personal computer (PC) or the like, and whose axial chromatic aberration is suppressed. <P>SOLUTION: The imaging lens includes a first lens L<SB>1</SB>having positive refractive power, which is a meniscus turning its convex surface to an object side, a stop S, a second lens L<SB>2</SB>having negative refractive power, which is a meniscus turning its convex surface to an image side, and a third lens L<SB>3</SB>having positive refractive power, whose image-side surface is plane or convex to the image side from the object side to the image side, and satisfies conditional expressions (1): 0.5≤f<SB>1</SB>/f≤0.9, (2):-5≤f<SB>2</SB>/f≤-0.8 and (3) 2≤f<SB>3</SB>/f≤1000. Provided that f: focal length of an entire optical system, f<SB>1</SB>: focal length of the first lens, f<SB>2</SB>: focal length of the second lens, and f<SB>3</SB>: focal length of the third lens. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、携帯電話やパーソナルコンピュータ(PC)等に用いられるレンズユニットを構成する撮像レンズに関する。   The present invention relates to an imaging lens constituting a lens unit used in a mobile phone, a personal computer (PC), and the like.

近年、携帯電話やパーソナルコンピュータ等に搭載される撮像機器には、高解像度で低コスト化及び小型化が求められている。また、CCD(Charge−Coupled Device),CMOS(Complementary Mental−Oxide Semiconductor device)等の撮像素子のセルピッチが小さくなって高画素化する一方で、撮像素子自体の面積が小さくなってきている。そのため、撮像機器の光学系には、従来よりも光学収差、特に、軸上色収差を抑えた高い結像性能と撮像素子に入射する光線の入射角を小さく抑えることが要求される。   In recent years, imaging devices mounted on mobile phones, personal computers, and the like are required to have high resolution, low cost, and small size. In addition, while the cell pitch of an image pickup device such as a charge-coupled device (CCD) or a complementary mental-oxide semiconductor device (CMOS) is reduced to increase the number of pixels, the area of the image pickup device itself is decreasing. For this reason, the optical system of the imaging apparatus is required to have a high imaging performance with reduced optical aberration, particularly axial chromatic aberration, and an incident angle of a light beam incident on the imaging element, as compared with the conventional art.

このため、携帯電話やパーソナルコンピュータ等に搭載される撮像機器に用いられる従来の撮像レンズとしては、例えば3群3枚構成のレンズが提案されている(例えば、特許文献1参照)。   For this reason, as a conventional imaging lens used in an imaging device mounted on a mobile phone, a personal computer, or the like, for example, a lens having a three-group three-lens configuration has been proposed (for example, see Patent Document 1).

特開2005−352317号公報JP 2005-352317 A

特許文献1に記載の撮像レンズでは、物体側から順に正の屈折力を有するレンズ、絞り、負の屈折力を有するレンズ及び正の屈折力を有するレンズが配置される構成をとり、非球面を多用することで結像性能の向上を図っている。   The imaging lens described in Patent Document 1 has a configuration in which a lens having a positive refractive power, a diaphragm, a lens having a negative refractive power, and a lens having a positive refractive power are arranged in order from the object side. The image forming performance is improved by using it a lot.

しかし、ピクセルサイズが小さく高解像度の撮像素子に使おうとした場合、軸上色収差が大きく十分な解像度を得られないという問題がある。また、全長が長く小型化、特に薄型化に適さないという問題がある。   However, when the pixel size is small and an attempt is made to use it for a high-resolution image pickup device, there is a problem that axial chromatic aberration is large and sufficient resolution cannot be obtained. In addition, there is a problem that the total length is long and is not suitable for miniaturization, particularly thinning.

本発明は、このような課題を解決するためになされたもので、軸上色収差を抑えた撮像レンズを提供することを目的とする。   The present invention has been made to solve such a problem, and an object thereof is to provide an imaging lens in which axial chromatic aberration is suppressed.

上述した課題を解決するため、本発明の撮像レンズは、物体側から像側に、物体側に凸面を向けたメニスカス形状で正の屈折力を持つ第1レンズと、絞りと、像側に凸面を向けたメニスカス形状で負の屈折力を持つ第2レンズと、像側の面が平面または像側に対し凸形状を有している正の屈折力を持つ第3レンズとを備え、以下の条件式(1)〜(3)を満たすことを特徴とする。
0.5≦f1/f≦0.9・・・(1)
−5≦f2/f≦−0.8・・・(2)
2≦f3/f≦1000 ・・・(3)
ただし、
f :光学系全体の焦点距離、
1:第1レンズの焦点距離、
2:第2レンズの焦点距離、
3:第3レンズの焦点距離
である。
In order to solve the above-described problem, an imaging lens according to the present invention includes a first lens having a meniscus shape having a convex surface facing the object side from the object side to the image side, a stop, and a convex surface facing the image side. A second lens having negative meniscus shape with negative refractive power and a third lens having positive refractive power having an image-side surface that is flat or convex with respect to the image side. Conditional expressions (1) to (3) are satisfied.
0.5 ≦ f 1 /f≦0.9 (1)
−5 ≦ f 2 /f≦−0.8 (2)
2 ≦ f 3 / f ≦ 1000 (3)
However,
f: focal length of the entire optical system,
f 1 : focal length of the first lens,
f 2 : focal length of the second lens,
f 3 is the focal length of the third lens.

本発明の撮像レンズは、3群3枚のレンズ構成で実現され、第1レンズのパワーを強くすることにより、光学収差、特に軸上色収差を少なくするのと同時に光学長も短くした。また、第3のレンズは、第1のレンズ及び第2のレンズに比較して大径で、第1のレンズ及び第2のレンズと同じ径の鏡筒部に入れることが出来ないので偏芯する要因が多い。そのため偏芯に対し鈍感にするためなるべくパワーを弱くして、製造に最適な構成にした。   The imaging lens of the present invention is realized by a three-group, three-lens configuration. By increasing the power of the first lens, optical aberration, particularly axial chromatic aberration, is reduced, and at the same time, the optical length is shortened. In addition, the third lens has a larger diameter than the first lens and the second lens, and cannot enter the lens barrel having the same diameter as the first lens and the second lens. There are many factors to do. Therefore, in order to make it insensitive to eccentricity, the power was made as weak as possible to obtain an optimum configuration for manufacturing.

