JP2008224407A - Quality evaluation method for tubular refractory material - Google Patents

Quality evaluation method for tubular refractory material Download PDF

Info

Publication number
JP2008224407A
JP2008224407A JP2007062916A JP2007062916A JP2008224407A JP 2008224407 A JP2008224407 A JP 2008224407A JP 2007062916 A JP2007062916 A JP 2007062916A JP 2007062916 A JP2007062916 A JP 2007062916A JP 2008224407 A JP2008224407 A JP 2008224407A
Authority
JP
Japan
Prior art keywords
test piece
cylindrical test
quality
cylindrical
tubular refractory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007062916A
Other languages
Japanese (ja)
Inventor
Hideaki Kawabe
秀明 川邊
Yoshitaka Hiraiwa
義隆 平岩
Yukio Inoue
幸生 井上
Hiroshi Otsuka
大塚  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2007062916A priority Critical patent/JP2008224407A/en
Publication of JP2008224407A publication Critical patent/JP2008224407A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an individual quality evaluation method for product capable of simply and accurately evaluating the quality of a tubular refractory material with significant difference. <P>SOLUTION: A cylindrical test piece 8 is cut from the tubular refractory material and a seal members 9 are arranged and closely adhered to both end open parts of the cylindrical test piece 8 to hermetically close the inner hole 8a of the cylindrical test piece 8, while a gas is supplied to the inner hole 8a to raise the pressure in the inner hole 8a to predetermined pressure. The air passing amount of the cylindrical test piece 8 is measured under the predetermined pressure, and the quality of the tubular refractory material is evaluated, on the basis of the measured air passing amount. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、連続鋳造に使用する管状ノズル等の管状耐火物の品質評価方法に関する。   The present invention relates to a method for evaluating the quality of tubular refractories such as tubular nozzles used for continuous casting.

管状耐火物のうち、とくに連続鋳造用のノズルでは、耐火物が単品で独立した機能性を有していて、その欠陥や不良に起因する破損等の事故が操業に重大な結果を及ぼすが、現状の評価項目では製品に対し約0.1%の比率で事故が発生しており、さらに事故率を低減させるためには、評価項目の厳格化が必要である。   Among tubular refractories, especially for continuous casting nozzles, the refractory has a single and independent functionality, and accidents such as damage due to defects or defects have serious consequences for operations. In the current evaluation items, accidents occur at a ratio of about 0.1% with respect to products, and in order to further reduce the accident rate, it is necessary to tighten the evaluation items.

連続鋳造用のノズル等の一般的な管状耐火物は、はい土を静圧プレスして成形するが、そのはい土は、酸化物骨材、黒鉛、フェノール樹脂等の結合材を主体にして混練された二次粒子を含む粒の混合物となっており、酸化物骨材+黒鉛+結合材、酸化物骨材+結合材、黒鉛+結合材の各複合体並びに酸化物骨材および黒鉛の各単体により構成されている。   General tubular refractories such as nozzles for continuous casting are formed by hydrostatic pressing of earth, but the earth is kneaded mainly with binders such as oxide aggregates, graphite and phenolic resin. And a mixture of oxide aggregates + graphite + binding material, oxide aggregate + binding material, graphite + binding material composite, and oxide aggregate and graphite. It consists of a single unit.

このようなはい土を成形して耐火物を製造する際には、そのはい土の湿潤状態すなわち揮発分の含有程度、混練時の外的な条件等の微妙な違いにより、その粒子サイズや粒子間の空隙サイズ等の組織構造や物理的な特性等に差が生じ、これらが製品のはい土のロット、混練のロット、成形のロット等の各ロット間もしくはロット内で品質にバラツキが生じる原因の一つとなる。   When manufacturing such a refractory material by molding the soil, the particle size and particle size of the soil depends on subtle differences such as the wet state of the soil, that is, the volatile content, external conditions during kneading, etc. Differences in the structure and physical characteristics such as the void size between them, which cause variations in quality between or within each lot of product soil lots, kneading lots, molding lots, etc. It becomes one of.

一方、耐火物の製造工程での個別の品質管理においては、目的とする用途に応じた品質を備えているか否かを検査し評価するために、同一のはい土で別に作製した個別の品質評価用の外径130mm×内径50mm×高さ120mm程度の小さな専用試料で比重、気孔率、曲げ強度、圧縮強度等の測定を行うことが一般的に行われているが、この手法でははい土の充填およびその管理、成形圧力、成形時の試料内部の圧力分布等の、試料の成形条件が実際の製品としてのノズル等と大きく異なるので、そのような手法では主としてはい土の組成や状態の評価は可能であるものの、成形のロット等の各ロット間もしくはロット内で品質のバラツキを評価できない。   On the other hand, in individual quality control in the refractory manufacturing process, individual quality evaluations made separately with the same soil to inspect and evaluate whether or not the quality according to the intended application is provided. In general, measurement of specific gravity, porosity, bending strength, compressive strength, etc. is performed with a small dedicated sample having an outer diameter of 130 mm, an inner diameter of 50 mm, and a height of about 120 mm. Since the molding conditions of the sample, such as filling and its management, molding pressure, and pressure distribution inside the sample during molding, are significantly different from those of the actual product nozzle, etc., such a method mainly evaluates the composition and state of the soil. Although it is possible, quality variation cannot be evaluated between lots such as molding lots or within lots.

