JP2008223876A - Vibration damping device - Google Patents

Vibration damping device Download PDF

Info

Publication number
JP2008223876A
JP2008223876A JP2007062775A JP2007062775A JP2008223876A JP 2008223876 A JP2008223876 A JP 2008223876A JP 2007062775 A JP2007062775 A JP 2007062775A JP 2007062775 A JP2007062775 A JP 2007062775A JP 2008223876 A JP2008223876 A JP 2008223876A
Authority
JP
Japan
Prior art keywords
housing
mass member
independent mass
vibration
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007062775A
Other languages
Japanese (ja)
Inventor
Yoshinori Yasumoto
吉範 安本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2007062775A priority Critical patent/JP2008223876A/en
Publication of JP2008223876A publication Critical patent/JP2008223876A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration damping device with novel structure capable of improving damping performance while securing industrial productivity. <P>SOLUTION: In this abutting type vibration damping device, an independent mass member 14 is enclosed in a non-contacting state and jumping displaceably in a housing 12 of hollow sealed structure mounted on a vibrating member to be damped, and upon input of vibration, the independent mass member 14 jumps and displaces with respect to the housing 12, and is elastically abutted on the housing 12 on both sides in the vibration input direction. Powder 38 is interposed in gaps 30, 36, 32 between outer faces 28, 32, 32 of the independent mass member 14 and inner faces 22, 34, 34 of the housing 12. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、振動が問題となる振動部材に装着されて振動部材の振動を低減する制振装置に関するものである。   The present invention relates to a vibration damping device that is attached to a vibration member in which vibration is a problem and reduces the vibration of the vibration member.

従来から、振動が問題となる振動部材の振動を低減するために、各種の制振装置が提案されている。その一つとして、制振すべき振動部材にばね部材を介してマス部材を弾性支持せしめることにより、振動部材に対する副振動系を構成するようにしたダイナミックダンパが知られている。しかしながら、ダイナミックダンパでは、副振動系の固有振動数がチューニングされている特定の周波数域でしか有効な制振効果が発揮され難いという問題があった。   Conventionally, various types of vibration control devices have been proposed in order to reduce the vibration of a vibration member in which vibration is a problem. As one of them, a dynamic damper is known in which a mass member is elastically supported by a vibration member to be damped via a spring member to constitute a sub vibration system for the vibration member. However, the dynamic damper has a problem that it is difficult to exert an effective damping effect only in a specific frequency range in which the natural frequency of the secondary vibration system is tuned.

そこで、本出願人は、先に、特許文献1において、振動部材に固設されたハウジングに対して独立マス部材を隙間を隔てて非接着で相対変位可能に収容配置し、振動入力時に、独立マス部材をハウジングに対して弾性的に打ち当たらせることにより、打ち当たり時の滑り摩擦や衝突によるエネルギー損失等を利用して制振効果を得るようにした制振装置を提案した。このような制振装置においては、小さなマス質量で広い周波数域の振動に対して制振効果を発揮することが出来る。   In view of this, the applicant previously described in Patent Document 1 that the independent mass member is housed and disposed in a non-adhering and displaceable manner with respect to the housing fixed to the vibration member so that the vibration can be input independently. We proposed a damping device that obtains a damping effect by elastically hitting the mass member against the housing, utilizing sliding friction at the time of hitting, energy loss due to collision, and the like. In such a vibration damping device, it is possible to exert a vibration damping effect against vibrations in a wide frequency range with a small mass.

ところで、上述の如き打ち当たり型の制振装置においては、近年、制振性能の更なる向上が要求されており、特に、減衰性能の更なる向上が要求されている。このような要求に応えるために、本発明者が検討したところ、独立マス部材とハウジングの打ち当たり面間に形成される隙間を十分に小さくすることが望ましいことが判ってきた。   By the way, in the hitting vibration damping device as described above, in recent years, further improvement of the vibration damping performance has been demanded, and in particular, further improvement of the damping performance has been demanded. In order to meet such a demand, the present inventor has examined that it is desirable to sufficiently reduce the gap formed between the contact surface of the independent mass member and the housing.

しかしながら、独立マス部材とハウジングの打ち当たり面間に形成される隙間を1mm以下、好ましくは数百ミクロンオーダーで十分に小さくしようとしても、独立マス部材やハウジングを製造する際には、その寸法誤差を考慮しなければならないことから、特に工業生産性を考慮すると、独立マス部材とハウジングの打ち当たり面間に形成される隙間を十分に小さくすることが極めて難しいという問題があった。   However, even when an attempt is made to make the gap formed between the contact surface of the independent mass member and the housing sufficiently smaller than 1 mm, preferably on the order of several hundred microns, when manufacturing the independent mass member or the housing, the dimensional error In view of industrial productivity in particular, there is a problem that it is extremely difficult to sufficiently reduce the gap formed between the contact surface of the independent mass member and the housing.

国際公開第00/14429号パンフレットInternational Publication No. 00/14429 Pamphlet

ここにおいて、本発明は、上述の如き事情を背景として為されたものであって、その解決課題とするところは、工業生産性を確保しつつ、減衰性能の更なる向上を図ることが出来る、新規な構造の制振装置を提供することにある。   Here, the present invention has been made in the background as described above, and the problem to be solved is that it is possible to further improve the damping performance while ensuring industrial productivity. The object is to provide a vibration damping device having a novel structure.

以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。   Hereinafter, the aspect of this invention made | formed in order to solve such a subject is described. In addition, the component employ | adopted in each aspect as described below is employable by arbitrary combinations as much as possible.

本発明は、制振すべき振動部材に取り付けられる中空の密閉構造とされたハウジングに対して、非接着で飛び跳ね変位可能に独立マス部材を収容配置すると共に、独立マス部材の表面とハウジングの内面との少なくとも一方を当接ゴム層で形成して、振動が入力された際に、独立マス部材がハウジングに対して飛び跳ね変位し、振動入力方向の両側でハウジングに対して弾性的に打ち当たるようにした制振装置において、独立マス部材の表面とハウジングの内面との隙間に、かかる隙間より小さな粉体を介在せしめたことを、特徴とする。   The present invention accommodates and disposes an independent mass member in a non-adhering and displaceable manner with respect to a housing having a hollow hermetic structure attached to a vibration member to be damped, and includes a surface of the independent mass member and an inner surface of the housing. When the vibration is input, the independent mass member jumps and displaces against the housing and elastically strikes the housing on both sides in the vibration input direction. The vibration damping device according to the present invention is characterized in that a powder smaller than the gap is interposed in the gap between the surface of the independent mass member and the inner surface of the housing.

このような本発明に従う構造とされた制振装置においては、振動入力に際して、独立マス部材が粉体を介してハウジングに打ち当たることとなる。要するに、独立マス部材とハウジングの打ち当たり面間の隙間が、実質的に粉体によって極めて小さく設定されるのであり、独立マス部材とハウジングの打ち当たり面間の隙間寸法があたかも粉体分だけ小さく設定されたこととなる。   In the vibration damping device having such a structure according to the present invention, the independent mass member hits the housing through the powder when the vibration is input. In short, the gap between the contact surface of the independent mass member and the housing is substantially set by the powder so that the gap between the contact surface of the independent mass member and the housing is as small as the powder. It is set.

それ故、独立マス部材やハウジングの設計および製造工程では、製造上の誤差を考慮して独立マス部材をハウジング内に収容するのに十分な大きさをもって、それら独立マス部材とハウジングの打ち当たり面間の隙間寸法を設定しつつも、そこに粉体を介在させたことで、かかる隙間寸法を実質的に十分に小さく設定することが可能となるのである。特に、粉体は、設定される隙間寸法よりも小さいことから、独立マス部材とハウジングをそれぞれ製造した後、それらを組み合わせる前或いは組み合わせた後の、ハウジングを密閉する前の工程で、組み合わせた独立マス部材とハウジングの打ち当たり面間に粉体を入れるだけで、独立マス部材とハウジングの打ち当たり面の隙間の大きさを事後的に適宜に調節して設定することが出来るのである。   Therefore, in designing and manufacturing processes of independent mass members and housings, the contact surfaces of the independent mass members and the housing should be large enough to accommodate the independent mass members in the housing in consideration of manufacturing errors. The gap dimension can be set to be substantially sufficiently small by setting the gap dimension therebetween while interposing the powder there. In particular, since the powder is smaller than the set gap size, after the independent mass member and the housing are manufactured, they are combined before and after the combination, and before the housing is sealed. The size of the gap between the contact surface of the independent mass member and the housing can be adjusted appropriately afterwards by simply putting powder between the contact surfaces of the mass member and the housing.