なお、第3のレンズの物体側面の曲率を負にする、すなわち、像側に対し凸形状にすることにより、ゴーストが発生しにくくした。また、撮像素子に対する入射角度を緩くして最適な光学性能が得られるようにした。また、十分なバックフォーカスを取れるようにした。更に、第3レンズは中心厚みを厚くして、軸上色収差を一層補正できるようにした。   Note that the ghost is less likely to occur by making the curvature of the object side surface of the third lens negative, that is, by making it convex toward the image side. In addition, the incident angle with respect to the image sensor is relaxed so that optimum optical performance can be obtained. Also, enough back focus was taken. Further, the third lens has a thick central thickness so that axial chromatic aberration can be further corrected.

また、3枚のレンズを全てプラスチックで構成するようにして、低コストで大量生産できるようにした。   Also, all three lenses are made of plastic so that they can be mass-produced at low cost.

ここで、上述した本発明の撮像レンズと、この撮像レンズにより形成された光学像を電気信号に変換する撮像素子を備えることで、撮像装置を実現することができる。また、このような撮像装置では、焦点位置を制御するオートフォーカス機構を搭載すると良い。オートフォーカス機構を搭載すれば、環境温度変化による焦点位置のずれを補正することができ、3枚のレンズ全てをプラスチックで構成しても、温度変化等に対応可能となる。   Here, an imaging apparatus can be realized by including the imaging lens of the present invention described above and an imaging element that converts an optical image formed by the imaging lens into an electrical signal. In addition, such an imaging apparatus may be equipped with an autofocus mechanism that controls the focal position. If an autofocus mechanism is installed, it is possible to correct the shift of the focal position due to environmental temperature changes, and even if all three lenses are made of plastic, it is possible to cope with temperature changes and the like.

本発明の撮像レンズによれば、3群3枚の簡単なレンズ構成で、軸上色収差を抑えて高い結像性能を得ることができると共に、光学長を短くできるので、解像度を向上させ、かつ小型化と低コスト化を達成することができる。   According to the imaging lens of the present invention, with a simple lens configuration of 3 elements in 3 groups, axial chromatic aberration can be suppressed and high imaging performance can be obtained, and the optical length can be shortened. Miniaturization and cost reduction can be achieved.

以下、図面を参照して本発明の撮像レンズの実施の形態について説明する。   Hereinafter, embodiments of the imaging lens of the present invention will be described with reference to the drawings.

図1は、本実施の形態における実施例1のレンズ構成を示す断面図、図2は、本実施の形態における実施例2のレンズ構成を示す断面図である。   FIG. 1 is a cross-sectional view showing a lens configuration of Example 1 in the present embodiment, and FIG. 2 is a cross-sectional view showing a lens configuration of Example 2 in the present embodiment.

本実施の形態の撮像レンズは単焦点レンズであり、例えば携帯電話や、モバイルPCと称されるノート型のパーソナルコンピュータ等の小型情報端末機器等に搭載されている小型撮像装置に代表されるような機器に搭載されて使用されるものである。   The imaging lens of the present embodiment is a single focus lens, and is represented by a small imaging device mounted on a small information terminal device such as a mobile phone or a notebook personal computer called a mobile PC. It is used by being mounted on various devices.

撮像レンズ1は、物体側より順に第1レンズL1、絞りS、第2レンズL2、第3レンズL3で構成され、各々のレンズは少なくとも1面が非球面形状となっている。この単焦点レンズの結像面Iには、例えばCCDやCMOSなどの撮像素子が配置されることを想定している。また、第3レンズL3と結像面Iの間には、樹脂またはガラスで構成されるカバーガラスや赤外カットフィルタやローパスフィルタなどの他、光学部材Pが配置されていても良い。 The imaging lens 1 includes a first lens L 1 , an aperture S, a second lens L 2 , and a third lens L 3 in order from the object side, and each lens has at least one aspherical shape. For example, it is assumed that an imaging element such as a CCD or a CMOS is disposed on the imaging surface I of the single focus lens. Further, between the third lens L 3 and the image plane I, an optical member P may be disposed in addition to a cover glass made of resin or glass, an infrared cut filter, a low-pass filter, or the like.

撮像素子は、例えば、イメージャーサイズが1/4インチ程度の長方形状の受光面を有する光電変換素子であり、受光面に略格子状に画素が配設され、それぞれの画素ごとの受光量に基づく電気信号を出力する。なお、画素数としては、200万画素から500万画素程度を想定している。   The imaging element is a photoelectric conversion element having a rectangular light receiving surface with an imager size of about 1/4 inch, for example, and pixels are arranged in a substantially lattice shape on the light receiving surface, and the amount of light received for each pixel is Output electrical signal based on. The number of pixels is assumed to be about 2 million to 5 million pixels.

撮像素子は、対向する撮像レンズ1の光軸方向の適切な位置に受光面が合うように調整されている。   The imaging element is adjusted so that the light receiving surface is aligned with an appropriate position in the optical axis direction of the opposing imaging lens 1.

以上のように構成された撮像装置は、撮像レンズ1により物体像を撮像素子の受光面に結像することで、物体を撮像する。撮像素子は、各画素の受光量に基づく電気信号を制御回路に出力する。なお、制御回路に出力された電気信号は、この制御回路内においてデジタル信号に変換され、画像データとして各種記憶媒体に記録される。   The imaging apparatus configured as described above images an object by forming an object image on the light receiving surface of the imaging element by the imaging lens 1. The image sensor outputs an electrical signal based on the amount of light received by each pixel to the control circuit. The electric signal output to the control circuit is converted into a digital signal in the control circuit, and is recorded on various storage media as image data.