製品の品質のバラツキを把握し、製品を管理するために、管状耐火物においては、製品個体から採取した試験片についての破壊検査を特例的に行うことがある。例えば、管状耐火物のうち、両端が開放孔になっているロングノズルの場合は、試験片を採取できるだけの長さを加えて製品を製造しておき、その過剰な長さ部分を採取して、その部分から諸物性測定用の形状に試験片を切り出して整形を行う。具体的には、柱状の試験片に整形して、かさ比重、見掛気孔率および曲げ強度を別々に測定し、その製品の品質を代表する値として評価している。   In order to grasp the product quality variation and manage the product, in the case of a tubular refractory, a destructive inspection may be specially performed on a test piece collected from the individual product. For example, in the case of a long nozzle that has open holes at both ends of a tubular refractory, add a length sufficient to collect the test piece, manufacture the product, and extract the excess length of the product. Then, a test piece is cut out from the portion into a shape for measuring various physical properties and shaped. Specifically, it is shaped into a columnar test piece, and the bulk specific gravity, the apparent porosity, and the bending strength are measured separately and evaluated as a value representative of the quality of the product.

しかし、これらの品質評価方法には、次のような問題がある。   However, these quality evaluation methods have the following problems.

1.比重、気孔率および曲げ強度の測定値では、約0.1%程度の割合で発生する損傷等のトラブルに関して、耐火物に欠陥や不良を認めるだけの有意差が現れない。   1. In the measured values of specific gravity, porosity, and bending strength, there is no significant difference that causes defects or defects in the refractory with respect to troubles such as damage occurring at a rate of about 0.1%.

2.柱状の試験片を切り出す過程において、試験片に外力の付加や切り出し時の粉末の付着(気孔内へのくい込み等を含む)等の、測定値のバラツキの原因となる外的影響が加わる。   2. In the process of cutting out the columnar test piece, external influences such as the application of external force to the test piece and the adhesion of powder at the time of cutting (including biting into the pores) cause variations in measured values.

3.曲げ強度の測定では、とくにその加圧の基点になる部分が局所であって、さらには試験片の微妙な平行度、面精度のバラツキ等に起因してより狭い局所に加圧が集中することもあり、測定値が全体を代表しないことがある。   3. In the measurement of bending strength, the part that becomes the base point of the pressurization is local, and the pressurization is concentrated in a narrower local area due to subtle parallelism of the test piece, variation in surface accuracy, etc. In some cases, the measured values are not representative.

4.試験片が小さいことから、試験片を採取する部位の局部的な品質のみを測定することとなり、より広範囲の欠陥等を検知することができず、製品としての不良を発見しにくい。(例えば、曲げ強度の測定での支持スパンは一般的には50〜100mm程度である。)   4). Since the test piece is small, only the local quality of the part from which the test piece is collected is measured, and a wider range of defects cannot be detected, making it difficult to find defects as a product. (For example, the support span in the measurement of bending strength is generally about 50 to 100 mm.)

これに対して、特許文献1には、試験片を脆性材料であっても作製しやすい円筒形とし、破壊のための荷重として、円筒形試験片の内面に均一に圧力をかけ、周方向に引張応力を発生させて引張強度を測定する方法が開示されている。そして、その具体的な加圧の手段として、円筒形試験片の内孔内に高弾性体を配置し、この高弾性体の両端面に加圧板を配置し、この高弾性体の両端面から加圧力を付加する方法が開示されている。また、この特許文献1には、円筒形試験片の両端面をシール部材で加圧密着してガスシールした後、その内部にガス圧をかけて引張強度を測定する方法があることも記載されている。   On the other hand, in Patent Document 1, the test piece is made into a cylindrical shape that is easy to produce even with a brittle material, and as a load for destruction, pressure is applied uniformly to the inner surface of the cylindrical test piece in the circumferential direction. A method for measuring tensile strength by generating tensile stress is disclosed. And as a specific means of pressurization, a highly elastic body is disposed in the inner hole of the cylindrical test piece, a pressure plate is disposed on both end faces of the highly elastic body, and from both end faces of the highly elastic body. A method for applying pressure is disclosed. In addition, this Patent Document 1 also describes that there is a method of measuring tensile strength by applying gas pressure to the inside of a cylindrical test piece after press-contacting both ends of the cylindrical test piece with a sealing member and performing gas sealing. ing.

しかし、この特許文献1に開示されているのは、何れも円筒形試験片の強度の測定に関する改善案であり、強度の測定だけでは上述のとおり、耐火物の品質評価を的確に行うことはできない。   However, all disclosed in Patent Document 1 are improvement plans related to the measurement of the strength of a cylindrical test piece, and as described above, the quality evaluation of a refractory cannot be accurately performed only by measuring the strength. Can not.

このように、従来、とくに管状耐火物について、その品質を簡便かつ的確に評価できる方法はなく、新たな基準に基づく品質評価方法の確立が望まれていた。
特開平11−64198号公報
Thus, conventionally, there is no method that can easily and accurately evaluate the quality of tubular refractories, and establishment of a quality evaluation method based on a new standard has been desired.
Japanese Patent Laid-Open No. 11-64198

本発明の課題は、管状耐火物の品質を有意差をもって簡便かつ的確に評価できる製品個別の品質評価方法を提供することにある。   An object of the present invention is to provide a quality evaluation method for individual products that can easily and accurately evaluate the quality of a tubular refractory with a significant difference.

