JP2008224392A - Insulation monitor - Google Patents

Insulation monitor Download PDF

Info

Publication number
JP2008224392A
JP2008224392A JP2007062428A JP2007062428A JP2008224392A JP 2008224392 A JP2008224392 A JP 2008224392A JP 2007062428 A JP2007062428 A JP 2007062428A JP 2007062428 A JP2007062428 A JP 2007062428A JP 2008224392 A JP2008224392 A JP 2008224392A
Authority
JP
Japan
Prior art keywords
signal
circuit
ground
suppression
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007062428A
Other languages
Japanese (ja)
Other versions
JP5039401B2 (en
Inventor
Toshio Azuma
利夫 我妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIDORI DENSHI KK
Original Assignee
MIDORI DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIDORI DENSHI KK filed Critical MIDORI DENSHI KK
Priority to JP2007062428A priority Critical patent/JP5039401B2/en
Publication of JP2008224392A publication Critical patent/JP2008224392A/en
Application granted granted Critical
Publication of JP5039401B2 publication Critical patent/JP5039401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To restrain an ineffective component of a measuring signal flowing a class B grounding line to monitor an insulating state of a low-voltage side cable way of a transformer. <P>SOLUTION: This insulation monitor is provided with a monitoring signal generation circuit 20 for injecting a monitoring signal of a frequency different from a commercial frequency, into the class B grounding line of the transformer, a phase regulation circuit 40 for extracting a reference signal corresponding to the monitoring signal from a class D grounding reference input taken in from the class B grounding line, and for timing-matching a phase of the reference signal with a phase of a ground electrostatic capacitance in the low-voltage side cable way of the transformer, a detecting means 50 for detecting a current flowing in the class B grounding line, a measuring signal detecting circuit 60 for removing an unnecessary component from a detection output from the detecting means and for generating a measured signal, a restraining signal generating circuit 80 for generating a restraining signal to offset the ground electrostatic capacitance included in the measured signal, based on the reference signal, to be supplied to a restraining part of the detecting means, and a computation processing part 90 for finding a ground insulation resistance of the low-voltage side cable way of the transformer, from the measured signal based on the detection signal of the detecting means with the offset ground electrostatic capacitance. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、変圧器の低圧側電路の対地絶縁抵抗を活線状態で監視する絶縁監視装置に関するものである。   The present invention relates to an insulation monitoring device for monitoring a ground insulation resistance of a low voltage side electric circuit of a transformer in a live line state.

送配電線により送電された高圧の電力を、受電変圧器で低圧にして負荷(例えば、工場や一般家庭)に供給することが一般的に行われている。このような場合、前記受電変圧器と前記負荷とを接続する電路における漏電をいち早く検出し、漏電事故等を未然に防止することが極めて重要である。   Generally, high-voltage power transmitted by a transmission / distribution line is supplied to a load (for example, a factory or a general household) at a low voltage by a power receiving transformer. In such a case, it is extremely important to quickly detect a leakage in the electric circuit connecting the power receiving transformer and the load to prevent a leakage accident or the like.

このため、従来から、前記のような受電変圧器には、絶縁監視装置を設けるようにしている。従来のこの種の絶縁監視装置の一例を図4に示す。   For this reason, conventionally, an insulation monitoring device is provided in the power receiving transformer as described above. An example of this type of conventional insulation monitoring apparatus is shown in FIG.

図4に示すように、従来の絶縁監視装置は、分周器210と、増幅回路211と、注入用変成器212と、零相変成器213と、増幅回路214と、フィルタ215と、A/D変換器216と、CPU217と、D/A変換器218と、乗算器219と、加算器220と、抵抗Rと、コンデンサCとを有している。   As shown in FIG. 4, the conventional insulation monitoring apparatus includes a frequency divider 210, an amplifier circuit 211, an injection transformer 212, a zero-phase transformer 213, an amplifier circuit 214, a filter 215, an A / A A D converter 216, a CPU 217, a D / A converter 218, a multiplier 219, an adder 220, a resistor R, and a capacitor C are included.

なお、図4において、受電変圧器221の出力側の第1の電路222と、大地との間には、B種接地線223が接続されている。また、受電変圧器221の出力側の第1の電路222と第2の電路224には、負荷225が接続されている。   In FIG. 4, a B-type ground line 223 is connected between the first electric circuit 222 on the output side of the power receiving transformer 221 and the ground. A load 225 is connected to the first electric circuit 222 and the second electric circuit 224 on the output side of the power receiving transformer 221.

分周器210は、商用周波数とは異なる周波数を有する低周波の信号を生成する。増幅回路211は、分周器210で生成された低周波の信号を増幅する。   The frequency divider 210 generates a low frequency signal having a frequency different from the commercial frequency. The amplifier circuit 211 amplifies the low frequency signal generated by the frequency divider 210.

注入用変成器212の1次巻線212aは、増幅回路211で増幅された低周波の信号を絶縁監視信号としてB種接地線223に注入する。これにより、第2の電路224と、大地と、B種接地線223と、第1の電路222とを還流する漏電電流に、前記絶縁監視信号が重畳される。   The primary winding 212a of the injection transformer 212 injects the low-frequency signal amplified by the amplifier circuit 211 into the B-type ground line 223 as an insulation monitoring signal. As a result, the insulation monitoring signal is superimposed on the leakage current that flows back through the second electric path 224, the ground, the B-type ground line 223, and the first electric path 222.

零相変成器213は、前記絶縁監視信号に基づく漏電電流を検出する。増幅回路214は、零相変成器213で検出された漏電電流を増幅する。フィルタ215は、増幅回路214で増幅された漏電電流から、前記絶縁監視信号を抽出する。A/D変換器216は、フィルタ215で抽出された絶縁監視信号をデジタル信号に変換する。   The zero phase transformer 213 detects a leakage current based on the insulation monitoring signal. The amplifier circuit 214 amplifies the leakage current detected by the zero phase transformer 213. The filter 215 extracts the insulation monitoring signal from the leakage current amplified by the amplifier circuit 214. The A / D converter 216 converts the insulation monitoring signal extracted by the filter 215 into a digital signal.

CPU217は、B種接地線223に注入した絶縁監視信号の位相0°、位相180°、位相90°、及び位相270°のタイミングで、フィルタ215で抽出された絶縁監視信号を検出し、有効成分及び無効成分が共に零になるようにD/A変換器218aの出力を制御する。   The CPU 217 detects the insulation monitoring signal extracted by the filter 215 at the timing of the phase 0 °, the phase 180 °, the phase 90 °, and the phase 270 ° of the insulation monitoring signal injected into the B-type ground line 223, and the active component And the output of the D / A converter 218a is controlled so that both of the ineffective components become zero.

D/A変換器218aは、CPU217で検出された前記絶縁監視信号の絶縁抵抗相当成分をアナログ信号に変換する。また、D/A変換器218bは、CPU217で検出された前記絶縁監視信号の浮遊容量相当成分をアナログ信号に変換する。   The D / A converter 218a converts an insulation resistance equivalent component of the insulation monitoring signal detected by the CPU 217 into an analog signal. Further, the D / A converter 218b converts the component equivalent to the stray capacitance of the insulation monitoring signal detected by the CPU 217 into an analog signal.

乗算器219aは、D/A変換器218aでアナログ信号に変換された前記絶縁監視信号の絶縁抵抗相当成分に対して、注入用変成器212の3次巻線212bで検出された基準電圧を乗算処理する。また、乗算器219bは、D/A変換器218bでアナログ信号に変換された前記絶縁監視信号の浮遊容量相当成分に対して、注入用変成器212の3次巻線212bで検出された基準電圧を乗算処理する。   The multiplier 219a multiplies the reference voltage detected by the tertiary winding 212b of the injection transformer 212 to the insulation resistance equivalent component of the insulation monitoring signal converted into an analog signal by the D / A converter 218a. Process. Further, the multiplier 219b detects the reference voltage detected by the tertiary winding 212b of the injecting transformer 212 with respect to the stray capacitance equivalent component of the insulation monitoring signal converted into an analog signal by the D / A converter 218b. Is multiplied.

加算器220は、抵抗Rにより抵抗分電流に変換された前記絶縁監視信号の絶縁抵抗相当成分と、コンデンサCにより容量性電流に変換された前記絶縁監視信号の浮遊容量相当成分とを加算する。加算器220で加算された電流は、抑圧信号電流として、零相変成器213の三次側に供給される。   The adder 220 adds an insulation resistance equivalent component of the insulation monitoring signal converted into a resistance current by the resistor R and a stray capacitance equivalent component of the insulation monitoring signal converted into a capacitive current by the capacitor C. The current added by the adder 220 is supplied to the tertiary side of the zero-phase transformer 213 as a suppression signal current.

このようにして抑圧信号電流が零相変成器213に供給されると、零相変成器213内で磁束的に打消されB種接地線223に注入された絶縁監視信号の絶縁抵抗成分(対地絶縁抵抗R0に基づく成分)と、浮遊容量成分(対地静電容量C0に基づく成分)とが抑圧される。そして、CPU217は、前記絶縁抵抗相当成分を零とするのに要した抑圧量を、対地絶縁抵抗R0として検出する。   When the suppression signal current is supplied to the zero-phase transformer 213 in this way, the insulation resistance component (ground insulation) of the insulation monitoring signal injected into the B-type ground line 223 is canceled by magnetic flux in the zero-phase transformer 213. The component based on the resistance R0) and the stray capacitance component (the component based on the ground capacitance C0) are suppressed. Then, the CPU 217 detects the amount of suppression required to set the insulation resistance equivalent component to zero as the ground insulation resistance R0.

