JP2008224424A - Method of detecting minute displacement and minute displacement gauge - Google Patents

Method of detecting minute displacement and minute displacement gauge Download PDF

Info

Publication number
JP2008224424A
JP2008224424A JP2007063316A JP2007063316A JP2008224424A JP 2008224424 A JP2008224424 A JP 2008224424A JP 2007063316 A JP2007063316 A JP 2007063316A JP 2007063316 A JP2007063316 A JP 2007063316A JP 2008224424 A JP2008224424 A JP 2008224424A
Authority
JP
Japan
Prior art keywords
light
thin film
metal thin
measurement object
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007063316A
Other languages
Japanese (ja)
Inventor
Takashi Wakamatsu
孝 若松
Moriyasu Kanari
守康 金成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2007063316A priority Critical patent/JP2008224424A/en
Publication of JP2008224424A publication Critical patent/JP2008224424A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of highly precisely detecting minute displacement and a minute displacement gauge which is small, low-cost, and with high sensitivity, even when the measurement object is a low reflecting or light-absorbing material. <P>SOLUTION: The optical coupler constituted such that the transparent dielectric substance 2 is in close contact with the metal membrane 1 so that the measurement incident light generates the metal intensifying evanescent light on the interface of the metal membrane 1 is arranged to the measurement object 5 via the slit layer 6. The reflection detection light from the optical coupler depending on the minute distance between the metallic membrane 1 and the measurement object 5 generated by the optical mutual reaction between the metal intensifying evanescent light generated on the interface of the gap layer 6 side and the approaching measurement object 5 is measured by the optical detector 4, and thereby the minute displacement of the measurement object 5 is detected. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、測定対象物の微小変位を高感度に検出する方法、およびこれを利用して測定対象物の微小変位を検出する、小型で安価な高感度微小変位計に関するものである。   The present invention relates to a method for detecting a minute displacement of a measurement object with high sensitivity, and a small and inexpensive high-sensitivity minute displacement meter that detects the minute displacement of the measurement object using the method.

測定対象物の変位を非接触で光学的に検出するには、周知の通り、ドップラーシフトや光へテロダイン干渉等の光干渉の原理に基づき、測定対象物に光を照射して測定対象物からの反射光の干渉効果を利用している。(例えば、特許文献1、2等)   In order to optically detect the displacement of the measurement object in a non-contact manner, as is well known, based on the principles of optical interference such as Doppler shift and light heterodyne interference, the measurement object is irradiated with light from the measurement object. The interference effect of reflected light is utilized. (For example, Patent Documents 1 and 2 etc.)

しかしながら、これらの変位検出法の場合、計測光を測定対象物へ直接照射し、その反射光を検出しているために、測定対象物が金属等の光反射率の高い場合には、変位検出の感度が高いものの、反射率の小さい材質の測定対象物、例えばガラス、セラミックス、プラスチック、高分子ポリマー、色素等の低反射材や光吸収材に対しては、変位検出の対象として上記方法は、不向きであるという問題がある。   However, in the case of these displacement detection methods, the measurement light is directly applied to the measurement object and the reflected light is detected. Therefore, if the measurement object has a high light reflectance such as metal, the displacement detection is performed. However, for low-reflectivity materials and light-absorbing materials such as glass, ceramics, plastics, polymer polymers, and pigments, the above method is used as a target for displacement detection. There is a problem that it is unsuitable.

その上、変位の検出に測定対象物からの反射光の干渉効果を利用しているために、反射率に大きく影響する要因、すなわち、測定対象物の材質の他に表面形状や表面状態等に変位検出の感度が著しく依存するという問題もある。   In addition, since the interference effect of the reflected light from the measurement object is used to detect the displacement, there are factors that greatly affect the reflectance, that is, the surface shape and surface condition in addition to the material of the measurement object. There is also a problem that the sensitivity of the displacement detection remarkably depends.

また、測定対象物が透明物体である場合には、計測光が透明物体を通過し、その反対側の界面から反射した光も、測定対象物表面からの検出すべき反射光と同時に検出されることがあるために、入射光の条件によっては、正確な変位検出が上記方法では難しい場合がある。   When the measurement object is a transparent object, the measurement light passes through the transparent object, and the light reflected from the opposite interface is also detected simultaneously with the reflected light to be detected from the measurement object surface. Therefore, depending on the conditions of incident light, accurate displacement detection may be difficult with the above method.

さらに、測定対象物からの反射光に基準光を干渉させ、その干渉縞の強度変化や位相変化から測定対象物の変位を検出しているために、光学系や計測装置が複雑になり、上記方法の場合には、微小変位計の小型化および低コスト化が困難である。   Furthermore, since the reference light is made to interfere with the reflected light from the measurement object, and the displacement of the measurement object is detected from the intensity change and phase change of the interference fringes, the optical system and the measurement device become complicated, and the above In the case of the method, it is difficult to reduce the size and cost of the micro displacement meter.

これに対して、薄い金属薄膜を密着形成させた透明な誘電体からなる光結合器において、透明誘電体を通過した光が内部全反射領域の適宜な入射角度で金属薄膜に入射すると、透明誘電体と反対側の金属薄膜界面上にその界面からの距離に対し指数関数的に減少する、通常の伝搬光よりも増大した電界を伴った金属増強エバネッセント光が発生するという現象が認められた。
特開2000−186912号公報 特開2006−3290号公報
On the other hand, in an optical coupler made of a transparent dielectric with a thin metal thin film formed in close contact, when light that has passed through the transparent dielectric is incident on the metal thin film at an appropriate incident angle in the internal total reflection region, the transparent dielectric A phenomenon was observed in which metal-enhanced evanescent light with an electric field increased exponentially with respect to the distance from the metal thin film interface on the opposite side of the body with an increased electric field than normal propagating light was generated.
JP 2000-186912 A JP 2006-3290 A

そこで、金属薄膜を密着形成した透明誘電体からなる光結合器と、この金属薄膜上に適宜の間隙層例えば空気層を介して測定対象物を配置し、金属薄膜の間隙層側界面に金属増強エバネッセント光を発生させる入射光条件において、光を透明誘電体から金属薄膜へ入射させ、金属増強エバネッセント光が金属薄膜に近接する測定対象物と光学的に相互作用することによって、光結合器からの反射光が金属薄膜と測定対象物間の微小距離により変化し、これによって、測定対象物の微小変位を高感度に検出できる微小変位計を実現できる可能性がある。   Therefore, an optical coupler made of a transparent dielectric with a metal thin film formed in close contact, and an object to be measured placed on the metal thin film via an appropriate gap layer such as an air layer, and metal enhancement at the gap layer side interface of the metal thin film. In an incident light condition that generates evanescent light, light is incident on the metal thin film from the transparent dielectric, and the metal-enhanced evanescent light optically interacts with the measurement object close to the metal thin film, thereby causing the light from the optical coupler. The reflected light changes depending on the minute distance between the metal thin film and the measurement object, and this may possibly realize a minute displacement meter that can detect the minute displacement of the measurement object with high sensitivity.