従って、本発明においては、上述の如く独立マス部材とハウジングの打ち当たり面間の隙間の実質的な大きさを、部品製造後に粉体を利用して補正し、十分に小さく且つ略一定に設定することが可能となるのである。その結果、独立マス部材のハウジングに対する打ち当たり作用に基づく、目的とする制振効果を、工業生産上で問題となる程に著しく高度な部品寸法管理等を必要とすることなく、安定して享受することが可能となるのである。   Therefore, in the present invention, as described above, the substantial size of the gap between the contact surface of the independent mass member and the housing is corrected by using powder after manufacturing the parts, and is set to be sufficiently small and substantially constant. It becomes possible to do. As a result, the desired vibration damping effect based on the striking action of the independent mass member against the housing can be enjoyed stably without the need for remarkably sophisticated part dimension management that is a problem in industrial production. It becomes possible to do.

加えて、本発明に従う構造とされた制振装置においては、独立マス部材のハウジングへの打ち当たりに際して、それらの打ち当たり面間に介在する粉体自体の摩擦作用等に基づく制振性能の向上効果も発揮される。即ち、打ち当たりに際しては、独立マス部材とハウジングの弾性的な打ち当たり面に対して粉体が入り込むようにして弾性的な打ち当たり面が複雑に弾性変形したり、或いは粉体自体が複雑に弾性変形したりすることで、打ち当たり面間における弾性変形に伴う減衰効果の向上が図られ得る。また、打ち当たりに際しては、粉体相互間での摩擦も発生することとなり、この摩擦に基づいて更なる減衰効果や振動エネルギーの吸収効果が発揮されて、制振性能の向上が図られ得るのである。   In addition, in the vibration damping device structured according to the present invention, when the independent mass member strikes the housing, the vibration damping performance is improved based on the frictional action of the powder itself interposed between the bumping surfaces. The effect is also demonstrated. That is, at the time of hitting, the elastic hitting surface is complicated and elastically deformed so that the powder enters the elastic hitting surfaces of the independent mass member and the housing, or the powder itself is complicated. By performing elastic deformation, it is possible to improve the damping effect accompanying the elastic deformation between the striking surfaces. Also, when hitting, friction between powders will also occur, and based on this friction, further damping effect and vibration energy absorption effect will be exhibited, so that the damping performance can be improved. is there.

ところで、本発明に採用される独立マス部材やハウジングの具体的形状は特に限定されるものでなく、例えば矩形ブロック形状やボール形状等の独立マス部材とその外周面形状に対応した内周面形状のハウジングの組み合わせや、球状外周面の独立マス部材と多面体状内周面のハウジングの組み合わせなど、制振すべき振動入力方向での独立マス部材の飛び跳ね変位とハウジングへの打ち当たりが発現される各種構造が採用される。   By the way, the specific shape of the independent mass member and the housing adopted in the present invention is not particularly limited, and for example, the independent mass member such as a rectangular block shape or a ball shape and the inner peripheral surface shape corresponding to the outer peripheral surface shape. Such as a combination of housings, a combination of an independent mass member with a spherical outer peripheral surface and a housing with a polyhedral inner peripheral surface, the jumping displacement of the independent mass member in the vibration input direction to be damped and the impact on the housing are manifested Various structures are adopted.

ここにおいて、好適には 独立マス部材の表面の振動入力方向での断面形状とハウジングの内面の振動入力方向での断面形状が互いに相似形とされる。これにより、独立マス部材をハウジング内での変位方向中央に位置せしめた状態下で独立マス部材とハウジングの隙間の大きさを周方向で略一定にすることが可能となって、かかる隙間に粉体を効率的に分散させて、粉体の介在による打ち当たり面間の隙間の実質的な減少効果をより安定して享受することが可能となる。   Here, the cross-sectional shape in the vibration input direction of the surface of the independent mass member and the cross-sectional shape in the vibration input direction of the inner surface of the housing are preferably similar to each other. As a result, the size of the gap between the independent mass member and the housing can be made substantially constant in the circumferential direction with the independent mass member positioned at the center of the displacement direction in the housing. By efficiently dispersing the body, it is possible to more stably enjoy the substantial reduction effect of the gap between the striking surfaces due to the presence of the powder.

特に好適には、独立マス部材として円筒状外周面を備えているものを採用すると共に、ハウジングとして独立マス部材の外周面よりも一回り大きな円筒状内周面を備えているものを採用して、制振すべき振動が独立マス部材及びハウジングの軸直角方向に入力されて、独立マス部材の円筒状外周面とハウジングの円筒状内周面とが打ち当たるようにされた構成が、採用される。   Particularly preferably, an independent mass member having a cylindrical outer peripheral surface is employed, and a housing having a cylindrical inner peripheral surface that is slightly larger than the outer peripheral surface of the independent mass member is employed. The configuration is such that the vibration to be damped is input in the direction perpendicular to the axis of the independent mass member and the housing, and the cylindrical outer peripheral surface of the independent mass member and the cylindrical inner peripheral surface of the housing abut against each other. The

このように打ち当たり面を相似の円筒面形状とすることにより、粉体を打ち当たり面間に介在させることによる減衰効果の向上ひいては制振効果の向上が一層効率的に実現される。即ち、相似の円筒面形状の場合には、打ち当たり面が変形しないと仮定すると軸方向に直線的に延びる線当たりとなるが、ここに粉体を介在させることにより、線当たりであった打ち当たり面が周方向両側に大きく延びて面当たりとなるからである。要するに、相似の円筒面形状の打ち当たり面の場合には、打ち当たり面が変形しないと仮定すると、独立マス部材がハウジングに打ち当たった状態で、中央の線当たりとなる部位から周方向両側に向かって次第に隙間が大きくなる。この漸変する隙間は、たとえ隙間寸法を十分に小さくしたところで、相似の円筒面形状の打ち当たり面を採用する限り存在する。しかし、この隙間に粉体を介在させることにより、粉体は隙間の大きさに応じて介在量が自動的に調節されることとなって、打ち当たり面が広い領域に亘って形成され得るのである。   Thus, by making the contact surface into a similar cylindrical surface shape, the improvement of the damping effect and the improvement of the vibration damping effect by interposing the powder between the contact surfaces can be realized more efficiently. In other words, in the case of a similar cylindrical surface shape, assuming that the hitting surface does not deform, it will be a hit per line extending linearly in the axial direction. This is because the contact surface greatly extends on both sides in the circumferential direction and comes into contact with the surface. In short, in the case of a similar cylindrical surface hitting surface, assuming that the hitting surface does not deform, with the independent mass member hitting the housing, from the part that hits the center line to both sides in the circumferential direction The gap gradually becomes larger. This gradually changing gap exists as long as the size of the gap is made sufficiently small and a similar cylindrical contact surface is employed. However, by interposing the powder in the gap, the amount of the powder is automatically adjusted according to the size of the gap, so that the contact surface can be formed over a wide area. is there.

その結果、打ち当たり面を構成する当接ゴム層の打ち当たりに伴う剪断変形が広い領域で効率的に生ぜしめられて、それに基づく減衰効果ひいては制振効果が大幅に向上され得るのである。それに加えて、隙間に介在せしめられた粉体においても、広い領域に亘って摩擦や変形に基づく減衰効果が発揮されることとなり、目的とする制振効果の更なる向上が図られ得るのである。   As a result, the shear deformation accompanying the hitting of the contact rubber layer constituting the hitting surface can be efficiently generated in a wide region, and the damping effect and the vibration damping effect based thereon can be greatly improved. In addition to this, even in the powder intervened in the gap, the damping effect based on friction and deformation is exhibited over a wide region, and the intended vibration damping effect can be further improved. .

また、円筒状外周面の独立マス部材を採用することにより、独立マス部材においてハウジング内での中心軸回りの回転が許容されて、独立マス部材のハウジングに対する打ち当たり部位が周方向に適当に変化することとなる。その結果、独立マス部材の偏磨耗等が回避されて耐久性が向上され、長期間に亘って安定した制振効果を得ることが可能となる。   In addition, by adopting an independent mass member with a cylindrical outer peripheral surface, rotation of the independent mass member around the central axis within the housing is allowed, and the contact portion of the independent mass member with respect to the housing appropriately changes in the circumferential direction. Will be. As a result, uneven wear or the like of the independent mass member is avoided, durability is improved, and a stable vibration damping effect can be obtained over a long period of time.