以上のように、従来の技術では、B種接地線223に注入された絶縁監視信号の絶縁抵抗成分(対地絶縁抵抗R0に基づく成分)と、浮遊容量成分(対地静電容量C0に基づく成分)とを抑圧するための抑圧信号を生成して、対地絶縁抵抗R0を監視するようにしていた。
特開2005−181148号公報
As described above, in the conventional technique, the insulation resistance component (component based on the ground insulation resistance R0) and the stray capacitance component (component based on the ground capacitance C0) of the insulation monitoring signal injected into the B-type ground line 223. A suppression signal for suppressing the above is generated and the ground insulation resistance R0 is monitored.
JP 2005-181148 A

ところで、前記のような絶縁監視装置においては、B種接地線223に注入された絶縁監視信号の有効分(対地絶縁抵抗R0に基づく成分)のみを抽出できれば、対地絶縁抵抗R0(又は対地絶縁抵抗R0に流れる電流)を正確に求めることができる。したがって、絶縁監視信号の無効分(対地静電容量C0に基づく成分)のみを抑圧することができればよい。   By the way, in the insulation monitoring apparatus as described above, if only the effective component (component based on the ground insulation resistance R0) of the insulation monitor signal injected into the B-type ground line 223 can be extracted, the ground insulation resistance R0 (or the ground insulation resistance) Current flowing in R0) can be accurately obtained. Therefore, it is only necessary to suppress only the ineffective part of the insulation monitoring signal (component based on the ground capacitance C0).

しかしながら、前述した特許文献1が提案された当時の技術では、絶縁監視信号の無効分の抑圧信号をコンデンサで生成していたので、正確な抑圧信号を生成することができず、対地絶縁抵抗R0を正確に監視することが困難であった。   However, in the technology at the time when the above-mentioned Patent Document 1 was proposed, the suppression signal for the ineffective portion of the insulation monitoring signal was generated by the capacitor, so that an accurate suppression signal could not be generated, and the ground insulation resistance R0 It was difficult to monitor accurately.

このように、従来から、絶縁監視信号の無効分のみを容易に且つ確実に安定して抑圧する技術が望まれていた。   As described above, there has been a demand for a technique for easily and reliably stably suppressing only the ineffective portion of the insulation monitoring signal.

この発明は、上記課題を解決するために為されたものであり、変圧器の出力側に接続された電路の絶縁状態を監視するために、変圧器のB種接地線に注入された絶縁監視信号の無効分を、容易に且つ確実に抑圧することのできる絶縁監視装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is an insulation monitor injected into the class B ground line of the transformer in order to monitor the insulation state of the electric circuit connected to the output side of the transformer. An object of the present invention is to provide an insulation monitoring device capable of easily and reliably suppressing an invalid signal.

この発明の請求項1に係る絶縁監視装置は、商用周波数と異なる周波数の監視信号を変圧器のB種接地線に注入する監視信号発生回路と、前記B種接地線から取り込まれるD種接地基準入力から前記監視信号に相当する基準信号を抽出し、あらかじめ決められたクロック周波数に基づいて、当該基準信号の位相のタイミングを前記変圧器の低圧側電路の対地静電容量の位相のタイミングに合わせる位相調整回路と、前記B種接地線に流れる電流を検出する検出手段と、前記検出手段の検出出力から商用周波数およびその高調波等の不要成分を除去して測定信号を検出する測定信号検出回路と、前記位相調整回路から出力される前記基準信号に基づいて、前記測定信号に含まれる前記対地静電容量を打ち消すための抑圧信号を発生し、当該抑圧信号を前記検出手段の抑圧部に供給する抑圧信号発生回路と、前記抑圧信号の供給により前記対地静電容量が打ち消された前記検出手段の検出出力に基づく前記測定信号から、前記変圧器の低圧側電路の対地絶縁抵抗を求める演算処理回路と、を備えたことを特徴とする。   According to a first aspect of the present invention, there is provided a monitoring signal generating circuit for injecting a monitoring signal having a frequency different from a commercial frequency into a B-type grounding line of a transformer, and a D-type grounding reference fetched from the B-type grounding line. A reference signal corresponding to the monitoring signal is extracted from the input, and based on a predetermined clock frequency, the phase timing of the reference signal is matched with the phase timing of the ground capacitance of the low-voltage side circuit of the transformer A phase adjustment circuit; detection means for detecting a current flowing in the B-type ground line; and a measurement signal detection circuit for detecting a measurement signal by removing unnecessary components such as a commercial frequency and its harmonics from the detection output of the detection means And generating a suppression signal for canceling the ground capacitance included in the measurement signal based on the reference signal output from the phase adjustment circuit. A suppression signal generation circuit for supplying a signal to the suppression unit of the detection means, and a low voltage of the transformer from the measurement signal based on the detection output of the detection means in which the ground capacitance is canceled by the supply of the suppression signal And an arithmetic processing circuit for obtaining a ground insulation resistance of the side electric circuit.

この発明の請求項2に係る絶縁監視装置は、請求項1記載の絶縁監視装置において、前記位相調整回路から出力される前記基準信号に基づいて、前記測定信号に含まれる前記対地絶縁抵抗と前記対地静電容量とを分離するための同期信号を発生する同期信号発生回路をさらに備えたことを特徴とする。   The insulation monitoring device according to claim 2 of the present invention is the insulation monitoring device according to claim 1, wherein the ground insulation resistance included in the measurement signal and the ground insulation resistance are based on the reference signal output from the phase adjustment circuit. A synchronization signal generating circuit that generates a synchronization signal for separating the ground capacitance is further provided.

この発明の請求項3に係る絶縁監視装置は、請求項2記載の絶縁監視装置において、前記演算処理回路は、前記測定信号および前記同期信号に基づいて、前記測定信号に含まれる前記対地絶縁抵抗と前記対地静電容量とを分離することを特徴とする。   The insulation monitoring device according to claim 3 of the present invention is the insulation monitoring device according to claim 2, wherein the arithmetic processing circuit is configured to provide the ground insulation resistance included in the measurement signal based on the measurement signal and the synchronization signal. And the ground capacitance are separated from each other.

この発明の請求項4に係る絶縁監視装置は、請求項3記載の絶縁監視装置において、前記演算処理回路は、前記対地絶縁抵抗と分離した前記対地静電容量がゼロになるように前記抑圧信号発生回路に対して前記抑圧信号による抑圧レベルをリアルタイム制御することを特徴とする。   According to a fourth aspect of the present invention, there is provided the insulation monitoring apparatus according to the third aspect, wherein the arithmetic processing circuit is configured to suppress the suppression signal so that the ground capacitance separated from the ground insulation resistance becomes zero. The generation level is controlled in real time with respect to the suppression level of the suppression signal.

この発明の請求項5に係る絶縁監視装置は、請求項1〜4のいずれか1項記載の絶縁監視装置において、前記位相調整回路は、前記演算処理回路から入力される前記あらかじめ決められたクロック周波数に基づいて、前記基準信号の位相のタイミングを調整することを特徴とする。   The insulation monitoring apparatus according to claim 5 of the present invention is the insulation monitoring apparatus according to any one of claims 1 to 4, wherein the phase adjustment circuit is configured to input the predetermined clock input from the arithmetic processing circuit. The phase timing of the reference signal is adjusted based on the frequency.

この発明の請求項6に係る絶縁監視装置は、請求項1〜5のいずれか1項記載の絶縁監視装置において、前記検出手段は、前記B種接地線に電磁結合され、前記抑圧信号が三次側に供給されることを特徴とする。   The insulation monitoring device according to claim 6 of the present invention is the insulation monitoring device according to any one of claims 1 to 5, wherein the detection means is electromagnetically coupled to the B-type ground wire, and the suppression signal is tertiary. It is supplied to the side.

この発明の請求項7に係る絶縁監視装置は、請求項1〜6のいずれか1項記載の絶縁監視装置において、前記監視信号発生回路は、注入手段を介して前記監視信号を前記B種接地線に注入するものであり、出力段に、前記B種接地線から前記注入手段を介して逆に注入される異常電流から当該監視信号発生回路を保護する保護回路を備えたことを特徴とする。   The insulation monitoring device according to claim 7 of the present invention is the insulation monitoring device according to any one of claims 1 to 6, wherein the monitoring signal generating circuit sends the monitoring signal to the B-type ground via an injection means. And a protective circuit for protecting the monitoring signal generation circuit from an abnormal current that is reversely injected from the B-type ground line via the injection means to the output stage. .