本実施の形態の撮像レンズ1は、以下の条件式(1)〜(9)を満足するように構成されている。
0.5≦f1/f≦0.9・・・(1)
−5.0≦f2/f≦−0.8・・・(2)
2.0≦f3/f≦1000・・・(3)
40≦νL1≦70・・・(4)
20≦νL2≦35・・・(5)
νL3−νL2≧0・・・(6)
3.3≦R31≦7.0・・・(7)
−∞≦R32≦−7・・・(8)
1.0≦T3≦3.0・・・(9)
The imaging lens 1 of the present embodiment is configured to satisfy the following conditional expressions (1) to (9).
0.5 ≦ f 1 /f≦0.9 (1)
−5.0 ≦ f 2 /f≦−0.8 (2)
2.0 ≦ f 3 / f ≦ 1000 (3)
40 ≦ νL 1 ≦ 70 (4)
20 ≦ νL 2 ≦ 35 (5)
νL 3 −νL 2 ≧ 0 (6)
3.3 ≦ R 31 ≦ 7.0 (7)
−∞ ≦ R 32 ≦ −7 (8)
1.0 ≦ T 3 ≦ 3.0 (9)

ここで、条件式(1)〜(9)で使用される符号の定義は下記の通りである。
f:光学系全体の焦点距離(単位mm。f1〜f3も同様)
1:第1レンズL1の焦点距離
2:第2レンズL2の焦点距離
3:第3レンズL3の焦点距離
νL1:第1レンズL1のアッベ数
νL2:第2レンズL2のアッベ数
νL3:第3レンズL3のアッベ数
31:第3レンズL3の物体側面の曲率半径(物体側軸上に頂点を持つ場合を正の符号とする。R32も同様とする。単位mm)
32:第3レンズL3の像側面の曲率半径
3:第3レンズL3の中心厚み
Here, definitions of symbols used in the conditional expressions (1) to (9) are as follows.
f: focal length of the entire optical system (as well as units mm.f 1 ~f 3)
f 1: focal length of the first lens L 1 f 2: the second lens L 2 of the focal length f 3: the focal length NyuL 1 of the third lens L 3: Abbe number of the first lens L 1 νL 2: the second lens Abbe number of L 2 νL 3 : Abbe number of the third lens L 3 R 31 : radius of curvature of the object side surface of the third lens L 3 (a positive sign when the vertex is on the object side axis. R 32 also The same shall apply (unit: mm)
R 32 : curvature radius of the image side surface of the third lens L 3 T 3 : center thickness of the third lens L 3

上記の条件式(1)〜(9)は、以下で説明する実施例1及び実施例2に共通するものであり、必要に応じて適宜採用することで、個々の撮像素子または撮像装置に適したより好ましい結像性能と小型の光学系が実現される。   The above conditional expressions (1) to (9) are common to the first embodiment and the second embodiment described below, and are suitable for individual image pickup devices or image pickup apparatuses by appropriately adopting them as necessary. More preferable imaging performance and a small optical system are realized.

以下に、条件式の作用について説明する。   The operation of the conditional expression will be described below.

本実施の形態の撮像レンズ1は、3群3枚構成のレンズで、物体側から第1レンズL1が正のパワーでアッベ数が大、第2レンズL2が負のパワーでアッベ数が小、第3レンズL3が正のパワーで第2レンズL2よりアッベ数が大で、「クックのトリプレット」として広く知られているレンズと同じ基本構成となっており、収差を良く補正する。 The imaging lens 1 according to the present embodiment is a three-group, three-element lens. From the object side, the first lens L 1 has a positive power and a large Abbe number, the second lens L 2 has a negative power and an Abbe number. Small, the third lens L 3 has a positive power and a larger Abbe number than the second lens L 2 , and has the same basic configuration as a lens widely known as “Cook triplet”, and corrects aberrations well. .

本発明では、従来例で軸上色収差が16μmであったものを、条件式(1)〜(9)を適宜採用することで、軸上色収差を8.5μmに抑えている。   In the present invention, the axial chromatic aberration is suppressed to 8.5 μm by appropriately adopting conditional expressions (1) to (9) from the conventional example in which the axial chromatic aberration was 16 μm.

条件式(1),(2),(3)は、3枚のレンズのパワー(屈折力)に関するものであり、条件式(4),(5),(6)は、3枚のレンズの硝材の分散に関するものである。条件式(7),(8)は、第3のレンズL3の近軸曲率半径に関するものであり、条件式(9)は、第3のレンズL3の中心厚みに関するものである。 Conditional expressions (1), (2), and (3) relate to the power (refractive power) of the three lenses, and conditional expressions (4), (5), and (6) It relates to dispersion of glass materials. Conditional expressions (7) and (8) relate to the paraxial radius of curvature of the third lens L 3 , and conditional expression (9) relates to the center thickness of the third lens L 3 .

軸上色収差を小さくするためには、正のパワーのレンズである第1のレンズL1か第3のレンズL3のどちらか、もしくは両方のパワーを強くすることが必要となる。ここでは、第1のレンズL1のパワーを強くすると、同時に光学長も短くなるため、第1のレンズL1のパワーを強くした。なお、第1のレンズL1の正のパワーが強すぎると偏芯感度が高くなり、製造時に不良が多発する等の問題が生ずる。その最適条件が(1)式である。 In order to reduce the axial chromatic aberration, it is necessary to increase the power of either the first lens L 1 or the third lens L 3 which is a positive power lens, or both. Here, when strong first lens L 1 of the power, at the same time since the optical length is shortened, and strongly first lens L 1 of the power. In addition, when the positive power of the first lens L 1 is too strong, the eccentricity sensitivity is increased, and problems such as frequent occurrence of defects during the production occur. The optimum condition is the equation (1).

