JP2008224461A - Chemical sensor material - Google Patents

Chemical sensor material Download PDF

Info

Publication number
JP2008224461A
JP2008224461A JP2007064182A JP2007064182A JP2008224461A JP 2008224461 A JP2008224461 A JP 2008224461A JP 2007064182 A JP2007064182 A JP 2007064182A JP 2007064182 A JP2007064182 A JP 2007064182A JP 2008224461 A JP2008224461 A JP 2008224461A
Authority
JP
Japan
Prior art keywords
sensor material
chemical sensor
silica
dye
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007064182A
Other languages
Japanese (ja)
Other versions
JP4883577B2 (en
Inventor
Hideyuki Matsunaga
英之 松永
Takamasa Hanaoka
隆昌 花岡
Ali Ismail Adel
アデル・アリ・イスマイル
Abdallah L Safti Sherif
シェリフ・アブダラ・エル・サフティ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007064182A priority Critical patent/JP4883577B2/en
Publication of JP2008224461A publication Critical patent/JP2008224461A/en
Application granted granted Critical
Publication of JP4883577B2 publication Critical patent/JP4883577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical sensor material capable of simply and economically measuring ion concentrations, without having to use a large-sized apparatuses, under a normal environment monitoring or the control, or the like, of factory wastewater, and to provide a detection and quantification method. <P>SOLUTION: The chemical sensor material is constituted by compounding the skeletal material of an ion sensor, comprising mesoporous silica of which the BET method specific surface area calculated by a nitrogen absorbing method, is 600 m<SP>2</SP>/g or higher and the center axis pore size calculated by a BJH method is 10 nm or lower, and coloring matter by combining a proper auxiliary with them for supporting the coloring matter in silica pores. This chemical sensor material is used in a concentration measuring method of a substance to be inspected. By only using a simple instrument, set in place of a conventional measuring technique requiring an expensive apparatus and large labor and cost by using this chemical sensor material, the detection and quantification of target ions of which the concentration is a wastewater reference value (0.1 mg/l) or an environment reference value (0.01 mg/l) can be performed on the measurement spot. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水溶液試料、例えば、環境河川水、地下水、産業排水等中に含まれる有害物質等の被検物質を簡便に検出する化学センサー材に関するものであり、更に詳しくは、本発明は、化学センサー材と有害物質等を含む試料水溶液とを接触させることにより、センサー材を発色あるいは変色させ、その色調と色の濃さにより水溶液中に含まれる該有害物質等を検出定量するための化学センサー材に関するものである。   The present invention relates to a chemical sensor material for easily detecting a test substance such as a harmful substance contained in an aqueous solution sample, for example, environmental river water, groundwater, industrial wastewater, etc. Chemistry for detecting and quantifying the harmful substances contained in the aqueous solution based on the color tone and color density of the sensor material by bringing the chemical sensor material into contact with an aqueous sample solution containing harmful substances. It relates to the sensor material.

水溶液試料中の特定の有害物質の濃度を測定する方法として、例えば、高速液体クロマトグラフ法、イオンクロマトグラフ法、イオン電極法、原子吸光光度法、ICP発光分析法など、様々な方法が知られているが(JIS K 0102など)、操作に熟練を要すること、現場での測定には適さないこと、ランニングコストがかかること、高額な装置を使用することなどの点で、それぞれに難点がある。   As a method for measuring the concentration of a specific harmful substance in an aqueous solution sample, for example, various methods such as a high performance liquid chromatography method, an ion chromatography method, an ion electrode method, an atomic absorption photometry method, and an ICP emission analysis method are known. However (JIS K 0102, etc.), each has its own difficulties in that it requires skill in operation, is not suitable for on-site measurement, requires running costs, and uses expensive equipment. .

これらの問題点を克服する方法の一つとして、高感度で高選択的な電気化学センサーや試験紙タイプの検知材による方法が挙げられるが、市販されているそのようなセンサーや検知材には、例えば、環境基準値のイオン濃度を検出する感度を満たすものは少なく、かつ有害な材料や試薬を使用するため、安全性、操作性においても難があるものが見受けられる。   One way to overcome these problems is to use a highly sensitive and highly selective electrochemical sensor or a test strip type detection material. For example, there are few that satisfy the sensitivity for detecting the ion concentration of the environmental standard value, and since harmful materials and reagents are used, there are some that are difficult in terms of safety and operability.

また、先行技術として、例えば、検知材の支持体として、イオン交換樹脂を用いる例があり(非特許文献1)、また、メソポーラスシリカを利用して検知材を作る例がある(特許文献1)が、後者は、メソポーラスシリカをイオン性色素と複合化させるために、シリカ表面をシリル化試薬によりあらかじめ処理する必要があった。   Moreover, as a prior art, there exists an example which uses an ion exchange resin as a support body of a detection material, for example (nonpatent literature 1), and there exists an example which makes a detection material using mesoporous silica (patent literature 1). However, the latter requires that the silica surface be pretreated with a silylating reagent in order to complex mesoporous silica with an ionic dye.

日常的な環境モニタリングや工場排水の管理等において、その手段として、大型の測定機器による機器分析を使用するには、時間、コスト、及び労力の点で問題が多い。また、測定結果をリアルタイムで取得することが強く求められる医療現場などでは、迅速かつ簡易な測定手段の重要性はきわめて高い。したがって、測定の現場で、簡便に有害物質等の濃度を計測できるならば、社会生活上極めて有用である。   There are many problems in terms of time, cost, and labor to use instrumental analysis with large measuring instruments as means for routine environmental monitoring and factory wastewater management. Also, in medical sites where it is strongly required to obtain measurement results in real time, the importance of quick and simple measurement means is extremely high. Therefore, if it is possible to easily measure the concentration of a harmful substance or the like at the measurement site, it is extremely useful for social life.

