JP2008223086A - Cathodic photo-protection coating structure, and its production method - Google Patents

Cathodic photo-protection coating structure, and its production method Download PDF

Info

Publication number
JP2008223086A
JP2008223086A JP2007062795A JP2007062795A JP2008223086A JP 2008223086 A JP2008223086 A JP 2008223086A JP 2007062795 A JP2007062795 A JP 2007062795A JP 2007062795 A JP2007062795 A JP 2007062795A JP 2008223086 A JP2008223086 A JP 2008223086A
Authority
JP
Japan
Prior art keywords
coating structure
photocathode
storage material
electron storage
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007062795A
Other languages
Japanese (ja)
Other versions
JP5201707B2 (en
Inventor
Hitoshi Kawakita
仁 川喜多
Seiji Kuroda
聖治 黒田
Tadashi Shinohara
正 篠原
Masaru Sodeoka
賢 袖岡
Masahito Suzuki
雅人 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
National Institute for Materials Science
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, National Institute for Materials Science filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007062795A priority Critical patent/JP5201707B2/en
Publication of JP2008223086A publication Critical patent/JP2008223086A/en
Application granted granted Critical
Publication of JP5201707B2 publication Critical patent/JP5201707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ideal cathodic photo-protection coating structure, and to provide a method for realizing the same. <P>SOLUTION: A photocatalytic crystal body of nanosizes such as titanium oxide and an electronic storage material crystal body such as iron oxide are aggregated so as to be aggregated grains with a size applicable to warm spray. The aggregated grains are heated to a temperature less than its phase transition temperature, and is sprayed on a metal base material at a supersonic speed so as to be sprayed on the surface of the metal base material, and the assembled grains receive impact and are dispersed at the surface of the base material so as to stick each crystal body to the surface of the base material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金属基材の表面に光カソード防食作用を示す光触媒と充放電作用を示す電子貯蔵材料からなる層が形成されてなるフルタイム光カソード防食コーティング構造とその製造方法に関する。   The present invention relates to a full-time photocathode anticorrosion coating structure in which a layer made of a photocatalyst exhibiting a photocathode anticorrosive action and an electron storage material exhibiting a charge / discharge action is formed on the surface of a metal substrate, and a method for producing the same.

この種フルタイム光カソード防食構造については、特許文献1〜3に示すように従来より公知であり、様々な試みがなされている。
この内、特許文献3の図2(C)に示される構成は、光励起半導体からなる粉末とエレクトロクロミック材料からなる粉末とを混合物の焼結体の層が示されている。
しかし、これは、これら粉末の焼結体の層であることから、焼結工程が必要となり、対象物の設置現場での作業が不可能となる欠点があった。
また、混合物の焼結は、粉末の相互間で化学反応が生じる恐れがあり、焼結後に所望の作用を発揮する可否かは予測しがたいものである。
もし可能としても、相当の実験に基づく厳格な制御を焼結時に行うべきものであるが、当該文献にはそのようなことを窺わせる記載は一切ない。
これらのことより、当該記載は実現不可能な理想を述べたに過ぎないものであって、空想の域を脱せず技術思想には該当しないものである。
特開平11−71684 特開2003−96581 特開2002−69677
This kind of full-time photocathode anticorrosion structure is conventionally known as shown in Patent Documents 1 to 3, and various attempts have been made.
Among these, the structure shown in FIG. 2C of Patent Document 3 shows a layer of a sintered body of a mixture of a powder made of a photoexcited semiconductor and a powder made of an electrochromic material.
However, since this is a layer of a sintered body of these powders, a sintering step is required, and there is a drawback that it is impossible to work on the installation site of the object.
In addition, the sintering of the mixture may cause a chemical reaction between the powders, and it is difficult to predict whether or not a desired effect can be exhibited after sintering.
If possible, strict control based on considerable experimentation should be performed during sintering, but there is no mention in the literature of such a thing.
For these reasons, the description merely describes an ideal that cannot be realized, and does not fall within the scope of fantasy and does not fall under the technical concept.
JP-A-11-71684 JP2003-96581A JP 2002-69677 A

本発明は、この様な実情に鑑み、理想的な光カソード防食コーティング構造ならびにそれを実現する為の方法を提供することを目的とした。   In view of such circumstances, an object of the present invention is to provide an ideal photocathode anticorrosion coating structure and a method for realizing the structure.