ここで、間隙層媒質が空気であり、金属薄膜と測定対象物間の距離が入射光波長の約5倍程度以上に大きい場合には、金属薄膜の間隙層側界面に発生させた金属増強エバネッセント光と測定対象物との光学的相互作用が著しく小さくなり、したがって、測定対象物の位置、すなわち金属薄膜と測定対象物間の距離に依存した反射光を得ることが難しくなる。   Here, when the gap layer medium is air and the distance between the metal thin film and the measurement object is about five times or more as large as the incident light wavelength, the metal enhanced evanescent generated at the gap layer side interface of the metal thin film. The optical interaction between the light and the measurement object is remarkably reduced, so that it becomes difficult to obtain reflected light depending on the position of the measurement object, that is, the distance between the metal thin film and the measurement object.

本発明は、このような事情に鑑み、金属薄膜を密着形成した光結合器によって金属薄膜の間隙層側界面に発生させた金属増強エバネッセント光が近接した測定対象物と光学的相互作用が行えるように、測定対象物に近接した位置に光結合器を配置して、その光学的相互作用により、光結合器からの反射光が金属薄膜と測定対象物間の微小距離により変化し、測定対象物の位置に依存した反射光を計測することによって、測定対象物の微小変位を高感度に検出する方法、およびこれを利用した小型で安価な高感度微小変位計を提供することを目的とする。   In view of such circumstances, the present invention is capable of optically interacting with an object to be measured in close proximity to metal-enhanced evanescent light generated at the interface on the gap layer side of the metal thin film by an optical coupler in which the metal thin film is closely formed. In addition, an optical coupler is arranged at a position close to the measurement object, and due to the optical interaction, the reflected light from the optical coupler changes depending on the minute distance between the metal thin film and the measurement object, and the measurement object An object of the present invention is to provide a method for detecting a minute displacement of a measurement object with high sensitivity by measuring reflected light depending on the position of the sensor, and a small and inexpensive highly sensitive minute displacement meter using the method.

本発明者等は、金属薄膜を密着形成した透明誘電体からなる光結合器において、金属薄膜の空気間隙層側界面に金属増強エバネッセント光を発生させる入射光条件において、光結合器からの反射光が、金属薄膜と測定対象物間の微小距離により変化することを発見し、本発明を完成したものである。   The present inventors, in an optical coupler made of a transparent dielectric having a metal thin film formed in close contact, reflect light from the optical coupler under incident light conditions that generate metal enhanced evanescent light at the air gap layer side interface of the metal thin film. However, the present invention has been completed by discovering that it varies depending on the minute distance between the metal thin film and the measurement object.

すなわち、請求項1に記載の発明は、金属薄膜に密着形成した透明誘電体からなる光結合器と、この金属薄膜上に適宜の間隙層を介して測定対象物を配置し、金属薄膜の間隙層側界面に金属増強エバネッセント光を発生させる入射光条件において、入射計測光を透明誘電体より金属薄膜に入射して、この金属増強エバネッセント光が近接する測定対象物と光学的に相互作用して、光結合器からの反射検出光が金属薄膜の間隙層側界面から測定対象物までの微小距離に依存し、その反射検出光を光検出器で計測することによって、測定対象物の微小変位を検出するようにしたものである。   In other words, the invention described in claim 1 is an optical coupler made of a transparent dielectric formed in close contact with a metal thin film, and an object to be measured is disposed on the metal thin film via an appropriate gap layer, and the gap between the metal thin films is obtained. Under incident light conditions that generate metal-enhanced evanescent light at the layer-side interface, incident measurement light is incident on a metal thin film from a transparent dielectric, and this metal-enhanced evanescent light optically interacts with a nearby measurement object. The reflected detection light from the optical coupler depends on the minute distance from the gap layer side interface of the metal thin film to the object to be measured. By measuring the reflected detection light with the photodetector, the minute displacement of the object to be measured can be reduced. It is intended to be detected.

また、請求項2に記載の発明は、透明誘電体上に金属薄膜を密着形成した光結合器であって、金属薄膜上に間隙層を介して測定対象物を配置した構成とし、透明誘電体が金属薄膜の間隙層側界面に金属増強エバネッセント光を発生させるように入射計測光を導く機能を持ち、この金属増強エバネッセント光が近接する測定対象物と光学的に相互作用し、金属薄膜の間隙層側界面から測定対象物までの微小距離に依存した、光結合器からの反射検出光を、光検出器で計測することによって、測定対象物の微小変位を検出するように構成したものである。   According to a second aspect of the present invention, there is provided an optical coupler in which a metal thin film is formed in close contact with a transparent dielectric, wherein a measurement object is disposed on the metal thin film through a gap layer, and the transparent dielectric Has a function of guiding incident measurement light so that metal-enhanced evanescent light is generated at the gap layer side interface of the metal thin film, and this metal-enhanced evanescent light optically interacts with the object to be measured in close proximity, and the gap between the metal thin films It is configured to detect the minute displacement of the measurement object by measuring the reflected detection light from the optical coupler depending on the minute distance from the layer side interface to the measurement object with the photodetector. .

また、請求項3に記載の発明は、金属増強エバネッセント光を発生させる入射計測光の偏光をTM(p)偏光としたものであり、これにより金属薄膜の間隙層側界面に金属増強エバネッセント光を効率良く発生させることができ、測定対象物の微小変位を高感度に検出するようにしたものである。   Further, the invention described in claim 3 is that the polarization of the incident measurement light for generating the metal enhanced evanescent light is TM (p) polarized light, and thereby the metal enhanced evanescent light is applied to the gap layer side interface of the metal thin film. It can be generated efficiently, and the minute displacement of the measurement object is detected with high sensitivity.

また、請求項4に記載の発明は、測定対象物の微小変位が金属薄膜に対して垂直方向の微小な位置変化であって、光結合器からの反射検出光がこの垂直微小変位により著しく変化し、したがって、測定対象物の微小変位を高感度に検出できる。   In the invention according to claim 4, the minute displacement of the measurement object is a minute position change in the vertical direction with respect to the metal thin film, and the reflected detection light from the optical coupler is remarkably changed by the perpendicular minute displacement. Therefore, the minute displacement of the measurement object can be detected with high sensitivity.