特願2006−160156号Japanese Patent Application No. 2006-160156 J.Ion Exchange,14,313(2003)J. et al. Ion Exchange, 14, 313 (2003)

このような状況の中で、本発明者らは、上記従来技術に鑑みて、化学センサー材の骨格材料と色素、及びその複合化の方法について鋭意検討を重ねた結果、窒素吸着法によって求められたBET法比表面積が600平方メートル/g以上、BJH法によって計算される中心細孔径が10nm以下であるメソポーラスシリカが、化学センサーの骨格材料に極めて好適であること、このメソポーラスシリカと色素をシリル化試薬等の高価な試薬を用いない方法で複合化することにより、良好な化学センサー材が得られることを見出し、この知見に基づいて本発明を完成するに至った。   Under such circumstances, the present inventors have sought by the nitrogen adsorption method as a result of intensive studies on the skeleton material and the dye of the chemical sensor material and the method of combining them in view of the above-described conventional technology. In addition, mesoporous silica with a BET specific surface area of 600 square meters / g or more and a central pore diameter calculated by the BJH method of 10 nm or less is extremely suitable as a skeleton material for chemical sensors, and this mesoporous silica and dye are silylated. It has been found that a good chemical sensor material can be obtained by combining with a method that does not use an expensive reagent such as a reagent, and the present invention has been completed based on this finding.

本発明は、このような有害物質の検出に好適に利用できる化学センサー材を提供し、大型の装置類を用いることなく、簡便かつ経済的に、有害物質濃度を計測できる方法を提供することを目的とするものである。また、本発明は、特に、従来は面倒でコストのかかる技術であったメソポーラスシリカの色素による化学修飾を、より簡単にかつ安価に実施できる新しい手法を提供すること及び該手法により作製した化学センサー材を提供することを目的とするものである。   The present invention provides a chemical sensor material that can be suitably used for the detection of such a harmful substance, and provides a method that can easily and economically measure the concentration of the harmful substance without using a large device. It is the purpose. In addition, the present invention provides a new method that can easily and inexpensively perform chemical modification with a dye of mesoporous silica, which is a conventionally troublesome and costly technique, and a chemical sensor manufactured by the method. The purpose is to provide materials.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)水溶液試料に含まれる被検物質を検出する化学センサー材であって、規則的細孔構造を持つシリカと色素分子とを複合化して色素をシリカ細孔内に担持させたことを特徴とする化学センサー材。
(2)上記シリカが、窒素吸着法によって求められたBET法比表面積が少なくとも600平方メートル/g、BJH法によって測定される中心細孔径が大きくても10nmである多孔質シリカである、前記(1)記載の化学センサー材。
(3)上記シリカの細孔内に色素分子と陽イオン性の有機試薬とを組み合わせて複合化した、前記(1)記載の化学センサー材。
(4)複合化された色素分子が、目的物質と反応してその色調を変化させる色素分子である、前記(1)記載の化学センサー材。
(5)上記シリカと色素分子とを複合化して色素をシリカ細孔内に担持させて得られる化学センサー材が、その色調変化により物質検出機能を示す、前記(1)記載の化学センサー材。
(6)上記陽イオン性の有機試薬が、有機アミン類、又は有機アンモニウム類である、前記(3)記載の化学センサー材。
(7)上記色素分子が、中性のジチゾン、陽イオン性のアミノポルフィリン、又は陰イオン性のポルフィリンスルホン酸である、前記(1)記載の化学センサー材。
(8)被検物質が、水溶液試料中に含まれるカドミウムイオン、ビスマスイオン、又はアンチモンイオンである、前記(1)記載の化学センサー材。
(9)前記(1)から(8)のいずれかに記載の化学センサー材の色調の変化を目視あるいは光度計で読み取ることにより水溶性試料に含まれる被検物質の濃度を測定することを特徴とする被検物質の濃度の測定方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) A chemical sensor material for detecting a test substance contained in an aqueous solution sample, characterized in that a silica having a regular pore structure and a dye molecule are combined and the dye is supported in the silica pores. Chemical sensor material.
(2) The silica is a porous silica having a BET specific surface area determined by a nitrogen adsorption method of at least 600 square meters / g and a central pore diameter measured by the BJH method of at most 10 nm (1) ) Chemical sensor material as described.
(3) The chemical sensor material according to the above (1), wherein a dye molecule and a cationic organic reagent are combined and combined in the pores of the silica.
(4) The chemical sensor material according to (1), wherein the complexed dye molecule is a dye molecule that reacts with a target substance to change its color tone.
(5) The chemical sensor material according to (1), wherein the chemical sensor material obtained by combining the silica and the dye molecule and supporting the dye in the pores of the silica exhibits a substance detection function by changing the color tone.
(6) The chemical sensor material according to (3), wherein the cationic organic reagent is an organic amine or an organic ammonium.
(7) The chemical sensor material according to (1), wherein the dye molecule is neutral dithizone, cationic aminoporphyrin, or anionic porphyrin sulfonic acid.
(8) The chemical sensor material according to (1), wherein the test substance is cadmium ion, bismuth ion, or antimony ion contained in the aqueous solution sample.
(9) The concentration of the test substance contained in the water-soluble sample is measured by reading a change in color tone of the chemical sensor material according to any one of (1) to (8) visually or with a photometer. A method for measuring the concentration of a test substance.

次に、本発明について更に詳細に説明する。
本発明は、水溶液試料に含まれる被検物質を検出する化学センサー材であって、規則的細孔構造を持つメソポーラスシリカと色素分子とを複合化して色素をシリカ細孔内に担持させたことを特徴とするものである。また、本発明は、被検物質の濃度を測定する方法であって、上記化学センサー材の色調の変化を目視あるいは光度計で読み取ることにより被検物質の濃度を測定することを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a chemical sensor material for detecting a test substance contained in an aqueous solution sample, in which mesoporous silica having a regular pore structure and a dye molecule are complexed and the dye is supported in the silica pores. It is characterized by. Further, the present invention is a method for measuring the concentration of a test substance, characterized in that the test substance concentration is measured by reading a change in color tone of the chemical sensor material visually or with a photometer. It is.