発明1光カソード防食コーティング構造は、前記光触媒および電子貯蔵材料がそれぞれ機能性金属酸化物のナノサイズの結晶体であることを特徴とする。   Invention 1 The photocathode anticorrosion coating structure is characterized in that each of the photocatalyst and the electron storage material is a nanosized crystal of a functional metal oxide.

発明2は、発明1の光カソード防食コーティング構造の製造方法であって、ナノサイズの光触媒結晶体と電子貯蔵材料結晶体を混合して集合し、ウオームスプレーに適用可能な大きさにした集合粒子として、この集合粒子を、その相転移温度未満の温度に加熱して超音速で金属基材の表面に吹き付けて、基材表面にて前記集合粒子が衝撃を受けて分散し、各結晶体を基材の表面に付着させることを特徴とする光カソード防食コーティング構造の製造方法   Invention 2 is a method for producing a photocathode anticorrosion coating structure according to Invention 1, wherein the nanoparticle photocatalyst crystal and the electron storage material crystal are mixed and assembled to form a particle applicable to a worm spray. The aggregated particles are heated to a temperature lower than the phase transition temperature and sprayed onto the surface of the metal substrate at supersonic speed, and the aggregated particles are impacted and dispersed on the surface of the substrate. Method for producing photocathode anticorrosion coating structure, characterized by adhering to surface of substrate

発明1により、光触媒と電子貯蔵材料とが共にナノ粒子として混在することにより、光触媒からの電子貯蔵材料への移動は、殆ど無抵抗の状態でなされ、極めて効率の良い充電ができた。
また、これらが結晶体を維持していることより、相互の反応は生じにくく、長期に渡り安定した作用を発揮することが出来た。
また、発明2により、ウオームスプレー法による吹き付けのもで、所望の構造を被処理物表面に形成することが出来、その他の処理を必要としないので、被処理物が使用されている現場にて、光カソード防食コーティング構造を作ることができた。
According to the invention 1, when the photocatalyst and the electron storage material are both mixed as nanoparticles, the transfer from the photocatalyst to the electron storage material is almost non-resistance, and extremely efficient charging can be performed.
Moreover, since these maintained the crystal body, mutual reaction was hard to occur and it was possible to exhibit a stable action for a long time.
In addition, according to the invention 2, it is possible to form a desired structure on the surface of the object to be processed by spraying by a worm spray method, and no other processing is required. The photocathode anticorrosion coating structure could be made.

図1は、本発明の実施に使用したウオームスプレー用ガンの概要であって、燃料と酸素とを燃焼室(1)に圧入する燃料供給口(2)と酸素供給口(3)を有し、その燃焼室(1)の出口であるノズル(4)近くには、前記燃焼室(1)に不活性ガスを供給する口(5)を設けてある。このようにして、前記不活性ガスの圧入の増減に反比例して、前記酸素と燃料の供給量を増減し、前記ノズル(4)からのガス噴出スピードを余り変動しないようにしながら、その温度を4×10〜25×10℃の範囲で調整できるようにしてある。 FIG. 1 is an outline of a worm spray gun used in the practice of the present invention, and has a fuel supply port (2) and an oxygen supply port (3) for press-fitting fuel and oxygen into a combustion chamber (1). A port (5) for supplying an inert gas to the combustion chamber (1) is provided near the nozzle (4) which is the outlet of the combustion chamber (1). In this way, the supply amount of the oxygen and fuel is increased and decreased in inverse proportion to the increase and decrease of the press-fitting of the inert gas, and the temperature is adjusted while keeping the gas ejection speed from the nozzle (4) from fluctuating much. It can be adjusted in the range of 4 × 10 2 to 25 × 10 2 ° C.