また、請求項5に記載の発明は、間隙層媒質が空気であり、金属薄膜と測定対象物間の微小距離を入射計測光波長の約5倍程度以下に設定することによって、その金属薄膜の空気間隙層側界面に発生した金属増強エバネッセント光が測定対象物と光学的な相互作用を行えるようにしたものであり、したがって、測定対象物の微小変位に依存した反射検出光を得られるようにしたものである。   Further, in the invention according to claim 5, the gap layer medium is air, and the minute distance between the metal thin film and the measurement object is set to about 5 times or less of the incident measurement light wavelength. The metal-enhanced evanescent light generated at the air gap layer side interface can be optically interacted with the measurement object, so that reflected detection light depending on the minute displacement of the measurement object can be obtained. It is a thing.

さらに、請求項6に記載の発明は、金属薄膜は例えば銀薄膜であり、透明誘電体は例えばガラスプリズムであり、入射計測光は例えばレーザ光であり、光検出器は例えばフォトダイオードとしたものであり、光結合器からの反射検出光を計測することによって、金属薄膜に近接する測定対象物の微小変位を検出するように構成したものである。   Further, in the invention described in claim 6, the metal thin film is, for example, a silver thin film, the transparent dielectric is, for example, a glass prism, the incident measurement light is, for example, laser light, and the photodetector is, for example, a photodiode. In this configuration, a minute displacement of the measurement object close to the metal thin film is detected by measuring the reflected detection light from the optical coupler.

本発明によれば、伝播する通常の光による変位検出法と大きく異なり、界面に局在する金属増強エバネッセント光と測定対象物との光学的相互作用を利用しているため、測定対象物が低反射材や光吸収材であっても、その微小変位を高感度に検出することができ、これを利用して小型で安価な高感度微小変位計を実現できる。   According to the present invention, the measurement object is low because it uses the optical interaction between the metal-enhanced evanescent light localized at the interface and the measurement object, which is greatly different from the displacement detection method using the normal light propagating. Even a reflective material or a light absorbing material can detect the minute displacement with high sensitivity, and a small and inexpensive highly sensitive minute displacement meter can be realized using this.

本発明の微小変位の検出方法および微小変位計は、屈折率が間隙層媒質よりも大きい透明な誘電体に金属薄膜を密着形成させた光結合器において、透明誘電体を通過した入射計測光が内部全反射臨界角以上の適宜の入射角度で、金属薄膜の間隙層側界面に金属増強エバネッセント光を発生させるようにしている。   The method for detecting minute displacement and the minute displacement meter according to the present invention include an optical coupler in which a metal thin film is formed in close contact with a transparent dielectric having a refractive index larger than that of the gap layer medium. Metal-enhanced evanescent light is generated at the gap layer side interface of the metal thin film at an appropriate incident angle equal to or greater than the internal total reflection critical angle.

測定対象物が微小変位する雰囲気媒質は、前記の間隙層を形成する。その屈折率が透明誘電体よりも小さくかつ粘性の小さい非吸収性の媒質であれば、他に制限はなく、前記の光結合器によって、金属薄膜の間隙層側界面上に金属増強エバネッセント光を発生できる。
好ましい雰囲気媒質としては、空気をはじめ、真空、或いは窒素、アルゴン、ヘリウム等の気体が挙げられる。また、水やアルコール等のような屈折率が比較的低い透明な液体中であれば、それらの雰囲気媒質中でも測定対象物の微小変位を検出することが可能である。
The atmosphere medium in which the measurement object is slightly displaced forms the gap layer. There is no other limitation as long as the refractive index is smaller than that of the transparent dielectric and the viscosity is less than that of the non-absorbing medium. Can occur.
Preferable atmospheric media include air, vacuum, or gases such as nitrogen, argon, and helium. Further, if the liquid is in a transparent liquid having a relatively low refractive index such as water or alcohol, it is possible to detect a minute displacement of the measurement object even in the atmosphere medium.

光結合器を構成する透明誘電体は、前記間隙層よりもある程度高い屈折率を持つ非吸収性の物質ならば特に制限はなく、例えばBK7をはじめ、SF11、LaSF9等のガラス材料、透明プラスチック材料や透明高分子ポリマー等が使用でき、目的とする光学材料の性状に応じて選択する。屈折率がある程度大きく安価で加工が容易である、好ましい光結合器の透明誘電体としては、ガラス、特にBK7ガラスが挙げられる。   The transparent dielectric constituting the optical coupler is not particularly limited as long as it is a non-absorbing substance having a refractive index somewhat higher than that of the gap layer. For example, BK7, glass materials such as SF11 and LaSF9, and transparent plastic materials. Or a transparent polymer can be used, and is selected according to the properties of the target optical material. A preferable transparent dielectric of an optical coupler having a relatively large refractive index and being inexpensive and easy to process includes glass, particularly BK7 glass.

入射計測光を金属薄膜へ導く透明誘電体の形状も特に制限はなく、例えば45度直角三角形、正三角形、半円柱形、半球形、或いは板状等、間隙層媒質との内部全反射における入射角度で入射光を金属薄膜へ導入できるものであれば良く、入射計測光および反射検出光の光軸に応じて透明誘電体の形状を選択する。   The shape of the transparent dielectric material that guides the incident measurement light to the metal thin film is not particularly limited. Any shape can be used as long as incident light can be introduced into the metal thin film at an angle, and the shape of the transparent dielectric is selected in accordance with the optical axes of incident measurement light and reflected detection light.

金属薄膜は、金属増強エバネッセント光が発生しやすい自由電子密度の高い金属材料、例えば金、銀、銅、アルミニウム、インジウム、マグネシウム等、或いはこれらの合金が使用できる。金属増強エバネッセント光が発生しやすい、好ましい金属材料としては、特に銀と金が挙げられる。
銀は、可視光を含む近赤外から紫外線までの波長域で光吸収が他の金属よりも小さく、金属増強エバネッセント光の発生に最も適した金属材料であり、近赤外から紫外線までの広い波長域における入射計測光に対応できる。
また、金は、酸化膜等の表面改質がないために安定に金属増強エバネッセント光を発生できる金属材料であり、金材料特有の強い吸収帯が存在する紫外線から青色可視光までの波長域を除けば、本発明に適用する。
一方、銅やアルミニウムも本発明で使用できる金属薄膜材料である。銅は、金と同様に強い光吸収を示す紫外線から青色可視光までを除く波長域で、また、アルミニウムは、吸収の強い近赤外線を除く波長域において、それぞれ利用可能である。
As the metal thin film, a metal material having a high free electron density that easily generates metal-enhanced evanescent light, such as gold, silver, copper, aluminum, indium, magnesium, or an alloy thereof can be used. Silver and gold are particularly preferable metal materials that are likely to generate metal-enhanced evanescent light.
Silver is the most suitable metal material for generating metal-enhanced evanescent light in the wavelength range from near infrared to ultraviolet including visible light than other metals, and has a wide range from near infrared to ultraviolet. Applicable to incident measurement light in the wavelength range.
Gold is a metal material that can stably generate metal-enhanced evanescent light because there is no surface modification such as an oxide film, and has a wavelength range from ultraviolet to blue visible light where a strong absorption band unique to gold material exists. Otherwise, it applies to the present invention.
On the other hand, copper and aluminum are metal thin film materials that can be used in the present invention. Like gold, copper can be used in a wavelength range excluding from ultraviolet rays exhibiting strong light absorption to blue visible light, and aluminum can be used in a wavelength range other than near-infrared rays having strong absorption.