本発明においては、化学センサー材の骨格材料である規則的多孔質シリカは、BET法比表面積が600平方メートル/g以上、BJH法によって計算される中心細孔径が10nm以下である多孔質シリカであればどのようなものも利用できる。このようなシリカは、例えば、文献公知の次のような方法で製造されるものを使用することができる(文献:J.Phys.Chem.B,109,9255−9264(2005))。   In the present invention, the regular porous silica that is the skeleton material of the chemical sensor material may be a porous silica having a BET specific surface area of 600 square meters / g or more and a central pore diameter calculated by the BJH method of 10 nm or less. Anything can be used. As such a silica, for example, one manufactured by the following method known in the literature can be used (literature: J. Phys. Chem. B, 109, 9255-9264 (2005)).

すなわち、界面活性剤と有機シリコン化合物を混合してリオトロピック型液晶相を形成し、ここへ、酸水溶液を加えることによって短時間に有機シリコン化合物の加水分解反応を起こさせしめ、メソポーラスシリカと界面活性剤の複合生成物を得た後、界面活性剤を除去して該メソポーラスシリカを得る方法が利用される。該シリカとしては、好適には、例えば、粉砕・分級して、60−100メッシュ程度のものが使用されるが、本発明は、これらに制限されるものではない。   That is, a surfactant and an organic silicon compound are mixed to form a lyotropic liquid crystal phase, and an aqueous acid solution is added thereto to cause a hydrolysis reaction of the organic silicon compound in a short time, whereby mesoporous silica and the surfactant are mixed. After obtaining the composite product, a method is used in which the surfactant is removed to obtain the mesoporous silica. The silica is preferably, for example, about 60-100 mesh after pulverization and classification, but the present invention is not limited thereto.

本発明において、該規則的多孔質シリカと色素との複合化には、次のような手法が用いられる。すなわち、該シリカにあらかじめ陽イオン性有機試薬を保持し、これと色素とを試薬複合体として複合化する手法である。この時、複合化の手順は、この組み合わせであればどのような手順も用いることができる。すなわち、例えば、(1)先に該シリカを陽イオン性有機試薬の有機溶媒溶液を用いて細孔内部を処理した後、色素のエタノール溶液で処理して、該色素を該シリカ内に保持させる方法、(2)色素と陽イオン性有機試薬をあらかじめ混合し、得られた試薬複合体の有機溶媒溶液と該シリカとを接触させ、有機溶媒だけをろ過あるいは蒸留などにより取り除くことで、色素を該シリカ内に担持する方法、が例示される。   In the present invention, the following method is used for complexing the regular porous silica and the pigment. That is, this is a technique in which a cationic organic reagent is held in advance on the silica and is combined with a dye as a reagent complex. At this time, any combination procedure can be used as long as it is this combination. That is, for example, (1) First, the silica is first treated with an organic solvent solution of a cationic organic reagent, and then treated with an ethanol solution of a dye to retain the dye in the silica. Method (2) A dye and a cationic organic reagent are mixed in advance, the organic solvent solution of the obtained reagent complex is brought into contact with the silica, and the organic solvent alone is removed by filtration or distillation, thereby removing the dye. Examples of the method of supporting in silica.

あるいは、(3)先に色素を細孔内に充填した後に、これを陽イオン性有機試薬の有機溶媒溶液で処理して、色素を細孔内に固定する方法、などが例示される。更に、検出反応により生成する着色性反応物質の細孔内への保持を達成するために、これらの複合化の過程で、必要があれば、固定化助剤として、過剰の陽イオン性有機試薬を加えることも行われる。   Alternatively, (3) a method of fixing the pigment in the pores by first filling the pigment into the pores and then treating the pigment with an organic solvent solution of a cationic organic reagent. Furthermore, in order to achieve retention of the coloring reactant generated by the detection reaction in the pores, an excess of a cationic organic reagent may be used as an immobilization aid, if necessary, during the complexing process. Is also performed.

本発明において使用する色素は、特定の目的物質と反応してその色調の変化をもたらすものであればどのようなものでもよいが、例えば、中性のジチゾン、陽イオン性のアミノポルフィリン、陰イオン性のポルフィリンスルホン酸などが好ましく利用される。本発明では、固定化された色素がこれと接触する水溶液試料中の目的金属イオンと固体表面上で錯体を形成することにより、もとの色素自身の色とは異なる色を示し、その結果、保持している固体も同様の色変化を示すことを利用するものである。   The dye used in the present invention may be any dye as long as it reacts with a specific target substance to change its color tone. For example, neutral dithizone, cationic aminoporphyrin, anion Porphyrin sulfonic acid and the like are preferably used. In the present invention, the immobilized dye forms a complex on the solid surface with the target metal ion in the aqueous solution sample in contact therewith, thereby showing a color different from the color of the original dye itself, The retained solid exhibits the same color change.

このように、本発明は、上記錯体形成と色素の色変化を利用することを基本原理とするものであり、水溶液試料中の目的金属イオンと固体表面上で錯体を形成することにより、もとの色素自身の色とは異なる色を示し、保持している固体も同様の色変化を示すものであれば適宜の色素分子を使用することができる。   As described above, the present invention is based on the use of the complex formation and the color change of the dye, and by forming a complex on the solid surface with the target metal ion in the aqueous solution sample, Any suitable dye molecule can be used as long as it shows a color different from the color of the dye itself and the retained solid exhibits the same color change.