また、集合粒子径は、下記実施例に限られるものではなく、最大100μmまで可能である。
この粒子径が大きくなるに連れ、集合粒子の作成が困難になる。また、吹き付けた層に村が生じやすくなる。
また、その糊剤としてはPVAに限らず、アクリル系、ポリエステル系、ポリウレタン系などの従来一般に知られた糊剤を使用することが出来る。また、デンプン質からなる天然又は半合性の糊剤の使用も可能である。
Further, the aggregate particle diameter is not limited to the following examples, and can be up to 100 μm.
As the particle size increases, it becomes difficult to create aggregate particles. In addition, villages are more likely to be created in the sprayed layers.
The paste is not limited to PVA, and conventionally known pastes such as acrylic, polyester, and polyurethane can be used. It is also possible to use a natural or semi-synthetic glue composed of starch.

光触媒として機能する結晶体としては、下記実施例に示す酸化チタンに限らず、酸化亜鉛、酸化タングステン、酸化鉄、チタン酸ストロンチウム、硫化カドミウムなどを用いることが可能である。
また、その結晶粒径も下表1に示したものに限らず、7nm〜1μm以下のものが好ましい。
なお、1μmを超える大きなものになると触媒活性が著しく低下する恐れがある。
図2は、粒子径の発電能力との関係を示すグラフである。
任意の電位(例えば500mV)における電流(Current)は光カソード防食電流に相当するアノード電流を間接的に示すものである。すなわち、この電流が大きいほど、光カソード電流が大きく取れる可能性を示す。
従来手法(HVOF)で<1umの粒子径を有するTiO2を用いて作製したコーティングに比べて、Warm Sprayを用いると同じ粒子径でも電流値は大きく、すなわち光カソード防食性能が向上する。さらに、WarmSprayで粒子径を<100nmとすると、光カソード防食電流はさらに10倍近く大きくなっていることが分かる。
The crystal body functioning as a photocatalyst is not limited to titanium oxide shown in the following examples, and zinc oxide, tungsten oxide, iron oxide, strontium titanate, cadmium sulfide, and the like can be used.
Further, the crystal grain size is not limited to those shown in Table 1 below, and those having a crystal grain size of 7 nm to 1 μm or less are preferable.
In addition, when it becomes large exceeding 1 micrometer, there exists a possibility that catalyst activity may fall remarkably.
FIG. 2 is a graph showing the relationship between the particle size and the power generation capacity.
A current (Current) at an arbitrary potential (for example, 500 mV) indirectly indicates an anode current corresponding to the photocathode protection current. That is, the larger this current, the greater the possibility of taking a larger photocathode current.
Compared to the coating prepared using TiO2 having a particle size of <1 um by the conventional method (HVOF), the current value is large even when the Warm Spray is used, that is, the photocathodic anticorrosion performance is improved. Furthermore, when the particle size is <100 nm in WarmSpray, it can be seen that the photocathode anticorrosion current is further increased by almost 10 times.