入射計測光が、前記光結合器において金属薄膜の間隙層側界面に金属増強エバネッセント光を発生させるためには、金属薄膜には適切な厚さが必要である。例えば、入射計測光の波長が可視光領域であるときは、銀や金の場合で約50nm、光吸収の強いアルミニウムでは約15nm程度の膜厚が最適である。   In order for incident measurement light to generate metal-enhanced evanescent light at the gap layer side interface of the metal thin film in the optical coupler, the metal thin film needs to have an appropriate thickness. For example, when the wavelength of the incident measurement light is in the visible light region, a film thickness of about 50 nm is optimal for silver and gold, and about 15 nm for aluminum with strong light absorption.

本発明の微小変位計で使用する入射計測光としては、レーザ光などの指向性の高い単色光が好ましい。白色光でも入射計測光として用いることが可能ではあるが、固定した入射角度で光結合器に光を入射させた場合、金属増強エバネッセント光の発生条件に適合しない波長の光が測定対象物の変位の影響を受けずにそのまま反射され、測定対象物の微小変位に依存する反射検出光と伴に光検出器へ入射して同時に検出される場合があるために、検出光におけるノイズ等の原因となるので望ましくない。   The incident measurement light used in the micro displacement meter of the present invention is preferably monochromatic light with high directivity such as laser light. Even white light can be used as incident measurement light, but when light is incident on the optical coupler at a fixed incident angle, light with a wavelength that does not meet the conditions for generating metal-enhanced evanescent light is displaced by the object being measured. Because it may be reflected as it is without being influenced by the incident light and incident on the photodetector together with the reflected detection light depending on the minute displacement of the measurement object, it may cause noise in the detection light. This is not desirable.

また、光結合器からの反射検出光を計測することによって、測定対象物の微小変位を計測するために、入射計測光の光源には、出射光の出力が安定した機器を使用する。好ましい光源としては、出射光出力が制御された光源、例えば安定駆動の半導体レーザなどが挙げられる。   In addition, in order to measure the minute displacement of the measurement object by measuring the reflected detection light from the optical coupler, a device with stable output of the emitted light is used as the light source of the incident measurement light. As a preferable light source, a light source whose output of emitted light is controlled, for example, a semiconductor laser with stable driving, can be cited.

さらに、入射計測光は、無偏光でも本発明の微小変位の検出方法および微小変位計に適応できるが、TM(p)偏光の入射光が金属増強エバネッセント光を効率良く発生させるために、本発明で使用する入射計測光としては、TM(p)偏光であることが適切である。   Furthermore, although the incident measurement light can be applied to the micro displacement detection method and micro displacement meter of the present invention even if it is non-polarized light, the incident light of TM (p) polarization efficiently generates metal enhanced evanescent light. It is appropriate that the incident measurement light used in is TM (p) polarized light.

これに対して、入射計測光がTE(s)偏光である場合、金属薄膜の平滑な界面上に金属増強エバネッセント光を発生させることが困難であり、TE(s)偏光の入射光は、本発明で使用する計測光としては適さない。   On the other hand, when the incident measurement light is TE (s) polarized light, it is difficult to generate metal enhanced evanescent light on the smooth interface of the metal thin film. It is not suitable as measurement light used in the invention.

金属薄膜の間隙層側界面に前記光結合器によって発生した金属増強エバネッセント光の電界は、その強度が金属薄膜界面から指数関数的に減少しており、その浸出長は、透明誘電体、金属薄膜や間隙層媒質の屈折率、金属薄膜の厚さ、及び入射光の波長や入射角度に依存する。
例えば、間隙層が空気層である場合には、その電界が入射計測光波長の約5倍程度以下の空気側領域に浸み出している。したがって、測定対象物の微小変位を検出するには、金属薄膜と測定対象物間の距離としては、入射計測光波長の約5倍程度以下が適切である。
The electric field of the metal-enhanced evanescent light generated by the optical coupler at the gap layer side interface of the metal thin film has an intensity that decreases exponentially from the metal thin film interface, and the leaching length is transparent dielectric, metal thin film And the refractive index of the gap layer medium, the thickness of the metal thin film, and the wavelength and incident angle of incident light.
For example, when the gap layer is an air layer, the electric field oozes out to the air side region of about 5 times or less of the incident measurement light wavelength. Therefore, in order to detect a minute displacement of the measurement object, it is appropriate that the distance between the metal thin film and the measurement object is about 5 times or less of the incident measurement light wavelength.

一方、金属薄膜と測定対象物間の距離が入射計測光波長の約5倍程度以上である場合には、金属増強エバネッセント光の電界強度は著しく小さくなるために、測定対象物との光学的相互作用が非常に小さくなり、したがって光結合器からの反射光は、測定対象物には殆ど影響を受けなくなる。よって、この場合には測定対象物の微小変位の検出が困難である。   On the other hand, when the distance between the metal thin film and the measurement object is about 5 times or more of the incident measurement light wavelength, the electric field strength of the metal-enhanced evanescent light is significantly reduced. The action becomes very small, so that the reflected light from the optical coupler is hardly affected by the measurement object. Therefore, in this case, it is difficult to detect a minute displacement of the measurement object.

測定対象物の微小変位に依存する反射検出光を計測する光検出器としては、感度や応答性に優れているものが好ましい。特に、pn接合形や光導電形等の半導体光センサが望ましい。入射計測光の波長や出力、および検出する変位の応答速度等を考慮して、反射検出光の計測に適した光検出器を選択する。例えば、レーザ光のようにある程度の出力を持つ入射計測光を使用する場合には、光検出器としてpn接合形のフォトダイオードが適する。   As the photodetector for measuring the reflected detection light depending on the minute displacement of the measurement object, one having excellent sensitivity and responsiveness is preferable. In particular, a semiconductor optical sensor such as a pn junction type or a photoconductive type is desirable. In consideration of the wavelength and output of the incident measurement light, the response speed of the displacement to be detected, etc., a photodetector suitable for measuring the reflected detection light is selected. For example, when incident measurement light having a certain output such as laser light is used, a pn junction photodiode is suitable as a photodetector.