また、本発明において使用する、陽イオン性有機試薬としては、どのようなものも使用可能であるが、細孔内での保持性などから、例えば、有機アミン類、及び有機アンモニウム類が好ましく用いられる。中でも、臭化ジドデシルジメチルアンモニウム(DDAB)が特に好ましく用いられるが、本発明の内容は、それらの有機試薬の種類により限定されるものではない。   In addition, any cationic organic reagent used in the present invention can be used, but organic amines and organic ammoniums are preferably used from the viewpoint of retention in pores. It is done. Among them, didodecyldimethylammonium bromide (DDAB) is particularly preferably used, but the content of the present invention is not limited by the type of the organic reagent.

本発明において、化学センサー材は、例えば、陽イオン性有機試薬のエタノール等の有機溶媒に、規則的多孔性シリカ粒子を加えた後、有機溶媒を除去することで、シリカの細孔内部を陽イオン性有機試薬で処理した後、これを色素のエタノール溶液で処理して、色素分子をシリカの細孔内に担持させることで作製される。   In the present invention, the chemical sensor material, for example, adds regularly porous silica particles to an organic solvent such as ethanol, a cationic organic reagent, and then removes the organic solvent, thereby positively injecting the pores of the silica. After the treatment with an ionic organic reagent, the dye is treated with an ethanol solution of the dye to carry the dye molecules in the pores of silica.

また、骨格材料である規則的多孔質シリカの形態についても特に制限はなく、粒子状材料のほか、板状あるいは膜状材料であってもよく、また、これらの組み合わせによるものであっても差し支えなく、化学センサー材としての目的は達せられる。例えば、規則的多孔質シリカが粒子状材料の場合は、化学センサー材を被検液に加えて反応させた後、混合液をろ過してフィルター上に集められた化学センサー材の色調の変化を目視あるいは光度計で読み取ることにより目的物質濃度を判定する。   The form of the regular porous silica as the skeleton material is not particularly limited, and may be a particulate material, a plate-like or membrane-like material, or a combination thereof. The objective as a chemical sensor material is achieved. For example, when regular porous silica is a particulate material, the chemical sensor material is added to the test solution and reacted, and then the mixture is filtered to change the color tone of the chemical sensor material collected on the filter. The target substance concentration is determined visually or by reading with a photometer.

また、板状あるいは膜状材料の場合は、化学センサー材を被検液に浸し、反応させた後、センサー材の色調の変化を目視あるいは光度計で読み取ることにより目的物質濃度を判定する。例として、カドミウムイオン、ビスマスイオン、及びアンチモンイオンの濃度に応じて変化する検知材の吸収スペクトルを、それぞれ図1〜図3に示す。本発明では、例えば、上記化学センサー材を用いて検出される色調の変化を吸光スペクトル変化として測定し、これを既知濃度による標準試料に基づく発色と比較して被検物質の濃度を測定する。   In the case of a plate-like or film-like material, after the chemical sensor material is immersed in the test solution and reacted, the change in the color tone of the sensor material is visually or read with a photometer to determine the target substance concentration. As an example, FIGS. 1 to 3 show absorption spectra of detection materials that change in accordance with the concentrations of cadmium ions, bismuth ions, and antimony ions, respectively. In the present invention, for example, a change in color tone detected using the chemical sensor material is measured as a change in absorption spectrum, and this is compared with color development based on a standard sample at a known concentration to measure the concentration of the test substance.

本発明では、上記シリカの細孔内に色素分子と陽イオン性の有機試薬とを組み合わせて複合化する。また、上記色素分子としては、目的物質と反応してその色調を変化させる色素分子であることが重要である。上記シリカと色素分子とを複合化して得られる化学センサー材は、その色調変化により物質検出機能を示すものが用いられる。   In the present invention, a dye molecule and a cationic organic reagent are combined and combined in the pores of the silica. Further, it is important that the dye molecule is a dye molecule that reacts with a target substance and changes its color tone. As the chemical sensor material obtained by combining the silica and the dye molecule, a material that exhibits a substance detection function due to a change in color tone is used.

本発明は、水溶液試料、例えば、環境河川水、地下水、産業排水中に含まれる有害物質を簡便に検出する化学センサー材であって、迅速かつ簡便な測定手段で、化学センサー材と有害物質を含む試料水溶液とを接触させることにより、化学センサー材を発色あるいは変色させ、その色調と色の濃さにより水溶液中に含まれる有害物質の濃度を検出定量することを可能とするものである。本発明は、試料水溶液中に含まれるイオンの濃度を目視あるいは光度計を用いて簡便に定量する方法を提供すると共に、試料水溶液中のイオンの存在を判定するための膜状あるいは粒子状材料のセンサーを提供することを可能とするものである。   The present invention is a chemical sensor material for easily detecting harmful substances contained in an aqueous solution sample, for example, environmental river water, groundwater, industrial wastewater, and the chemical sensor material and the harmful substances are quickly and easily measured. By bringing the chemical sensor material into contact with the aqueous solution containing the sample, the chemical sensor material is colored or discolored, and the concentration and concentration of harmful substances contained in the aqueous solution can be detected and quantified. The present invention provides a method for easily quantifying the concentration of ions contained in a sample aqueous solution visually or using a photometer, and a film-like or particulate material for determining the presence of ions in a sample aqueous solution. It is possible to provide a sensor.