電子貯蔵材料として用いる結晶体としては、酸化鉄に限らず、酸化バナジウム、酸化クロム、酸化マンガン、酸化コバルトなど複数の価数状態において安定で存在しうる遷移金属酸化物であって、電子貯蔵の際に、プロトン(H+)を一緒に取り込むことが可能なものであれば、使用可能である。
また、その結晶粒径も下表1に示したものに限らず、10nm〜1μmのものが使用可能である。
なお、1μmを超える大きなものになると、電子貯蔵反応も表面積に依存するので、電子貯蔵能力が著しく低下する恐れがある。
図3は、フルタイム光カソード防食コーティングにおける電子貯蔵材料(Fe2O3)の充放電特性を示すグラフである。
電流(Current)がマイナス方向にピークが現れているのが充電作用を示しており、ピーク高さが大きいほど、充電容量が大きいことを示す。プラス方向は放電作用を示す。ピーク高さは放電容量に相当する。従来手法(HVOF)で<1umの粒子径を有するFe2O3を用いて作製したコーティングに比べて、Warm Sprayを用いると同じ粒子径でもピークは大きく、すなわち充放電容量が大きくなる。さらに、WarmSprayで粒子径を<100nmとすると、充放電容量は2倍以上に大きくなっていることが分かる。
The crystalline material used as the electron storage material is not limited to iron oxide, but is a transition metal oxide that can exist stably in a plurality of valence states, such as vanadium oxide, chromium oxide, manganese oxide, and cobalt oxide. Any proton (H +) that can be taken together can be used.
Further, the crystal grain size is not limited to those shown in Table 1 below, and those having a grain size of 10 nm to 1 μm can be used.
In addition, when it becomes large exceeding 1 micrometer, since an electron storage reaction also depends on a surface area, there exists a possibility that an electron storage capability may fall remarkably.
FIG. 3 is a graph showing the charge / discharge characteristics of the electron storage material (Fe2O3) in the full-time photocathode anticorrosion coating.
A peak in the negative direction of the current (Current) indicates the charging action, and the larger the peak height, the larger the charging capacity. A positive direction indicates a discharge action. The peak height corresponds to the discharge capacity. Compared to the coating prepared using Fe2O3 having a particle size of <1 um by the conventional method (HVOF), the peak is large even when using the Warm Spray, that is, the charge / discharge capacity is increased. Furthermore, when the particle diameter is <100 nm in WarmSpray, it can be seen that the charge / discharge capacity is more than doubled.

下表1の示すように、光触媒用の酸化チタン結晶と電子貯蔵材料である酸化鉄結晶を混合して直径25〜90μmの集合粒子を作成した。(図4、5)
集合粒子を固化するために糊剤として、PVAを用いた。集合粒子は、糊剤を2質量%結晶混合体に混合して、スプレードライ法にて造粒したものである。
このようにして造粒した集合粒子をウオームスプレー用ガンを用い下表1に条件で基材に吹き付け付着させた。
集合粒子は、付着と同時に破砕され、形成された層はほぼ均一なバラツキで、両結晶が存在した。(図6、7)
下表1において、結果1)2)の○、◎の意味は以下の通りである。
1)◎:光触媒作用高い
1)○:光触媒作用あり
2)◎:電子貯蔵作用高い
2)○:電子貯蔵作用あり
As shown in Table 1 below, aggregated particles having a diameter of 25 to 90 μm were prepared by mixing titanium oxide crystals for photocatalyst and iron oxide crystals as an electron storage material. (Figs. 4 and 5)
PVA was used as a paste to solidify the aggregated particles. Aggregated particles are obtained by mixing a paste with 2% by mass of a crystal mixture and granulating it by a spray drying method.
The aggregated particles thus granulated were sprayed and adhered to the base material under the conditions shown in Table 1 below using a warm spray gun.
The aggregated particles were crushed simultaneously with the adhesion, and the formed layer was almost uniform and both crystals were present. (Figs. 6 and 7)
In Table 1 below, the meanings of ○ and ◎ in results 1) and 2) are as follows.
1) A: High photocatalytic activity 1) ○: Photocatalytic activity 2) A: High electron storage activity 2) ○: Electron storage activity

鋼橋などの鋼構造物の防食のみならず、容器内の雰囲気制御が重要であるために、通常の犠牲防食システムは採用できない。一方、ステンレス鋼などの高耐食性材料は確率的な局部腐食の危険性を秘めている原子力発電施設等における放射性物質格納容器の防食などに有効に使用できる。 Since it is important not only to prevent corrosion of steel structures such as steel bridges but also to control the atmosphere in the container, a normal sacrificial corrosion protection system cannot be employed. On the other hand, highly corrosion-resistant materials such as stainless steel can be effectively used for anticorrosion of radioactive substance storage containers in nuclear power generation facilities and the like that have the risk of stochastic local corrosion.