本発明者は、個別の製品の一部をなした部分または製品と同一はい土、同一成形条件、同一焼成条件を経た円筒形試験片の通気量を測定することで、従来の品質評価方法である比重、気孔率よりも顕著に耐火物の組織のバラツキを知ることができることを見出し、さらにこの通気量の測定を円筒形試験片にて容易に実施可能とする方法を見出すことによって本発明を完成させた。   The inventor measured the air flow rate of a cylindrical test piece that had been subjected to the same soil, the same molding conditions, and the same firing conditions as a part of an individual product or the same product, so that the conventional quality evaluation method was used. The present invention has been found by finding that the variation in the structure of the refractory can be noticed significantly more than a certain specific gravity and porosity, and by finding a method that makes it possible to easily measure this air flow rate with a cylindrical specimen. Completed.

通気量が耐火物の品質評価基準として有効な理由を説明すると、まず、はい土の粒子を圧力で接着させた場合、粒子間は完全に密着することなく隙間が発生するが、粒子の変形能の差によって隙間には大小の差が生じる。隙間が小さい場合は、粒子の接着面積が大きく結合力も高い。一方、隙間が大きい場合は、粒子の接着面積は小さく結合力も低い。この隙間の大小は、粒子の結合力の大小に繋がり、結果的には割れ・折れに対する抵抗性となる強度となるが、曲げや圧縮などの強度では測定精度の面で隙間の大小を検知する指標にはならない。また、気孔率は、試験片における気孔の体積割合を示すものでしかなく、気孔の大きさを評価できないため、これも結合力の大小を検知する指標にはならない。これに対して、試験片にガスを通気させた場合、隙間の大小で圧力損失が大きく異なり、通気量としては大きな差が生じるため、結合力の大小の厳格な指標に成り得る。   Explaining why the ventilation rate is effective as a quality evaluation standard for refractories, first, when the soil particles are bonded with pressure, gaps are generated between the particles without completely adhering to each other. Due to this difference, a large or small difference occurs in the gap. When the gap is small, the adhesion area of the particles is large and the bonding strength is also high. On the other hand, when the gap is large, the adhesion area of the particles is small and the bonding force is also low. The size of this gap leads to the magnitude of the bonding force of the particles, resulting in a strength that is resistant to cracking and breaking, but the strength of bending and compression detects the size of the gap in terms of measurement accuracy. It is not an indicator. Further, the porosity only indicates the volume ratio of the pores in the test piece, and since the size of the pores cannot be evaluated, this is not an index for detecting the magnitude of the binding force. On the other hand, when gas is ventilated through the test piece, the pressure loss differs greatly depending on the size of the gap, and a large difference occurs in the amount of ventilation, which can be a strict indicator of the magnitude of the bonding force.

すなわち、本発明は、管状耐火物の品質を評価する方法において、管状耐火物から切り出された円筒形試験片または管状耐火物と同一のはい土で同時に成形され焼成された円筒形試験片の両端開放部分にシール部材を配置し密着させることによって円筒形試験片の内孔を密閉し、この円筒形試験片の内孔にガスを供給して内孔内を所定圧力まで昇圧し、その所定圧力下で円筒形試験片の通気量を測定し、測定した通気量によって管状耐火物の品質を評価することを特徴とするものである。   That is, the present invention relates to a method for evaluating the quality of a tubular refractory, wherein both ends of a cylindrical test piece cut out from the tubular refractory or a cylindrical test piece simultaneously molded and fired in the same soil as the tubular refractory are used. The inner hole of the cylindrical test piece is sealed by placing a seal member in close contact with the open part, and gas is supplied to the inner hole of the cylindrical test piece to increase the pressure in the inner hole to a predetermined pressure. The airflow rate of the cylindrical test piece is measured below, and the quality of the tubular refractory is evaluated based on the measured airflow rate.

また、本発明においては、円筒形試験片の通気量を測定した後に、円筒形試験片の内孔に供給するガスの圧力を円筒形試験片が破壊するまで順次上昇させ、円筒形試験片が破壊したときの圧力から円筒形試験片の引張強度を算出し、その算出した引張強度および前記測定した通気量によって管状耐火物の品質を評価するようにすることもできる。   In the present invention, after measuring the air flow rate of the cylindrical test piece, the pressure of the gas supplied to the inner hole of the cylindrical test piece is sequentially increased until the cylindrical test piece breaks, It is also possible to calculate the tensile strength of the cylindrical test piece from the pressure at the time of destruction, and to evaluate the quality of the tubular refractory based on the calculated tensile strength and the measured air flow rate.

なお、従来、ガスの流通経路として用いられる耐火物においては、その通気量を品質評価基準として採用することはあった。しかし、この場合の通気量は、耐火物のガス流通特性を評価する目的にのみ利用されており、このような目的以外の耐火物の製品検査に利用されることはなく、とくに製品毎の組織の検査および選別等のための通常の品質評価方法として利用されることはなかった。   Conventionally, in a refractory used as a gas distribution channel, the amount of ventilation is sometimes used as a quality evaluation standard. However, the air flow rate in this case is used only for the purpose of evaluating the gas flow characteristics of the refractory, and is not used for product inspection of refractories other than that purpose. It has not been used as a normal quality evaluation method for inspection and sorting.