しかも、粉体を介在させることで面当たりとなった、独立マス部材とハウジングの打ち合たり面は、そこに介在する粉体層が各粉体の流動性に基づいて柔軟に変形し得ることから、打ち当たりに際して粉体層内で粉体の流動乃至は移動が発生して粉体間や粉体と独立マス部材やハウジングとの接触部位でより大きな摩擦が生ぜしめられることとなる。その結果、当接ゴム層や粉体層の内部摩擦や、独立マス部材とハウジングの打ち当たり面での外部摩擦が、一層効率的に作用して、より大きな減衰効果ひいては制振効果が発揮され得ることとなる。   In addition, the contact and surface of the independent mass member and the housing, which are brought into contact with each other by interposing the powder, can be deformed flexibly based on the fluidity of each powder. Therefore, the flow or movement of the powder occurs in the powder layer at the time of hitting, and a larger friction is generated between the powders or at the contact portion between the powder and the independent mass member or the housing. As a result, the internal friction of the contact rubber layer and the powder layer and the external friction at the contact surface of the independent mass member and the housing work more efficiently, and a greater damping effect and thus a damping effect is exhibited. Will get.

なお、本発明における粉体は、例えば、小麦粉等の有機化合物の粉体や、炭酸カルシウム等の炭酸塩や合成樹脂,金属酸化物等の無機化合物の粉体を1種類だけ用いたもの、或いは、複数種類混ぜ合わせたものによって構成され得る。特に、環境による劣化や経時による劣化が少なくなるという観点から、無機物の粉体が好適に採用される。   Note that the powder in the present invention is, for example, a powder using an organic compound such as wheat flour, a carbonate such as calcium carbonate, a powder of an inorganic compound such as a synthetic resin, or a metal oxide. It can be constituted by a mixture of a plurality of types. In particular, inorganic powders are preferably employed from the viewpoint of less deterioration due to the environment and deterioration with time.

また、本発明において、独立マス部材の表面とハウジングの内面との隙間に介在せしめられる粉体の量は、特に限定されるものでない。独立マス部材のハウジングに対する打ち当たり面間に隙間としての空間が残存していても、勿論、良いし、かかる隙間に対して粉体が殆ど充填されていても良い。   In the present invention, the amount of powder interposed in the gap between the surface of the independent mass member and the inner surface of the housing is not particularly limited. Of course, a space as a gap may remain between the contact surfaces of the independent mass members with respect to the housing, and the gap may be almost filled with powder.

なお、隙間の大きさを数百ミクロンオーダーで調節することを目的とすると、本発明においては、粒径が10〜100μmの範囲内(例えば平均値として)の粉体を採用した構成が、好適に採用される。   For the purpose of adjusting the size of the gap in the order of several hundred microns, in the present invention, a configuration employing a powder having a particle size in the range of 10 to 100 μm (for example, as an average value) is preferable. Adopted.

また、本発明においては、同様な理由から、隙間寸法の1/2以下、より好適には1/5以下、更に好適には1/10以下の平均粒径の粉体を採用した構成が、好適に採用される。尤も、余り粒径が小さい粉体は、その取り扱いが難しくなる。   Further, in the present invention, for the same reason, a configuration employing a powder having an average particle size of 1/2 or less of the gap size, more preferably 1/5 or less, and even more preferably 1/10 or less, Preferably employed. However, it is difficult to handle a powder having a too small particle size.

特に、上述の如く、粒径が10〜100μmである粉体を採用することにより、独立マス部材がハウジングに打ち当たった際に粉体間で摩擦が一層効率的に生ぜしめられることとなる。即ち、粉体の粒径が10μmよりも小さい場合には、粉体の表面積が小さくなり過ぎて、粉体間の摩擦を効果的に生ぜしめることが難しくなってしまう一方、粉体の粒径が100μmよりも大きい場合には、隙間に介在せしめられる粉体の量が少なくなって、粉体間で生ぜしめられる摩擦を大きく確保することが難しい場合がある。   In particular, by using a powder having a particle size of 10 to 100 μm as described above, friction between powders is more efficiently generated when the independent mass member strikes the housing. That is, when the particle size of the powder is smaller than 10 μm, the surface area of the powder becomes too small, and it becomes difficult to effectively generate friction between the powders. Is larger than 100 μm, the amount of powder intervened in the gap is reduced, and it may be difficult to ensure a large amount of friction generated between the powders.

また、本発明においては、振動入力方向での隙間の寸法を、独立マス部材をハウジングに対する一方の移動端に寄せた状態で、0.1〜0.5mmとした構成が、好適に採用される。   In the present invention, a configuration in which the size of the gap in the vibration input direction is 0.1 to 0.5 mm in a state where the independent mass member is brought close to one moving end with respect to the housing is suitably employed. .

このような隙間寸法からなる構成を採用した態様においては、独立マス部材がハウジングに打ち当たった際に粉体間で生ぜしめられる摩擦を一層効果的に得ることが可能となる。即ち、振動入力方向での隙間の寸法が、独立マス部材をハウジングに対する一方の移動端に寄せた状態で、0.1mmよりも小さい場合には、工業生産上で許容される寸法誤差が厳しくなって製造コストの上昇等の問題が発生し易い。加えて、隙間が小さくなり過ぎて、隙間に介在せしめられる粉体の量が少なくなり、粉体間で生ぜしめられる摩擦を十分に確保することが難しくなるおそれもある。一方、隙間が0.5mmよりも大きい場合には、必要とされる粉体の量が多くなって粉体の投入作業等が面倒となったり、粉体の投入量が少ないと十分な粉体の介在効果が発揮され難くなることが懸念され、粉体の投入量の変化により性能が不安定となったりするおそれがある。   In the aspect employing such a configuration having the gap size, it is possible to more effectively obtain the friction generated between the powders when the independent mass member hits the housing. In other words, if the size of the gap in the vibration input direction is smaller than 0.1 mm with the independent mass member moved toward one moving end with respect to the housing, the dimensional error allowed in industrial production becomes severe. Therefore, problems such as an increase in manufacturing cost are likely to occur. In addition, since the gap becomes too small, the amount of powder intervened in the gap is reduced, and it may be difficult to sufficiently secure the friction generated between the powders. On the other hand, if the gap is larger than 0.5 mm, the required amount of powder increases, making the powder input operation cumbersome. It is feared that the intervening effect becomes difficult to be exhibited, and there is a risk that the performance becomes unstable due to a change in the amount of powder input.

以下、本発明を更に具体的に明らかにするために、本発明の実施形態について、図面を参照しつつ、詳細に説明する。   Hereinafter, in order to clarify the present invention more specifically, embodiments of the present invention will be described in detail with reference to the drawings.

図1及び図2には、本発明の一実施形態としての制振装置10が示されている。この制振装置10は、ハウジング12に対して別体の独立マス部材14が非接着で相対変位可能に収容配置された構造とされており、ハウジング12が制振対象となる振動部材(図示せず)に対して固定されるようになっている。なお、本実施形態では、振動部材の主たる振動が、制振装置10に対して、図1中の上下方向に入力されるようになっている。   1 and 2 show a vibration damping device 10 as an embodiment of the present invention. The vibration damping device 10 has a structure in which a separate independent mass member 14 is accommodated and disposed so as to be relatively displaceable without being bonded to the housing 12, and the housing 12 is a vibration member (not shown) to be a vibration damping target. Z)). In the present embodiment, the main vibration of the vibration member is input to the vibration control device 10 in the vertical direction in FIG.

より詳細には、本実施形態のハウジング12は、ハウジング本体16と一対の蓋体18,18によって構成されている。ハウジング本体16は、鉄鋼やアルミニウム合金等の剛性材によって形成されており、厚肉の円筒形状を呈している。なお、ハウジング本体16の形成材料として、硬質の合成樹脂材を採用することも可能であり、その場合には、5×103 〜5×104 MPaの弾性率を有する合成樹脂材料が好適に採用される。 More specifically, the housing 12 according to the present embodiment includes a housing body 16 and a pair of lids 18 and 18. The housing body 16 is made of a rigid material such as steel or aluminum alloy, and has a thick cylindrical shape. In addition, it is also possible to employ | adopt a hard synthetic resin material as a forming material of the housing main body 16, In that case, the synthetic resin material which has an elasticity modulus of 5 * 10 < 3 > -5 * 10 < 4 > MPa is suitable. Adopted.