従来、メソポーラスシリカをイオン性色素と複合化させるために、シリカ表面をシリル化試薬等によりあらかじめ処理する手法が知られているが、高価な試薬を必要とするため、シリル化試薬等の高価な試薬を用いない手法の開発が要請されていた。本発明は、シリル化試薬等の高価な試薬を用いないで、化学センサーの骨格材料と色素分子を複合化して色素をシリカ細孔内に担持させて、大型の分析装置を用いることなく、簡便かつ経済的に有害物濃度を計測できる新しい化学センサー材を開発することに成功したものであり、測定の現場で、簡便に有害物質等の濃度を計測する新しい分析手法を提供するものとして有用である。   Conventionally, in order to complex mesoporous silica with an ionic dye, a method of pretreating the silica surface with a silylating reagent or the like is known. However, since an expensive reagent is required, an expensive silylating reagent or the like is expensive. Development of a method that does not use reagents has been requested. In the present invention, an expensive reagent such as a silylation reagent is used, a chemical sensor skeleton material and a dye molecule are combined, and the dye is supported in the silica pores, without using a large analyzer. It has succeeded in developing a new chemical sensor material that can measure the concentration of harmful substances economically, and is useful as a new analytical method to easily measure the concentration of harmful substances at the measurement site. is there.

本発明により、次のような効果が奏される。
(1)水溶液試料、例えば、環境河川水、地下水、産業排水中に含まれる有害物質を簡便に検出できる化学センサー材を提供することができる。
(2)本発明の化学センサー材は、有害物質の簡便、迅速でかつ経済的な検出定量を可能にする化学センサー材として有用である。
(3)本発明の化学センサー材を用いることで、従来の高額な装置と多大な労力及びコストを必要とする測定手法に代えて、簡素な器具セットを用いるだけで、測定現場において、排水基準値(0.1mg/L)あるいは環境基準値(0.01mg/L)濃度の目的イオンの検出定量を行うことが可能となる。
(4)高額な装置を用いる従来の有害物質検出定量法に代替し得る、新しい有害物質検出定量技術を提供することが実現できる、
The present invention has the following effects.
(1) It is possible to provide a chemical sensor material that can easily detect harmful substances contained in aqueous solution samples such as environmental river water, groundwater, and industrial wastewater.
(2) The chemical sensor material of the present invention is useful as a chemical sensor material that enables simple, rapid and economical detection and quantification of harmful substances.
(3) By using the chemical sensor material of the present invention, instead of the conventional expensive apparatus and the measurement method requiring a great deal of labor and cost, a simple instrument set is used, and the drainage standard is used at the measurement site. It becomes possible to carry out detection and quantification of target ions having a value (0.1 mg / L) or environmental standard value (0.01 mg / L) concentration.
(4) It is possible to provide a new toxic substance detection and quantification technology that can replace the conventional toxic substance detection and quantification method using an expensive device.

次に、実施例によって本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited at all by the following examples.

製造例1
臭化ジドデシルジメチルアンモニウム(DDAB)の0.1Mエタノール溶液100mLに、規則的多孔性シリカ粒子0.5gを加えた後、エタノールをロータリーエバポレーターにより除去することで、DDAB型シリカ粒子を得た。次いで、このDDABシリカをジフェニルカルバジド(DPC)25mgを溶解したエタノール溶液100mLに加え、よくなじませた後、エタノールをロータリーエバポレーターにより除去することで、DPC−DDAB型シリカ粒子を得た。更に、この粒子をイオン交換水で溶出する色素が無くなるまでよく洗浄し、センサー材とした。
Production Example 1
After adding 0.5 g of regular porous silica particles to 100 mL of 0.1 M ethanol solution of didodecyldimethylammonium bromide (DDAB), DDAB type silica particles were obtained by removing ethanol with a rotary evaporator. Subsequently, this DDAB silica was added to 100 mL of an ethanol solution in which 25 mg of diphenylcarbazide (DPC) was dissolved, and after being well blended, ethanol was removed by a rotary evaporator to obtain DPC-DDAB type silica particles. Further, the particles were thoroughly washed with ion-exchanged water until no dye was eluted, and used as a sensor material.

製造例2
製造例1と同様にして得たDDABシリカを、ジフェニルジチオカルバジド(DZ)25mgを溶解したエタノール溶液100mLに加え、よくなじませた後、エタノールをロータリーエバポレーターにより除去することで、DZ−DDAB型シリカ粒子を得た。更に、この粒子をイオン交換水で溶出する色素が無くなるまでよく洗浄し、センサー材とした。
Production Example 2
DDAB silica obtained in the same manner as in Production Example 1 was added to 100 mL of an ethanol solution in which 25 mg of diphenyldithiocarbazide (DZ) was dissolved. After thoroughly blending, DZ-DDAB type was obtained by removing ethanol with a rotary evaporator. Silica particles were obtained. Further, the particles were thoroughly washed with ion-exchanged water until no dye was eluted, and used as a sensor material.

製造例3
製造例1と同様にして得たDDABシリカを、ピロガロールレッド(PR)10mgを溶解したエタノール溶液100mLに加え、よくなじませた後、エタノールをロータリーエバポレーターにより除去することで、PR−DDAB型シリカ粒子を得た。更に、この粒子をイオン交換水で溶出する色素が無くなるまでよく洗浄し、センサー材とした。
Production Example 3
After adding DDAB silica obtained in the same manner as in Production Example 1 to 100 mL of ethanol solution in which 10 mg of pyrogallol red (PR) is dissolved, PR-DDAB type silica particles are removed by removing the ethanol with a rotary evaporator. Got. Further, the particles were thoroughly washed with ion-exchanged water until no dye was eluted, and used as a sensor material.

未知濃度のカドミウムイオンを含む試料水溶液をサンプルビンに採り、pH緩衝液でpHを9として、全量を20mLに調整した。これに製造例1で製造したイオンセンサーを5mg加えて室温で5分間振り混ぜ、メンブレンフィルターでイオンセンサーをろ別してフィルター上に集めた。別に用意した既知濃度による標準試料に基づく発色と比較して、カドミウムイオン濃度を判定した。センサー材の吸収スペクトルの変化を図1に示した。   A sample aqueous solution containing an unknown concentration of cadmium ions was taken in a sample bottle, the pH was set to 9 with a pH buffer solution, and the total amount was adjusted to 20 mL. To this, 5 mg of the ion sensor produced in Production Example 1 was added and shaken at room temperature for 5 minutes. The ion sensor was filtered off with a membrane filter and collected on the filter. The cadmium ion concentration was determined in comparison with color development based on a standard sample with a known concentration prepared separately. The change in the absorption spectrum of the sensor material is shown in FIG.