第2のレンズL2は、強い正のパワーの第1レンズL1と正のパワーの第3レンズL3で挟まれているため負のパワーになり、軸上色収差を補正する。また、絞りSに対し第1レンズL1と第2レンズL2がおおよそ対称形に配置されることによって倍率色収差並びに像面湾曲を補正する。 Since the second lens L 2 is sandwiched between the first lens L 1 having a strong positive power and the third lens L 3 having a positive power, the second lens L 2 has a negative power and corrects axial chromatic aberration. Further, the chromatic aberration of magnification and the curvature of field are corrected by arranging the first lens L 1 and the second lens L 2 approximately symmetrically with respect to the stop S.

ここで、条件式(2)の上限を超えると第2のレンズL2の負のパワーが強くなりすぎ、偏芯感度が高くなり製造時に不良が多発する等の問題が生ずる。また下限を超えると、軸上色収差の補正が弱くなる。このため最適条件が(2)式となる。 Here, when the upper limit of conditional expression (2) is exceeded, the negative power of the second lens L 2 becomes too strong, resulting in problems such as high eccentricity sensitivity and frequent defects during manufacturing. If the lower limit is exceeded, the correction of longitudinal chromatic aberration becomes weak. For this reason, the optimum condition is the expression (2).

第1レンズL1及び第2レンズL2は、直径が略同等で、絞りSを挟んでおおよそ対称な形状をとるため、同軸で同じ半径の鏡筒室に入れることができ、偏芯する要因を少なくすることができる。 Since the first lens L 1 and the second lens L 2 have substantially the same diameter and are approximately symmetrical with respect to the stop S, the first lens L 1 and the second lens L 2 can be placed in a lens barrel chamber that is coaxial and has the same radius. Can be reduced.

一方、第3レンズL3は、第2レンズL2からの射出光線角度が大きいため、他の2つのレンズよりも径が大きくなる。このため、同軸で第1レンズL1及び第2レンズL2と同じ半径の鏡筒部に入れることが出来ないので偏芯する要因が多い。そのため偏芯に対し鈍感にするためなるべくパワーを強くしないほうが望ましい。 On the other hand, the third lens L 3 has a larger exit light beam angle from the second lens L 2 and therefore has a larger diameter than the other two lenses. For this reason, since it cannot be put in the lens barrel part which is coaxial and has the same radius as the first lens L 1 and the second lens L 2 , there are many factors that cause eccentricity. Therefore, it is desirable not to increase the power as much as possible in order to make it insensitive to eccentricity.

条件式(3)の下限を超えるとこのように偏芯の影響を受けやすく、製造時に不良が多発する等の問題が発生する。また、上限を超えると、軸上色収差の補正が弱くなる。このため最適条件が(3)式になる。   When the lower limit of the conditional expression (3) is exceeded, it is easy to be affected by the eccentricity as described above, and problems such as frequent occurrence of defects during production occur. On the other hand, when the upper limit is exceeded, the correction of axial chromatic aberration is weakened. For this reason, the optimum condition is the expression (3).

第3レンズL3の物体側面の曲率は、条件式(7)の下限を超えると曲率が小さくなりすぎ、偏芯感度が高くなり、製造上不良が多発する等の問題が発生する。上限を超えると、曲率が大きくなり色収差の補正が弱くなり適さない。 Curvature of the third object side surface of the lens L 3 is, the conditional expression (7) becomes too small curvature exceeds the lower limit of the eccentric sensitivity is increased, manufacturing defect problems such that frequently. If the upper limit is exceeded, the curvature becomes large and the correction of chromatic aberration becomes weak, which is not suitable.

第3レンズL3の像側面は、条件式(8)の下限を超え曲率が正になった場合、光軸近傍よりも周辺の面が像側に突出する形状となり、撮像素子で反射した光が、また第3レンズL3の像側面で反射しゴーストを発生しやすい形状となるため好ましくない。 When the image side surface of the third lens L 3 exceeds the lower limit of the conditional expression (8) and the curvature becomes positive, the peripheral surface has a shape projecting toward the image side rather than the vicinity of the optical axis, and the light reflected by the image sensor. However, it is not preferable because it is reflected on the image side surface of the third lens L 3 and is likely to generate a ghost.

同時に、このようにゴーストが発生しやすい形状の場合、周辺の光をより周辺に跳ね上げることになるので、撮像素子に対する入射角度がきつくなり、好ましくない。更に、突出部によりバックフォーカスが短くなってしまうという問題も起こる。   At the same time, in the case of such a shape in which ghosts are likely to occur, the surrounding light is more likely to jump to the periphery, which is not preferable because the incident angle with respect to the image sensor becomes tight. In addition, there is a problem that the back focus is shortened by the protruding portion.

また条件式(8)の上限を超え、曲率が小さくなると像面湾曲がマイナスになり補正が困難となる。それゆえ十分なバックフォーカスを確保し、望ましいカメラ性能を確保する最適条件が(8)式になる。   If the upper limit of conditional expression (8) is exceeded and the curvature becomes small, the curvature of field becomes negative and correction becomes difficult. Therefore, the optimum condition for securing sufficient back focus and ensuring desirable camera performance is expressed by equation (8).

同時に、第3レンズL3は、中心厚みが厚い程、軸上色収差をよく補正する。このため、条件式(9)の下限を超えると軸上色収差の補正が弱い。しかし、条件式(9)の上限を超え厚くしすぎると、光学長を短くすることが出来ない。よって最適条件が(9)式となる。 At the same time, the third lens L 3 corrects axial chromatic aberration better as the center thickness increases. For this reason, if the lower limit of conditional expression (9) is exceeded, the correction of axial chromatic aberration is weak. However, if the thickness exceeds the upper limit of conditional expression (9) and is too thick, the optical length cannot be shortened. Therefore, the optimum condition is Equation (9).