この発明の請求項8に係る絶縁監視装置は、商用周波数と異なる周波数の監視信号を変圧器のB種接地線に注入する監視信号発生回路と、前記B種接地線から取り込まれるD種接地基準入力から前記監視信号に相当する基準信号を抽出し、あらかじめ決められたクロック周波数に基づいて、当該基準信号の位相を前記変圧器の低圧側電路の対地静電容量の位相の逆位相に合わせる位相調整回路と、前記B種接地線に流れる電流を検出する検出手段と、前記検出手段の検出出力から商用周波数およびその高調波等の不要成分を除去して測定信号を検出する測定信号検出回路と、前記位相調整回路から出力される前記基準信号に基づいて、前記測定信号に含まれる前記変圧器の低圧側電路の対地絶縁抵抗と前記対地静電容量とを分離するための同期信号を発生する同期信号発生回路と、前記位相調整回路から出力される前記基準信号に基づいて、前記測定信号に含まれる前記対地静電容量を打ち消すための抑圧信号を発生し、当該抑圧信号を前記検出手段の抑圧部に供給する抑圧信号発生回路と、前記測定信号および前記同期信号に基づいて、前記測定信号に含まれる前記対地絶縁抵抗と前記対地静電容量とを分離し、前記対地静電容量がゼロになるように前記抑圧信号発生回路に対して前記抑圧信号による抑圧レベルをリアルタイム制御し、前記抑圧信号の供給により前記対地静電容量が打ち消された前記検出手段の検出出力に基づく前記測定信号から前記対地絶縁抵抗を求める演算処理回路と、を備えたことを特徴とする。   According to an eighth aspect of the present invention, there is provided an insulation monitoring apparatus comprising: a monitoring signal generating circuit for injecting a monitoring signal having a frequency different from a commercial frequency into a B-type grounding line of a transformer; and a D-type grounding reference taken from the B-type grounding line. A phase in which a reference signal corresponding to the monitoring signal is extracted from the input, and the phase of the reference signal is matched with the phase opposite to the phase of the ground capacitance of the low-voltage side electric circuit of the transformer based on a predetermined clock frequency An adjustment circuit; detection means for detecting a current flowing in the B-type ground line; and a measurement signal detection circuit for detecting a measurement signal by removing unnecessary components such as a commercial frequency and its harmonics from the detection output of the detection means; Based on the reference signal output from the phase adjustment circuit, the ground isolation resistance and the ground capacitance are separated from the low-voltage side electric circuit of the transformer included in the measurement signal. Based on the reference signal output from the synchronization signal generation circuit that generates the signal and the phase adjustment circuit, a suppression signal for canceling the ground capacitance included in the measurement signal is generated, and the suppression signal is Based on the suppression signal generation circuit supplied to the suppression unit of the detection means, the measurement signal and the synchronization signal, the ground insulation resistance and the ground capacitance included in the measurement signal are separated, and the ground static Based on the detection output of the detection means in which the suppression level by the suppression signal is controlled in real time to the suppression signal generation circuit so that the capacitance becomes zero, and the ground capacitance is canceled by the supply of the suppression signal An arithmetic processing circuit for obtaining the ground insulation resistance from the measurement signal.

この発明の請求項9に係る絶縁監視装置は、請求項8記載の絶縁監視装置において、前記位相調整回路は、前記演算処理回路から入力される前記あらかじめ決められたクロック周波数に基づいて、前記基準信号の位相のタイミングを調整することを特徴とする。   The insulation monitoring device according to claim 9 of the present invention is the insulation monitoring device according to claim 8, wherein the phase adjustment circuit is configured to perform the reference based on the predetermined clock frequency input from the arithmetic processing circuit. The phase timing of the signal is adjusted.

この発明の請求項10に係る絶縁監視装置は、請求項9記載の絶縁監視装置において、前記検出手段は、前記B種接地線に電磁結合され、前記抑圧信号が三次側に供給されることを特徴とする。   The insulation monitoring apparatus according to claim 10 of the present invention is the insulation monitoring apparatus according to claim 9, wherein the detection means is electromagnetically coupled to the B-type ground line, and the suppression signal is supplied to the tertiary side. Features.

この発明の請求項11に係る絶縁監視装置は、請求項8〜10のいずれか1項記載の絶縁監視装置において、前記監視信号発生回路は、注入手段を介して前記監視信号を前記B種接地線に注入するものであり、出力段に、前記B種接地線から前記注入手段を介して逆に注入される異常電流から当該監視信号発生回路を保護する保護回路を備えたことを特徴とする。   An insulation monitoring device according to an eleventh aspect of the present invention is the insulation monitoring device according to any one of the eighth to tenth aspects, wherein the monitoring signal generating circuit sends the monitoring signal to the B-type ground via an injection means. And a protective circuit for protecting the monitoring signal generation circuit from an abnormal current that is reversely injected from the B-type ground line via the injection means to the output stage. .

この発明は以上のように、商用周波数と異なる周波数の監視信号を変圧器のB種接地線に注入する監視信号発生回路と、前記B種接地線から取り込まれるD種接地基準入力から前記監視信号に相当する基準信号を抽出し、あらかじめ決められたクロック周波数に基づいて、当該基準信号の位相のタイミングを前記変圧器の低圧側電路の対地静電容量の位相のタイミングに合わせる位相調整回路と、前記B種接地線に流れる電流を検出する検出手段と、前記検出手段の検出出力から商用周波数およびその高調波等の不要成分を除去して測定信号を発生する測定信号発生回路と、前記位相調整回路から出力される前記基準信号に基づいて、前記測定信号に含まれる前記対地静電容量を打ち消すための抑圧信号を発生し、当該抑圧信号を前記検出手段の検出部に供給する抑圧信号発生回路と、前記抑圧信号の供給により前記対地静電容量が打ち消された前記検出手段の検出出力に基づく前記測定信号から、前記変圧器の低圧側電路の対地絶縁抵抗を求める演算処理回路と、を備えた構成としたので、変圧器の出力側に接続された電路の絶縁状態を監視するために、変圧器のB種接地線に注入された絶縁監視信号の無効分を、容易に且つ確実に抑圧することができる。   As described above, according to the present invention, a monitoring signal generating circuit for injecting a monitoring signal having a frequency different from the commercial frequency to the B-type ground line of the transformer, and the monitoring signal from the D-type ground reference input taken from the B-type ground line. And a phase adjustment circuit that matches the phase timing of the reference signal to the phase timing of the ground capacitance of the low-voltage side electric circuit of the transformer, based on a predetermined clock frequency, A detecting means for detecting a current flowing in the B-type ground line, a measurement signal generating circuit for generating a measurement signal by removing unnecessary components such as a commercial frequency and its harmonics from the detection output of the detecting means, and the phase adjustment Based on the reference signal output from the circuit, a suppression signal for canceling the ground capacitance included in the measurement signal is generated, and the suppression signal is detected by the detection means. A suppression signal generation circuit for supplying to the detection unit of the transformer, and ground insulation of the low-voltage side electric circuit of the transformer from the measurement signal based on the detection output of the detection means in which the ground capacitance is canceled by the supply of the suppression signal In order to monitor the insulation state of the electric circuit connected to the output side of the transformer, the insulation monitoring signal injected into the class B ground line of the transformer is provided. The ineffective portion can be easily and reliably suppressed.

この発明の実施の形態を、図面を参照して説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、この発明による絶縁監視装置の一実施形態を示すブロック図であり、この絶縁監視装置10は、対地絶縁抵抗R0と対地静電容量(浮遊容量)C0との合成である対地インピーダンスZ0を有する受電変圧器1の低圧側のB種接地線4に設けられるものである。   FIG. 1 is a block diagram showing an embodiment of an insulation monitoring device according to the present invention. This insulation monitoring device 10 is a combination of a ground insulation resistance R0 and a ground capacitance (floating capacitance) C0 and a ground impedance Z0. It is provided in the B class grounding wire 4 of the low voltage | pressure side of the receiving transformer 1 which has these.

受電変圧器1の出力側(低圧側)には、負荷2が接続されている。また、受電変圧器1の低圧側の第1の電路3は、B種接地線4を介して接地されている。また、受電変圧器1の低圧側の第2の電路5、大地、B種接地線4、および第1の電路3により形成される経路には、対地インピーダンスZ0に基づく漏電電流が還流する。   A load 2 is connected to the output side (low voltage side) of the power receiving transformer 1. Further, the first electric circuit 3 on the low voltage side of the power receiving transformer 1 is grounded via a B-type grounding wire 4. In addition, a leakage current based on the ground impedance Z0 is circulated in the path formed by the second electric circuit 5 on the low voltage side of the power receiving transformer 1, the ground, the B-type grounding wire 4, and the first electric circuit 3.

この絶縁監視装置10は、商用周波数と異なる周波数の監視信号Wを、注入手段としての重畳トランス(CT)30を介して変圧器1のB種接地線4に注入する監視信号発生回路20を備えている。   The insulation monitoring apparatus 10 includes a monitoring signal generation circuit 20 that injects a monitoring signal W having a frequency different from the commercial frequency into the B-type ground line 4 of the transformer 1 through a superimposing transformer (CT) 30 as an injection unit. ing.

監視信号発生回路20は、電路に重畳する信号を発生する発振器(OSC)21と、発振器(OSC)21で発生した信号を、重畳トランス(CT)30をドライブできるように電力増幅するパワーアンプ22とを備えている。発振器(OSC)21は、後述する演算処理回路(MPU)90に付属した図示しない水晶発振器を基に生成されるクロック信号を分周するなどして、所要周波数(例えば20Hz)の信号を発生するものである。   The monitor signal generation circuit 20 includes an oscillator (OSC) 21 that generates a signal to be superimposed on the electric circuit, and a power amplifier 22 that amplifies the signal generated by the oscillator (OSC) 21 so that the superimposed transformer (CT) 30 can be driven. And. The oscillator (OSC) 21 generates a signal having a required frequency (for example, 20 Hz) by dividing a clock signal generated based on a crystal oscillator (not shown) attached to an arithmetic processing circuit (MPU) 90 described later. Is.

監視信号発生回路20はまた、設備の地絡事故等によりB種接地線4に大電流が流れた場合に、重畳トランス(CT)30を介して逆流するエネルギーによりパワーアンプ22が損傷しないように保護する保護回路23を備えている。保護回路23の具体的構成については後述する。   The monitoring signal generation circuit 20 also prevents the power amplifier 22 from being damaged by the energy flowing backward through the superposed transformer (CT) 30 when a large current flows through the B-type grounding wire 4 due to a ground fault of the equipment or the like. A protection circuit 23 for protection is provided. A specific configuration of the protection circuit 23 will be described later.