一方、一対の蓋体18,18は、それぞれ、鉄鋼やアルミニウム合金,硬質の合成樹脂材等の剛性材で形成されており、全体として円板形状を呈している。そして、各蓋体18は、その外周縁部がハウジング本体16の開口周縁部に重ね合わされて、溶着や接着等によって固定されるようになっている。これにより、ハウジング本体16の各開口部分が蓋体18で覆蓋されて、長手方向に略一定の円形断面で延びる収容空間20が内部に形成された密閉構造のハウジング12が構成されるようになっている。即ち、本実施形態のハウジング12は、略一定の円形断面で軸方向にストレートに延びる円筒状内周面22を備えているのである。   On the other hand, each of the pair of lids 18 and 18 is made of a rigid material such as steel, an aluminum alloy, or a hard synthetic resin material, and has a disk shape as a whole. Each lid 18 has its outer peripheral edge overlapped with the opening peripheral edge of the housing body 16 and is fixed by welding, bonding, or the like. Thereby, each opening part of the housing main body 16 is covered with the cover body 18, and the housing 12 of the airtight structure in which the accommodation space 20 extended in the longitudinal direction with the substantially constant circular cross section was formed is comprised. ing. That is, the housing 12 of the present embodiment includes a cylindrical inner peripheral surface 22 that extends substantially straight in the axial direction with a substantially constant circular cross section.

また、本実施形態の独立マス部材14は、マス金具24の表面に当接ゴム層としての当接ゴム膜26が被せられて、その表面が当接ゴム膜26で形成された構造とされており、特に本実施形態では、鉄鋼等の高比重材で形成されて、略一定の円形断面でストレートに延びる円柱形状を呈するマス金具24の表面全体が、従来から公知のゴム材料で形成された当接ゴム膜26によって略一定の厚さ寸法で覆われた構造とされている。即ち、本実施形態の独立マス部材14は、略一定の円形断面で軸方向にストレートに延びる円筒状外周面28を備えているのであり、特に本実施形態では、かかる円筒状外周面28の円形断面が、ハウジング12の円筒状内周面22の円形断面よりも一回り小さい相似形とされているのである。なお、本実施形態の当接ゴム膜26は、加硫成形と同時に、マス金具24の表面に接着されるようになっている。   Further, the independent mass member 14 of the present embodiment has a structure in which the surface of the mass metal fitting 24 is covered with a contact rubber film 26 as a contact rubber layer, and the surface is formed of the contact rubber film 26. In particular, in this embodiment, the entire surface of the mass metal fitting 24 formed of a high specific gravity material such as steel and having a substantially constant circular cross section and extending straight is formed of a conventionally known rubber material. The contact rubber film 26 is covered with a substantially constant thickness. That is, the independent mass member 14 of the present embodiment includes a cylindrical outer peripheral surface 28 that extends straight in the axial direction with a substantially constant circular cross section. In particular, in the present embodiment, the circular outer peripheral surface 28 has a circular shape. The cross section is a similar shape that is slightly smaller than the circular cross section of the cylindrical inner peripheral surface 22 of the housing 12. Note that the contact rubber film 26 of the present embodiment is bonded to the surface of the mass fitting 24 at the same time as the vulcanization molding.

そこにおいて、当接ゴム膜26は、独立マス部材14のハウジング12への打ち当たりに基づく制振効果や独立マス部材14がハウジング12に打ち当たる際に生じる打音の低減効果を有利に得るために、ASTM規格D2240のショアD硬さが、好ましくは80以下、より好ましくは20〜40に設定される。   Therefore, the abutting rubber film 26 advantageously obtains a vibration damping effect based on the contact of the independent mass member 14 against the housing 12 and a reduction effect of a hitting sound generated when the independent mass member 14 strikes the housing 12. In addition, the Shore D hardness of ASTM standard D2240 is preferably set to 80 or less, more preferably 20 to 40.

なお、本実施形態では、マス金具24の質量や当接ゴム膜26のばね定数等が適当に設定されて、独立マス部材14が特定の周波数域で共振特性を利用して大きく飛び跳ね変位するようにされている。   In the present embodiment, the mass of the mass metal fitting 24, the spring constant of the contact rubber film 26, and the like are appropriately set so that the independent mass member 14 greatly jumps and displaces using a resonance characteristic in a specific frequency range. Has been.

このような構造とされた独立マス部材14は、ハウジング12の収容空間20に非接着で相対変位可能に収容配置されるようになっており、図3に示されているように、ハウジング12と独立マス部材14を同一中心軸上に位置せしめた状態で、独立マス部材14の表面の一部を構成する円筒状外周面28(当接ゴム膜26の円筒状外周面28)とハウジング12の内面の一部を構成する円筒状内周面22との隙間30の寸法が0.05mm〜0.25mm、好ましくは、0.1mm〜0.15mmとされている。換言すれば、独立マス部材14をハウジング12に対する一方の移動端に寄せた状態での隙間30の寸法が0.1mm〜0.5mm、好ましくは、0.2mm〜0.3mmとされているのである。なお、図3においては、後述する粉体38が存在しない状態を示していると共に、各部材にハッチングをいれていない。   The independent mass member 14 having such a structure is accommodated in the accommodating space 20 of the housing 12 so as to be relatively displaceable without adhesion, and as shown in FIG. With the independent mass member 14 positioned on the same central axis, the cylindrical outer peripheral surface 28 (cylindrical outer peripheral surface 28 of the abutting rubber film 26) constituting a part of the surface of the independent mass member 14 and the housing 12. The size of the gap 30 with the cylindrical inner peripheral surface 22 constituting a part of the inner surface is 0.05 mm to 0.25 mm, preferably 0.1 mm to 0.15 mm. In other words, the dimension of the gap 30 in a state where the independent mass member 14 is brought close to one moving end with respect to the housing 12 is 0.1 mm to 0.5 mm, preferably 0.2 mm to 0.3 mm. is there. FIG. 3 shows a state in which a powder 38 to be described later does not exist, and each member is not hatched.

また、図2に示されているように、独立マス部材14をハウジング12の軸方向中央に位置せしめた状態で、独立マス部材14の表面の一部を構成する軸方向端面32とハウジング12の表面の一部を構成する蓋体18の内側面34との間にも、所定寸法の隙間36が形成されるようになっている。   Further, as shown in FIG. 2, with the independent mass member 14 positioned at the center in the axial direction of the housing 12, the axial end surface 32 constituting a part of the surface of the independent mass member 14 and the housing 12. A gap 36 having a predetermined size is also formed between the inner surface 34 of the lid 18 constituting a part of the surface.

また、独立マス部材14の表面28,32,32とハウジング12の内面20,34,34との隙間30,36,36には、粉体38が介在せしめられている。この粉体38は、小麦粉等の有機化合物の粉体や、炭酸カルシウム等の炭酸塩や合成樹脂,金属酸化物等の無機化合物の粉体を1種類だけ用いたもの、或いは、複数種類混ぜ合わせて用いたものによって構成されており、特に本実施形態では、その粒径が10μm〜100μmとされている。   Further, powder 38 is interposed in the gaps 30, 36, 36 between the surfaces 28, 32, 32 of the independent mass member 14 and the inner surfaces 20, 34, 34 of the housing 12. This powder 38 is a powder using an organic compound such as wheat flour, a carbonate such as calcium carbonate, a powder of an inorganic compound such as a synthetic resin or a metal oxide, or a mixture of a plurality of types. In particular, in this embodiment, the particle size is 10 μm to 100 μm.

なお、粉体38としては、従来から振動の低減や吸音のために使用されている粉体が、何れも、採用可能であり、例えば、バーミキュライト粉体や金マイカ粉体,湿式シリカ粉体,球状シリカ粉体,アクリル超微粉体等のアクリル系樹脂粉体,タルク粉体,珪酸カルシウム粉体,フッ素樹脂粉体,パーライト粉体,ベントナイト粉体,シラスバルーン,石松子,ブルラン,溶融シリカ粉体,黒鉛,結晶セルロース粉体,炭化珪素粉体,ナイロンパウダー,アクリル粉体塗料,ポリエステル粉体塗料,強力粉や薄力粉等の小麦粉,ドロマイト粉体,炭素繊維粉体,二酸化チタン粉体,重質炭酸カルシウム粉体等の炭酸カルシウム粉体,塩化ビニル樹脂粉体,ポリメタクリル酸メチル粉体,シリコーンパウダー,電融マグネシア粉体,全脂肪乳,バリウムフェライト磁粉等のフェライト仮焼粉体,カーボンブラック粉体,塩素法酸化チタン粉体等が、何れも、採用可能であるが、環境による劣化や経時による劣化が少なくなるという観点から、無機化合物の粉体が好適に採用される。   As the powder 38, any powder conventionally used for vibration reduction and sound absorption can be used. For example, vermiculite powder, gold mica powder, wet silica powder, Acrylic resin powder such as spherical silica powder, ultra-fine acrylic powder, talc powder, calcium silicate powder, fluororesin powder, perlite powder, bentonite powder, Shirasu balloon, Ishimatsuko, Bullulan, fused silica Powder, graphite, crystalline cellulose powder, silicon carbide powder, nylon powder, acrylic powder coating, polyester powder coating, wheat flour such as strong powder and thin flour, dolomite powder, carbon fiber powder, titanium dioxide powder, heavy Calcium carbonate powder such as carbonaceous calcium carbonate powder, vinyl chloride resin powder, polymethyl methacrylate powder, silicone powder, electrofused magnesia powder, full fat milk, Ferrite calcined powders such as cerium ferrite magnetic powder, carbon black powder, and chlorinated titanium oxide powder can all be used, but from the viewpoint of less deterioration due to the environment and deterioration over time, inorganic compounds These powders are preferably employed.