また、この従来の通気量の測定には、例えばJIS−R2115等に示されているように、特別な試験片を作製する必要がある。この場合、とくに円筒状等の平面でない形状からなる耐火物製品の場合には製品の一部から試験片を採取することが困難である。したがって、従来の通気量の測定は、特別な試験片の作製や手間のかかる測定等を要する等々の理由により、工業的に量産される耐火物、とくに管状耐火物の個別の品質管理方法として採用することは困難である。   Further, for the conventional measurement of the air flow rate, it is necessary to prepare a special test piece as shown in, for example, JIS-R2115. In this case, particularly in the case of a refractory product having a non-planar shape such as a cylindrical shape, it is difficult to collect a test piece from a part of the product. Therefore, the conventional measurement of air flow rate is adopted as an individual quality control method for industrially mass-produced refractories, especially tubular refractories, because it requires special test piece preparation and laborious measurement. It is difficult to do.

従来の品質評価方法である比重や気孔率の測定では測定値が管理基準よりも大幅に狭い範囲内に収まって、個別の製品毎、はい土のロット間、混練ロット間、成形ロット間、乾燥ないし焼成ロット間等の品質、とくに組織の粗密や結合状態の評価や選別をすることができなかったが、本発明によると、通気量の測定で個別の製品毎、および上記各ロット間のバラツキを顕著に測定値の違いとして検知することができ、これによって管状耐火物の品質を的確に評価することができる。   In the measurement of specific gravity and porosity, which is a conventional quality evaluation method, the measured values are within a narrow range that is much narrower than the control standard, and for each individual product, between soil lots, between kneading lots, between molding lots, and dried. In addition, it was not possible to evaluate or select the quality between the firing lots, especially the density of the structure and the bonding state. However, according to the present invention, the measurement of the air flow rate varies between individual products and between the lots. Can be detected as a significant difference in measured values, whereby the quality of the tubular refractory can be accurately evaluated.

すなわち、管状耐火物の品質のバラツキを顕在化することができるようになり、またその程度を明確に把握することができるようになる。そして、それを製品の評価・選別に利用することで、管状耐火物製品の使用現場における折損等のトラブルを著しく減少させることができる。さらに、製造上の諸工程の評価、管理にも役立たせることができ、製造技術の改善にも寄与することができる。   That is, variations in the quality of the tubular refractory can be realized, and the degree can be clearly grasped. And by using it for evaluation and selection of products, troubles such as breakage at the usage site of tubular refractory products can be remarkably reduced. Furthermore, it can be used for evaluation and management of various manufacturing processes, and can contribute to improvement of manufacturing technology.

また、従来の通気量の測定のように複雑・高度な技術を要する特別な形状の試験片の作製や測定を行う必要もなく、簡便に個別の品質を把握することができ、かつ測定者毎の測定技術水準の違いに起因するバラツキも減少させることができ、測定能率および測定コストの大幅な改善にも寄与することができる。   In addition, it is not necessary to prepare and measure specially shaped test pieces that require complicated and advanced techniques as in the conventional measurement of air flow, and individual quality can be easily grasped and measured by each measurer. The variation due to the difference in the measurement technology level can be reduced, and the measurement efficiency and measurement cost can be greatly improved.

本発明に係る管状耐火物の品質評価方法の一形態として、次のステップがある。   As one form of the quality evaluation method of the tubular refractory according to the present invention, there are the following steps.

1.品質評価用の円筒形試験片を採取することができるだけの長さを加えて管状耐火物製品を設計するステップ。   1. Designing a tubular refractory product with a length that allows a cylindrical specimen for quality evaluation to be taken.

2.円筒形試験片を含む個別の管状耐火物製品を成形、乾燥、焼成、および外周整形加工するステップ。   2. Molding, drying, firing, and perimeter shaping of individual tubular refractory products including cylindrical specimens.

3.管状耐火物製品の所定長さ位置から円筒形試験片を切り出すステップ。   3. Cutting a cylindrical specimen from a predetermined length position of the tubular refractory product.

4.円筒形試験片の内外径および高さを測定し、円筒形試験片の内孔面積および平均厚みを算出するステップ。   4). Measuring the inner and outer diameters and heights of the cylindrical specimen, and calculating the inner hole area and average thickness of the cylindrical specimen.

5.円筒形試験片の両端開放部分にシール材を施した蓋(シール部材)を配置し加圧密着させることによって円筒形試験片の内孔を密閉し、ガスが漏れないようにするステップ。   5. A step of sealing the inner hole of the cylindrical test piece so as not to leak gas by placing a lid (seal member) with a sealing material on the open ends of the cylindrical test piece and pressurizing and sticking them.

6.密閉した状態の円筒形試験片の内孔に、前記蓋(シール部材)を介して所定圧力でガスを供給するステップ。   6). Supplying gas at a predetermined pressure to the inner hole of the sealed cylindrical test piece via the lid (seal member);

7.その所定圧力下での通気量を測定するステップ。   7. Measuring the air flow under the predetermined pressure;

8.通気量の測定後、引き続き同一の円筒形試験片において、その内孔に供給するガスの圧力を円筒形試験片が破壊するまで順次上昇させ、円筒形試験片が破壊したときの圧力を測定するステップ。   8). After measuring the air flow rate, successively increase the pressure of the gas supplied to the inner hole of the same cylindrical specimen until the cylindrical specimen breaks, and measure the pressure when the cylindrical specimen breaks. Step.

9.円筒形試験片が破壊したときの圧力から円筒形試験片の引張強度を算出するステップ。   9. Calculating the tensile strength of the cylindrical specimen from the pressure when the cylindrical specimen is broken.

10.通気量および引張強度の値によって個別の管状耐火物製品の品質を評価し、管状耐火物製品の選別を行ったり、諸ロット毎の品質のバラツキを把握したりするステップ。   10. The step of evaluating the quality of individual tubular refractory products based on the value of air flow rate and tensile strength, selecting the tubular refractory products, and grasping the quality variation of each lot.