また、絶縁監視装置10は、B種接地線4から取り込まれるD種接地基準入力から、監視信号Wに相当する基準信号Bを抽出し、あらかじめ決められたクロック周波数に基づいて、基準信号Bの位相のタイミングを変圧器1の低圧側電路5の対地静電容量の位相のタイミングに合わせる位相調整回路40を備えている。   Further, the insulation monitoring apparatus 10 extracts the reference signal B corresponding to the monitoring signal W from the D-type grounding reference input taken from the B-type grounding wire 4, and based on the predetermined clock frequency, A phase adjustment circuit 40 for adjusting the phase timing to the phase timing of the ground capacitance of the low-voltage side electric circuit 5 of the transformer 1 is provided.

位相調整回路40は、エイリアスフィルタ41と、スイッチト・キャパシタ・フィルタ(SCF)42とで構成される。エイリアスフィルタ41は、B種接地線4から取り込まれるD種接地基準入力から、次段のスイッチト・キャパシタ・フィルタ(SCF)42で誤動作を起こす周波数成分を事前に除去するものである。   The phase adjustment circuit 40 includes an alias filter 41 and a switched capacitor filter (SCF) 42. The alias filter 41 removes in advance a frequency component that causes a malfunction in the next-stage switched capacitor filter (SCF) 42 from the D-type ground reference input taken in from the B-type ground line 4.

スイッチト・キャパシタ・フィルタ(SCF)42は、ローパスフィルタとしての機能と、あらかじめ決められたクロック周波数に基づいて、信号の位相を調整する位相シフタとしての機能を有する。すなわち、スイッチト・キャパシタ・フィルタ(SCF)42は、図2(a)に示すように、ローパスフィルタとして機能する減衰特性を有する。また、スイッチト・キャパシタ・フィルタ(SCF)42は、図2(b)に示すように、位相シフタとして機能するクロック周波数−位相特性を有する。   The switched capacitor filter (SCF) 42 has a function as a low-pass filter and a function as a phase shifter that adjusts the phase of a signal based on a predetermined clock frequency. That is, the switched capacitor filter (SCF) 42 has an attenuation characteristic that functions as a low-pass filter, as shown in FIG. The switched capacitor filter (SCF) 42 has a clock frequency-phase characteristic that functions as a phase shifter, as shown in FIG.

ローパスフィルタ機能により、スイッチト・キャパシタ・フィルタ(SCF)42は、B種接地線4から取り込まれるD種接地基準入力から、商用周波数およびその高調波等の不要成分を除去して、監視信号Wに相当する基準信号Bを抽出することができる。   With the low-pass filter function, the switched capacitor filter (SCF) 42 removes unnecessary components such as the commercial frequency and its harmonics from the D-type ground reference input taken in from the B-type ground line 4, and the monitoring signal W Can be extracted.

これと同時に、スイッチト・キャパシタ・フィルタ(SCF)42は、位相シフタ機能により、基準信号Bの位相のタイミングを変圧器1の低圧側電路5の対地静電容量の位相のタイミングに合わせることができる。すなわち、基準信号Bの位相を変圧器1の低圧側電路5の対地静電容量の位相の逆位相に合わせることで、対地静電容量を打ち消すための正確な位相を生成することができる。   At the same time, the switched capacitor filter (SCF) 42 can adjust the phase timing of the reference signal B to the phase timing of the ground capacitance of the low-voltage side circuit 5 of the transformer 1 by the phase shifter function. it can. That is, by matching the phase of the reference signal B with the phase opposite to the phase of the ground capacitance of the low voltage side electric circuit 5 of the transformer 1, an accurate phase for canceling the ground capacitance can be generated.

そして、スイッチト・キャパシタ・フィルタ(SCF)42は、あらかじめ決められたクロック周波数に基づいて信号の位相を調整するものであり、しかもそのクロック周波数は、後述する演算処理回路(MPU)90から指令されるものであるから、製品出荷時にメーカで設定済み(調整済み)のクロック周波数は、その後の温度変化や経年変化によって変化しない。   The switched capacitor filter (SCF) 42 adjusts the phase of the signal based on a predetermined clock frequency, and the clock frequency is commanded from an arithmetic processing circuit (MPU) 90 described later. Therefore, the clock frequency set (adjusted) by the manufacturer at the time of product shipment does not change due to subsequent temperature change or aging change.

つまり、温度変化や経年変化に対し高安定な水晶発振器を基に生成されるクロック周波数を用いその周波数を微調整することにより、スイッチト・キャパシタ・フィルタ(SCF)42による位相合わせは、きわめて正確且つ、高安定に実現することができる。アナログ式の従来の位相シフタにより実現可能な位相合わせの精度に比べて、ディジタル式のスイッチト・キャパシタ・フィルタ(SCF)42による位相合わせの精度は、文字通り桁が違うのである。   In other words, the phase adjustment by the switched capacitor filter (SCF) 42 is extremely accurate by finely adjusting the clock frequency generated based on a crystal oscillator that is highly stable with respect to temperature change and aging change. In addition, it can be realized with high stability. Compared with the phase alignment accuracy that can be realized by the conventional analog phase shifter, the phase alignment accuracy by the digital switched capacitor filter (SCF) 42 is literally different.

また、絶縁監視装置10は、B種接地線4に流れる電流を検出する検出手段としての零相変流器(ZCT)50を備えている。   Further, the insulation monitoring device 10 includes a zero-phase current transformer (ZCT) 50 as detection means for detecting a current flowing through the B-type grounding wire 4.

また、絶縁監視装置10は、零相変流器(ZCT)50の検出出力から商用周波数およびその高調波等の不要成分を除去して測定信号Mを検出する測定信号検出回路60を備えている。   The insulation monitoring device 10 also includes a measurement signal detection circuit 60 that detects the measurement signal M by removing unnecessary components such as commercial frequencies and harmonics from the detection output of the zero-phase current transformer (ZCT) 50. .

測定信号検出回路60は、ヘッドアンプ61と、フィルタ62と、レベル変換器63とで構成される。ヘッドアンプ61は、零相変流器(ZCT)50で検出された電流を電圧に変換し次段で必要なレベルまで増幅するものである。フィルタ62は、ヘッドアンプ61の出力から商用周波数およびその高調波等の測定信号M以外の不要成分を除去するとともに、測定信号Mを増幅するものである。レベル変換器63は、フィルタ62の出力すなわちアナログ信号のレベルを、後述する演算処理回路(MPU)90でディジタル処理できるレベルに変換するものである。   The measurement signal detection circuit 60 includes a head amplifier 61, a filter 62, and a level converter 63. The head amplifier 61 converts the current detected by the zero-phase current transformer (ZCT) 50 into a voltage and amplifies it to a required level in the next stage. The filter 62 removes unnecessary components other than the measurement signal M such as the commercial frequency and its harmonics from the output of the head amplifier 61 and amplifies the measurement signal M. The level converter 63 converts the output of the filter 62, that is, the level of the analog signal into a level that can be digitally processed by an arithmetic processing circuit (MPU) 90 described later.

また、絶縁監視装置10は、位相調整回路40から出力される基準信号Bに基づいて、測定信号Mに含まれる変圧器1の低圧側電路5の対地絶縁抵抗と対地静電容量とを分離するための同期信号Sを発生する同期信号発生回路70を備えている。   Further, the insulation monitoring device 10 separates the ground insulation resistance and the ground capacitance of the low-voltage side electric circuit 5 of the transformer 1 included in the measurement signal M based on the reference signal B output from the phase adjustment circuit 40. A synchronization signal generation circuit 70 for generating a synchronization signal S for the purpose is provided.

同期信号発生回路70は、後述する演算処理回路(MPU)90内で有効成分(対地絶縁抵抗)と無効成分(対地静電容量)とを分離するための同期信号Sとなるもので、位相調整回路40から出力される基準信号Bをゼロクロスにより方形波に変換し、得られた同期信号Sを後述する演算処理回路(MPU)90に供給するものである。   The synchronization signal generation circuit 70 serves as a synchronization signal S for separating an effective component (ground insulation resistance) and an ineffective component (ground capacitance) in an arithmetic processing circuit (MPU) 90 to be described later. The reference signal B output from the circuit 40 is converted into a square wave by zero crossing, and the obtained synchronization signal S is supplied to an arithmetic processing circuit (MPU) 90 described later.

また、絶縁監視装置10は、位相調整回路40から出力される基準信号Bに基づいて、測定信号Mに含まれる対地静電容量を打ち消すための抑圧信号Pを発生し、この抑圧信号Pを零相変流器(ZCT)50の抑圧部に供給する抑圧信号発生回路80を備えている。   The insulation monitoring device 10 generates a suppression signal P for canceling the ground capacitance included in the measurement signal M based on the reference signal B output from the phase adjustment circuit 40, and sets the suppression signal P to zero. A suppression signal generation circuit 80 that supplies the suppression unit of the phase current transformer (ZCT) 50 is provided.