未知濃度のビスマスイオンを含む試料水溶液をサンプルビンに採り、pH緩衝液でpHを3.5として、全量を20mLに調整した。これに製造例2で製造したイオンセンサーを4mg加えて室温で1分間振り混ぜ、メンブレンフィルターでイオンセンサーをろ別してフィルター上に集めた。別に用意した既知濃度による標準試料に基づく発色と比較して、ビスマスイオン濃度を判定した。センサー材の吸収スペクトルの変化を図2に示した。   A sample aqueous solution containing an unknown concentration of bismuth ions was taken in a sample bottle, adjusted to pH 3.5 with a pH buffer solution, and the total amount was adjusted to 20 mL. 4 mg of the ion sensor produced in Production Example 2 was added thereto, and the mixture was shaken at room temperature for 1 minute. The ion sensor was separated by a membrane filter and collected on the filter. The bismuth ion concentration was determined in comparison with color development based on a standard sample with a known concentration prepared separately. The change in the absorption spectrum of the sensor material is shown in FIG.

未知濃度のアンチモンイオンを含む試料水溶液をサンプルビンに採り、pH緩衝液でpHを4.5として、全量を20mLに調整した。これに製造例3で製造したイオンセンサーを4mg加えて室温で2分間振り混ぜ、メンブレンフィルターでイオンセンサーをろ別してフィルター上に集めた。別に用意した既知濃度による標準試料に基づく発色と比較して、アンチモンイオン濃度を判定した。センサー材の吸収スペクトルの変化を図3に示した。   A sample aqueous solution containing an antimony ion having an unknown concentration was taken in a sample bottle, adjusted to pH 4.5 with a pH buffer solution, and adjusted to a total volume of 20 mL. 4 mg of the ion sensor produced in Production Example 3 was added thereto, and the mixture was shaken and mixed for 2 minutes at room temperature. The ion sensor was separated by a membrane filter and collected on the filter. The antimony ion concentration was determined in comparison with color development based on a standard sample with a known concentration prepared separately. The change in the absorption spectrum of the sensor material is shown in FIG.

以上詳述したように、本発明は、水溶液試料中のイオン濃度の検出を行うための化学センサー材に係るものであり、本発明により、簡便、迅速でかつ経済的な検出定量法を実現することを可能とする新しい化学センサー材及び被検物質の濃度の測定方法を提供することができる。本発明による化学センサー材を用いることで、高額な装置による多大な労力とコストをかけた測定に代えて、簡素な器具セットに基づき測定現場において、排水基準値(0.1mg/L)あるいは環境基準値(0.01mg/L)濃度の目的イオンの検出定量を行うことができる。本発明は、水溶液試料、例えば、環境河川水、地下水、産業排水中に含まれる有害物質等を簡便に検出できる化学センサー材及び検出定量法を提供するものとして有用である。   As described above in detail, the present invention relates to a chemical sensor material for detecting an ion concentration in an aqueous solution sample, and the present invention realizes a simple, rapid and economical detection and quantification method. It is possible to provide a new chemical sensor material and a method for measuring the concentration of a test substance that make it possible. By using the chemical sensor material according to the present invention, instead of the measurement that requires a great amount of labor and cost by an expensive device, the wastewater standard value (0.1 mg / L) or the environment is measured at a measurement site based on a simple instrument set. Detection and quantification of a target ion having a reference value (0.01 mg / L) concentration can be performed. INDUSTRIAL APPLICABILITY The present invention is useful for providing a chemical sensor material and a detection quantification method that can easily detect harmful substances contained in aqueous solution samples such as environmental river water, groundwater, and industrial wastewater.

カドミウムイオン検知材のカドミウムイオン濃度に対応した可視光吸収スペクトル変化を示す。検知材の実際の色は、白色から赤色に変化する。The visible light absorption spectrum change corresponding to the cadmium ion concentration of the cadmium ion detection material is shown. The actual color of the detection material changes from white to red. ビスマスイオン検知材のビスマスイオン濃度に対応した可視光吸収スペクトル変化を示す。検知材の実際の色は、灰色から赤茶色へ変化する。The visible light absorption spectrum change corresponding to the bismuth ion concentration of a bismuth ion detection material is shown. The actual color of the detection material changes from gray to reddish brown. アンチモンイオン検知材のアンチモンイオン濃度に対応した可視光吸収スペクトル変化を示す。検知材の実際の色は、薄茶色から赤茶色へ変化する。The change in visible light absorption spectrum corresponding to the antimony ion concentration of the antimony ion detection material is shown. The actual color of the detection material changes from light brown to reddish brown.