以下に、本発明を適用した撮像レンズの構成を、数値データ及び収差図を挙げて、更に具体的に説明する。   Hereinafter, the configuration of the imaging lens to which the present invention is applied will be described more specifically with reference to numerical data and aberration diagrams.

各実施例のレンズ構成データにおいて、Rは、物体側から数えた面番号i(i=1,2,・・・)で特定される面の曲率半径(mm)を示し、dは、面番号iで特定される面の軸上面間隔(mm)を示す。また、nは、面番号iで特定される光学要素のd線(588nm)に対する屈折率を示し、νdは、面番号iで特定される光学要素のd線に対するアッベ数を示している。   In the lens configuration data of each example, R indicates the radius of curvature (mm) of the surface specified by the surface number i (i = 1, 2,...) Counted from the object side, and d indicates the surface number. The axial upper surface distance (mm) of the surface specified by i is shown. Further, n represents the refractive index of the optical element identified by the surface number i with respect to the d-line (588 nm), and νd represents the Abbe number of the optical element identified by the surface number i with respect to the d-line.

ここで、第1面(面番号1)は、第1レンズL1の物体側の面、第2面は、第1レンズL1の像側の面を示す。また、第3面は、第2レンズL2の物体側の面、第4面は、第2レンズL2の像側の面を示す。更に、第5面は、第3レンズL3の物体側の面、第6面は、第3レンズL3の像側の面を示す。なお、第7面は、カバーガラスの物体側の面、第8面は、がバーガラスの像側の面を示す。 Here, the first surface (surface number 1), the surface of the first lens L 1 on the object side, second side, showing a surface of the first image side of the lens L 1. Further, the third surface, the surface of the second lens L 2 on the object side, the fourth surface denotes the image side surface of the second lens L 2. Furthermore, the fifth surface, the object side surface of the third lens L 3, surface No. 6 shows the image-side surface of the third lens L 3. The seventh surface is the object side surface of the cover glass, and the eighth surface is the image side surface of the bar glass.

また、第1〜第3レンズの第1面〜第6面は、非球面で構成されている。この非球面の形状は、次の(10)式で表される。但し、光軸からの高さがyとなる非球面上の座標点の非球面頂点の接平面からの距離をxとし、非球面頂点の曲率(1/r)をcとする。また、Kは円錐係数を表し、A,B,C,D,E及びFは、それぞれ、4次、6次、8次、10次、12次及び14次の非球面係数を表すものである。   Moreover, the 1st surface-6th surface of the 1st-3rd lens is comprised by the aspherical surface. The shape of this aspherical surface is expressed by the following equation (10). Here, the distance from the tangent plane of the aspheric vertex of the coordinate point on the aspheric surface where the height from the optical axis is y is x, and the curvature (1 / r) of the aspheric vertex is c. K represents a conical coefficient, and A, B, C, D, E, and F represent a fourth-order, sixth-order, eighth-order, tenth-order, twelfth-order, and fourteenth-order aspheric coefficients, respectively. .

Figure 2008225332
Figure 2008225332

図3及び図4は、実施例1及び実施例2の諸収差(左から順に、球面収差及び色収差、非点収差、歪曲収差)を示すグラフである。球面収差及び色収差では、破線(d)が587.56nm(d線)での球面収差と色収差、実線(e)が546.07nm(e線)での球面収差と色収差、一点鎖線(F)が486.13nm(F線)での球面収差と色収差を示すものである。非点収差では、実線(S)がサジタルの像面、破線(M)がメリジオナルの像面を表すものである。歪曲収差では、横軸は歪曲%で表わすものである。   3 and 4 are graphs showing various aberrations (spherical aberration, chromatic aberration, astigmatism, distortion aberration in order from the left) of Examples 1 and 2. FIG. In spherical aberration and chromatic aberration, the broken line (d) indicates spherical aberration and chromatic aberration at 587.56 nm (d line), the solid line (e) indicates spherical aberration and chromatic aberration at 546.07 nm (e line), and the alternate long and short dash line (F). This shows spherical aberration and chromatic aberration at 486.13 nm (F line). In astigmatism, the solid line (S) represents the sagittal image plane, and the broken line (M) represents the meridional image plane. In distortion aberration, the horizontal axis represents the distortion percentage.

<実施例1>
実施例1の撮像レンズは、3群3枚構成のレンズで、例えば、イメージャーサイズが1/4.5インチで200万画素の撮像素子に物体像を結像することを想定している。撮像レンズは、物体側から第1レンズL1がプラスチックモールドの非球面で正のパワーを持っておりアッベ数が55.8、次に絞りSがあり、第2レンズL2がプラスチックモールドの非球面で負のパワーを持っておりアッベ数24.0、第3レンズL3がプラスチックモールドの非球面で正のパワーを持っておりアッベ数が55.8という構成となっている。
<Example 1>
The imaging lens of Example 1 is a lens having three elements in three groups. For example, it is assumed that an object image is formed on an imaging element having an imager size of 1 / 4.5 inches and 2 million pixels. In the imaging lens, the first lens L 1 from the object side is an aspheric surface of a plastic mold and has a positive power, has an Abbe number of 55.8, then has an aperture S, and the second lens L 2 is a non-plastic mold. The spherical surface has a negative power and an Abbe number of 24.0, and the third lens L 3 is an aspheric surface of a plastic mold and has a positive power and an Abbe number of 55.8.