なお、品質評価用の円筒形試験片としては、管状耐火物製品から切り出したものではなく、当該管状耐火物製品と同一のはい土で同時に成形され焼成された円筒形試験片を使用してもよい。また、円筒形試験片の引張強度の測定は、通気量を測定後、円筒形試験片を取り外し、上記特許文献1に記載の方法によって行ってもよい。   The cylindrical test piece for quality evaluation is not cut out from a tubular refractory product, but may be a cylindrical test piece that is simultaneously molded and fired in the same soil as the tubular refractory product. Good. Further, the measurement of the tensile strength of the cylindrical test piece may be performed by the method described in Patent Document 1 after removing the cylindrical test piece after measuring the air flow rate.

以下、本発明の最良の形態を、図面を用いて説明する。   Hereinafter, the best mode of the present invention will be described with reference to the drawings.

図1は、管状耐火物のうち連続鋳造用ロングノズルの例を示す断面図である。   FIG. 1 is a cross-sectional view showing an example of a continuous casting long nozzle in a tubular refractory.

連続鋳造用ロングノズル1は両端(上下端)が開放された円筒状の形状となっている。この連続鋳造用ロングノズル1の下端(溶鋼排出側)には、円筒形試験片を採取するための部分2(長さL1)を、所定の製品本体3(長さL)に加えて製造している。   The long nozzle 1 for continuous casting has a cylindrical shape with both ends (upper and lower ends) open. At the lower end (molten steel discharge side) of the long nozzle 1 for continuous casting, a portion 2 (length L1) for collecting a cylindrical specimen is added to a predetermined product body 3 (length L). ing.

このようなノズルを得るためには、図2に示すように、溶鋼流通経路である内孔4(図1参照)に相当する部分に金属製の芯棒5を配置し、その外側に空間6を設けてゴム製の鋳型7を装着し、その空間6に予め混練し揮発分を調整したはい土を充填し、密閉した状態で鋳型7外周全体から加圧して成形する。鋳型から取り出した成形体は、乾燥工程、焼成工程の後、外周の研磨、下端の切断等の加工によって所定の製品形状に整形され、この製品から切り出した円筒形試験片について、通気量および引張強度を測定する。   In order to obtain such a nozzle, as shown in FIG. 2, a metal core bar 5 is disposed in a portion corresponding to the inner hole 4 (see FIG. 1) which is a molten steel flow path, and a space 6 is formed outside thereof. A rubber mold 7 is attached, and the space 6 is filled with a soil that has been kneaded in advance to adjust the volatile content, and is pressed and molded from the entire outer periphery of the mold 7 in a sealed state. The molded body taken out from the mold is shaped into a predetermined product shape by processing such as grinding of the outer periphery and cutting of the lower end after the drying process and firing process. Measure strength.

図3は、円筒形試験片の通気量および引張強度の測定方法を示す断面図である。   FIG. 3 is a cross-sectional view showing a method for measuring the air flow rate and tensile strength of a cylindrical test piece.

測定に先立ち、得られた測定値を、単位面積あたり、単位長さ当たりの通気量、単位断面積当たりの引張強度に換算するため、円筒形試験片の内外径、高さを測定する。   Prior to the measurement, the inner and outer diameters and heights of the cylindrical test pieces are measured in order to convert the obtained measurement values into the aeration amount per unit area, per unit length, and tensile strength per unit cross-sectional area.

次に図3に示すように、円筒形試験片8の両端面を上下に配置し、その上下端開放部分に、シール材9aを施した蓋9,9を配置し加圧密着させることによって円筒形試験片8の内孔8aを密閉し、ガスが漏れないようにする。   Next, as shown in FIG. 3, both ends of the cylindrical test piece 8 are arranged up and down, and lids 9 and 9 provided with a sealing material 9a are arranged at the upper and lower end open portions, and are pressed and brought into close contact with the cylinder. The inner hole 8a of the shape test piece 8 is sealed to prevent gas from leaking.

蓋9,9を含む円筒形試験片8の固定には、耐火物の圧縮強度等を測定するために一般に使用されるアムスラー試験機の台座10aおよびヘッド10bを利用できる。   For fixing the cylindrical test piece 8 including the lids 9 and 9, a base 10a and a head 10b of an Amsler tester generally used for measuring the compressive strength or the like of the refractory can be used.

次に密閉した状態の円筒形試験片8の内孔8a内に、蓋9を貫通して設置したノズル11から所定圧力でガスを供給する。ガスは空気でよく、所定圧力にて昇圧を停止し、その圧力下での通気量を測定する。すなわち、所定圧力下で円筒形試験片8を貫通して流出する単位時間当たりの空気の通過量を測定し、内孔8aの面積で除して、単位面積当たりの通気量を得る。   Next, gas is supplied at a predetermined pressure from a nozzle 11 installed through the lid 9 into the inner hole 8a of the cylindrical test piece 8 in a sealed state. The gas may be air, and the pressurization is stopped at a predetermined pressure, and the amount of ventilation under the pressure is measured. That is, the passage amount of air per unit time flowing out through the cylindrical test piece 8 under a predetermined pressure is measured, and divided by the area of the inner hole 8a to obtain the ventilation amount per unit area.

この測定時の圧力は、個別の材料毎にそのバラツキを顕著に表すことができるような適正な値に設定すればよい。   What is necessary is just to set the pressure at the time of this measurement to the appropriate value which can express the variation notably for every individual material.