Claims (9)

水溶液試料に含まれる被検物質を検出する化学センサー材であって、規則的細孔構造を持つシリカと色素分子とを複合化して色素をシリカ細孔内に担持させたことを特徴とする化学センサー材。   A chemical sensor material for detecting a test substance contained in an aqueous solution sample, characterized by combining a silica having a regular pore structure and a dye molecule so that the dye is supported in the silica pores. Sensor material. 上記シリカが、窒素吸着法によって求められたBET法比表面積が少なくとも600平方メートル/g、BJH法によって測定される中心細孔径が大きくても10nmである多孔質シリカである、請求項1記載の化学センサー材。   The chemistry according to claim 1, wherein the silica is a porous silica having a BET specific surface area determined by a nitrogen adsorption method of at least 600 square meters / g and a central pore diameter measured by the BJH method of at most 10 nm. Sensor material. 上記シリカの細孔内に色素分子と陽イオン性の有機試薬とを組み合わせて複合化した、請求項1記載の化学センサー材。   The chemical sensor material according to claim 1, wherein a dye molecule and a cationic organic reagent are combined in the pores of the silica to form a composite. 複合化された色素分子が、目的物質と反応してその色調を変化させる色素分子である、請求項1記載の化学センサー材。   The chemical sensor material according to claim 1, wherein the complexed dye molecule is a dye molecule that reacts with a target substance to change its color tone. 上記シリカと色素分子とを複合化して色素をシリカ細孔内に担持させて得られる化学センサー材が、その色調変化により物質検出機能を示す、請求項1記載の化学センサー材。   The chemical sensor material according to claim 1, wherein the chemical sensor material obtained by complexing the silica and the dye molecule and supporting the dye in the silica pores exhibits a substance detection function by changing its color tone. 上記陽イオン性の有機試薬が、有機アミン類、又は有機アンモニウム類である、請求項3記載の化学センサー材。   The chemical sensor material according to claim 3, wherein the cationic organic reagent is an organic amine or an organic ammonium. 上記色素分子が、中性のジチゾン、陽イオン性のアミノポルフィリン、又は陰イオン性のポルフィリンスルホン酸である、請求項1記載の化学センサー材。   The chemical sensor material according to claim 1, wherein the dye molecule is neutral dithizone, cationic aminoporphyrin, or anionic porphyrin sulfonic acid. 被検物質が、水溶液試料に含まれるカドミウムイオン、ビスマスイオン、又はアンチモンイオンである、請求項1記載の化学センサー材。   The chemical sensor material according to claim 1, wherein the test substance is cadmium ion, bismuth ion, or antimony ion contained in the aqueous solution sample. 請求項1から8のいずれかに記載の化学センサー材の色調の変化を目視あるいは光度計で読み取ることにより水溶液試料に含まれる被検物質の濃度を測定することを特徴とする被検物質の濃度の測定方法。   The concentration of the test substance, characterized in that the concentration of the test substance contained in the aqueous solution sample is measured by reading the change in color tone of the chemical sensor material according to any one of claims 1 to 8 visually or with a photometer. Measuring method.
JP2007064182A 2007-03-13 2007-03-13 Chemical sensor material Expired - Fee Related JP4883577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007064182A JP4883577B2 (en) 2007-03-13 2007-03-13 Chemical sensor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007064182A JP4883577B2 (en) 2007-03-13 2007-03-13 Chemical sensor material

Publications (2)

Publication Number Publication Date
JP2008224461A true JP2008224461A (en) 2008-09-25
JP4883577B2 JP4883577B2 (en) 2012-02-22

Family

ID=39843264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007064182A Expired - Fee Related JP4883577B2 (en) 2007-03-13 2007-03-13 Chemical sensor material

Country Status (1)

Country Link
JP (1) JP4883577B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271217A (en) * 2009-05-22 2010-12-02 Funai Electric Advanced Applied Technology Research Institute Inc Sensor and sensor device
JP2010271216A (en) * 2009-05-22 2010-12-02 Funai Electric Advanced Applied Technology Research Institute Inc Sensor and sensor chip
WO2011090086A1 (en) 2010-01-19 2011-07-28 独立行政法人物質・材料研究機構 Metal-ion adsorbent and method for recovering metal using same
CN102495222A (en) * 2011-12-14 2012-06-13 力合科技(湖南)股份有限公司 Online stibium analyzer and method for detecting concentration of stibium of different forms in water sample
JP2013040852A (en) * 2011-08-16 2013-02-28 National Institute For Materials Science Mesoporous silica supporting cesium ion adsorptive compound, and cesium ion collector and cesium collecting method using the same
JP2015515625A (en) * 2012-03-27 2015-05-28 スリーエム イノベイティブ プロパティズ カンパニー Bis (glyoxime) -transition metal colorimetric moisture indicator
US9921199B2 (en) 2011-03-31 2018-03-20 3M Innovative Properties Company Method for indicating moisture based on bis(glyoxime)-transition metal complexes
CN109839374A (en) * 2019-01-07 2019-06-04 上海市质量监督检验技术研究院 The screening technique of total cadmium content in a kind of fabric coating