また、粉体38を独立マス部材14の表面28,32,32とハウジング12の内面22,34,34との隙間30,36,36に介在させる方法としては、例えば、予め製作した独立マス部材14の表面28,32,32に粉体38を付着させた独立マス部材14を、ハウジング本体16に内挿し、この状態で、ハウジング本体16の各開口部分を蓋体18で覆蓋する方法や、独立マス部材14をハウジング本体16に内挿したあと、ハウジング本体16の一方の開口部分を蓋体18で閉塞した状態で他方の開口部分からハウジング本体16内に粉体38を入れ、更にその後にハウジング本体16の他方の開口部分を蓋体18で覆蓋する方法、或いは、それら両者を組み合わせた方法、又は、ハウジング本体16内に粉体38を略充填状態で入れてから、余剰の粉体38を押し出すように独立マス部材14を挿入し、その後、ハウジング本体16の両端開口を蓋体18,18で覆蓋する方法等が採用される。   Further, as a method of interposing the powder 38 in the gaps 30, 36, 36 between the surfaces 28, 32, 32 of the independent mass member 14 and the inner surfaces 22, 34, 34 of the housing 12, for example, an independent mass member manufactured in advance is used. The independent mass member 14 in which the powder 38 is attached to the surfaces 28, 32, 32 of the 14 is inserted into the housing body 16, and in this state, each opening portion of the housing body 16 is covered with the lid 18; After the independent mass member 14 is inserted into the housing main body 16, the powder 38 is put into the housing main body 16 from the other opening portion in a state where one opening portion of the housing main body 16 is closed by the lid body 18. A method of covering the other opening portion of the housing body 16 with the lid 18, a method of combining them, or a state in which the powder 38 is substantially filled in the housing body 16. After turning, insert the independent mass member 14 to push the excess powder 38, then, such a method for covering the openings at both ends of the housing body 16 with the lid 18, 18 is employed.

なお、独立マス部材14の表面28,32,32に粉体38を付着させるには、例えば平面上に存在させた粉体38の層上で独立マス部材14を転がして付着させることも可能である。その場合には、より付着効率を上げるために、蒸発し易い液体を独立マス部材14の表面に付着させておくことも可能である。   In order to attach the powder 38 to the surfaces 28, 32, 32 of the independent mass member 14, for example, the independent mass member 14 may be rolled and adhered on the layer of the powder 38 existing on a plane. is there. In that case, in order to further increase the deposition efficiency, it is possible to deposit a liquid that easily evaporates on the surface of the independent mass member 14.

因みに、本実施形態では、表面28,32,32に粉体38を付着させた独立マス部材14を、一方の開口部分が蓋体18で覆蓋されたハウジング本体16に対して他方の開口部分から内挿した後、ハウジング本体16の他方の開口部分を蓋体18で覆蓋する方法によって、独立マス部材14の表面28,32,32とハウジング12の内面22,34,34との隙間30,36,36に粉体38が介在せしめられるようになっている。   By the way, in this embodiment, the independent mass member 14 having the powder 38 attached to the surfaces 28, 32, 32 is formed from the other opening portion with respect to the housing main body 16 whose one opening portion is covered with the lid body 18. After the insertion, the gaps 30, 36 between the surfaces 28, 32, 32 of the independent mass member 14 and the inner surfaces 22, 34, 34 of the housing 12 are covered by a method of covering the other opening of the housing body 16 with the lid 18. 36, a powder 38 is interposed.

なお、独立マス部材14の表面28,32,32とハウジング12の内面22,34,34との隙間30,36,36は、粉体38によって充填されている必要はない。独立マス部材14の表面28,32,32とハウジング12の内面22,34,34との隙間30,36,36には、粉体38と共に空間が残存していても良い。なお、この粉体38の充填程度や空間の残存程度は、要求される減衰性能等を考慮して適当に調節することが出来る。また、この粉体38の充填程度や空間の残存程度を調節することにより、独立マス部材14が振動入力方向でハウジング12に対して独立して飛び跳ねる程度を調節することが出来る。   The gaps 30, 36, 36 between the surfaces 28, 32, 32 of the independent mass member 14 and the inner surfaces 22, 34, 34 of the housing 12 do not need to be filled with the powder 38. In the gaps 30, 36, 36 between the surfaces 28, 32, 32 of the independent mass member 14 and the inner surfaces 22, 34, 34 of the housing 12, spaces may remain together with the powder 38. The filling degree of the powder 38 and the remaining degree of the space can be appropriately adjusted in consideration of the required attenuation performance and the like. Further, by adjusting the filling degree of the powder 38 and the remaining degree of the space, it is possible to adjust the degree that the independent mass member 14 jumps independently from the housing 12 in the vibration input direction.

このような構造とされた制振装置10は、図示はされていないが、例えば、適当な取付ブラケットがハウジング12の外周面に取り付けられて、かかる取付ブラケットを介して、図示しない振動部材に対して固定的に装着されるようになっている。   Although the vibration damping device 10 having such a structure is not illustrated, for example, an appropriate mounting bracket is attached to the outer peripheral surface of the housing 12, and the vibration member (not illustrated) is attached to the housing 12 via the mounting bracket. To be fixedly attached.

そして、このように制振装置10が振動部材に固定された状態で、振動部材の振動がハウジング12に入力されると、独立マス部材14が振動入力方向でハウジング12に対して独立して飛び跳ねるように相対変位し、ハウジング12に対して飛び跳ね方向の両側で弾性的に打ち当たるようになっており、特に本実施形態では、独立マス部材14の円筒状外周面28とハウジング12の円筒状内周面22が打ち当たるようになっている。その結果、独立マス部材14のハウジング12への打ち当たりによるエネルギー損失や滑り摩擦等に基づく制振効果が発揮されるようになっている。   When the vibration of the vibration member is input to the housing 12 with the vibration damping device 10 fixed to the vibration member in this way, the independent mass member 14 jumps independently from the housing 12 in the vibration input direction. In this embodiment, in particular, in the present embodiment, the cylindrical outer peripheral surface 28 of the independent mass member 14 and the cylindrical inner surface of the housing 12 are in contact with each other. The peripheral surface 22 hits. As a result, a damping effect based on energy loss, sliding friction, and the like due to the contact of the independent mass member 14 with the housing 12 is exhibited.

そこにおいて、上述の如き構造とされた制振装置10においては、独立マス部材14の表面28,32,32とハウジング12の内面22,34,34との隙間30,36,36、特に、振動入力方向での隙間となる、独立マス部材14の円筒状外周面28とハウジング12の円筒状内周面22との隙間30に、粉体38が介在せしめられていることから、独立マス部材14のハウジング12に対する打ち当たり面を、隙間30に粉体38が介在せしめられていない状態よりも、実質的に大きく(特に周方向両側に大きく)することが可能となる。その結果、独立マス部材14がハウジング12に打ち当たった際に、接触による摩擦が生ぜしめられる範囲を広くすることが可能となる。また、当接ゴム膜26において、独立マス部材14のハウジング12への打ち当たりに基づく弾性変形、即ち、内部摩擦(減衰)が生ぜしめられる範囲も広くすることが可能となる。加えて、独立マス部材14がハウジング12に打ち当たった際の衝撃によって、粉体38間に摩擦を生ぜしめることも可能となる。   Therefore, in the vibration damping device 10 having the above-described structure, the gaps 30, 36, 36 between the surfaces 28, 32, 32 of the independent mass member 14 and the inner surfaces 22, 34, 34 of the housing 12, particularly vibrations. Since the powder 38 is interposed in the gap 30 between the cylindrical outer peripheral surface 28 of the independent mass member 14 and the cylindrical inner peripheral surface 22 of the housing 12, which becomes a gap in the input direction, the independent mass member 14. It is possible to make the contact surface of the housing 12 with respect to the housing 12 substantially larger (in particular, larger on both sides in the circumferential direction) than when the powder 38 is not interposed in the gap 30. As a result, when the independent mass member 14 hits the housing 12, it is possible to widen a range in which friction due to contact occurs. Further, in the contact rubber film 26, it is possible to widen a range in which elastic deformation based on the contact of the independent mass member 14 with the housing 12, that is, internal friction (attenuation) is generated. In addition, it is possible to cause friction between the powders 38 due to an impact when the independent mass member 14 hits the housing 12.

従って、上述の如き構造とされた制振装置10においては、独立マス部材14がハウジング12に打ち当たった際に、より大きな摩擦を生ぜしめることが可能となり、その結果、減衰性能の更なる向上を図ることが可能となる。   Therefore, in the vibration damping device 10 having the above-described structure, it is possible to generate a larger friction when the independent mass member 14 hits the housing 12, and as a result, the damping performance is further improved. Can be achieved.

また、上述の如き構造とされた制振装置10においては、独立マス部材14やハウジング12の製造上の寸法誤差に起因する隙間30、36,36(特に振動入力方向での隙間30)の寸法のばらつきを、隙間30,36,36(特に振動入力方向での隙間30)に粉体38を介在せしめることによって、実質的に解消することが可能となっているから、独立マス部材14やハウジング12、延いては、制振装置10の工業生産性を有利に確保することが可能となる。加えて、隙間30,36,36の実質的な大きさを、独立マス部材14やハウジング12の製造後において、ハウジング12に切削等の後加工を施すことなく、変更することが出来るようになっているから、所期の制振効果が安定して発揮されるようにすることも可能となる。   Further, in the vibration damping device 10 having the above-described structure, the dimensions of the gaps 30, 36, 36 (particularly the gap 30 in the vibration input direction) due to the dimensional error in manufacturing the independent mass member 14 and the housing 12. Can be substantially eliminated by interposing the powder 38 in the gaps 30, 36, 36 (especially the gap 30 in the vibration input direction). 12. As a result, the industrial productivity of the vibration damping device 10 can be advantageously ensured. In addition, the substantial size of the gaps 30, 36, and 36 can be changed after the independent mass member 14 and the housing 12 are manufactured without performing post-processing such as cutting on the housing 12. Therefore, it is possible to ensure that the desired vibration control effect is stably exhibited.

更にまた、本実施形態では、独立マス部材14が当接ゴム膜26の弾性を利用して積極的に飛び跳ね変位せしめられるようになっていることから、独立マス部材14のハウジング12への打ち当たりに基づく衝撃力を有利に確保することが可能となり、その結果、制振性能の向上を図ることが可能となる。   Furthermore, in the present embodiment, since the independent mass member 14 is positively jumped and displaced using the elasticity of the contact rubber film 26, the independent mass member 14 strikes the housing 12. It is possible to advantageously secure an impact force based on the above, and as a result, it is possible to improve the vibration damping performance.

特に本実施形態では、マス金具24の質量や当接ゴム膜26のばね定数等が適当に設定されて、独立マス部材14が共振特性を利用して特定の周波数域で大きく飛び跳ね変位するようにされていることから、かかる特定の周波数域での制振性能を一層向上させることが可能となる。   In particular, in the present embodiment, the mass of the mass metal fitting 24, the spring constant of the contact rubber film 26, etc. are appropriately set so that the independent mass member 14 is greatly jumped and displaced in a specific frequency range using the resonance characteristics. Therefore, it is possible to further improve the vibration damping performance in the specific frequency range.

そこにおいて、本実施形態では、独立マス部材14を積極的に飛び跳ね変位せしめられることで向上せしめられた制振効果の特定周波数域への偏りを、上述の如く減衰性能を向上させることによって、ブロード化させることが可能となっており、その結果、独立マス部材14を積極的に飛び跳ね変位させることによって向上せしめられた制振効果を、特定の狭い周波数域の振動だけでなく、複数乃至は広い周波数域の振動に対しても、有効に発揮させることが可能となるのである。   Therefore, in the present embodiment, the bias to the specific frequency range of the vibration suppression effect improved by positively jumping and displacing the independent mass member 14 is broadened by improving the damping performance as described above. As a result, the vibration suppression effect improved by actively jumping and displacing the independent mass member 14 is not limited to vibrations in a specific narrow frequency range, but a plurality or a wide range. It is possible to effectively exhibit vibrations in the frequency range.

また、本実施形態では、独立マス部材14がハウジング12に打ち当たった際に、独立マス部材14の表面28,32,32とハウジング12の内面22,34,34との隙間30,36,36に介在せしめられた粉体38によって、独立マス部材14をハウジング12の内面に沿って滑らせて、独立マス部材14の表面28,32,32とハウジング12の内面22,34,34との接触による摩擦を、より大きくすることも可能となる。   Further, in this embodiment, when the independent mass member 14 hits the housing 12, the gaps 30, 36, 36 between the surfaces 28, 32, 32 of the independent mass member 14 and the inner surfaces 22, 34, 34 of the housing 12. The independent mass member 14 is slid along the inner surface of the housing 12 by the powder 38 interposed between the inner surface 22 and the surface 28, 32, 32 of the independent mass member 14 and the inner surface 22, 34, 34 of the housing 12. It is also possible to increase the friction caused by the above.

更にまた、本実施形態では、粉体38が独立マス部材14の表面28,32,32とハウジング12の内面22,34,34との隙間30,36,36に常に介在せしめられるようになっていることから、独立マス部材14が粉体38を介してハウジング12に打ち当たることが有利に維持され得る。その結果、所期の制振効果が安定して発揮され得るようになっている。   Furthermore, in this embodiment, the powder 38 is always interposed in the gaps 30, 36, 36 between the surfaces 28, 32, 32 of the independent mass member 14 and the inner surfaces 22, 34, 34 of the housing 12. Therefore, it can be advantageously maintained that the independent mass member 14 strikes the housing 12 via the powder 38. As a result, the desired damping effect can be stably exhibited.

また、本実施形態では、独立マス部材14の表面28,32,32の振動入力方向での断面形状とハウジング12の内面22,34,34の振動入力方向での断面形状が、相似形とされていることから、独立マス部材14のハウジング12に対する打ち当たり面を大きく確保することが可能となる。これにより、独立マス部材14のハウジング12への打ち当たりに際して、より広い範囲で接触による摩擦を生ぜしめることが可能になると共に、当接ゴム膜26において、より大きな内部摩擦(減衰)を生ぜしめることが可能となる。加えて、独立マス部材14のハウジング12への打ち当たりに基づく衝撃が及ぼされる粉体38の量も増えることから、粉体38間での摩擦も一層大きくすることが可能となる。   In the present embodiment, the cross-sectional shape of the independent mass member 14 in the vibration input direction of the surfaces 28, 32, and 32 and the cross-sectional shape of the inner surfaces 22, 34, and 34 of the housing 12 in the vibration input direction are similar. Therefore, it is possible to secure a large contact surface of the independent mass member 14 against the housing 12. As a result, when the independent mass member 14 strikes the housing 12, it is possible to generate friction due to contact in a wider range, and to generate greater internal friction (damping) in the contact rubber film 26. It becomes possible. In addition, since the amount of the powder 38 to which the impact based on the contact of the independent mass member 14 with the housing 12 is increased, the friction between the powders 38 can be further increased.

従って、本実施形態の制振装置10においては、独立マス部材14のハウジング12への打ち当たりに際して、より一層大きな摩擦を生ぜしめることが可能となり、その結果、減衰性能をより一層向上させることが可能となる。   Therefore, in the vibration damping device 10 of the present embodiment, it is possible to generate a larger friction when the independent mass member 14 strikes the housing 12, and as a result, the damping performance can be further improved. It becomes possible.

特に本実施形態では、独立マス部材14の表面28,32,32の振動入力方向での断面形状とハウジング12の内面22,34,34の振動入力方向の断面形状が、何れも、円形とされていることから、独立マス部材14のハウジング12への打ち当たりに際して、当接ゴム膜26の剪断変形を積極的に生ぜしめて、かかる剪断変形に伴う振動エネルギーの吸収効果をより効率的に発揮することが可能となる。   In particular, in the present embodiment, the cross-sectional shape in the vibration input direction of the surfaces 28, 32, and 32 of the independent mass member 14 and the cross-sectional shape in the vibration input direction of the inner surfaces 22, 34, and 34 of the housing 12 are both circular. Therefore, when the independent mass member 14 strikes the housing 12, the contact rubber film 26 is positively sheared and the vibrational energy absorption effect associated with the shear deformation is more efficiently exhibited. It becomes possible.