抑圧信号発生回路80は、位相調整回路40のスイッチト・キャパシタ・フィルタ(SCF)42で生成された正確な打ち消し信号の出力レベルを制御する回路であり、零相変流器(ZCT)50で対地静電容量の成分である電流(無効成分電流)が磁束的にゼロとなるように、後述する演算処理回路(MPU)90によりリアルタイムに連続制御されるものである。このような抑圧信号発生回路80は、例えば、乗算器により構成される。   The suppression signal generation circuit 80 is a circuit that controls the output level of an accurate cancellation signal generated by the switched capacitor filter (SCF) 42 of the phase adjustment circuit 40, and is a zero-phase current transformer (ZCT) 50. It is continuously controlled in real time by an arithmetic processing circuit (MPU) 90 to be described later so that the current (ineffective component current) which is a component of the ground capacitance becomes zero in terms of magnetic flux. Such a suppression signal generation circuit 80 is configured by, for example, a multiplier.

さらに、絶縁監視装置10は、演算処理回路(MPU)90を備えている。演算処理回路(MPU)90は、位相調整回路40のスイッチト・キャパシタ・フィルタ(SCF)42に対し、信号の位相を調整するための基準となるクロック周波数を指令するものである。このクロック周波数は、製品出荷時にメーカで設定済み(調整済み)とするものであり、その後の温度変化や経年変化によって変化しない。   Furthermore, the insulation monitoring apparatus 10 includes an arithmetic processing circuit (MPU) 90. The arithmetic processing circuit (MPU) 90 instructs the switched capacitor filter (SCF) 42 of the phase adjustment circuit 40 to use a reference clock frequency for adjusting the phase of the signal. This clock frequency is set (adjusted) by the manufacturer at the time of product shipment, and does not change due to subsequent temperature change or aging change.

演算処理回路(MPU)90はまた、零相変流器(ZCT)50の検出出力からヘッドアンプ61を介してフィルタ62により抽出され、レベル変換器63から入力される測定信号Mと、位相調整回路40から出力される基準信号Bに基づき同期信号発生回路70から入力される同期信号Sとに基づいて、測定信号Mに含まれる変圧器1の低圧側電路5の対地絶縁抵抗と対地静電容量とを分離するものである。   The arithmetic processing circuit (MPU) 90 is also extracted from the detection output of the zero-phase current transformer (ZCT) 50 by the filter 62 via the head amplifier 61 and input from the level converter 63 and the phase adjustment. Based on the reference signal B output from the circuit 40 and the synchronization signal S input from the synchronization signal generation circuit 70, the ground insulation resistance and the ground electrostatic resistance of the low-voltage side electric circuit 5 of the transformer 1 included in the measurement signal M It separates the capacity.

そして、演算処理回路(MPU)90は、測定信号Mに含まれる対地絶縁抵抗と対地静電容量とを分離した後、その対地静電容量がゼロになるように、抑圧信号発生回路80に対して抑圧信号Pによる抑圧レベルをリアルタイム制御する。   Then, the arithmetic processing circuit (MPU) 90 separates the ground insulation resistance and the ground capacitance included in the measurement signal M, and then sends the suppression signal generation circuit 80 so that the ground capacitance becomes zero. Thus, the suppression level by the suppression signal P is controlled in real time.

この抑圧信号発生回路80に対する演算処理回路(MPU)90によるリアルタイム制御によって、抑圧信号発生回路80から零相変流器(ZCT)50の抑圧部に供給される抑圧信号P、すなわち、零相変流器(ZCT)50の三次側に供給される抑圧電流Pは、対地静電容量がゼロになるように的確に制御される。   The suppression signal P supplied from the suppression signal generation circuit 80 to the suppression unit of the zero-phase current transformer (ZCT) 50, that is, the zero-phase change, by real-time control by the arithmetic processing circuit (MPU) 90 for the suppression signal generation circuit 80. The suppression current P supplied to the tertiary side of the flow device (ZCT) 50 is accurately controlled so that the ground capacitance becomes zero.

これにより、零相変流器(ZCT)50の検出出力は対地静電容量が打ち消されたものとなり、演算処理回路(MPU)90は、この検出出力に基づく測定信号(対地静電容量が打ち消された測定信号)Mから対地絶縁抵抗を求める。   As a result, the detection output of the zero-phase current transformer (ZCT) 50 is the one in which the ground capacitance has been canceled, and the arithmetic processing circuit (MPU) 90 has the measurement signal (the ground capacitance is canceled out) based on this detection output. The ground insulation resistance is obtained from the measured signal) M.

その他、演算処理回路(MPU)90は、表示部101および操作部102の機能等を制御する他、警報出力103等を制御するものである。   In addition, the arithmetic processing circuit (MPU) 90 controls the functions of the display unit 101 and the operation unit 102 and controls the alarm output 103 and the like.

ここで、保護回路23の構成について図3を参照して説明する。図3は、保護回路23の概略構成の一例を示したブロック図である。   Here, the configuration of the protection circuit 23 will be described with reference to FIG. FIG. 3 is a block diagram showing an example of a schematic configuration of the protection circuit 23.

図3において、保護回路23は、トライアック24と、電流検出回路25と、電圧検出回路26と、リレー27と、ヒューズ28とを有している。   In FIG. 3, the protection circuit 23 includes a triac 24, a current detection circuit 25, a voltage detection circuit 26, a relay 27, and a fuse 28.

変圧器1の出力側の第2の電路5が地絡するなどして、B種接地線4に流れている漏洩電流が増大した場合(地絡電流が発生した場合)、この漏電電流に基づく電力が、B種接地線4から重畳トランス(CT)30を介して絶縁監視装置10に注入されることになる。保護回路23は、このような場合にパワーアンプ22や発振器(OSC)21を保護するためのものである。以下にその動作の具体例を説明する。   When the leakage current flowing through the B-type grounding wire 4 increases due to the grounding of the second electric circuit 5 on the output side of the transformer 1 (when a grounding current is generated), this leakage current is used. Electric power is injected into the insulation monitoring apparatus 10 from the B-type ground line 4 via the superposed transformer (CT) 30. The protection circuit 23 is for protecting the power amplifier 22 and the oscillator (OSC) 21 in such a case. A specific example of the operation will be described below.

まず、地絡により発生する電圧を検出した場合、リレー27の駆動部27aは、スイッチ部27bを開動作させる。これにより、パワーアンプ22と重畳トランス(CT)30とが電気的に遮断され、パワーアンプ22に大電流が流入することが防止される。   First, when a voltage generated due to a ground fault is detected, the drive unit 27a of the relay 27 opens the switch unit 27b. Thereby, the power amplifier 22 and the superposed transformer (CT) 30 are electrically disconnected, and a large current is prevented from flowing into the power amplifier 22.

次に、大地絡時等の漏電電流に基づく電力が、B種接地線4から重畳トランス(CT)30を介して保護回路23に注入されたリレー27の開動作が間に合わない場合、保護回路23に流れ込む電流(パワーアンプ22の出力端の電圧)が所定の値にまで増大すると、トライアック24は閉動作する。   Next, when the opening operation of the relay 27 in which the electric power based on the leakage current at the time of a ground fault or the like is injected from the B-type ground line 4 into the protection circuit 23 via the superposed transformer (CT) 30 is not in time, the protection circuit 23 When the current flowing into (the voltage at the output terminal of the power amplifier 22) increases to a predetermined value, the triac 24 is closed.

このようにしてパワーアンプ22の出力端が短絡され、重畳トランス(CT)30と、リレー27と、トライアック24とにより閉路が形成されると電圧がなくなるので、今度は電流検出回路25で所定の電流が流れたことを検出し、リレー27の駆動部27aは、スイッチ部27bを開動作させる。これにより、パワーアンプ22と重畳トランス(CT)30とが電気的に遮断される。そうすると、パワーアンプ22の出力端が短絡されているか否かにかかわらず、パワーアンプ22に大電流が流入することが防止される。   In this way, when the output terminal of the power amplifier 22 is short-circuited and a closed circuit is formed by the superposed transformer (CT) 30, the relay 27, and the triac 24, the voltage disappears. It is detected that a current has flowed, and the drive unit 27a of the relay 27 opens the switch unit 27b. As a result, the power amplifier 22 and the superposed transformer (CT) 30 are electrically disconnected. This prevents a large current from flowing into the power amplifier 22 regardless of whether the output terminal of the power amplifier 22 is short-circuited.

リレー27が開動作されると電流が流れなくなり電流検出ができなくなるが、再び電圧が上昇するので、電圧検出によりリレー27は開動作を継続する。   When the relay 27 is opened, no current flows and current detection becomes impossible, but the voltage rises again, so that the relay 27 continues to open by voltage detection.

更に大電流地絡の場合は、トライアックが焼損する前にヒューズを溶断して保護する。   In the case of a large current ground fault, the fuse is protected by blowing before the TRIAC burns out.

その後、変圧器1の出力側の第2の電路5における地絡事故が復旧し、重畳トランス(CT)30の巻線間に生じている電圧が所定の値より低くなったことを電圧検出回路26が検出すると、リレー27の駆動部27aは、スイッチ部27bを閉動作させる。これにより、パワーアンプ22と重畳トランス(CT)30とが電気的に接続される。   After that, the ground fault in the second electric circuit 5 on the output side of the transformer 1 is recovered, and the voltage detection circuit indicates that the voltage generated between the windings of the superposed transformer (CT) 30 has become lower than a predetermined value. When 26 is detected, the drive part 27a of the relay 27 closes the switch part 27b. As a result, the power amplifier 22 and the superposed transformer (CT) 30 are electrically connected.