また、金属増強エバネッセント光の増強電界の浸出長は、空気間隙層の場合、入射計測光波長の約5倍程度であるために、測定対象物の検出可能な微小変位の範囲は、金属薄膜の空気間隙層界面から入射計測光波長の約5倍程度までである。したがって、検出できる微小変位の範囲を拡大するには、波長の長い入射計測光を用いるようにする。   In addition, in the case of the air gap layer, the leaching length of the enhanced electric field of the metal-enhanced evanescent light is about 5 times the incident measurement light wavelength. From the air gap layer interface to about 5 times the incident measurement light wavelength. Therefore, in order to expand the range of minute displacement that can be detected, incident measurement light having a long wavelength is used.

本発明で検出できる微小変位は、光結合器の金属薄膜上に発生させた金属増強エバネッセント光の電界が存在する領域内であれば、金属薄膜に対して垂直な方向に限らず、どの方向の変位であっても、その微小変位を検出することが可能である。   The minute displacement that can be detected by the present invention is not limited to the direction perpendicular to the metal thin film as long as it is within the region where the electric field of the metal enhanced evanescent light generated on the metal thin film of the optical coupler exists. Even if it is a displacement, it is possible to detect the minute displacement.

しかしながら、この金属増強電界は、金属薄膜からの垂直方向の距離に対しその強度が最も大きく変化するために、金属増強エバネッセント光を発生させる入射計測光の、光結合器からの反射検出光は、金属薄膜に対して垂直方向の微小変位による変化が最も大きく、したがって、垂直方向の微小変位に対する検出感度が最も高い。   However, since the intensity of the metal-enhanced electric field changes most greatly with respect to the distance in the vertical direction from the metal thin film, the reflected measurement light of the incident measurement light that generates the metal-enhanced evanescent light from the optical coupler is The change due to the minute displacement in the vertical direction is the largest with respect to the metal thin film, and therefore the detection sensitivity for the minute displacement in the vertical direction is the highest.

本発明の微小変位の検出方法および微小変位計は、屈折率の高い透明誘電体を用いて金属薄膜の間隙層側界面に金属増強エバネッセント光を発生させ、間隙層に浸み出した金属増強エバネッセント光の増強電界が測定対象物と光学的に相互作用して、測定対象物の位置に依存する、光結合器からの反射光を計測することによって、測定対象物の微小変位を得ることを特徴とする。
したがって、測定対象物は、金属増強電界と光学的に相互作用し、その増強電界を乱す物体として機能するために、反射率の高い物質、例えば金属等である必要は特になく、屈折率が間隙層と異なる物質であれば何でも良く、測定対象物の材質に依存することなく、その微小変位を検出できる。
The method for detecting minute displacement and the minute displacement meter according to the present invention use a transparent dielectric having a high refractive index to generate metal-enhanced evanescent light at the gap layer side interface of a metal thin film, and leached into the gap layer. The optical enhancement electric field interacts optically with the measurement object, and the reflected light from the optical coupler, which depends on the position of the measurement object, is measured to obtain a minute displacement of the measurement object. And
Therefore, the measurement object does not need to be a highly reflective material, such as a metal, in order to function as an object that optically interacts with the metal-enhanced electric field and disturbs the enhanced electric field. Any substance can be used as long as it is different from the layer, and the minute displacement can be detected without depending on the material of the measurement object.

測定対象物の材質としては、金属は勿論、例えばセラミックス、ガラス、プラスチック、高分子ポリマー、色素、紙材、木材等、或いはこれらの複合材であっても良く、本発明は、低反射性材料や光吸収性材料、或いは透明材料等、幅広い材質の測定対象物に適応する。   The material of the measurement object may be, of course, metal, ceramics, glass, plastic, polymer polymer, pigment, paper material, wood, etc., or a composite material thereof. It is applicable to a wide range of measuring objects such as light absorbing materials, transparent materials, etc.

また、測定対象物の形状としては特に制限はなく、入射計測光の照射面に対向する測定対象物の変位検出面は、特に平面である必要はなく、曲率を持った曲面形状、例えば半球状、角状、或いは針状等であっても良い。   Further, the shape of the measurement object is not particularly limited, and the displacement detection surface of the measurement object facing the irradiation surface of the incident measurement light does not have to be particularly flat, and has a curved surface shape having a curvature, for example, a hemispherical shape. , Square or needle-like.

さらに、測定対象物の変位検出面は、表面粗さや汚れなどが存在しても良く、どのような状態でも変位検出の対象となる。   Furthermore, the displacement detection surface of the measurement object may have surface roughness, dirt, etc., and is a target for displacement detection in any state.

次に、図面に基づいて本発明を実施例によりさらに説明するが、以下の具体例は本発明を限定するものではない。   EXAMPLES Next, although an Example demonstrates this invention further based on drawing, the following specific examples do not limit this invention.

図1は、本発明の微小変位計の実施例における断面図である。1は金属薄膜である例えば厚さ約50nmの銀薄膜で、2は透明誘電体である例えばBK7ガラスの一辺15mmの45度直角三角形プリズム、3は入射計測光の光源例えば波長0.532μmでビーム径約1mmのレーザダイオード励起固体レーザ、4は光結合器からの反射光を検出するための光検出器で例えばシリコンpn接合形フォトダイオード、5は測定対象物である例えば光吸収性色素膜が表面被覆された直径約1.8mmの、圧電素子の駆動によって微小変位するステンレス製ロッドであり、6は金属薄膜1と測定対象物5との間隙層である例えば空気層である。   FIG. 1 is a cross-sectional view of an embodiment of a micro displacement meter according to the present invention. Reference numeral 1 is a metal thin film, for example, a silver thin film having a thickness of about 50 nm, 2 is a transparent dielectric, for example, BK7 glass has a 45-degree right triangle prism with a side of 15 mm, and 3 is a light source of incident measurement light, for example, a beam with a wavelength of 0.532 μm Laser diode-pumped solid-state laser having a diameter of about 1 mm, 4 is a photodetector for detecting reflected light from the optical coupler, for example, a silicon pn junction photodiode, and 5 is a measurement object, for example, a light-absorbing dye film A stainless steel rod having a diameter of about 1.8 mm and whose surface is covered and which is finely displaced by driving a piezoelectric element. Reference numeral 6 denotes an air layer which is a gap layer between the metal thin film 1 and the measurement object 5, for example.