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148860A (en) * 1990-10-11 1992-05-21 Sumika Bunseki Center:Kk Filler for high-speed liquid chromatography
JPH0949832A (en) * 1995-08-08 1997-02-18 Fuji Photo Film Co Ltd Silver detector, silver detecting method using it, and method for controlling desilvering device
JP2003149193A (en) * 2001-11-16 2003-05-21 National Institute Of Advanced Industrial & Technology Liquid crystal dispersion type simplified ion selective electrode sensor and element using the same
WO2003099941A1 (en) * 2002-05-24 2003-12-04 Canon Kabushiki Kaisha Colored material and method for producing the colored material
JP2004117350A (en) * 2002-09-05 2004-04-15 Tokyo Univ Of Pharmacy & Life Science Luminescence nanochannel sensor
JP2005089218A (en) * 2003-09-16 2005-04-07 Toyota Central Res & Dev Lab Inc Method for producing spherical silica-based mesoporous body
JP2006083345A (en) * 2004-09-17 2006-03-30 Canon Inc Color material, method for producing the same and ink using the same, electrophoretic particle, electrophoretic type display unit and color filter
WO2006083960A1 (en) * 2005-01-31 2006-08-10 Beckman Coulter, Inc. Doped silica microsphere optical ion sensors
JP2006242691A (en) * 2005-03-02 2006-09-14 Kowa Co Concentration measuring method for lead
JP2007327887A (en) * 2006-06-08 2007-12-20 National Institute Of Advanced Industrial & Technology Ion sensor and ion detection method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04148860A (en) * 1990-10-11 1992-05-21 Sumika Bunseki Center:Kk Filler for high-speed liquid chromatography
JPH0949832A (en) * 1995-08-08 1997-02-18 Fuji Photo Film Co Ltd Silver detector, silver detecting method using it, and method for controlling desilvering device
JP2003149193A (en) * 2001-11-16 2003-05-21 National Institute Of Advanced Industrial & Technology Liquid crystal dispersion type simplified ion selective electrode sensor and element using the same
WO2003099941A1 (en) * 2002-05-24 2003-12-04 Canon Kabushiki Kaisha Colored material and method for producing the colored material
JP2004117350A (en) * 2002-09-05 2004-04-15 Tokyo Univ Of Pharmacy & Life Science Luminescence nanochannel sensor
JP2005089218A (en) * 2003-09-16 2005-04-07 Toyota Central Res & Dev Lab Inc Method for producing spherical silica-based mesoporous body
JP2006083345A (en) * 2004-09-17 2006-03-30 Canon Inc Color material, method for producing the same and ink using the same, electrophoretic particle, electrophoretic type display unit and color filter
WO2006083960A1 (en) * 2005-01-31 2006-08-10 Beckman Coulter, Inc. Doped silica microsphere optical ion sensors
JP2006242691A (en) * 2005-03-02 2006-09-14 Kowa Co Concentration measuring method for lead
JP2007327887A (en) * 2006-06-08 2007-12-20 National Institute Of Advanced Industrial & Technology Ion sensor and ion detection method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271217A (en) * 2009-05-22 2010-12-02 Funai Electric Advanced Applied Technology Research Institute Inc Sensor and sensor device
JP2010271216A (en) * 2009-05-22 2010-12-02 Funai Electric Advanced Applied Technology Research Institute Inc Sensor and sensor chip
WO2011090086A1 (en) 2010-01-19 2011-07-28 独立行政法人物質・材料研究機構 Metal-ion adsorbent and method for recovering metal using same
US9921199B2 (en) 2011-03-31 2018-03-20 3M Innovative Properties Company Method for indicating moisture based on bis(glyoxime)-transition metal complexes
JP2013040852A (en) * 2011-08-16 2013-02-28 National Institute For Materials Science Mesoporous silica supporting cesium ion adsorptive compound, and cesium ion collector and cesium collecting method using the same
CN102495222A (en) * 2011-12-14 2012-06-13 力合科技(湖南)股份有限公司 Online stibium analyzer and method for detecting concentration of stibium of different forms in water sample
JP2015515625A (en) * 2012-03-27 2015-05-28 スリーエム イノベイティブ プロパティズ カンパニー Bis (glyoxime) -transition metal colorimetric moisture indicator
CN109839374A (en) * 2019-01-07 2019-06-04 上海市质量监督检验技术研究院 The screening technique of total cadmium content in a kind of fabric coating

Also Published As

Publication number Publication date
JP4883577B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP4883577B2 (en) Chemical sensor material
Shahat et al. Novel nano-conjugate materials for effective arsenic (V) and phosphate capturing in aqueous media
Zaporozhets et al. Determination of Cu (II) and Zn (II) using silica gel loaded with 1-(2-thiasolylazo)-2-naphthol
JP2007327887A (en) Ion sensor and ion detection method
Awual et al. Functionalized novel mesoporous adsorbent for selective lead (II) ions monitoring and removal from wastewater
Yan et al. Flow injection on-line sorption preconcentration coupled with hydride generation atomic fluorescence spectrometry for determination of (ultra) trace amounts of arsenic (III) and arsenic (V) in natural water samples
Losev et al. Silica sequentially modified with polyhexamethylene guanidine and Arsenazo I for preconcentration and ICP–OES determination of metals in natural waters
Pebdani et al. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry
El-Safty et al. Optical supermicrosensor responses for simple recognition and sensitive removal of Cu (II) ion target
JP2007327886A (en) Method for quantifying hexavalent chromium in water
Dos Santos et al. Enrichment and determination of molybdenum in geological samples and seawater by ICP-AES using calmagite and activated carbon
Zhang et al. Selective fluorimetric detection of cadmium in a microfluidic device
Tantra et al. Suitability of analytical methods to measure solubility for the purpose of nanoregulation
Carrera et al. Spectrophotometric determination of dithizone–mercury complex by solid phase microextraction in micropipette tip syringe packed with activated carbon xerogel
Azizi et al. Micro-gel thin film molecularly imprinted polymer coating for extraction of organophosphorus pesticides from water and beverage samples
Ouyang et al. Superficially capped amino metal-organic framework for efficient solid-phase microextraction of perfluorinated alkyl substances
Tolan et al. Cubically cage-shaped mesoporous ordered silica for simultaneous visual detection and removal of uranium ions from contaminated seawater
Moustafa et al. A novel bulk optode for ultra-trace detection of antimony coupled with spectrophotometry in food and environmental samples
Filik et al. A sensitive method for determining total vanadium in water samples using colorimetric-solid-phase extraction-fiber optic reflectance spectroscopy
Malejko et al. A novel flow-injection method for the determination of Pt (IV) in environmental samples based on chemiluminescence reaction of lucigenin and biosorption
Wang et al. Development of cellulosic paper-based test strips for mercury (II) determination in aqueous solution
Rao et al. Biomimetic sensors for toxic pesticides and inorganics based on optoelectronic/electrochemical transducers—An overview
Bilba et al. Determination of trace amounts of palladium (II) by solid-phase spectrophotometry
Savitha et al. Adsorptive preconcentration integrated with colorimetry for ultra-sensitive detection of lead and copper
El-Shahawi et al. A highly sensitive electrochemical probe for trace determination and chemical speciation of lead in water and foodstuffs using Thorin-I as a selective chelating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees