JP2008222932A - Thermoplastic resin, thermoplastic resin composition and optical component - Google Patents

Thermoplastic resin, thermoplastic resin composition and optical component Download PDF

Info

Publication number
JP2008222932A
JP2008222932A JP2007065514A JP2007065514A JP2008222932A JP 2008222932 A JP2008222932 A JP 2008222932A JP 2007065514 A JP2007065514 A JP 2007065514A JP 2007065514 A JP2007065514 A JP 2007065514A JP 2008222932 A JP2008222932 A JP 2008222932A
Authority
JP
Japan
Prior art keywords
component
thermoplastic resin
resin
optical component
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007065514A
Other languages
Japanese (ja)
Inventor
Yukihisa Mizutani
行久 水谷
Shinji Hasegawa
伸司 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2007065514A priority Critical patent/JP2008222932A/en
Publication of JP2008222932A publication Critical patent/JP2008222932A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a specific styrene-based thermoplastic resin having excellent optical characteristics, excellent dimensional stability in water absorption, excellent light resistance and excellent adhesiveness to UV-ray curing resins, a resin composition of the same, and optical components using the resin or the resin composition. <P>SOLUTION: The styrene-based thermoplastic resin comprises an aromatic vinyl unit (A) and an unsaturated nitrile unit (B). In the specific styrene-based thermoplastic resin, the mean value (X) of the amount of the component (B) based on the entire resin is 8≤X≤27 wt.%, and a copolymer containing ≤(X-5) wt.% component (B) and a copolymer containing ≥(X+5) wt.% component (B) are 0.5-5 wt.%, respectively. A resin containing at least one species component (C) selected from a group consisting of alkyl (meth)acrylates in 0-20 pts.wt. based on 100 pts.wt. the resin is also provided. The resin composition contains 0.05-2.0 pts.wt. hindered amine-based stabilizer (D) based on 100 pts.wt. the resin. The optical components using the resin or the resin composition are provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、透明性、耐光性に優れた光学用部品に適した特定のスチレン系熱可塑性樹脂、スチレン系熱可塑性樹脂組成物、及び、該樹脂あるいは該樹脂組成物を用いた光学部品に関するものである。本願の光学部品とは、シートからなるフレネルレンズ、レンチキユラーレンズ、背面透過型プロジェクションテレビや液晶テレビ等の前面パネル、拡散板等であり、これらに必要な特性は、透明性、剛性、耐久性、低吸水性、良加工性、耐薬品性(二次加工性)、低コストである。本発明は、これらを技術的に満たす特定のスチレン系熱可塑性樹脂、スチレン系熱可塑性樹脂組成物、および該樹脂あるいは該樹脂組成物からなる光学部品を提供するものである。   The present invention relates to a specific styrene-based thermoplastic resin suitable for optical parts having excellent transparency and light resistance, a styrene-based thermoplastic resin composition, and an optical component using the resin or the resin composition. It is. The optical components of the present application are a Fresnel lens made of a sheet, a lenticular lens, a front panel of a rear transmission type projection television or a liquid crystal television, a diffusion plate, and the necessary properties are transparency, rigidity, durability , Low water absorption, good workability, chemical resistance (secondary workability), and low cost. The present invention provides a specific styrenic thermoplastic resin, a styrenic thermoplastic resin composition, and an optical component comprising the resin or the resin composition that technically satisfy these requirements.

近年テレビの大型化に伴い従来の直視型ブラウン管テレビから背面透過型プロジェクションテレビ、PDPテレビ、液晶テレビの需要が増大している。これらには、光学的に透明な樹脂製のスクリーン、拡散板、導光板等が使われている。例えば、プロジェクションテレビのスクリーンの構成は、一般的にはテレビ内部から順にフレネルレンズ、レンチキュラーレンズのレンズ基板の2枚構成の樹脂製レンズからなり、場合によっては、該スクリーンの前に前面パネルが設けられることもある。   In recent years, the demand for back-transmission projection televisions, PDP televisions, and liquid crystal televisions has increased from conventional direct-view CRT televisions as televisions have become larger. For these, optically transparent resin screens, diffusion plates, light guide plates, and the like are used. For example, the screen of a projection television is generally composed of two resin lenses, a Fresnel lens and a lens substrate of a lenticular lens, in order from the inside of the television. In some cases, a front panel is provided in front of the screen. Sometimes.

一般に、光学部品特にフレネルレンズ、レンチキュラーレンズ等に使用される可能性のある透明樹脂としては、アクリル樹脂、スチレンーアクリル系共重合体、ポリカーボネート、ポリスチレン、スチレン−アクリロニトリル共重合体及び環状オレフィン等があげられる。具体的には、それらの部品には、従来からアクリル樹脂が使用されてきた。しかし、近年のテレビの大型化に伴うスクリーン自体の大型化により、吸水率が大きいアクリル樹脂を使用していることに起因するスクリーンの反りが目立つようになり、結果的に画面が歪む等の問題が発生した。この問題を改善する為に、最近では吸水率の小さいスチレン−アクリル系共重合体が使用されている(例えば、特許文献1参照。)。   In general, transparent resins that may be used for optical components, particularly Fresnel lenses and lenticular lenses, include acrylic resins, styrene-acrylic copolymers, polycarbonate, polystyrene, styrene-acrylonitrile copolymers, and cyclic olefins. can give. Specifically, acrylic resin has been conventionally used for these components. However, due to the enlargement of the screen itself accompanying the recent enlargement of televisions, the warpage of the screen due to the use of acrylic resin with a large water absorption rate becomes conspicuous, resulting in problems such as screen distortion. There has occurred. In order to improve this problem, a styrene-acrylic copolymer having a low water absorption rate has recently been used (see, for example, Patent Document 1).

また、フレネルレンズ、レンチキュラーレンズには、従来はアクリル樹脂が使用されていた。しかし、上記したようにアクリル樹脂は吸水による寸法変化が大きい。テレビの大型化に伴いこれらレンズも大きくなっており、吸水によりレンズの寸法が変化することで、特にレンズの中心部が膨らむように反りが発生する。その結果、焦点ボケ、色再現性の低下、2重像といった現象による映像の画質低下の問題が起こった。これらの現象を解決するために、該レンズの材質としてアクリル樹脂に比べて吸水率の小さいスチレンーアクリル系共重合体が採用され主流となっている。   Conventionally, acrylic resin has been used for Fresnel lenses and lenticular lenses. However, as described above, the acrylic resin has a large dimensional change due to water absorption. As the size of televisions increases, the size of these lenses also increases. When the dimensions of the lenses change due to water absorption, warping occurs particularly as the center of the lens swells. As a result, there has been a problem of image quality deterioration due to phenomena such as defocusing, color reproducibility deterioration, and double image. In order to solve these phenomena, a styrene-acrylic copolymer having a smaller water absorption rate than that of an acrylic resin has been adopted as a material of the lens.

しかしながら、最近は更に大型化の薄型テレビが開発されており、スチレン−アクリル系共重合体でも吸水による寸法変化による反りの発生が問題となり始めている。この問題を解決するために、メタクリル酸メチルの含有量を下げたスチレン−アクリル系共重合体の開発が試みられている。しかし、メタクリル酸メチルの含有量を下げると、吸水による寸法変化は小さくすることはできるが、該樹脂基板を使ってフレネルレンズ等レンズを制作する際に基板の上に塗布される紫外線硬化型樹脂との接着性が不十分となり、フレネルレンズ等を加工できないという問題がある。   Recently, however, larger-sized thin televisions have been developed, and even with styrene-acrylic copolymers, warpage due to dimensional changes due to water absorption has begun to be a problem. In order to solve this problem, an attempt has been made to develop a styrene-acrylic copolymer having a reduced methyl methacrylate content. However, if the content of methyl methacrylate is lowered, the dimensional change due to water absorption can be reduced. However, when producing a lens such as a Fresnel lens using the resin substrate, an ultraviolet curable resin applied on the substrate. Inadequate adhesiveness and inability to process a Fresnel lens or the like.

一方、スチレン−アクリロニトリル共重合体に関しては、従来は、単に共重合体として記載されているのみであり、その具体的な組成等についての検討はなされていない(例えば、特許文献2〜6参照。)。
特許文献7には、スチレン−アクリロニトリル共重合体の具体的な開示があるが、光学学用途への応用に関しては一切記載されていない。
特開2002−40563号公報 特開平2−245703号公報 特開平9−26503号公報 特開平9−281307号公報 特開2000−296544号公報 特開2003−279712号公報 特開平3−269006号公報
On the other hand, regarding styrene-acrylonitrile copolymers, conventionally, they are merely described as copolymers, and the specific composition thereof has not been studied (for example, see Patent Documents 2 to 6). ).
Patent Document 7 has a specific disclosure of a styrene-acrylonitrile copolymer, but does not describe any application to optical applications.
JP 2002-40563 A JP-A-2-245703 Japanese Patent Laid-Open No. 9-26503 JP-A-9-281307 JP 2000-296544 A JP 2003-279712 A JP-A-3-269006

本発明は、上記問題点を鑑みてなされたもので、光学的に透明であり、耐光性に優れ、吸水率および寸法変化率が小さく、なお且つ紫外線硬化型樹脂との接着性に優れる従来のスチレン系樹脂に比較してそれらのバランスに優れた特定のスチレン系熱可塑性樹脂、スチレン系熱可塑性樹脂組成物、および、該樹脂あるいは樹脂組成物製の光学部品を提供することを目的とするものである。また、大型の映像スクリーンの吸水によるスクリーンの寸法変化を改良することを目的とする。   The present invention has been made in view of the above problems, and is optically transparent, excellent in light resistance, small in water absorption and dimensional change, and excellent in adhesiveness with an ultraviolet curable resin. An object of the present invention is to provide a specific styrene-based thermoplastic resin, a styrene-based thermoplastic resin composition, and an optical component made of the resin or the resin composition, which are superior in balance to styrene-based resins. It is. Another object of the present invention is to improve the dimensional change of the screen due to water absorption of a large image screen.

本発明者らは、上記の目的を達成すべく鋭意検討を進めた結果、以下に記す特定のスチレン系熱可塑性樹脂により上記目的を達成できることを見出し、本発明を完成するに至った。また、該樹脂に更に特定のヒンダードアミン系安定剤を組み合わせた樹脂組成物が、更に優れた特性を有することを見出した。   As a result of diligent studies to achieve the above object, the present inventors have found that the above object can be achieved by the specific styrene-based thermoplastic resin described below, and have completed the present invention. Moreover, it discovered that the resin composition which combined specific hindered amine stabilizer with this resin has the further outstanding characteristic.

即ち、本発明においては、光学特性に優れ、且つ、吸水寸法安定性の高い特定組成の樹脂を見出すことで上記目的を達成し、更にその樹脂に耐光性を更に高める為の安定剤を加えた樹脂組成物が、より優れた特性を有することを見出した。
尚、樹脂の耐光(候)性の向上手法としては、トリアジン系、ベンゾトリアジン系、ベンゾフェノン系等の紫外線吸収剤と安定剤との併用が一般的に取られる。しかし、本発明の用途などの様に、紫外線を照射して紫外線硬化型樹脂を硬化させる場合には、紫外線吸収剤が、照射された紫外線を吸収し硬化反応を阻害し、全く硬化しないか、または硬化しても満足する密着性を発揮できない等の問題が生じるため、紫外線吸収剤との併用は好ましくない。この観点から、本発明においては、紫外線吸収剤を併用しないで耐光(候)性を改善し、かつ接着性を阻害しない安定剤についても鋭意研究を行った。
That is, in the present invention, the above object is achieved by finding a resin having a specific composition which is excellent in optical characteristics and has high water absorption dimensional stability, and a stabilizer for further enhancing light resistance is added to the resin. It has been found that the resin composition has more excellent characteristics.
In addition, as a method for improving the light resistance (weather) of the resin, a combination of a triazine-based, benzotriazine-based, benzophenone-based ultraviolet absorber and a stabilizer is generally used. However, when the ultraviolet curable resin is cured by irradiating ultraviolet rays, such as the use of the present invention, the ultraviolet absorber absorbs the irradiated ultraviolet rays and inhibits the curing reaction, does not cure at all, Or, since problems such as inability to exhibit satisfactory adhesion even after curing occur, the combined use with an ultraviolet absorber is not preferred. From this point of view, in the present invention, diligent research was also conducted on a stabilizer that improves light resistance (weather) without using an ultraviolet absorber and does not inhibit adhesiveness.

本発明の目的は、以下の特定のスチレン系熱可塑性樹脂、スチレン系熱可塑性樹脂組成物及び、光学部品により達成された。
1. 芳香族ビニル単位(A)、及び、不飽和ニトリル単位(B)からなるスチレン系熱可塑性樹脂であり、かつ、樹脂全体に対する成分(B)の含有量の平均値(X)が8≦X≦27重量%であり、
前記成分(B)を(X−5)重量%以下有する共重合体、及び、
前記成分(B)を(X+5)重量%以上有する共重合体が、それぞれ0.5〜5重量%であるスチレン系熱可塑性樹脂。
2. 前記成分(A)と前記成分(B)の合計量100重量部に対して、アルキル(メタ)アクリレートからなる群より選ばれる少なくとも1種の成分(C)を、0〜20重量部含有する項1に記載のスチレン系熱可塑性樹脂。
3. 前記成分(B)を(X−5)重量%以下有する共重合体、及び、前記成分(B)を(X+5)重量%以上有する共重合体の含有量が、それぞれ0.5〜3.5重量%である項1または2に記載のスチレン系熱可塑性樹脂。
4. 項1〜3いずれか一項に記載のスチレン系熱可塑性100重量部に対して、ヒンダードアミン系安定剤(D)を0.05〜2.0重量部含有するスチレン系熱可塑性樹脂組成物。
The object of the present invention has been achieved by the following specific styrenic thermoplastic resin, styrenic thermoplastic resin composition, and optical component.
1. The average value (X) of the content of the component (B) with respect to the whole resin is a styrene-based thermoplastic resin composed of an aromatic vinyl unit (A) and an unsaturated nitrile unit (B), and 8 ≦ X ≦ 27% by weight,
A copolymer having the component (B) not more than (X-5)% by weight, and
Styrenic thermoplastic resins in which the copolymer having the component (B) (X + 5) wt% or more is 0.5 to 5 wt%, respectively.
2. 0 to 20 parts by weight of at least one component (C) selected from the group consisting of alkyl (meth) acrylates with respect to 100 parts by weight of the total amount of the component (A) and the component (B) Item 2. The styrenic thermoplastic resin according to Item 1.
3. The content of the copolymer having (X-5) wt% or less of the component (B) and the copolymer having (X + 5) wt% or more of the component (B) is 0.5 to 3 respectively. Item 3. The styrenic thermoplastic resin according to Item 1 or 2, which is 5% by weight.
4. A styrenic thermoplastic resin composition containing 0.05 to 2.0 parts by weight of a hindered amine stabilizer (D) with respect to 100 parts by weight of the styrenic thermoplastic according to any one of items 1 to 3. .

5. 成分(D)が、セバシン酸ジエステル化合物である項4に記載のスチレン系熱可塑性樹脂組成物。
6. 成分(D)が、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケートである項4に記載のスチレン系熱可塑性樹脂組成物。
7. 項1〜3のいずれか一項に記載のスチレン系熱可塑性樹脂、あるいは、項4〜6のいずれか一項に記載のスチレン系熱可塑性樹脂組成物からなる光学部品。
8. 光学部品が押出成形シートからなる項7に記載の光学部品。
9. 光学部品が背面透過型プロジェクションテレビ用スクリーンである項7に記載の光学部品。
10. 光学部品が背面透過型プロジェクションテレビ用スクリーンのフレネルレンズ及びレンチキュラーレンズのレンズ基板である項7に記載の光学部品。
11. 光学部品が薄型テレビ用前面パネル基板である項7に記載の光学部品。
12. 光学部品が液晶テレビ用拡散板である項7に記載の光学部品。
5. The styrenic thermoplastic resin composition according to item 4, wherein the component (D) is a sebacic acid diester compound.
6. The styrenic thermoplastic resin composition according to item 4, wherein component (D) is bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate.
7. An optical component comprising the styrenic thermoplastic resin according to any one of items 1 to 3 or the styrenic thermoplastic resin composition according to any one of items 4 to 6.
8. The optical component according to item 7, wherein the optical component is an extruded sheet.
9. The optical component according to item 7, wherein the optical component is a rear transmission projection television screen.
10. The optical component according to item 7, wherein the optical component is a lens substrate of a Fresnel lens or a lenticular lens of a screen for rear transmission type projection television.
11. The optical component according to item 7, wherein the optical component is a front panel substrate for a flat-screen television.
12. The optical component according to item 7, wherein the optical component is a diffusion plate for a liquid crystal television.

本発明の光学用スチレン系熱可塑性樹脂及びスチレン系熱可塑性樹脂組成物は、優れた光学特性、優れた耐光性、優れた吸水寸法安定性及び紫外線硬化型樹脂との優れた接着性を有しており、家電機器、OA機器等の光学部品等の用途に使用することが可能となる。   The optical styrene-based thermoplastic resin and the styrene-based thermoplastic resin composition of the present invention have excellent optical properties, excellent light resistance, excellent water absorption dimensional stability, and excellent adhesion to an ultraviolet curable resin. Therefore, it can be used for optical parts such as home appliances and OA devices.

本発明について、以下具体的に説明する。
本発明のスチレン系熱可塑性樹脂は、芳香族ビニル単位(A)、及び、不飽和ニトリル単位(B)からなり、樹脂成分全体に対する成分(B)の含有量の平均値(X)が8≦X≦27重量%である。
好ましくは10≦X≦23重量%であり、更に好ましくは15≦X≦22重量%であり、特に好ましくは16≦X≦21重量%である。
The present invention will be specifically described below.
The styrenic thermoplastic resin of the present invention comprises an aromatic vinyl unit (A) and an unsaturated nitrile unit (B), and the average value (X) of the content of the component (B) with respect to the entire resin component is 8 ≦ X ≦ 27% by weight.
Preferably, 10 ≦ X ≦ 23% by weight, more preferably 15 ≦ X ≦ 22% by weight, and particularly preferably 16 ≦ X ≦ 21% by weight.

上記の成分(B)の含有量は、本発明の樹脂を光学部品用途のレンズ基材に用いる場合の、レンズ基材に接着させる紫外線硬化型樹脂との接着性の観点から8重量%以上であり、飽和吸水時の寸法変化率および黄色度(YI)の観点から27重量%以下である。
成分(B)の平均値(X)とは、組成分布を持つ成分(B)の平均値である。測定方法としては、まず、元素分析よりアクリロニトリル含有量(AN%)が既知の標準アクリロニトリルースチレン共重合体を用いて、液体クロマトグラフを測定し、ピークトップのリテンションタイム(RT)を求める。各標準ポリマーのAN%とピークトップのRTをプロットし、AN%とRTの補正曲線とする。次いでサンプルのクロマトグラフを測定し、RT(i)とピーク強度(PH(i))を読み取り、ピーク強度%比(Hi)を求め、AN%補正曲線よりRT(i)に対応したAN%を読み取り、式(1)よりAN比(i)を求める。
(AN比(i))=(AN%(i))/100 ・・・ (1)
次に式(2)よりサンプルのAN%を求める。これを平均値(X)とする。
(AN%)=Σ(Hi)(AN比(i)) ・・・ (2)
Content of said component (B) is 8 weight% or more from an adhesive viewpoint with the ultraviolet curable resin made to adhere to a lens base material in the case of using the resin of this invention for the lens base material of an optical component use. Yes, and is 27% by weight or less from the viewpoint of dimensional change at saturated water absorption and yellowness (YI).
The average value (X) of the component (B) is the average value of the component (B) having a composition distribution. As a measuring method, first, a liquid chromatograph is measured using a standard acrylonitrile-styrene copolymer having a known acrylonitrile content (AN%) by elemental analysis, and a peak top retention time (RT) is obtained. Plot the AN% of each standard polymer and the RT of the peak top to obtain a correction curve of AN% and RT. Next, the chromatograph of the sample is measured, RT (i) and peak intensity (PH (i)) are read, the peak intensity% ratio (Hi) is obtained, and AN% corresponding to RT (i) is calculated from the AN% correction curve. Read the AN ratio (i) from the equation (1).
(AN ratio (i)) = (AN% (i)) / 100 (1)
Next, AN% of a sample is calculated | required from Formula (2). This is the average value (X).
(AN%) = Σ (Hi) (AN ratio (i)) (2)

本発明のスチレン系熱可塑性樹脂は、成分(B)が(X−5)重量%以下有する共重合体、及び、成分(B)を(X+5)重量%以上有する共重合体が、それぞれ0.5〜5重量%である事が必要である。また、それぞれの共重合体の含有量を0.5〜4.5重量%とすることが好ましく、それぞれの共重合体の含有量を0.5〜3.5重量%とすることが特に好ましい。
本発明のスチレン系熱可塑性樹脂に用いられる芳香族ビニル単位(A)としては、スチレン、α―メチルスチレン、ビニルトルエン、ジメチルスチレン、t−ブチルスチレン、クロルスチレンなどを挙げることができるが、特にスチレンが好ましい。また、不飽和ニトリル単位(B)としては、アクリロニトリル、メタクリロニトリルなどを挙げることができるが、特にアクリロニトリルが好ましい。
In the styrenic thermoplastic resin of the present invention, the copolymer having component (B) of (X-5) wt% or less and the copolymer having component (B) of (X + 5) wt% or more are each 0.00%. It must be 5 to 5% by weight. Further, the content of each copolymer is preferably 0.5 to 4.5% by weight, and the content of each copolymer is particularly preferably 0.5 to 3.5% by weight. .
Examples of the aromatic vinyl unit (A) used in the styrenic thermoplastic resin of the present invention include styrene, α-methylstyrene, vinyltoluene, dimethylstyrene, t-butylstyrene, and chlorostyrene. Styrene is preferred. Examples of the unsaturated nitrile unit (B) include acrylonitrile and methacrylonitrile, with acrylonitrile being particularly preferred.

また、本発明のスチレン系熱可塑性樹脂は、成分(A)および/または成分(B)と共重合可能な単量体を含んでも良い。そのような共重合可能な単量体(C)としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチル(メタ)アクリレート、2−エチルヘキシルメタアクリレート等のアルキル(メタ)アクリレート;アクリル酸、メタクリル酸などの(メタ)アクリル酸;無水マレイン酸等のα、β―不飽和カルボン酸;N−フェニルマレイミド、N−メチルマレイミド、N−シクロヘキシルマレイミド等のマレイミド;グリシジルメタクリレート等のグリシジル基含有単量体が挙げられる。これらの単量体は1種あるいは2種以上を組み合わせて用いることが出来る。これらの中でも、アルキル(メタ)アクリレートが好ましく、ブチルアクリレートが更に好ましい。
成分(C)の含有量は、成分(A)と成分(B)との合計量100重量部に対して0〜20重量部とすることが好ましく、7〜15重量部とすることが更に好ましい。
Moreover, the styrenic thermoplastic resin of the present invention may contain a monomer copolymerizable with the component (A) and / or the component (B). Examples of such copolymerizable monomer (C) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethyl (meth) acrylate, 2- Alkyl (meth) acrylates such as ethylhexyl methacrylate; (meth) acrylic acid such as acrylic acid and methacrylic acid; α, β-unsaturated carboxylic acid such as maleic anhydride; N-phenylmaleimide, N-methylmaleimide, N- Maleimide such as cyclohexylmaleimide; glycidyl group-containing monomers such as glycidyl methacrylate. These monomers can be used alone or in combination of two or more. Among these, alkyl (meth) acrylate is preferable and butyl acrylate is more preferable.
The content of the component (C) is preferably 0 to 20 parts by weight, more preferably 7 to 15 parts by weight with respect to 100 parts by weight of the total amount of the component (A) and the component (B). .