通気量を測定した後に、円筒形試験片が破壊するまで徐々にガス圧力を上昇させ、破壊したときの圧力Pから円筒形試験片の最大引張強度σを求める。すなわち、円筒形試験片の最大引張強度σは、円筒形試験片の内側に発生し、破壊したときの圧力をP、円筒形試験片の内径をr、外径をRとすると、下記の式で算出される。
σ=(r×r+R×R)÷(R×R−r×r)×P
After measuring the air flow rate, the gas pressure is gradually increased until the cylindrical test piece breaks, and the maximum tensile strength σ of the cylindrical test piece is obtained from the pressure P when the breakage occurs. That is, the maximum tensile strength σ of the cylindrical test piece is generated inside the cylindrical test piece. When the pressure when fractured is P, the inner diameter of the cylindrical test piece is r, and the outer diameter is R, the following equation is obtained. Is calculated by
σ = (r × r + R × R) ÷ (R × R−r × r) × P

以上により得られた通気量と引張強度の各測定値を、個別の製品、諸ロット毎の製品の選別の基準として利用する。すなわち、通気量、引張強度が、所定の管理基準に適合しない場合、または異常な傾向を示す場合には、諸ロットの要素毎に整理し、それを基礎に個別の製品の選別等を行う。   The measured values of the air flow and tensile strength obtained as described above are used as a standard for selecting individual products and products for each lot. That is, when the air flow rate and the tensile strength do not conform to a predetermined management standard, or when they show an abnormal tendency, they are arranged for each lot element, and individual products are selected on the basis thereof.

この実施例は、両端が開放された内孔を有する連続鋳造用のロングノズルについて、本発明の方法により通気量と引張強度を測定した結果を、比較例として従来の方法で同じ製品から採取した試験片につき、その見掛け気孔率および曲げ強度を測定した結果と共に示す。   In this example, the results of measuring the air flow rate and the tensile strength by the method of the present invention were collected from the same product by a conventional method as a comparative example for a long nozzle for continuous casting having an inner hole open at both ends. It shows with the result of having measured the apparent porosity and bending strength about the test piece.

耐火物の組織の変動を来す要素として、はい土の湿潤状態すなわち揮発分の含有量がある。本実施例でははい土の混練工程において、はい土内の揮発分の含有量を連続的に変化させた複数のはい土のロットを作製し、各ロットのはい土についてその後、通常の工程で加工工程まで終了した製品を作製し、それぞれについて前記各項目の測定を行った。   As a factor causing fluctuations in the structure of the refractory, there is a wet state of the soil, that is, a volatile content. In this embodiment, in the soil kneading process, a plurality of soil soil lots in which the content of volatile components in the soil soil is continuously changed are prepared, and then the soil soil of each lot is processed in a normal process. Products finished up to the process were prepared, and the above items were measured for each.

ここで揮発分の含有量の基準値α質量%は耐火物製品の用途等に応じて製品の種類毎に変動する製品固有の値であり、本実施例では、採用した製品の基準値α質量%から順次減少させて、充填不良の程度を連続的に増大、すなわち組織不良程度を連続的に増大させた。   Here, the reference value α mass% of the volatile content is a product-specific value that varies for each type of product depending on the use of the refractory product, and in this example, the reference value α mass of the adopted product. %, The degree of filling failure was continuously increased, that is, the degree of tissue failure was continuously increased.

実施例の測定条件は次の通りである。   The measurement conditions of the examples are as follows.

円筒形試験片は、両端が開放された内孔を有する連続鋳造用のロングノズルの、寸法および外周加工工程後の状態の製品から一方(使用時の下端側)を切断して得た。円筒形試験片の形状は、外径130mm、内径80mm、高さ100mmである。この円筒形試験片の内孔に、圧力0.098MPaの空気を供給してこの圧力下で円筒形試験片を貫通して流出する単位時間当たりの空気の通過量を測定し、内孔面積で除して、単位面積当たりの通気量を得た。   The cylindrical test piece was obtained by cutting one side (lower end side in use) of the product in a state after dimensions and the outer peripheral machining step of a long nozzle for continuous casting having inner holes open at both ends. The cylindrical test piece has an outer diameter of 130 mm, an inner diameter of 80 mm, and a height of 100 mm. Air at a pressure of 0.098 MPa is supplied to the inner hole of the cylindrical test piece, and the amount of air passing per unit time flowing out through the cylindrical test piece under this pressure is measured. To obtain the air flow per unit area.

通気量の測定後、円筒形試験片が破壊するまで徐々にガス圧力を上昇させ、破壊したときの圧力から、上述の要領で円筒形試験片の最大引張強度を求めた。   After measuring the air flow rate, the gas pressure was gradually increased until the cylindrical test piece was broken, and the maximum tensile strength of the cylindrical test piece was determined from the pressure at the time of the breakage in the manner described above.

比較例の測定条件は次の通りである。   The measurement conditions of the comparative example are as follows.

試験片は、前記の実施例用の円筒形試験片を得た部分の直上部付近の本体部から切り出し、表面を研磨加工して得た。試験片の形状は、20mm×20mm×80mmの直方体とした。   The test piece was cut out from the main body near the portion where the cylindrical test piece for the example was obtained, and the surface was polished. The shape of the test piece was a rectangular parallelepiped of 20 mm × 20 mm × 80 mm.