BK7ガラスの45度直角三角形プリズム2は、光源3からの入射計測光を所要の入射角度で銀薄膜1へ導く透明誘電体として機能し、入射計測光が銀薄膜1の空気間隙層6側の界面上に金属増強エバネッセント光を発生させる役割をはたす。すなわち、銀薄膜1を密着形成した透明誘電体プリズム2が光結合器を構成する。BK7ガラスは可視光領域で約1.52の屈折率を持ち、空気との内部全反射臨界角度は約41.2度であり、この角度以上における、金属増強エバネッセント光が発生する適宜の入射角度で入射計測光を銀薄膜1へ入射させる。   The 45-degree right triangle prism 2 of BK7 glass functions as a transparent dielectric that guides the incident measurement light from the light source 3 to the silver thin film 1 at a required incident angle, and the incident measurement light is on the air gap layer 6 side of the silver thin film 1. It plays the role of generating metal enhanced evanescent light on the interface. That is, the transparent dielectric prism 2 with the silver thin film 1 formed in close contact constitutes an optical coupler. BK7 glass has a refractive index of about 1.52 in the visible light region, and the critical angle of total internal reflection with air is about 41.2 degrees. Above this angle, an appropriate incident angle at which metal-enhanced evanescent light is generated Then, incident measurement light is made incident on the silver thin film 1.

銀薄膜1の厚さは、前項の厚さより半分程度薄い場合、或いは2倍程度厚い場合でも金属増強エバネッセント光の発生が難しくなる。   Even if the thickness of the silver thin film 1 is about half thinner than the thickness of the previous item, or about twice as thick, it is difficult to generate metal-enhanced evanescent light.

上記のステンレス製ロッドは、それに取り付けられた圧電素子を駆動することによって微小変位し、測定対象物としての役割をはたす。   The stainless steel rod is slightly displaced by driving a piezoelectric element attached thereto, and serves as a measurement object.

測定対象物5の変位検出面であるロッド先端の平坦面部分は、光吸収性色素である例えば銅フタロシアニン色素が真空蒸着法により厚さ約1.5μmで表面被覆され、その平坦面部分では、可視光、特に緑色から赤色の光が照射された場合に光がその色素層に吸収され、そのロッド先端における光反射は極めて小さくなっている。したがって、このロッドは、光吸収性媒体の測定対象物として機能する。   The flat surface portion at the tip of the rod, which is the displacement detection surface of the measurement object 5, is coated with a light-absorbing dye, for example, copper phthalocyanine dye with a thickness of about 1.5 μm by a vacuum deposition method. When visible light, particularly green to red light is irradiated, the light is absorbed by the dye layer, and light reflection at the rod tip is extremely small. Therefore, this rod functions as a measurement object of the light absorbing medium.

金属薄膜1の間隙層6側の界面上に発生させた金属増強エバネッセント光の増強電界が、測定対象物5と光学的に相互作用することができるような位置に光結合器を配置して、測定対象物5の垂直方向の微小変位により金属薄膜1と測定対象物5間との微小距離が変化するために、金属増強エバネッセント光を発生させる入射計測光の、光結合器からの反射光が変化する。したがって、この反射検出光が測定対象物の微小変位に敏感に応答することになる。   An optical coupler is disposed at a position where the enhanced electric field of the metal-enhanced evanescent light generated on the interface on the gap layer 6 side of the metal thin film 1 can optically interact with the measurement object 5, Since the minute distance between the metal thin film 1 and the measurement object 5 changes due to the minute displacement of the measurement object 5 in the vertical direction, the reflected light from the optical coupler of the incident measurement light that generates the metal enhanced evanescent light is reflected. Change. Therefore, this reflected detection light responds sensitively to a minute displacement of the measurement object.

例えば、入射計測光としてTM(p)偏光のレーザ光を、銀薄膜1の空気間隙層6側の界面に金属増強エバネッセント光が発生する入射角度で光結合器を通じて入射させ、圧電素子を駆動して測定対象物5を金属薄膜1の空気間隙層6側界面から十分離れた位置から金属薄膜1に対し垂直方向に微小接近させたときの、光結合器からの反射検出光を光検出器4で計測した一結果例を図2に示す。   For example, TM (p) polarized laser light as incident measurement light is incident on the interface of the silver thin film 1 on the air gap layer 6 side through an optical coupler at an incident angle at which metal-enhanced evanescent light is generated, and the piezoelectric element is driven. Then, the reflected detection light from the optical coupler when the measurement object 5 is made slightly close to the metal thin film 1 in a vertical direction from a position sufficiently away from the interface of the metal thin film 1 on the air gap layer 6 side is the photodetector 4. FIG. 2 shows an example of the result of measurement in (1).

この図2は、金属薄膜1の空気間隙層側の界面から近接距離約3.6μmの位置から、測定対象物5を金属薄膜1に対し垂直方向に接近させたときの、反射検出光の強度変化を示したものである。
測定対象物5が金属薄膜に近づくにつれて、ほぼ直線的に反射検出光が増加している。特にこの場合、入射計測光の波長0.532μmの約5倍の距離、すなわち約2.7μm以下の範囲において、反射検出光の強度変化が極めて直線的である。なお、反射検出光の強度変化は、上記距離を約4.0μmと離した位置における反射検出光の強度に対する割合として表示している。
FIG. 2 shows the intensity of the reflected detection light when the measuring object 5 is made to approach the metal thin film 1 in the vertical direction from a position at a proximity distance of about 3.6 μm from the interface on the air gap layer side of the metal thin film 1. It shows a change.
As the measurement object 5 approaches the metal thin film, the reflected detection light increases almost linearly. Particularly in this case, the intensity change of the reflected detection light is extremely linear at a distance of about 5 times the wavelength of incident measurement light of 0.532 μm, that is, in a range of about 2.7 μm or less. The intensity change of the reflected detection light is displayed as a ratio with respect to the intensity of the reflected detection light at a position where the above distance is about 4.0 μm.

この場合、測定対象物5が金属薄膜1に接触した場合、反射検出光の強度変化が見られなくなった。一方、金属薄膜1からの距離が約4.0μm以上と十分離れた位置に測定対象物5を設置した場合でも、反射検出光の強度は一定となった。このように、本実施例の図2に示すように、上記金属薄膜1と測定対象物5間の近接距離が入射計測光波長の約5倍程度以下の範囲において、測定対象物5の微小変位に依存した反射検出光が得られた。   In this case, when the measurement object 5 is in contact with the metal thin film 1, the intensity change of the reflected detection light is not observed. On the other hand, the intensity of the reflected detection light was constant even when the measurement object 5 was installed at a position sufficiently separated from the metal thin film 1 by about 4.0 μm or more. Thus, as shown in FIG. 2 of the present embodiment, the minute displacement of the measurement object 5 is within a range where the proximity distance between the metal thin film 1 and the measurement object 5 is about 5 times or less of the incident measurement light wavelength. The reflected detection light depending on the was obtained.