ヒューズ28は、B種接地線4から重畳トランス(CT)30を介して注入された電力によって、トライアック24が破損してしまうほどの大きな電流が流れた場合に、パワーアンプ22と重畳トランス(CT)30とを電気的に遮断するためのものである。したがって、トライアック24が破損してしまうことが防止されるように、ヒューズ28の定格とトライアック24の定格を決定するようにする。   The fuse 28 is connected to the power amplifier 22 and the superposed transformer (CT) when a current large enough to damage the triac 24 flows due to the electric power injected from the B-type ground line 4 through the superposed transformer (CT) 30. ) To electrically cut off 30. Therefore, the rating of the fuse 28 and the rating of the triac 24 are determined so that the triac 24 is prevented from being damaged.

次に、上記のように構成された絶縁監視装置10の動作について説明する。   Next, the operation of the insulation monitoring apparatus 10 configured as described above will be described.

まず、監視信号発生回路20の発振器(OSC)21が、演算処理回路(MPU)90のクロック信号に基づいて、商用周波数と異なる所要周波数(例えば20Hzの正弦波)の監視信号Wを発生する。つぎに、この監視信号Wを、重畳トランス(CT)30をドライブできるようにパワーアンプ22が電力増幅する。そして、保護回路23を経て、監視信号発生回路20から、注入手段としての重畳トランス(CT)30を介して、監視信号Wを変圧器1のB種接地線4に注入する。   First, the oscillator (OSC) 21 of the monitor signal generation circuit 20 generates a monitor signal W having a required frequency (for example, a sine wave of 20 Hz) different from the commercial frequency based on the clock signal of the arithmetic processing circuit (MPU) 90. Next, the power amplifier 22 amplifies the power of the monitoring signal W so that the superposed transformer (CT) 30 can be driven. Then, the monitoring signal W is injected into the B-type ground line 4 of the transformer 1 from the monitoring signal generation circuit 20 via the superposition transformer (CT) 30 as injection means via the protection circuit 23.

また、位相調整回路40のエイリアスフィルタ41が、B種接地線4から取り込まれるD種接地基準入力から、スイッチト・キャパシタ・フィルタ(SCF)42で誤動作を起こす周波数成分を事前に除去する。つぎに、スイッチト・キャパシタ・フィルタ(SCF)42が、ローパスフィルタ機能により、エイリアスフィルタ41の出力から、商用周波数およびその高調波等の不要成分を除去して、監視信号Wに相当する基準信号Bを抽出する。   Further, the alias filter 41 of the phase adjustment circuit 40 removes in advance a frequency component that causes a malfunction in the switched capacitor filter (SCF) 42 from the D-type ground reference input fetched from the B-type ground line 4. Next, the switched capacitor filter (SCF) 42 removes unnecessary components such as the commercial frequency and its harmonics from the output of the alias filter 41 by the low-pass filter function, and a reference signal corresponding to the monitoring signal W is obtained. B is extracted.

これと同時に、スイッチト・キャパシタ・フィルタ(SCF)42が、位相シフタ機能により、基準信号Bの位相のタイミングを変圧器1の低圧側電路5の対地静電容量の位相のタイミングに合わせる。すなわち、基準信号Bの位相を変圧器1の低圧側電路5の対地静電容量の位相の逆位相に合わせることで、対地静電容量を打ち消すための正確な位相を生成する。   At the same time, the switched capacitor filter (SCF) 42 synchronizes the phase timing of the reference signal B with the phase timing of the ground capacitance of the low-voltage side circuit 5 of the transformer 1 by the phase shifter function. That is, by matching the phase of the reference signal B with the phase opposite to the phase of the ground capacitance of the low voltage side electric circuit 5 of the transformer 1, an accurate phase for canceling the ground capacitance is generated.

このとき、スイッチト・キャパシタ・フィルタ(SCF)42は、演算処理回路(MPU)90から指令されるあらかじめ決められたクロック周波数に基づいて信号の位相を調整するため、製品出荷時にメーカで設定済み(調整済み)のクロック周波数は、その後の温度変化や経年変化によって変化しない。   At this time, since the switched capacitor filter (SCF) 42 adjusts the phase of the signal based on a predetermined clock frequency commanded from the arithmetic processing circuit (MPU) 90, it is set by the manufacturer at the time of product shipment. The (adjusted) clock frequency does not change with subsequent temperature changes or aging.

つまり、演算処理回路(MPU)90から、温度変化や経年変化に対し高安定な水晶発振器を基に生成され、指令されるクロック周波数を用いることで、スイッチト・キャパシタ・フィルタ(SCF)42による位相合わせは、きわめて正確に行われる。   That is, by using the clock frequency generated and commanded from the arithmetic processing circuit (MPU) 90 based on a crystal oscillator that is highly stable with respect to temperature change and aging change, the switched capacitor filter (SCF) 42 The phase alignment is done very accurately.

一方、検出手段としての零相変流器(ZCT)50が、B種接地線4に流れる電流を検出する。すなわち、このB種接地線4に流れる電流には、変圧器1の低圧側の第2の電路5、大地、B種接地線4、および第1の電路3により形成される経路を還流する、対地インピーダンスZ0に基づく漏電電流が含まれる。そのため、零相変流器(ZCT)50の検出電流には、対地インピーダンスZ0に基づく漏電電流が含まれる。   On the other hand, a zero-phase current transformer (ZCT) 50 as detection means detects the current flowing through the B-type ground wire 4. That is, the current flowing through the B-type ground line 4 is circulated through a path formed by the second electric circuit 5 on the low voltage side of the transformer 1, the ground, the B-type ground line 4, and the first electric circuit 3. The leakage current based on the ground impedance Z0 is included. Therefore, the detected current of the zero-phase current transformer (ZCT) 50 includes a leakage current based on the ground impedance Z0.

そして、測定信号検出回路60のヘッドアンプ61が、零相変流器(ZCT)50で検出された電流を電圧に変換し次段で必要なレベルまで増幅する。つぎに、フィルタ62が、ヘッドアンプ61の出力から商用周波数およびその高調波等の測定信号M以外の不要成分を除去するとともに、測定信号Mを増幅する。そして、レベル変換器63が、フィルタ62の出力すなわちアナログ信号のレベルを、演算処理回路(MPU)90でディジタル処理できるレベルに変換する。すなわち、測定信号検出回路60は、レベル変換器63の出力において、対地インピーダンスZ0に基づく漏電電流が含まれた零相変流器(ZCT)50検出電流から、それに基づく測定信号Mを発生する。   Then, the head amplifier 61 of the measurement signal detection circuit 60 converts the current detected by the zero-phase current transformer (ZCT) 50 into a voltage and amplifies it to a required level in the next stage. Next, the filter 62 removes unnecessary components other than the measurement signal M such as the commercial frequency and its harmonics from the output of the head amplifier 61 and amplifies the measurement signal M. The level converter 63 converts the output of the filter 62, that is, the level of the analog signal into a level that can be digitally processed by the arithmetic processing circuit (MPU) 90. That is, the measurement signal detection circuit 60 generates the measurement signal M based on the zero-phase current transformer (ZCT) 50 detection current including the leakage current based on the ground impedance Z0 at the output of the level converter 63.

また、同期信号発生回路70が、位相調整回路40から出力される基準信号Bに基づいて、測定信号検出回路60から出力される測定信号Mに含まれる変圧器1の低圧側電路5の対地インピーダンスZ0、すなわち対地絶縁抵抗R0と対地静電容量C0とを分離するための同期信号Sを発生する。つまり、同期信号発生回路70は、位相調整回路40から出力される基準信号Bをゼロクロスにより方形波に変換し、得られた同期信号Sを演算処理回路(MPU)90に供給する。   Further, the synchronization signal generation circuit 70 is based on the reference signal B output from the phase adjustment circuit 40, and the ground impedance of the low voltage side electric circuit 5 of the transformer 1 included in the measurement signal M output from the measurement signal detection circuit 60. Z0, that is, a synchronization signal S for separating the ground insulation resistance R0 and the ground capacitance C0 is generated. That is, the synchronization signal generation circuit 70 converts the reference signal B output from the phase adjustment circuit 40 into a square wave by zero crossing, and supplies the obtained synchronization signal S to the arithmetic processing circuit (MPU) 90.

このような状態で、演算処理回路(MPU)90が、零相変流器(ZCT)50の検出出力から測定信号検出回路60を経て得られる測定信号Mと、B種接地線4から取り込まれるD種接地基準入力から、位相調整回路40を経て出力される基準信号Bに基づき同期信号発生回路70から入力される同期信号Sとに基づいて、測定信号Mに含まれる変圧器1の低圧側電路5の対地絶縁抵抗R0と対地静電容量C0とを分離する。   In such a state, the arithmetic processing circuit (MPU) 90 is fetched from the measurement signal M obtained from the detection output of the zero-phase current transformer (ZCT) 50 via the measurement signal detection circuit 60 and the B-type ground line 4. The low-voltage side of the transformer 1 included in the measurement signal M based on the synchronization signal S input from the synchronization signal generation circuit 70 based on the reference signal B output from the D-type ground reference input via the phase adjustment circuit 40 The ground insulation resistance R0 and the ground capacitance C0 of the electric circuit 5 are separated.