また、独立マス部材14の振動入力方向での断面形状が円形とされていることから、独立マス部材14がハウジング12内で中心軸回りに回転して、独立マス部材14のハウジング12に対する打ち当たり部位や、振動が入力されていない状態での独立マス部材14のハウジング12に対する当接部位が、周方向に適当に変化することとなる。その結果、独立マス部材14の耐久性を確保することが可能となり、長期間に亘って安定した制振効果を発揮することが可能となる。   Further, since the cross-sectional shape of the independent mass member 14 in the vibration input direction is circular, the independent mass member 14 rotates around the central axis in the housing 12 and the independent mass member 14 strikes the housing 12. The part and the contact part of the independent mass member 14 with respect to the housing 12 in a state where no vibration is input are appropriately changed in the circumferential direction. As a result, the durability of the independent mass member 14 can be ensured, and a stable damping effect can be exhibited over a long period of time.

さらに、本実施形態では、粉体38の粒径が10μm〜100μmとされていることから、独立マス部材14のハウジング12への打ち当たりに際して粉体38間に生ぜしめられる摩擦を有利に確保することが可能となり、それによって、減衰性能の向上を有利に実現することが可能となる。   Furthermore, in this embodiment, since the particle size of the powder 38 is 10 μm to 100 μm, the friction generated between the powders 38 when the independent mass member 14 strikes the housing 12 is advantageously ensured. This makes it possible to advantageously realize an improvement in damping performance.

更にまた、本実施形態では、振動入力方向での隙間30の寸法が、独立マス部材14をハウジング12に対する一方の移動端に寄せた状態で、0.1mm〜0.5mmとされていることから、独立マス部材14のハウジング12への打ち当たりに際して粉体38間に生ぜしめられる摩擦を有利に確保することが可能となり、それによって、減衰性能の向上を有利に実現することが可能となる。   Furthermore, in this embodiment, the size of the gap 30 in the vibration input direction is set to 0.1 mm to 0.5 mm in a state where the independent mass member 14 is brought close to one moving end with respect to the housing 12. In addition, it is possible to advantageously secure the friction generated between the powders 38 when the independent mass member 14 strikes the housing 12, thereby making it possible to advantageously realize an improvement in damping performance.

また、独立マス部材14やハウジング12を、製造上の寸法誤差を考慮して製造することが可能となり、それによって、独立マス部材14やハウジング12、延いては、制振装置10の工業生産性を有利に確保することが可能となる。   In addition, the independent mass member 14 and the housing 12 can be manufactured in consideration of manufacturing dimensional errors, and thereby the industrial mass of the independent mass member 14 and the housing 12 and the vibration damping device 10 can be increased. Can be advantageously secured.

さらに、本実施形態では、表面28,32,32に粉体38が付着された独立マス部材14をハウジング本体16に内挿するようになっていることから、粉体38が滑り剤の役割を果たすこととにより、独立マス部材14のハウジング本体16への内挿作業を有利に実現することが可能となる。   Furthermore, in this embodiment, since the independent mass member 14 with the powder 38 attached to the surfaces 28, 32, 32 is inserted into the housing body 16, the powder 38 functions as a slip agent. By fulfilling this, it is possible to advantageously realize the interpolating operation of the independent mass member 14 into the housing body 16.

因みに、上述の如き本実施形態に従う構造とされた制振装置10を振動部材に取り付けて、振動部材を周波数スイープ加振し、周波数分析によって制振装置10の共振特性を測定した結果を、実施例として、図4及び図5に示す。そこにおいて、この測定に用いた制振装置10では、独立マス部材14とハウジング12を同一中心軸上に位置せしめた状態での独立マス部材14の円筒状外周面28とハウジング12の円筒状内周面22との隙間30の寸法:δは0.1mmとされている。また、粉体38として、薄力粉が採用されており、その粒径は約30μmとされている。更に、粉体38の上で独立マス部材14を中心軸回りに転がして、独立マス部材14の表面28に粉体38を付着させ、かかる粉体38が表面28に付着した独立マス部材14を、一方の開口部分が蓋体18で覆蓋されたハウジング本体16に対して他方の開口部分から内挿し、その後、ハウジング本体16の他方の開口部分を蓋体18で覆蓋することにより、独立マス部材14をハウジング12に収容した。更にまた、粉体38が隙間30に介在せしめられた状態で、独立マス部材14のハウジング12に対する飛び跳ね変位が許容されている。なお、本実施例の制振装置10と同一のハウジング12と独立マス部材14からなる比較例としての制振装置については、隙間30,36,36に粉体38が介在せしめられていない構造(従来の構造)とし、かかる比較例についても、同様な測定を行い、その結果を図4及び図5に併せて示す。   Incidentally, the vibration damping device 10 having the structure according to the present embodiment as described above is attached to the vibration member, the vibration member is subjected to frequency sweep excitation, and the resonance characteristic of the vibration damping device 10 is measured by frequency analysis. An example is shown in FIGS. Therefore, in the vibration damping device 10 used for this measurement, the cylindrical outer peripheral surface 28 of the independent mass member 14 and the cylindrical inner surface of the housing 12 in a state where the independent mass member 14 and the housing 12 are positioned on the same central axis. The dimension 30 of the gap 30 with respect to the peripheral surface 22 is set to 0.1 mm. Further, as the powder 38, a thin powder is employed, and the particle size thereof is about 30 μm. Further, the independent mass member 14 is rolled around the central axis on the powder 38 to adhere the powder 38 to the surface 28 of the independent mass member 14, and the independent mass member 14 having the powder 38 adhered to the surface 28 is removed. The independent mass member is formed by inserting the other opening portion of the housing body 16 into the housing body 16 covered with the lid body 18 from one opening portion and then covering the other opening portion of the housing body 16 with the lid body 18. 14 was accommodated in the housing 12. Furthermore, the jumping displacement of the independent mass member 14 relative to the housing 12 is allowed with the powder 38 interposed in the gap 30. In the vibration damping device as a comparative example including the same housing 12 and independent mass member 14 as the vibration damping device 10 of the present embodiment, a structure in which the powder 38 is not interposed in the gaps 30, 36, 36 ( The same measurement was performed for the comparative example, and the results are also shown in FIGS. 4 and 5.

図4に示された測定結果から明らかなように、本実施形態に従う構造とされた制振装置10は、従来構造の制振装置に比して、広い周波数域で共振倍率が大きくされている。また、図4に示された測定結果から、本実施形態に従う構造とされた制振装置10と従来構造の制振装置のそれぞれについて、ロスファクターを計算したところ、従来構造の制振装置は0.9であったが、本実施形態の制振装置10は1.2であった。なお、ロスファクターは、共振倍率のピーク値の周波数をf0 とし、そのピーク値から3dB下がった値を示す周波数のうち低周波側の周波数をf1 とする一方、高周波側の周波数をf2 とし、以下の式によって計算した。 As is clear from the measurement results shown in FIG. 4, the vibration damping device 10 having the structure according to the present embodiment has a larger resonance magnification in a wider frequency range than the vibration damping device having the conventional structure. . Further, when the loss factor is calculated for each of the vibration damping device 10 having the structure according to the present embodiment and the vibration damping device having the conventional structure from the measurement result shown in FIG. 4, the vibration damping device having the conventional structure is 0. .9, but the vibration damping device 10 of the present embodiment was 1.2. In the loss factor, the frequency at the peak value of the resonance magnification is f 0, and the frequency on the low frequency side of the frequency indicating a value 3 dB below the peak value is f 1 , while the frequency on the high frequency side is f 2 And calculated by the following formula.

(f2 −f1 )/f0 (F 2 −f 1 ) / f 0

また、図5に示された測定結果から明らかなように、本実施形態に従う構造とされた制振装置10は、従来構造の制振装置に比して、グラフの傾き(周波数に対する位相の傾き)が緩くなっていることから、広い周波数域に亘って、共振が発生していることが判る。   Further, as is clear from the measurement results shown in FIG. 5, the vibration damping device 10 having the structure according to the present embodiment has a graph slope (phase slope with respect to frequency) as compared with the vibration damping device of the conventional structure. ) Is loose, it can be seen that resonance occurs over a wide frequency range.