ここで、入射計測光の偏光をTE(s)偏光とした場合には、図2のような測定対象物5の微小変位に応じて変化する反射検出光は観測されず、TE(s)偏光の入射計測光は、金属薄膜1の界面に金属増強エバネッセント光を発生させることが困難である。   Here, when the polarization of the incident measurement light is TE (s) polarized light, the reflected detection light that changes according to the minute displacement of the measurement object 5 as shown in FIG. 2 is not observed, and the TE (s) polarized light. Is difficult to generate metal-enhanced evanescent light at the interface of the metal thin film 1.

また、測定対象物5は、金属薄膜1の空気側界面からの距離が入射計測光波長の約5倍程度以下の位置において、金属薄膜1に対し垂直方向に微小変位させており、金属薄膜1と測定対象物5間の距離がこれ以上に大きくなると、金属増強エバネッセント光の増強電界が著しく小さくなり、測定対象物5の微小変位に依存した反射光を得ることが難しくなる。   The measuring object 5 is slightly displaced in the direction perpendicular to the metal thin film 1 at a position where the distance from the air side interface of the metal thin film 1 is about 5 times or less of the incident measurement light wavelength. If the distance between the measurement object 5 and the measurement object 5 becomes larger than this, the enhancement electric field of the metal-enhanced evanescent light becomes remarkably small, and it becomes difficult to obtain reflected light depending on the minute displacement of the measurement object 5.

したがって、間隙層が空気層である場合、測定対象物の微小変位を検出するためには、金属薄膜に対する測定対象物の初期位置を入射計測光波長の約5倍程度以下に設定することが好ましい。
検出できる微小変位の最大範囲は、その測定対象物に対する光結合器の設定位置に依存し、測定対象物がその微小変位によってその金属薄膜に直接衝突しない範囲、および入射計測光波長の約5倍程度以下の範囲において、測定対象物に対して光結合器を配置する。
Therefore, when the gap layer is an air layer, in order to detect a minute displacement of the measurement object, it is preferable to set the initial position of the measurement object with respect to the metal thin film to about 5 times or less of the incident measurement light wavelength. .
The maximum range of minute displacement that can be detected depends on the setting position of the optical coupler with respect to the measurement object, the range in which the measurement object does not directly collide with the metal thin film due to the minute displacement, and about 5 times the wavelength of the incident measurement light. An optical coupler is arranged with respect to the object to be measured within a range below the extent.

実施例の図2では、測定対象物5の位置が静的に微小変化し、その微小変位を検出しているが、動的な微小変位、すなわち微小振動であっても、周期的および不規則な微小振動に関らず、測定対象物の微小振動に時間的応答が可能である光検出器を用いることによって、その微小振動を光結合器からの反射光の変化として検出できる。100kHz以上の高周波数帯域における微小変位検出には、例えば高速応答できるPINフォトダイオードやアバランシェフォトダイオード(APD)を使用する。   In FIG. 2 of the embodiment, the position of the measuring object 5 is slightly changed statically and the minute displacement is detected. However, even if the minute displacement is dynamic, that is, minute vibration, the measurement object 5 is periodic and irregular. Regardless of the minute vibration, the minute vibration can be detected as a change in the reflected light from the optical coupler by using a photodetector capable of temporal response to the minute vibration of the measurement object. For detecting a minute displacement in a high frequency band of 100 kHz or higher, for example, a PIN photodiode or an avalanche photodiode (APD) capable of high-speed response is used.

入射計測光の光源には、ここでは小型の半導体固体レーザを使用したが、ガスレーザ、又は光学レンズ利用による指向性を持った発光ダイオード(LED)なども使用できる。   Here, a small semiconductor solid-state laser is used as the light source for incident measurement light, but a gas laser or a light emitting diode (LED) having directivity by using an optical lens can also be used.

さらに、この実施例の場合では、図1に示す入射角度θが約41.2度の内部全反射臨界角度以上である約43度〜約45度付近で、銀薄膜上に金属増強エバネッセント光を発生させることができ、この入射角度範囲においてレーザ光を入射させている。   Further, in the case of this embodiment, the metal-enhanced evanescent light is applied on the silver thin film at an incident angle θ shown in FIG. 1 of about 43 degrees to about 45 degrees, which is not less than the critical total internal reflection angle of about 41.2 degrees. The laser beam is incident in this incident angle range.

本発明は、超精密モータ等の高速回転体、高速変位体や変位素子、さらにMEMS(マイクロエレクトロメカニカルシステム)等の微小変位計測において、変位体の微小変位を高感度に検出する方法を提供し、小型で低コスト化が要求されるような高感度微小変位計として利用できる。   The present invention provides a method for detecting a minute displacement of a displacement body with high sensitivity in a high-speed rotating body such as an ultra-precision motor, a high-speed displacement body and a displacement element, and a minute displacement measurement such as a MEMS (microelectromechanical system). It can be used as a high-sensitivity micro displacement meter that is small and requires low cost.

本発明の一実施例の構成を示す概略図である。It is the schematic which shows the structure of one Example of this invention. 本実施例において、入射計測光が光結合器の金属薄膜1の間隙層6側界面に金属増強エバネッセント光を発生させる入射光条件において、測定対象物5が金属薄膜1に対して垂直方向に微小接近したときの、光検出器4で計測した反射検出光の強度変化を示す図である。In this embodiment, the measurement object 5 is minute in the direction perpendicular to the metal thin film 1 under the incident light conditions in which the incident measurement light generates metal enhanced evanescent light at the gap layer 6 side interface of the metal thin film 1 of the optical coupler. It is a figure which shows the intensity | strength change of the reflected detection light measured with the photodetector 4 when approaching.

符号の説明Explanation of symbols

1 金属薄膜
2 透明誘電体
3 入射計測光の光源
4 光検出器
5 測定対象物
6 間隙層
DESCRIPTION OF SYMBOLS 1 Metal thin film 2 Transparent dielectric material 3 Light source of incident measurement light 4 Photodetector 5 Measurement object 6 Gap layer

Claims (6)