見掛け気孔率はJISR2205に準拠して測定し、曲げ強さはJISR2213の方法に準拠して支持スパン50mm、その中央を加圧するいわゆる3点曲げ試験方法にて測定した。   The apparent porosity was measured in accordance with JIS R2205, and the bending strength was measured by a so-called three-point bending test method in which the support span was 50 mm and the center was pressurized in accordance with the method of JIS R2213.

はい土の揮発分含有量に対する通気量と見掛け気孔率の測定結果を図4に、引張強度と曲げ強度の測定結果を図5に示す。   FIG. 4 shows the measurement results of the air permeability and the apparent porosity with respect to the volatile content of the soil, and FIG. 5 shows the measurement results of the tensile strength and the bending strength.

はい土の揮発分含有量がα−0.15質量%程度より低くなるに従って通気量が顕著に増加しており、また、引張強度は顕著に低下している。このことから、当該製品の耐火物組織の健全性を保つための揮発分含有量の下限はα−0.15質量%程度までであることがわかる。   As the volatile content of the soil becomes lower than about α-0.15% by mass, the air flow rate is remarkably increased, and the tensile strength is remarkably reduced. This shows that the lower limit of the volatile content for maintaining the soundness of the refractory structure of the product is up to about α-0.15 mass%.

これに対し、比較例である見掛け気孔率は、14.7%〜18.0%の約3%の範囲でほぼ直線的に増加する傾向を示しており、また、曲げ強度は8.5MPa〜7.5MPaの約1MPaの範囲でほぼ直線的に低下する傾向を示しており、いずれの測定値も顕著な変化を示すことはなく、しかも通常の管理範囲内に十分に収まる狭い範囲内の変化にとどまっている。   On the other hand, the apparent porosity, which is a comparative example, shows a tendency to increase almost linearly in a range of about 3% from 14.7% to 18.0%, and the bending strength is 8.5 MPa to It shows a tendency to decrease almost linearly in the range of about 1 MPa of 7.5 MPa, and none of the measured values show a significant change, and the change is within a narrow range that is well within the normal control range. Stays on.

このように、本発明の方法によれば、耐火物製品の組織の良否を明確に推測することが可能であり、またはい土の混練ロット毎の揮発分含有量による製品の選別も可能であることがわかる。   As described above, according to the method of the present invention, it is possible to clearly estimate the quality of the structure of the refractory product, or it is possible to select the product based on the volatile content for each kneading lot of the clay. I understand that.

この実施例2は、上記実施例1の両端が開放された内孔を有する連続鋳造用のロングノズルについて、本発明の方法により通気量と引張強度を測定した結果を製品の製造における諸工程の管理にフィードバックして完成させた製品の品質が所定の管理範囲内に収まるようにし、また選別により所定の管理範囲外の製品を除去して、鋼の連続鋳造に約3000本、約半年間に亘り使用した結果を示す。   In this Example 2, the results of measuring the air flow rate and the tensile strength by the method of the present invention for the long nozzle for continuous casting having the inner holes opened at both ends of Example 1 described above are the results of various steps in the production of the product. The quality of the finished product that is fed back to the management is kept within the specified control range, and the product outside the specified control range is removed by sorting, and about 3000 pieces of steel are continuously cast for about half a year. The results used over time are shown.

本実施例による製品について、耐火物の破壊に伴うトラブルは「ゼロ」すなわち皆無であった。本実施例による製品を使用する直前の従来の管理方法による同じ製品の使用結果では、割れもしくは亀裂および折損のトラブルが約0.5%であったのに対し、0%と顕著な改善効果が認められた。   For the product according to this example, the trouble associated with destruction of the refractory was “zero”, that is, there was no trouble. In the result of using the same product according to the conventional management method immediately before using the product according to the present embodiment, the trouble of cracking or cracking and breakage was about 0.5%, whereas the remarkable improvement effect was 0%. Admitted.

本発明の方法は、連続鋳造用ロングノズル等の製鋼工程で使用される管状耐火物のほか、建材等として使用される管状耐火物の組織の検査、評価および品質管理に利用することができる。   The method of the present invention can be used for the inspection, evaluation, and quality control of the structure of tubular refractories used as building materials and the like as well as tubular refractories used in steel making processes such as long nozzles for continuous casting.

管状耐火物のうち連続鋳造用ロングノズルの例を示す断面図である。It is sectional drawing which shows the example of the long nozzle for continuous casting among tubular refractories. 図1の連続鋳造用ロングノズルの製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the long nozzle for continuous casting of FIG. 本発明における円筒形試験片の通気量および引張強度の測定方法を示す断面図である。It is sectional drawing which shows the measuring method of the air flow rate and tensile strength of the cylindrical test piece in this invention. はい土の揮発分含有量に対する通気量と見掛け気孔率の測定結果を示す。The measurement results of aeration volume and apparent porosity with respect to the volatile content of soil are shown. はい土の揮発分含有量に対する引張強度と曲げ強度の測定結果を図5に示す。FIG. 5 shows the measurement results of tensile strength and bending strength with respect to the volatile content of yes earth.