以上、本発明の一実施形態について詳述してきたが、これはあくまでも例示であって、本発明は、かかる実施形態における具体的な記載によって、何等、限定的に解釈されるものではない。   As mentioned above, although one Embodiment of this invention was explained in full detail, this is an illustration to the last, Comprising: This invention is not limited at all by the specific description in this Embodiment.

例えば、矩形断面で長手方向に延びる収容空間が内部に形成されたハウジングを採用すると共に、このハウジングの収容空間に対して、収容空間の矩形断面よりも一回り小さい矩形断面で長手方向に延びる独立マス部材を収容配置するようにしても良い。   For example, a housing in which a housing space extending in the longitudinal direction with a rectangular cross section is formed is used, and the housing space of the housing is independent and extends in the longitudinal direction with a rectangular cross section that is slightly smaller than the rectangular cross section of the housing space. A mass member may be accommodated.

また、粉体を弾性材料で形成することも可能である。この場合、独立マス部材のハウジングへの打ち当たりに際して、粉体そのものが弾性変形せしめられることから、粉体間の接触による摩擦だけでなく、粉体そのものの内部摩擦(減衰)も生ぜしめられることとなり、その結果、減衰性能のより一層の向上を図ることが可能となる。   It is also possible to form the powder from an elastic material. In this case, when the independent mass member strikes the housing, the powder itself is elastically deformed, so that not only friction due to contact between the powders but also internal friction (attenuation) of the powder itself can occur. As a result, the damping performance can be further improved.

更にまた、隙間が粉体で埋められていて、隙間が実質的になくなっていても良い。即ち、空間としては粒子間に存在するものの、独立マス部材とハウジングとの間が実質的に全周に亘って粉体を介して径方向で連設状態とされていても良い。このような場合であっても、ある程度のレベル以上の加速度を有する振動が入力されれば、当接ゴム層及び/又は粉体が弾性変形せしめられて、独立マス部材がハウジングに対して実質的に離隔と当接を繰り返して打ち当たることとなる。その結果、前記実施形態と同様な効果を得ることが可能となる。   Furthermore, the gap may be filled with powder, and the gap may be substantially eliminated. That is, although the space exists between the particles, the independent mass member and the housing may be continuously provided in the radial direction through the powder over the entire circumference. Even in such a case, if a vibration having an acceleration of a certain level or more is input, the contact rubber layer and / or the powder is elastically deformed, so that the independent mass member is substantially free from the housing. It will be repeatedly hit and separated. As a result, it is possible to obtain the same effect as in the above embodiment.

その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更,修正,改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。   In addition, although not enumerated one by one, the present invention can be carried out in a mode to which various changes, modifications, improvements and the like are added based on the knowledge of those skilled in the art. It goes without saying that all are included in the scope of the present invention without departing from the spirit of the present invention.

本発明の一実施形態としての制振装置を示す断面図。Sectional drawing which shows the damping device as one Embodiment of this invention. 図1のII−II断面図。II-II sectional drawing of FIG. 独立マス部材とハウジングを同一中心軸上に位置せしめた状態を示す説明図。Explanatory drawing which shows the state which positioned the independent mass member and the housing on the same central axis. 共振倍率と周波数の関係を示すグラフ。The graph which shows the relationship between resonance magnification and frequency. 位相と周波数の関係を示すグラフ。The graph which shows the relationship between a phase and frequency.

符号の説明Explanation of symbols

10:制振装置,12:ハウジング,14:独立マス部材,22:円筒状内周面,26:当接ゴム膜,28:円筒状外周面,30:隙間,32:軸方向端面,34:内側面,36:隙間,38:粉体 10: damping device, 12: housing, 14: independent mass member, 22: cylindrical inner peripheral surface, 26: abutting rubber film, 28: cylindrical outer peripheral surface, 30: gap, 32: end surface in the axial direction, 34: Inner surface, 36: gap, 38: powder

Claims (5)

制振すべき振動部材に取り付けられる中空の密閉構造とされたハウジングに対して、非接着で飛び跳ね変位可能に独立マス部材を収容配置すると共に、該独立マス部材の表面と該ハウジングの内面との少なくとも一方を当接ゴム層で形成して、振動が入力された際に、該独立マス部材が該ハウジングに対して飛び跳ね変位し、振動入力方向の両側で該ハウジングに対して弾性的に打ち当たるようにした制振装置において、
前記独立マス部材の表面と前記ハウジングの内面との隙間に、該隙間より小さな粉体を介在せしめたことを特徴とする制振装置。
An independent mass member is accommodated and disposed in a non-adhering and displaceable manner with respect to a housing having a hollow sealed structure attached to a vibration member to be damped, and the surface of the independent mass member and the inner surface of the housing At least one of the contact rubber layers is formed, and when the vibration is input, the independent mass member jumps and displaces with respect to the housing, and elastically strikes the housing on both sides in the vibration input direction. In such a vibration control device,
A vibration damping device, wherein a powder smaller than the gap is interposed in a gap between the surface of the independent mass member and the inner surface of the housing.
前記独立マス部材の表面の振動入力方向での断面形状と前記ハウジングの内面の振動入力方向での断面形状が互いに相似形とされている請求項1に記載の制振装置。   The vibration damping device according to claim 1, wherein a cross-sectional shape of the surface of the independent mass member in the vibration input direction and a cross-sectional shape of the inner surface of the housing in the vibration input direction are similar to each other. 前記独立マス部材が円筒状外周面を備えている一方、前記ハウジングが円筒状内周面を備えており、振動が入力された際に、該独立マス部材の該円筒状外周面と該ハウジングの該円筒状内周面とが打ち当たるようにされている請求項2に記載の制振装置。   While the independent mass member has a cylindrical outer peripheral surface, the housing has a cylindrical inner peripheral surface, and when a vibration is input, the cylindrical outer peripheral surface of the independent mass member and the housing The vibration damping device according to claim 2, wherein the cylindrical inner peripheral surface abuts against the cylindrical inner peripheral surface. 前記粉体の粒径が10〜100μmとされている請求項1乃至3の何れか1項に記載の制振装置。   The vibration damping device according to any one of claims 1 to 3, wherein a particle diameter of the powder is 10 to 100 µm. 振動入力方向での前記隙間の寸法が、前記独立マス部材を前記ハウジングに対する一方の移動端に寄せた状態で、0.1〜0.5mmとされている請求項1乃至4の何れか1項に記載の制振装置。   The dimension of the said clearance gap in a vibration input direction is 0.1-0.5 mm in the state which brought the said independent mass member close to one moving end with respect to the said housing. The vibration control device described in 1.
JP2007062775A 2007-03-13 2007-03-13 Vibration damping device Pending JP2008223876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062775A JP2008223876A (en) 2007-03-13 2007-03-13 Vibration damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062775A JP2008223876A (en) 2007-03-13 2007-03-13 Vibration damping device

Publications (1)

Publication Number Publication Date
JP2008223876A true JP2008223876A (en) 2008-09-25

Family

ID=39842740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062775A Pending JP2008223876A (en) 2007-03-13 2007-03-13 Vibration damping device

Country Status (1)

Country Link
JP (1) JP2008223876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184950A (en) * 2010-03-09 2011-09-22 Jp Home Kk Slide foundation structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184950A (en) * 2010-03-09 2011-09-22 Jp Home Kk Slide foundation structure

Similar Documents

Publication Publication Date Title
EP0420622B1 (en) Frictional material for vibration motor
US11458544B2 (en) Rotatable assemblies, machining bar assemblies and methods therefor
WO2007006577A1 (en) Optical element
JP2003014035A (en) Vibration damping device
JP2007120744A (en) Vibration suppression device
JP5878819B2 (en) Active mount structure
JP3772715B2 (en) Vibration control device
JP2010525251A (en) Damper
JP2007255549A (en) Damping device for internal combustion engine
US20170036525A1 (en) Decoupler for a hydraulic engine mount
JP2007002847A (en) Compressor
JP2008223876A (en) Vibration damping device
JP2005076662A (en) Contact type damping device
JP4656433B2 (en) Vibration control device
JP2007205438A (en) Vibration damping device
JP2004301219A (en) Abutting type vibration control device
JP2002081494A (en) Vehicular vibration damper
JP5693386B2 (en) Vibration isolator
JP2009074658A (en) Vibration damping device for vehicle
JP2005086887A (en) Drive unit
JP4203902B2 (en) Contact type vibration damping device
JP2003161342A (en) Vibration damping device
JP2003194140A (en) Damper
JP4066456B2 (en) Cylindrical vibration isolator
JP2003287074A (en) Shock absorber for vehicle