ウオームスプレー用ガンの構造の概要をしめす縦断正面図Longitudinal front view showing an outline of the structure of a gun for worm spray フルタイム光カソード防食コーティングにおける光触媒(TiO2)の光電流特性を示すグラフ。The graph which shows the photocurrent characteristic of the photocatalyst (TiO2) in a full time photocathode anticorrosion coating. フルタイム光カソード防食コーティングにおける電子貯蔵材料(Fe2O3)の充放電特性を示すグラフ。The graph which shows the charging / discharging characteristic of the electron storage material (Fe2O3) in a full time photocathode anticorrosion coating. 集合粒子の顕微鏡写真Micrograph of aggregated particles 図4で示す粒子の断面拡大写真Fig. 4 is a cross-sectional enlarged photograph of the particle コーティング層の側面拡大写真Enlarged side view of the coating layer 図6の一部を拡大した拡大写真Enlarged photo with part of Fig. 6 enlarged

Claims (2)

金属基材の表面に光カソード防食作用を有する光触媒と充放電作用を有する電子貯蔵材料からなる層が設けられてなるフルタイム光カソード防食コーティング構造であって、前記光触媒および電子貯蔵材料がそれぞれ機能性金属酸化物のナノサイズの結晶体であることを特徴とする光カソード防食コーティング構造   A full-time photocathode anticorrosion coating structure in which a layer comprising a photocatalyst having a photocathode anticorrosion action and an electron storage material having a charge / discharge action is provided on the surface of a metal substrate, wherein the photocatalyst and the electron storage material function respectively. Photocathodic anticorrosion coating structure characterized by being a nano-sized crystalline metal oxide 請求項1に記載の光カソード防食コーティング構造の製造方法であって、ナノサイズの光触媒結晶体と電子貯蔵材料結晶体を混合して集合し、ウオームスプレーに適用可能な大きさにした集合粒子として、この集合粒子を、その相転移温度未満の温度に加熱して超音速で金属基材の表面に吹き付けて、基材表面にて前記集合粒子が衝撃を受けて分散し、各結晶体を基材の表面に付着させることを特徴とする光カソード防食コーティング構造の製造方法   The method for producing a photocathode anticorrosion coating structure according to claim 1, wherein the aggregated particles are formed by mixing nano-sized photocatalyst crystals and electron storage material crystals to obtain a size applicable to a worm spray. The aggregated particles are heated to a temperature lower than the phase transition temperature and sprayed onto the surface of the metal substrate at supersonic speed. Method for producing photocathode anticorrosion coating structure, characterized by adhering to surface of material
JP2007062795A 2007-03-13 2007-03-13 A method for producing a photocathode anticorrosion coating structure. Active JP5201707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062795A JP5201707B2 (en) 2007-03-13 2007-03-13 A method for producing a photocathode anticorrosion coating structure.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062795A JP5201707B2 (en) 2007-03-13 2007-03-13 A method for producing a photocathode anticorrosion coating structure.

Publications (2)

Publication Number Publication Date
JP2008223086A true JP2008223086A (en) 2008-09-25
JP5201707B2 JP5201707B2 (en) 2013-06-05

Family

ID=39842041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062795A Active JP5201707B2 (en) 2007-03-13 2007-03-13 A method for producing a photocathode anticorrosion coating structure.