金属薄膜を密着形成した透明誘電体からなる光結合器と、この金属薄膜上に適宜の間隙層を介して測定対象物を配置し、前記金属薄膜の間隙層側界面に金属増強エバネッセント光を発生させる入射光条件において、入射計測光を前記透明誘電体より前記金属薄膜に入射して、この金属薄膜の前記間隙層側界面から前記測定対象物までの微小距離に依存した、前記光結合器からの反射検出光を、光検出器で計測することによって、前記測定対象物の微小変位を検出することを特徴とする微小変位の検出方法。   An optical coupler made of a transparent dielectric with a metal thin film formed in close contact with the object to be measured via an appropriate gap layer on the metal thin film, and metal enhanced evanescent light generated at the gap layer side interface of the metal thin film In the incident light condition, the incident measurement light is incident on the metal thin film from the transparent dielectric, and depends on a minute distance from the gap layer side interface of the metal thin film to the measurement object. A minute displacement detection method, wherein the minute displacement of the measurement object is detected by measuring the reflected detection light of the object with a photodetector. 金属薄膜を密着形成した透明誘電体からなる光結合器と、この金属薄膜上に適宜の間隙層を介して測定対象物を配置した構成とし、前記金属薄膜の間隙層側界面に金属増強エバネッセント光を発生させる入射光条件において、入射計測光を前記透明誘電体より前記金属薄膜に入射して、この金属薄膜の前記間隙層側界面から前記測定対象物までの微小距離に依存した、前記光結合器からの反射検出光を、光検出器で計測することによって、前記測定対象物の微小変位を検出するように構成したことを特徴とする微小変位計。   An optical coupler made of a transparent dielectric with a metal thin film formed in close contact with the object to be measured via an appropriate gap layer on the metal thin film, and metal-enhanced evanescent light at the gap layer side interface of the metal thin film The incident light is incident on the metal thin film from the transparent dielectric, and the optical coupling depends on a minute distance from the gap layer side interface of the metal thin film to the measurement object. A micro displacement meter configured to detect a micro displacement of the measurement object by measuring reflected detection light from the detector with a photo detector. 前記入射計測光が、TM(p)偏光であることを特徴とする請求項1、2のいずれか1項に記載の微小変位の検出方法又は微小変位計。   The minute displacement detection method or minute displacement meter according to claim 1, wherein the incident measurement light is TM (p) polarized light. 前記測定対象物の前記微小変位が、前記金属薄膜に対して垂直方向の変位であって、前記測定対象物の前記垂直方向の微小変位を検出することを特徴とする請求項1〜3のいずれか1項に記載の微小変位の検出方法又は微小変位計。   4. The minute displacement of the measurement object is a displacement in a direction perpendicular to the metal thin film, and the minute displacement of the measurement object in the vertical direction is detected. A method for detecting a minute displacement or a minute displacement meter according to claim 1. 前記間隙層は空気層とし、前記金属薄膜と前記測定対象物間の前記微小距離を前記入射計測光波長の約5倍程度以下に設定し、前記測定対象物の前記微小変位に依存した前記反射検出光が得られるように、前記測定対象物に対し前記光結合器を配置したことを特徴とする請求項1〜4のいずれか1項に記載の微小変位の検出方法又は微小変位計。   The gap layer is an air layer, the minute distance between the metal thin film and the measurement object is set to about 5 times or less of the incident measurement light wavelength, and the reflection depending on the minute displacement of the measurement object. The micro displacement detection method or micro displacement meter according to any one of claims 1 to 4, wherein the optical coupler is arranged with respect to the measurement object so that detection light can be obtained. 前記金属薄膜は銀薄膜であり、それを密着形成させる前記透明誘電体はガラスプリズムであり、前記入射計測光はレーザ光であり、前記反射検出光を計測する前記光検出器はフォトダイオードであることを特徴とする請求頃5に記載の微小変位計。   The metal thin film is a silver thin film, the transparent dielectric for forming the metal thin film is a glass prism, the incident measurement light is laser light, and the photodetector for measuring the reflected detection light is a photodiode. The micro displacement meter according to claim 5, wherein:
JP2007063316A 2007-03-13 2007-03-13 Method of detecting minute displacement and minute displacement gauge Pending JP2008224424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063316A JP2008224424A (en) 2007-03-13 2007-03-13 Method of detecting minute displacement and minute displacement gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063316A JP2008224424A (en) 2007-03-13 2007-03-13 Method of detecting minute displacement and minute displacement gauge

Publications (1)

Publication Number Publication Date
JP2008224424A true JP2008224424A (en) 2008-09-25

Family

ID=39843231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063316A Pending JP2008224424A (en) 2007-03-13 2007-03-13 Method of detecting minute displacement and minute displacement gauge

Country Status (1)

Country Link
JP (1) JP2008224424A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532281A (en) * 2021-06-16 2021-10-22 南京信息职业技术学院 Micro displacement detection sensor, device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004351A (en) * 1999-06-18 2001-01-12 Communication Research Laboratory Mpt Evaluating method and device for non-contact surface roughness
JP2003065946A (en) * 2001-08-24 2003-03-05 Fuji Photo Film Co Ltd Sensor using attenuated total reflection
JP2003149120A (en) * 2001-11-14 2003-05-21 Satoshi Kawada Probe head for device utilizing near field light and its utilizing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001004351A (en) * 1999-06-18 2001-01-12 Communication Research Laboratory Mpt Evaluating method and device for non-contact surface roughness
JP2003065946A (en) * 2001-08-24 2003-03-05 Fuji Photo Film Co Ltd Sensor using attenuated total reflection
JP2003149120A (en) * 2001-11-14 2003-05-21 Satoshi Kawada Probe head for device utilizing near field light and its utilizing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113532281A (en) * 2021-06-16 2021-10-22 南京信息职业技术学院 Micro displacement detection sensor, device and method

Similar Documents

Publication Publication Date Title
US10048200B2 (en) Optical sensor based with multilayered plasmonic structure comprising a nanoporous metallic layer
TWI297767B (en) Measuring apparatus and method using surface plasmon resonance
JP2010509594A5 (en)
CN101113887A (en) Surface plasma resonance measurement mechanism and method thereof
JP2007255948A (en) Electric field sensor
US20130120743A1 (en) Integrated Surface Plasmon Resonance Sensor
Dhara et al. Reflectance-based low-cost disposable optical fiber surface plasmon resonance probe with enhanced biochemical sensitivity
CN105277513B (en) Surface plasma resonance refractive index sensor based on optical fiber micro-ring
JP2007172817A (en) Information carrier
Krishnan et al. Liquid refractometer based mirrorless fiber optic displacement sensor
KR20100106082A (en) Surface plasmon resonance optical sensor
TWI401408B (en) Optical measuring and imaging system
JP2008224424A (en) Method of detecting minute displacement and minute displacement gauge
GB2545157A (en) Analysing apparatus and method
KR101109148B1 (en) Surface plasmon resonance sensor and sensing method using surface plasmon resonance
JP2008070278A (en) Detecting method of minute vibration, and minute vibrometer
KR100911626B1 (en) Apparatus for measuring bio-sensor
JP6483494B2 (en) Optical sensor
JPS6011103A (en) Remote measuring device
JP2006029883A (en) Contact sensor
JP2013120145A (en) Optical force sensor
RU2788031C1 (en) System for optical detection and visualization of nanoobjects with subdiffraction resolution in a microchannel
KR101245544B1 (en) Bio Sense Apparatus using Optical Interference Change Characteristic by Surface Plasmon Phenomenon
KR100870131B1 (en) Apparatus and method for simultaneous measurement of critical and surface plasmon resonance angle
JP2016038395A (en) Method of light incident upon optical waveguide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111213