また、第1レンズL1は物体側に凸面を向けたメニスカス形状をしており、第2レンズL2は像側に凸面を向けたメニスカス形状をしており、第3レンズL3は両凸レンズで厚みが1.414mmと厚く、3枚の相乗効果で、図3に示すように収差を良く補正する。本発明では、軸上色収差を8.5μmに抑えている。諸パラメータは以下の表1に示す。 The first lens L 1 has a meniscus shape with a convex surface facing the object side, the second lens L 2 has a meniscus shape with a convex surface facing the image side, and the third lens L 3 is a biconvex lens. The thickness is as thick as 1.414 mm, and the aberration is well corrected as shown in FIG. In the present invention, the longitudinal chromatic aberration is suppressed to 8.5 μm. The parameters are shown in Table 1 below.

Figure 2008225332
Figure 2008225332

実施例1レンズ構成データ
面番号 R d n νd
1 0.864 0.518 1.530 55.8
2 2.399 0.427
3 -0.543 0.330 1.627 24.0
4 -0.838 0.080
5 4.262 1.414 1.530 55.8
6 -1100.0 0.300
7 ∞ 0.300 1.517 64.2
8 ∞
Example 1 Lens configuration data surface number R d n νd
1 0.864 0.518 1.530 55.8
2 2.399 0.427
3 -0.543 0.330 1.627 24.0
4 -0.838 0.080
5 4.262 1.414 1.530 55.8
6 -1100.0 0.300
7 ∞ 0.300 1.517 64.2
8 ∞

実施例1非球面データ
第1面
K=0.049,A=0.355E-01,B=0.165E+00,C=-0.704E+00,D=0.157E+01,
E=0.173E+01,F=-0.952E+01
第2面
K=-3.757,A=0.546E-01,B=0.160E-01,C=-0.3370E+01,D=0.278E+01,
E=149E-06,F=0.224E-07
第3面
K=0.122,A=0.709E+00,B=0.163E+01,C=0.327E+01,D=0.968E-01,
E=0.194E-07,F=0.347E-07
第4面
K=-0.976,A=0.217E+00,B=0.425E+00,C=0.302E+00,D=-0.821E+00,
E=-0.150E+01,F=0.236E+01
第5面
K=2.901,A=0.296E-02,B=-0.195E-02,C=-0.346E-02,D=0.104E-02,
E=0.266E-03,F=-0.192E-03
第6面
K=40.00,A=-0.757E-01,B=0.267E-01,C=-0.457E-02,D=-0.549E-03,
E=0.443E-03,F=-0.825E-04
Example 1 Aspherical data first surface K = 0.049, A = 0.355E-01, B = 0.165E + 00, C = -0.704E + 00, D = 0.157E + 01,
E = 0.173E + 01, F = -0.952E + 01
Second surface K = -3.757, A = 0.546E-01, B = 0.160E-01, C = -0.3370E + 01, D = 0.278E + 01,
E = 149E-06, F = 0.224E-07
Third surface K = 0.122, A = 0.709E + 00, B = 0.163E + 01, C = 0.327E + 01, D = 0.968E-01,
E = 0.194E-07, F = 0.347E-07
4th surface K = -0.976, A = 0.217E + 00, B = 0.425E + 00, C = 0.302E + 00, D = -0.821E + 00,
E = -0.150E + 01, F = 0.236E + 01
5th surface K = 2.901, A = 0.296E-02, B = −0.195E-02, C = −0.346E-02, D = 0.104E-02,
E = 0.266E-03, F = -0.192E-03
6th surface K = 40.00, A = -0.757E-01, B = 0.267E-01, C = -0.457E-02, D = -0.549E-03,
E = 0.443E-03, F = -0.825E-04

実施例1各種構成データ
f(焦点距離)=3.19mm
Fナンバー(開口数)=3.2
ω(半画角)=32.5deg
H(レンズ全長)=4.00mm
Example 1 Various configuration data f (focal length) = 3.19 mm
F number (numerical aperture) = 3.2
ω (half angle of view) = 32.5 deg
H (lens total length) = 4.00 mm

<実施例2>
実施例2の撮像レンズは、3群3枚構成のレンズで、例えば、イメージャーサイズが1/4インチで300万〜500万画素の撮像素子に物体像を結像することを想定している。撮像レンズは、物体側から第1レンズL1がプラスチックモールドの非球面で正のパワーを持っておりアッベ数が55.8、次に絞りSがあり、第2レンズL2がプラスチックモールドの非球面で負のパワーを持っておりアッベ数24.0、第3レンズL3がプラスチックモールドの非球面で正のパワーを持っておりアッベ数が55.8という構成となっている。
<Example 2>
The imaging lens of the second embodiment is a three-group, three-lens configuration lens. For example, it is assumed that an object image is formed on an imaging element of 3 to 5 million pixels with an imager size of 1/4 inch. . In the imaging lens, the first lens L 1 from the object side is an aspheric surface of a plastic mold and has a positive power, has an Abbe number of 55.8, then has an aperture S, and the second lens L 2 is a non-plastic mold. The spherical surface has a negative power and an Abbe number of 24.0, and the third lens L 3 is an aspheric surface of a plastic mold and has a positive power and an Abbe number of 55.8.

また、第1レンズL1は物体側に凸面を向けたメニスカス形状をしており、第2レンズL2は像側に凸面を向けたメニスカス形状をしており、第3レンズL3は両凸レンズで厚みが2.373mmと厚く、3枚の相乗効果で、図4に示すように収差を良く補正する。本発明では、軸上色収差を8.5μmに抑えている。諸パラメータは表1に示す。 The first lens L 1 has a meniscus shape with a convex surface facing the object side, the second lens L 2 has a meniscus shape with a convex surface facing the image side, and the third lens L 3 is a biconvex lens. The thickness is as thick as 2.373 mm, and the aberration is well corrected as shown in FIG. In the present invention, the longitudinal chromatic aberration is suppressed to 8.5 μm. Various parameters are shown in Table 1.