そして、演算処理回路(MPU)90が、測定信号Mに含まれる対地絶縁抵抗R0と対地静電容量C0とを分離した後、その対地静電容量C0がゼロになるように、抑圧信号発生回路80に対して抑圧信号Pによる抑圧レベルをリアルタイム制御する。すなわち、零相変流器(ZCT)50で対地静電容量C0の成分である電流(無効成分電流)が磁束的にゼロとなるように、演算処理回路(MPU)90が抑圧信号発生回路80をリアルタイム制御する。   Then, after the arithmetic processing circuit (MPU) 90 separates the ground insulation resistance R0 and the ground capacitance C0 included in the measurement signal M, the suppression signal generation circuit so that the ground capacitance C0 becomes zero. 80, the suppression level by the suppression signal P is controlled in real time. That is, in the zero-phase current transformer (ZCT) 50, the arithmetic processing circuit (MPU) 90 controls the suppression signal generation circuit 80 so that the current (invalid component current) which is a component of the ground capacitance C0 becomes zero in terms of magnetic flux. Real-time control.

この抑圧信号発生回路80に対する演算処理回路(MPU)90によるリアルタイム制御によって、抑圧信号発生回路80は、測定信号Mに含まれる対地静電容量を打ち消すための抑圧信号Pを発生する。この抑圧信号Pは、抑圧信号発生回路80から零相変流器(ZCT)50の三次側に抑圧電流Pとして供給され、零相変流器(ZCT)50において対地静電容量C0が磁束的にゼロとなるよう抑圧する。結果として、零相変流器(ZCT)50における対地静電容量C0が磁束的にゼロとなる。   The suppression signal generation circuit 80 generates a suppression signal P for canceling the ground capacitance included in the measurement signal M by real-time control by the arithmetic processing circuit (MPU) 90 for the suppression signal generation circuit 80. The suppression signal P is supplied as a suppression current P from the suppression signal generation circuit 80 to the tertiary side of the zero-phase current transformer (ZCT) 50, and the ground-capacitance C 0 is magnetically reflected in the zero-phase current transformer (ZCT) 50. To zero. As a result, the ground capacitance C0 in the zero-phase current transformer (ZCT) 50 becomes zero in terms of magnetic flux.

これにより、零相変流器(ZCT)50の検出出力は対地静電容量C0が打ち消されたものとなり、演算処理回路(MPU)90は、この検出出力に基づく測定信号(対地静電容量C0が打ち消された測定信号)Mから対地絶縁抵抗R0を求める。   As a result, the detection output of the zero-phase current transformer (ZCT) 50 becomes a value obtained by canceling the ground capacitance C0, and the arithmetic processing circuit (MPU) 90 detects the measurement signal (ground capacitance C0) based on this detection output. The ground insulation resistance R0 is obtained from the measurement signal M).

なお、上記の実施形態では、スイッチト・キャパシタ・フィルタ(SCF)42が、位相シフタ機能により、基準信号Bの位相を変圧器1の低圧側電路5の対地静電容量の位相の逆位相に合わせることで、対地静電容量を打ち消すための正確な位相を生成するように構成したが、これに限定するものでない。すなわち、例えば、基準信号Bの位相を変圧器1の低圧側電路5の対地静電容量の位相と同位相に合わせることも可能である。この場合も、対地静電容量を打ち消すために必要な正確な位相を生成することができる。   In the above embodiment, the switched capacitor filter (SCF) 42 has the phase shifter function to change the phase of the reference signal B to a phase opposite to the phase of the ground capacitance of the low-voltage side circuit 5 of the transformer 1. By combining, it is configured to generate an accurate phase for canceling the ground capacitance, but is not limited to this. That is, for example, the phase of the reference signal B can be matched with the phase of the ground capacitance of the low voltage side electric circuit 5 of the transformer 1. Again, the exact phase required to cancel the ground capacitance can be generated.

そして、この場合は、位相調整回路のスイッチト・キャパシタ・フィルタ(SCF)42の後段、または抑圧信号発生回路80の前段に、適宜の位相反転回路を設けることで、位相合わせに加えて、基準信号Bの位相を変圧器1の低圧側電路5の対地静電容量の位相の逆位相に整合することができる。   In this case, an appropriate phase inversion circuit is provided in the subsequent stage of the switched capacitor filter (SCF) 42 of the phase adjustment circuit or in the previous stage of the suppression signal generation circuit 80, so that in addition to the phase alignment, the reference The phase of the signal B can be matched with the phase opposite to the phase of the ground capacitance of the low voltage side electric circuit 5 of the transformer 1.

この発明による絶縁監視装置の一実施形態を示すブロック図である。It is a block diagram which shows one Embodiment of the insulation monitoring apparatus by this invention. 位相調整回路のスイッチト・キャパシタ・フィルタ(SCF)の特性の一例を示すグラフである。It is a graph which shows an example of the characteristic of the switched capacitor filter (SCF) of a phase adjustment circuit. 保護回路の一例を示すブロック図である。It is a block diagram which shows an example of a protection circuit. 従来の絶縁監視装置の一例を示すブロック図である。It is a block diagram which shows an example of the conventional insulation monitoring apparatus.

符号の説明Explanation of symbols

1 変圧器(受電変圧器)
2 負荷
3 第1の電路
4 B種接地線
5 第2の電路
10 絶縁監視装置
20 監視信号発生回路
21 発振器(OSC)
22 パワーアンプ
23 保護回路
30 注入手段(重畳トランス;CT)
40 位相調整回路
41 エイリアスフィルタ
42 スイッチト・キャパシタ・フィルタ(SCF)
50 検出手段(零相変流器;ZCT)
60 測定信号検出回路
61 ヘッドアンプ
62 フィルタ
63 レベル変換器
70 同期信号発生回路
80 抑圧信号発生回路
90 演算処理回路(MPU)
1 Transformer (Receiving transformer)
2 Load 3 First Electric Circuit 4 Type B Grounding Line 5 Second Electric Circuit 10 Insulation Monitoring Device 20 Monitoring Signal Generation Circuit 21 Oscillator (OSC)
22 Power amplifier 23 Protection circuit 30 Injection means (superposition transformer; CT)
40 Phase adjustment circuit 41 Alias filter 42 Switched capacitor filter (SCF)
50 Detection means (Zero phase current transformer; ZCT)
60 measurement signal detection circuit 61 head amplifier 62 filter 63 level converter 70 synchronization signal generation circuit 80 suppression signal generation circuit 90 arithmetic processing circuit (MPU)

Claims (11)