符号の説明Explanation of symbols

1 連続鋳造用ロングノズル(管状耐火物)
2 円筒形試験片を採取するための部分
3 製品本体
4 連続鋳造用ロングノズルの内孔
5 金属製の芯棒
6 空間
7 鋳型
8 円筒形試験片
9 蓋(シール部材)
9a シール材
10a アムスラー試験機の台座
10b アムスラー試験機のヘッド
1 Long nozzle for continuous casting (tubular refractory)
2 Part for collecting cylindrical test piece 3 Product body 4 Inner hole of long nozzle for continuous casting 5 Metal core rod 6 Space 7 Mold 8 Cylindrical test piece 9 Lid (seal member)
9a Sealing material 10a Pedestal of Amsler testing machine 10b Head of Amsler testing machine

Claims (2)

管状耐火物の品質を評価する方法において、管状耐火物から切り出された円筒形試験片または管状耐火物と同一のはい土で同時に成形され焼成された円筒形試験片の両端開放部分にシール部材を配置し密着させることによって円筒形試験片の内孔を密閉し、この円筒形試験片の内孔にガスを供給して内孔内を所定圧力まで昇圧し、その所定圧力下で円筒形試験片の通気量を測定し、測定した通気量によって管状耐火物の品質を評価する管状耐火物の品質評価方法。   In the method for evaluating the quality of a tubular refractory, a sealing member is attached to both ends of a cylindrical specimen cut from the tubular refractory or a cylindrical specimen that is simultaneously molded and fired in the same soil as the tubular refractory. The inner hole of the cylindrical test piece is sealed by arranging and closely contacting, and gas is supplied to the inner hole of the cylindrical test piece to increase the pressure in the inner hole to a predetermined pressure. Under the predetermined pressure, the cylindrical test piece A method for evaluating the quality of a tubular refractory, in which the amount of aeration is measured and the quality of the tubular refractory is evaluated by the measured amount of ventilation. 円筒形試験片の通気量を測定した後に、円筒形試験片の内孔に供給するガスの圧力を円筒形試験片が破壊するまで順次上昇させ、円筒形試験片が破壊したときの圧力から円筒形試験片の引張強度を算出し、その算出した引張強度および前記測定した通気量によって管状耐火物の品質を評価する請求項1に記載の管状耐火物の品質評価方法。   After measuring the air flow rate of the cylindrical test piece, the pressure of the gas supplied to the inner hole of the cylindrical test piece is sequentially increased until the cylindrical test piece breaks, and from the pressure when the cylindrical test piece breaks to the cylinder The method for evaluating the quality of a tubular refractory according to claim 1, wherein the tensile strength of the shape test piece is calculated, and the quality of the tubular refractory is evaluated based on the calculated tensile strength and the measured air flow rate.
JP2007062916A 2007-03-13 2007-03-13 Quality evaluation method for tubular refractory material Pending JP2008224407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062916A JP2008224407A (en) 2007-03-13 2007-03-13 Quality evaluation method for tubular refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062916A JP2008224407A (en) 2007-03-13 2007-03-13 Quality evaluation method for tubular refractory material

Publications (1)

Publication Number Publication Date
JP2008224407A true JP2008224407A (en) 2008-09-25

Family

ID=39843217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062916A Pending JP2008224407A (en) 2007-03-13 2007-03-13 Quality evaluation method for tubular refractory material

Country Status (1)

Country Link
JP (1) JP2008224407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138173A (en) * 2016-02-03 2017-08-10 日本電産サンキョーシーエムアイ株式会社 Inspection device for crack detection of cylindrical member
CN110849760A (en) * 2019-11-19 2020-02-28 河池学院 Method for testing performance of high-aluminum-SiC refractory material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138173A (en) * 2016-02-03 2017-08-10 日本電産サンキョーシーエムアイ株式会社 Inspection device for crack detection of cylindrical member
CN110849760A (en) * 2019-11-19 2020-02-28 河池学院 Method for testing performance of high-aluminum-SiC refractory material

Similar Documents

Publication Publication Date Title
CN108871929B (en) Test method for testing bonding slippage performance of steel bar-concrete
Fahad Stresses and failure in the diametral compression test
CN106644761B (en) A kind of test method of measurement rock-concrete interface shearing constitutive relation
CN107322763B (en) Permeable concrete compressive strength test piece forming device and forming method
CN102879266B (en) Method for testing uniaxial compression elasticity modulus of inorganic binder stabilizing material
CN102672115A (en) Test device for deformability of molding sand
Voigt et al. The influence of the measurement parameters on the crushing strength of reticulated ceramic foams
CN109158607A (en) A method of preparing the powder sintered multiple filtration pipe of reinforced metal
JP2008224407A (en) Quality evaluation method for tubular refractory material
CN104931352A (en) Method of testing Poisson&#39;s ratio of concrete
CN110243706B (en) Mass concrete interface transition zone hardness testing method capable of avoiding processing damage
CN111024285A (en) Test method for testing residual stress of steel rail by adopting linear cutting
JPH0989880A (en) Method for measuring characteristic of sand
CN210894358U (en) Disconnect-type concrete early crack resistance can survey device
CN116754377A (en) Loading method and loading device for restraining long-term deformation of lightweight aggregate under compression condition
Frasson Jr et al. A Mix design methodology for concrete block units
KR100742914B1 (en) A method for predicting coke strength
CN210401001U (en) Carbon fiber sample preparation mould
CN102536202B (en) Method for manufacturing test piece for testing gas storage well completion sleeve-cement ring bonding strength
CN105158145B (en) Resin-bonded sand cast form surface degree of packing assay method
CN113049459A (en) Pore comparison test block for additive manufacturing and manufacturing method thereof
CN102435405B (en) Specimen stress testing method and stress stethoscope thereof
CN203141877U (en) Special forming die for X fluorescence detection standard samples
CN109571302B (en) Characterization method of semi-fixed abrasive polishing tool interface bonding strength based on tensile strength
CN113484181B (en) Method for detecting setting forming capability of trapped refractory blank