Country Status (1)

Country Link
JP (1) JP5201707B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134506A (en) * 2021-11-19 2022-03-04 中国科学院海洋研究所 Porous composite photoelectric energy storage material for photoinduced continuous cathodic protection and preparation and application thereof
CN114214703A (en) * 2022-02-22 2022-03-22 青岛理工大学 Z-type heterojunction composite photo-anode membrane and preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262368A (en) * 2000-03-21 2001-09-26 Nippon Parkerizing Co Ltd Surface treated and plated steel products having excellent corrosion resistance and method for manufacturing the same
JP2002287171A (en) * 2001-03-23 2002-10-03 Akira Fujishima Light reactive member, light transparent member and ornaments
JP2006051439A (en) * 2004-08-11 2006-02-23 Fujikoo:Kk Photocatalyst functional coating film and its forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262368A (en) * 2000-03-21 2001-09-26 Nippon Parkerizing Co Ltd Surface treated and plated steel products having excellent corrosion resistance and method for manufacturing the same
JP2002287171A (en) * 2001-03-23 2002-10-03 Akira Fujishima Light reactive member, light transparent member and ornaments
JP2006051439A (en) * 2004-08-11 2006-02-23 Fujikoo:Kk Photocatalyst functional coating film and its forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134506A (en) * 2021-11-19 2022-03-04 中国科学院海洋研究所 Porous composite photoelectric energy storage material for photoinduced continuous cathodic protection and preparation and application thereof
CN114134506B (en) * 2021-11-19 2023-08-22 中国科学院海洋研究所 Porous composite photoelectric energy storage material for photoinduced continuous cathode protection and preparation and application thereof
CN114214703A (en) * 2022-02-22 2022-03-22 青岛理工大学 Z-type heterojunction composite photo-anode membrane and preparation method and application thereof
CN114214703B (en) * 2022-02-22 2022-05-17 青岛理工大学 Z-type heterojunction composite photo-anode membrane and preparation method and application thereof

Also Published As

Publication number Publication date
JP5201707B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP7050419B2 (en) Negative electrode for all-solid-state secondary battery and all-solid-state secondary battery
US20180138494A1 (en) Kinetic batteries
CN1209482C (en) Active raw material for thermal sprayed system, thermal sprayed electrodes of energy storage and conversion device made of it and manufacture method thereof
KR101322165B1 (en) Process for preparing alloy composite negative electrode material for lithium ion batteries
CN103636034B (en) Lead-acid battery and paste for this reason
JP6341313B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP2011049161A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN101432241A (en) Lithium-based compound nanoparticle compositions and methods of forming the same
US20130011771A1 (en) Supported catalyst
EP3294919B1 (en) Powder for thermal spraying, thermal spraying method, and thermally sprayed coating
CN105122504A (en) Composite material, method for the production thereof, system produced therefrom and application of same
JP2002324551A (en) Titanic acid lithium powder and its use
JP6068247B2 (en) Positive electrode material for non-aqueous electrolyte lithium ion secondary battery and non-aqueous electrolyte lithium ion secondary battery using the positive electrode material
CN1502663B (en) Spray powder for manufacturing by thermal spraying of a thermal barrier coating being stable at high temperatures
JP5201707B2 (en) A method for producing a photocathode anticorrosion coating structure.
US20200176752A1 (en) Sprayed formation of batteries
WO2002079092A1 (en) Method for producing powder of ito comprising indium oxide and tin dissolved therein and method for producing ito target
Ngaotrakanwiwat et al. TiO2–V2O5 nanocomposites as alternative energy storage substances for photocatalysts
US2943951A (en) Flame spraying method and composition
US7582147B1 (en) Composite powder particles
US8282855B2 (en) Composite positive active material of lithium battery and method for manufacturing the same
JP4163986B2 (en) Insoluble electrode and method for producing the same
Anggita Deposisi ZnO Doping Ag pada Substrat Alumunium Foil untuk Degradasi Methylene Blue
JP5105349B2 (en) Coating method.
Hieu et al. Highly reversible lithiation/delithiation in indium antimonide with hybrid buffering matrix

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130208

R150 Certificate of patent or registration of utility model

Ref document number: 5201707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250