商用周波数と異なる周波数の監視信号を変圧器のB種接地線に注入する監視信号発生回路と、
前記B種接地線から取り込まれるD種接地基準入力から前記監視信号に相当する基準信号を抽出し、あらかじめ決められたクロック周波数に基づいて、当該基準信号の位相のタイミングを前記変圧器の低圧側電路の対地静電容量の位相のタイミングに合わせる位相調整回路と、
前記B種接地線に流れる電流を検出する検出手段と、
前記検出手段の検出出力から商用周波数およびその高調波等の不要成分を除去して測定信号を検出する測定信号検出回路と、
前記位相調整回路から出力される前記基準信号に基づいて、前記測定信号に含まれる前記対地静電容量を打ち消すための抑圧信号を発生し、当該抑圧信号を前記検出手段の抑圧部に供給する抑圧信号発生回路と、
前記抑圧信号の供給により前記対地静電容量が打ち消された前記検出手段の検出出力に基づく前記測定信号から、前記変圧器の低圧側電路の対地絶縁抵抗を求める演算処理回路と、
を備えたことを特徴とする絶縁監視装置。
A monitoring signal generating circuit for injecting a monitoring signal having a frequency different from the commercial frequency into the B-type ground line of the transformer;
A reference signal corresponding to the monitoring signal is extracted from a D-type ground reference input taken from the B-type ground line, and the phase timing of the reference signal is determined based on a predetermined clock frequency on the low-voltage side of the transformer. A phase adjustment circuit that matches the phase timing of the electrostatic capacitance of the circuit,
Detecting means for detecting a current flowing in the B-type ground line;
A measurement signal detection circuit for detecting a measurement signal by removing unnecessary components such as a commercial frequency and its harmonics from the detection output of the detection means;
Suppression that generates a suppression signal for canceling out the ground capacitance included in the measurement signal based on the reference signal output from the phase adjustment circuit and supplies the suppression signal to the suppression unit of the detection means A signal generation circuit;
An arithmetic processing circuit for obtaining a ground insulation resistance of a low-voltage side electric circuit of the transformer from the measurement signal based on a detection output of the detection unit in which the ground capacitance is canceled by the supply of the suppression signal;
An insulation monitoring device comprising:
前記位相調整回路から出力される前記基準信号に基づいて、前記測定信号に含まれる前記対地絶縁抵抗と前記対地静電容量とを分離するための同期信号を発生する同期信号発生回路をさらに備えたことを特徴とする請求項1記載の絶縁監視装置。   A synchronization signal generating circuit for generating a synchronization signal for separating the ground insulation resistance and the ground capacitance included in the measurement signal based on the reference signal output from the phase adjustment circuit; The insulation monitoring apparatus according to claim 1. 前記演算処理回路は、前記測定信号および前記同期信号に基づいて、前記測定信号に含まれる前記対地絶縁抵抗と前記対地静電容量とを分離することを特徴とする請求項2記載の絶縁監視装置。   3. The insulation monitoring apparatus according to claim 2, wherein the arithmetic processing circuit separates the ground insulation resistance and the ground capacitance included in the measurement signal based on the measurement signal and the synchronization signal. . 前記演算処理回路は、前記対地絶縁抵抗と分離した前記対地静電容量がゼロになるように前記抑圧信号発生回路に対して前記抑圧信号による抑圧レベルをリアルタイム制御することを特徴とする請求項3記載の絶縁監視装置。   4. The arithmetic processing circuit performs real-time control of a suppression level by the suppression signal to the suppression signal generation circuit so that the ground capacitance separated from the ground insulation resistance becomes zero. The insulation monitoring device described. 前記位相調整回路は、前記演算処理回路から入力される前記あらかじめ決められたクロック周波数に基づいて、前記基準信号の位相のタイミングを調整することを特徴とする請求項1〜4のいずれか1項記載の絶縁監視装置。   5. The phase adjustment circuit adjusts the phase timing of the reference signal based on the predetermined clock frequency input from the arithmetic processing circuit. 6. The insulation monitoring device described. 前記検出手段は、前記B種接地線に電磁結合され、前記抑圧信号が三次側に供給されることを特徴とする請求項1〜5のいずれか1項記載の絶縁監視装置。   The insulation monitoring apparatus according to claim 1, wherein the detection unit is electromagnetically coupled to the B-type ground line, and the suppression signal is supplied to a tertiary side. 前記監視信号発生回路は、注入手段を介して前記監視信号を前記B種接地線に注入するものであり、出力段に、前記B種接地線から前記注入手段を介して逆に注入される異常電流から当該監視信号発生回路を保護する保護回路を備えたことを特徴とする請求項1〜6のいずれか1項記載の絶縁監視装置。   The monitoring signal generating circuit injects the monitoring signal into the B-type ground line via an injection unit, and an abnormality that is reversely injected into the output stage from the B-type ground line through the injection unit. The insulation monitoring apparatus according to any one of claims 1 to 6, further comprising a protection circuit that protects the monitoring signal generation circuit from an electric current. 商用周波数と異なる周波数の監視信号を変圧器のB種接地線に注入する監視信号発生回路と、
前記B種接地線から取り込まれるD種接地基準入力から前記監視信号に相当する基準信号を抽出し、あらかじめ決められたクロック周波数に基づいて、当該基準信号の位相を前記変圧器の低圧側電路の対地静電容量の位相の逆位相に合わせる位相調整回路と、
前記B種接地線に流れる電流を検出する検出手段と、
前記検出手段の検出出力から商用周波数およびその高調波等の不要成分を除去して測定信号を検出する測定信号検出回路と、
前記位相調整回路から出力される前記基準信号に基づいて、前記測定信号に含まれる前記変圧器の低圧側電路の対地絶縁抵抗と前記対地静電容量とを分離するための同期信号を発生する同期信号発生回路と、
前記位相調整回路から出力される前記基準信号に基づいて、前記測定信号に含まれる前記対地静電容量を打ち消すための抑圧信号を発生し、当該抑圧信号を前記検出手段の抑圧部に供給する抑圧信号発生回路と、
前記測定信号および前記同期信号に基づいて、前記測定信号に含まれる前記対地絶縁抵抗と前記対地静電容量とを分離し、前記対地静電容量がゼロになるように前記抑圧信号発生回路に対して前記抑圧信号による抑圧レベルをリアルタイム制御し、前記抑圧信号の供給により前記対地静電容量が打ち消された前記検出手段の検出出力に基づく前記測定信号から前記対地絶縁抵抗を求める演算処理回路と、
を備えたことを特徴とする絶縁監視装置。
A monitoring signal generating circuit for injecting a monitoring signal having a frequency different from the commercial frequency into the B-type ground line of the transformer;
A reference signal corresponding to the monitoring signal is extracted from a D-type ground reference input taken from the B-type ground line, and based on a predetermined clock frequency, the phase of the reference signal is set to the low-voltage side circuit of the transformer. A phase adjustment circuit that adjusts to the opposite phase of the ground capacitance, and
Detecting means for detecting a current flowing in the B-type ground line;
A measurement signal detection circuit for detecting a measurement signal by removing unnecessary components such as a commercial frequency and its harmonics from the detection output of the detection means;
Based on the reference signal output from the phase adjustment circuit, a synchronization signal for generating a synchronization signal for separating the ground insulation resistance of the low-voltage side electric circuit of the transformer and the ground capacitance included in the measurement signal A signal generation circuit;
Suppression that generates a suppression signal for canceling out the ground capacitance included in the measurement signal based on the reference signal output from the phase adjustment circuit and supplies the suppression signal to the suppression unit of the detection means A signal generation circuit;
Based on the measurement signal and the synchronization signal, the ground insulation resistance and the ground capacitance included in the measurement signal are separated, and the suppression signal generation circuit is configured so that the ground capacitance becomes zero. An arithmetic processing circuit that performs real-time control of a suppression level by the suppression signal and obtains the ground insulation resistance from the measurement signal based on the detection output of the detection unit in which the ground capacitance is canceled by the supply of the suppression signal;
An insulation monitoring device comprising:
前記位相調整回路は、前記演算処理回路から入力される前記あらかじめ決められたクロック周波数に基づいて、前記基準信号の位相のタイミングを調整することを特徴とする請求項8記載の絶縁監視装置。   9. The insulation monitoring apparatus according to claim 8, wherein the phase adjustment circuit adjusts the phase timing of the reference signal based on the predetermined clock frequency input from the arithmetic processing circuit. 前記検出手段は、前記B種接地線に電磁結合され、前記抑圧信号が三次側に供給されることを特徴とする請求項8または請求項9記載の絶縁監視装置。   The insulation monitoring apparatus according to claim 8 or 9, wherein the detection means is electromagnetically coupled to the B-type ground line, and the suppression signal is supplied to the tertiary side. 前記監視信号発生回路は、注入手段を介して前記監視信号を前記B種接地線に注入するものであり、出力段に、前記B種接地線から前記注入手段を介して逆に注入される異常電流から当該監視信号発生回路を保護する保護回路を備えたことを特徴とする請求項8〜10のいずれか1項記載の絶縁監視装置。   The monitoring signal generating circuit injects the monitoring signal into the B-type ground line via an injection unit, and an abnormality that is reversely injected into the output stage from the B-type ground line through the injection unit. The insulation monitoring apparatus according to claim 8, further comprising a protection circuit that protects the monitoring signal generation circuit from an electric current.
JP2007062428A 2007-03-12 2007-03-12 Insulation monitoring device Active JP5039401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062428A JP5039401B2 (en) 2007-03-12 2007-03-12 Insulation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062428A JP5039401B2 (en) 2007-03-12 2007-03-12 Insulation monitoring device

Publications (2)

Publication Number Publication Date
JP2008224392A true JP2008224392A (en) 2008-09-25
JP5039401B2 JP5039401B2 (en) 2012-10-03

Family

ID=39843202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062428A Active JP5039401B2 (en) 2007-03-12 2007-03-12 Insulation monitoring device

Country Status (1)

Country Link
JP (1) JP5039401B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036884A (en) * 2011-08-09 2013-02-21 Fuji Electric Fa Components & Systems Co Ltd Insulation monitoring method and insulation monitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206266A (en) * 1989-02-06 1990-08-16 Fujitsu Ltd Howling detecting/decreasing circuit
JP2005181148A (en) * 2003-12-19 2005-07-07 Midori Anzen Co Ltd Insulation monitoring device
JP2006329634A (en) * 2005-05-23 2006-12-07 Matsushita Electric Works Ltd Device for detecting angular velocity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02206266A (en) * 1989-02-06 1990-08-16 Fujitsu Ltd Howling detecting/decreasing circuit
JP2005181148A (en) * 2003-12-19 2005-07-07 Midori Anzen Co Ltd Insulation monitoring device
JP2006329634A (en) * 2005-05-23 2006-12-07 Matsushita Electric Works Ltd Device for detecting angular velocity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036884A (en) * 2011-08-09 2013-02-21 Fuji Electric Fa Components & Systems Co Ltd Insulation monitoring method and insulation monitor

Also Published As

Publication number Publication date
JP5039401B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
CA2805587C (en) Sensing and control electronics for a power grid protection system
EP2596565B1 (en) Continuous uninterruptable ac grounding system for power system protection
CN107106228B (en) Power monitoring circuit and method for reducing leakage current in RF generator
US10985559B2 (en) Method and system for improved operation of power grid components in the presence of direct current (DC)
US10067517B2 (en) Method and devices for extended insulation-fault search using a multifunctional test current
WO2014090816A1 (en) Ground fault direction determination for medium or high voltage distribution networks
EP3108556A1 (en) Method for detecting an open-phase condition of a transformer
RU2655670C2 (en) Method of automatic compensation of the current of a single phase fault to earth in a network with an arc-suppressing reactor in the neutral
AU2004200271A1 (en) Earth leakage protection device and electrical switchgear unit comprising such a device
EP2243205A1 (en) Circuit protection device
JP5039401B2 (en) Insulation monitoring device
JP2010038787A (en) Insulation monitoring device
JP2010066162A (en) Insulation monitoring apparatus
KR101527366B1 (en) Arc detection circuit by contact failure
JP2020038068A (en) Insulation monitoring device and insulation monitoring system
JP2009300157A (en) Insulation monitoring device
CN110676813B (en) Power supply unit and method for determining Rogowski current measurement direct current component on power supply unit
JP2014142230A (en) High voltage insulation monitoring method and high voltage insulation monitoring device
Bengtsson et al. Innovative injection-based 100% stator earth-fault protection
JP2010268543A (en) Electric leakage preventing monitoring system
JP2012088275A (en) Insulation level monitoring device
JPH09229985A (en) Testing device for warning detection of insulation monitoring apparatus
KR20170123096A (en) Leakage Current Detector
KR20190019764A (en) Neutral ground reactor for preventing harmonics and manufacture method thereof
JP2002040078A (en) Insulation monitoring device for low-voltage cable run

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5039401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250