実施例2レンズ構成データ
面番号 R d n νd
1 0.993 0.641 1.530 55.8
2 2.779 0.535
3 -0.671 0.471 1.627 24.0
4 -1.181 0.080
5 -4.193 2.373 1.530 55.8
6 -1100.0 0.300
7 ∞ 0.300 1.517 64.2
8 ∞
Example 2 Lens Configuration Data Surface Number R d n νd
1 0.993 0.641 1.530 55.8
2 2.779 0.535
3 -0.671 0.471 1.627 24.0
4 -1.181 0.080
5 -4.193 2.373 1.530 55.8
6 -1100.0 0.300
7 ∞ 0.300 1.517 64.2
8 ∞

実施例2非球面データ
第1面
K=-0.073,A=0.416E-01,B=0.422E-01,C=0.315E-01,D=-0.153E+00,
E=0.713E+00,F=-0.840E+00
第2面
K=-0.209,A=0.590E-01,B=-0.242E+00,C=0.121E+01,D=-0.649E+01,
E=0.947E+01,F=-0.158E-07
第3面
K=0.213,A=0.328E+00,B=0.409E-01,C=0.259E+01,D=-0.302E+01
E=0.224E-07,F=0.668E-08
第4面
K=-1.294,A=0.332E-01,B=0.338E-01,C=0.1012E+00,D=0.225E+00
E=-0.598E+00,F=0.291E+00
第5面
K=-10.00,A=-0.181E-01,B=0.265E-01,C=-0.922E-02,D=-0.358E-02
E=0.338E-02,F=-0.735E-03
第6面
K=-40.00,A=-0.390E-01,B=0.240E-02,C=0.827E-04,D=0.209E-04
E=0.299E-04,F=-0.756E-05
Example 2 Aspherical data first surface K = −0.073, A = 0.416E-01, B = 0.422E-01, C = 0.315E-01, D = −0.153E + 00,
E = 0.713E + 00, F = -0.840E + 00
Second surface K = -0.209, A = 0.590E-01, B = -0.242E + 00, C = 0.121E + 01, D = -0.649E + 01,
E = 0.947E + 01, F = -0.158E-07
Third surface K = 0.213, A = 0.328E + 00, B = 0.409E-01, C = 0.259E + 01, D = −0.302E + 01
E = 0.224E-07, F = 0.668E-08
Fourth surface K = -1.294, A = 0.332E-01, B = 0.338E-01, C = 0.112E + 00, D = 0.225E + 00
E = -0.598E + 00, F = 0.291E + 00
Fifth surface K = -10.00, A = -0.181E-01, B = 0.265E-01, C = -0.922E-02, D = -0.358E-02
E = 0.338E-02, F = -0.735E-03
6th surface K = -40.00, A = -0.390E-01, B = 0.240E-02, C = 0.727E-04, D = 0.209E-04
E = 0.299E-04, F = -0.756E-05

実施例2各種構成データ
f(焦点距離)= 3.91mm
Fナンバー(開口数)=3.2
ω(半画角)=30.00deg
H(レンズ全長)=5.0mm
Example 2 Various configuration data f (focal length) = 3.91 mm
F number (numerical aperture) = 3.2
ω (half angle of view) = 30.00 deg
H (lens total length) = 5.0mm

本発明を適用した撮像レンズは、携帯電話やモバイルPC等に内蔵または外付けされるカメラに用いられるのみならず、デジタルスチルカメラ、ビデオカメラ等に内蔵又は外付けされるカメラに用いることができる。   An imaging lens to which the present invention is applied can be used not only for a camera built in or externally attached to a mobile phone or a mobile PC, but also for a camera incorporated or externally attached to a digital still camera, a video camera, or the like. .

本実施の形態における実施例1のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of Example 1 in this Embodiment. 本実施の形態における実施例2のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of Example 2 in this Embodiment. 実施例1の諸収差を示すグラフである。3 is a graph showing various aberrations of Example 1. 実施例2の諸収差を示すグラフである。6 is a graph showing various aberrations of Example 2.

符号の説明Explanation of symbols

1・・・第1レンズ、L2・・・第2レンズ、L3・・・第3レンズ L 1 ... 1st lens, L 2 ... 2nd lens, L 3 ... 3rd lens

Claims (4)

物体側から像側に、物体側に凸面を向けたメニスカス形状で正の屈折力を持つ第1レンズと、絞りと、像側に凸面を向けたメニスカス形状で負の屈折力を持つ第2レンズと、像側の面が平面または像側に対し凸形状を有している正の屈折力を持つ第3レンズとを備え、
以下の条件式(1)〜(3)を満たすことを特徴とする撮像レンズ。
0.5≦f1/f≦0.9・・・(1)
−5≦f2/f≦−0.8・・・(2)
2≦f3/f≦1000 ・・・(3)
ただし、
f :光学系全体の焦点距離、
1:第1レンズの焦点距離、
2:第2レンズの焦点距離、
3:第3レンズの焦点距離
である。
A first lens having a positive refractive power with a meniscus shape having a convex surface facing the object side from the object side to the image side, and a second lens having a negative refractive power with a meniscus shape having a convex surface facing the image side And a third lens having a positive refractive power in which the image side surface has a flat surface or a convex shape with respect to the image side,
An imaging lens satisfying the following conditional expressions (1) to (3):
0.5 ≦ f 1 /f≦0.9 (1)
−5 ≦ f 2 /f≦−0.8 (2)
2 ≦ f 3 / f ≦ 1000 (3)
However,
f: focal length of the entire optical system,
f 1 : focal length of the first lens,
f 2 : focal length of the second lens,
f 3 is the focal length of the third lens.
更に、以下の条件式(4)〜(6)を満たすことを特徴とする請求項1記載の撮像レンズ。
40≦νL1≦70・・・(4)
20≦νL2≦35・・・(5)
νL3−νL2≧0・・・(6)
ただし、
νL1:第1レンズのアッベ数、
νL2:第2レンズのアッベ数、
νL3:第3レンズのアッベ数
である。
The imaging lens according to claim 1, further satisfying the following conditional expressions (4) to (6).
40 ≦ νL 1 ≦ 70 (4)
20 ≦ νL 2 ≦ 35 (5)
νL 3 −νL 2 ≧ 0 (6)
However,
νL 1 : Abbe number of the first lens,
νL 2 : Abbe number of the second lens,
νL 3 : Abbe number of the third lens.
更に、以下の条件式(7)〜(9)を満たすことを特徴とする請求項1記載の撮像レンズ。
3.3≦R31≦7.0・・・(7)
−∞≦R32≦−7 ・・・(8)
1.0≦T3≦3.0 ・・・(9)
ただし、
31:第3レンズの物体側面の曲率半径、
32:第3レンズの像側面の曲率半径、
3:第3レンズの中心厚み
である。
The imaging lens according to claim 1, further satisfying the following conditional expressions (7) to (9).
3.3 ≦ R 31 ≦ 7.0 (7)
−∞ ≦ R 32 ≦ −7 (8)
1.0 ≦ T 3 ≦ 3.0 (9)
However,
R 31 : radius of curvature of the object side surface of the third lens,
R 32 : radius of curvature of the image side surface of the third lens,
T 3 is the center thickness of the third lens.
前記第1のレンズ、前記第2のレンズまたは前記第3のレンズの少なくとも1枚が非球面プラスチックモールドレンズより構成される
ことを特徴とする請求項1記載の撮像レンズ。
The imaging lens according to claim 1, wherein at least one of the first lens, the second lens, and the third lens is formed of an aspheric plastic mold lens.
JP2007066722A 2007-03-15 2007-03-15 Imaging lens Pending JP2008225332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007066722A JP2008225332A (en) 2007-03-15 2007-03-15 Imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007066722A JP2008225332A (en) 2007-03-15 2007-03-15 Imaging lens

Publications (1)

Publication Number Publication Date
JP2008225332A true JP2008225332A (en) 2008-09-25

Family

ID=39843992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066722A Pending JP2008225332A (en) 2007-03-15 2007-03-15 Imaging lens

Country Status (1)

Country Link
JP (1) JP2008225332A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053411A (en) * 2007-08-27 2009-03-12 Hoya Corp Image reading lens system
TWI559031B (en) * 2015-07-27 2016-11-21 Showin Technology Co Ltd Three-piece camera lens
CN107783262A (en) * 2017-11-08 2018-03-09 广东弘景光电科技股份有限公司 Low distortion wide-angle imaging module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219982A (en) * 2002-10-25 2004-08-05 Nagano Kogaku Kenkyusho:Kk Photographic lens
JP2004295112A (en) * 2003-03-12 2004-10-21 Olympus Corp Image forming optical system
WO2005045500A1 (en) * 2003-11-04 2005-05-19 Eastman Kodak Company Objective lens system having three lenses
JP2005258181A (en) * 2004-03-12 2005-09-22 Seiko Epson Corp Imaging lens and camera module
JP2005352317A (en) * 2004-06-11 2005-12-22 Sony Corp Imaging lens and imaging unit
JP2006178328A (en) * 2004-12-24 2006-07-06 Sony Corp Imaging lens and imaging apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004219982A (en) * 2002-10-25 2004-08-05 Nagano Kogaku Kenkyusho:Kk Photographic lens
JP2004295112A (en) * 2003-03-12 2004-10-21 Olympus Corp Image forming optical system
WO2005045500A1 (en) * 2003-11-04 2005-05-19 Eastman Kodak Company Objective lens system having three lenses
JP2005258181A (en) * 2004-03-12 2005-09-22 Seiko Epson Corp Imaging lens and camera module
JP2005352317A (en) * 2004-06-11 2005-12-22 Sony Corp Imaging lens and imaging unit
JP2006178328A (en) * 2004-12-24 2006-07-06 Sony Corp Imaging lens and imaging apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053411A (en) * 2007-08-27 2009-03-12 Hoya Corp Image reading lens system
TWI559031B (en) * 2015-07-27 2016-11-21 Showin Technology Co Ltd Three-piece camera lens
CN107783262A (en) * 2017-11-08 2018-03-09 广东弘景光电科技股份有限公司 Low distortion wide-angle imaging module
CN107783262B (en) * 2017-11-08 2023-04-28 广东弘景光电科技股份有限公司 Low-distortion wide-angle camera module

Similar Documents

Publication Publication Date Title
US8786714B2 (en) Zoom lens and imaging apparatus including the same
JP5330760B2 (en) Zoom lens
JP2008281873A (en) Imaging lens
JP2011141396A (en) Imaging lens, camera module, and imaging apparatus
JP2007322656A (en) Wide-angle imaging lens
JP2011133601A (en) Optical unit and imaging apparatus
KR102109934B1 (en) Photographing lens and photographing device
JP6557137B2 (en) Imaging lens and imaging apparatus
JP2011175174A (en) Zoom lens
JP5280705B2 (en) Magnification optical system and imaging device
JP2016173481A (en) Zoom lens and imaging apparatus
JP2015082068A (en) Zoom lens
JP2005345919A (en) Imaging lens
JP2004271991A (en) Imaging lens
JP6698923B2 (en) Imaging lens and imaging device
JP2011075613A (en) Variable-magnification optical system and image pickup device
JP2016173482A (en) Zoom lens and imaging apparatus
JP2011175175A (en) Zoom lens
JP5806737B2 (en) Imaging lens and imaging apparatus
JP2006330575A (en) Imaging lens
US7800836B1 (en) Zoom lens
JP2010026495A (en) Imaging lens
JP2005352317A (en) Imaging lens and imaging unit
US7164538B1 (en) Zoom lens system
JP2008225332A (en) Imaging lens

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090904

RD04 Notification of resignation of power of attorney

Effective date: 20091109

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20100303

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Effective date: 20120403

Free format text: JAPANESE INTERMEDIATE CODE: A02