本発明のスチレン系熱可塑性樹脂を得る方法としては、例えば、完全攪拌混合槽に、モノマー、開始剤、溶媒等を連続的にフィードし、連続的に反応槽から抜き出し、熱時、脱揮系で揮発分を除去する方法が挙げられる。脱揮系でのポリマー滞留は極力少なくすることが好ましい。
一般に、スチレン−アクリロニトリル共重合体の反応は、アゼオ組成がアクリロニトリル24〜25重量%の範囲にあり、それ以外の組成で重合させると組成分布が広くなり、広い組成分布の共重合体は、透明性が大幅に損なわれるために、従来から種々の工夫がされている。工業的に利用されているのはアクリロニトリル成分がアゼオ組成以上の共重合体であり、これらのスチレンーアクリロニトリル共重合体の製造は、一般的に乳化重合方法、懸濁重合方法及び塊状重合方法が用いられている中で、組成分布を狭くする方法としては、塊状重合における完全混合型反応機が用いる製造方法等が挙げられる。完全混合型反応機を用いて、且つ気層部の存在がない満液状態で重合し、重合後の未反応単量体は、速やかに除去することが好ましい。未反応単量体の除去としては、1段または多段の減圧装置等で行なうことができる。
As a method for obtaining the styrenic thermoplastic resin of the present invention, for example, a monomer, an initiator, a solvent, etc. are continuously fed into a complete stirring and mixing tank, and continuously extracted from the reaction tank. The method of removing a volatile matter by is mentioned. It is preferable to minimize polymer retention in the devolatilization system.
In general, the reaction of styrene-acrylonitrile copolymer has an azeo composition in the range of 24 to 25% by weight of acrylonitrile. When polymerized with other compositions, the composition distribution becomes wide, and a copolymer having a wide composition distribution is transparent. In order to greatly impair the performance, various devices have been conventionally devised. Industrially used are copolymers having an acrylonitrile component having an azeo composition or higher, and these styrene-acrylonitrile copolymers are generally produced by emulsion polymerization, suspension polymerization and bulk polymerization methods. Among the methods used, a method for narrowing the composition distribution includes a production method used by a complete mixing reactor in bulk polymerization. It is preferable to perform polymerization in a full liquid state using a fully mixed reactor and without the presence of a gas layer, and to quickly remove unreacted monomers after polymerization. The removal of the unreacted monomer can be performed with a single-stage or multi-stage decompression device.

本発明のスチレン系熱可塑性樹脂の重量平均分子量としては、スチレン換算分子量で185,000〜250,000の範囲が好ましい。重量平均分子量はゲル浸透クロマトグラフィー(東ソー社製 HLC8220GPC)、カラム(東ソー社製 TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL 直列)を用いて測定する。試料 20mg±0.5mgをテトラヒドロフラン 10mlに溶解し、0.45μmのフィルターで濾過した。この溶液をカラム温度40℃に100μl注入し、検出器RI温度 40℃で測定しスチレン換算した値を用いる。   The weight average molecular weight of the styrenic thermoplastic resin of the present invention is preferably in the range of 185,000 to 250,000 in terms of styrene equivalent molecular weight. The weight average molecular weight is measured using gel permeation chromatography (HLC8220GPC manufactured by Tosoh Corporation) and column (TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series manufactured by Tosoh Corporation). A sample 20 mg ± 0.5 mg was dissolved in 10 ml of tetrahydrofuran and filtered through a 0.45 μm filter. 100 μl of this solution is injected at a column temperature of 40 ° C., measured at a detector RI temperature of 40 ° C., and converted into styrene.

次に、本発明の光学部品について説明する。 薄型テレビとしては、背面透過型プロジェクションテレビ(又はリアプロジェクションテレビ)、液晶テレビ、PDPテレビ等が挙げられるが、本発明の光学部品は、背面透過型プロジェクションテレビ、液晶テレビに用いられる。具体的には、背面透過型プロジェクションテレビおよび液晶テレビなどに用いられるスクリーン(フレネルレンズ、レンチキュラーレンズ)、前面パネル、拡散板、導光板等挙げられる。これらの部品においては、部品が吸水して寸法変化が起こり反りが発生した場合、画像が歪む等の不具合が起こる。よって、これらの光学部品には、吸水率及び寸法変化率が低いことが要求されており、本発明の樹脂を用いることでその要求を満たすことができる。   Next, the optical component of the present invention will be described. Examples of thin televisions include rear transmission projection televisions (or rear projection televisions), liquid crystal televisions, PDP televisions, and the like. The optical component of the present invention is used for rear transmission projection televisions and liquid crystal televisions. Specifically, a screen (Fresnel lens, lenticular lens), a front panel, a diffusion plate, a light guide plate and the like used for a rear transmission type projection television and a liquid crystal television can be used. In these parts, when a part absorbs water and a dimensional change occurs to cause warpage, a problem such as distortion of an image occurs. Therefore, these optical components are required to have a low water absorption rate and low dimensional change rate, and the requirements can be satisfied by using the resin of the present invention.

また、光学部品であるスクリーン等は、CRT等から照射される光を長時間受けることとなる為に、使用される材質には、耐光性能が高いことが要求される。本発明の樹脂は、優れた耐光性能を有するが、長時間の耐光性を更に高めるために更なる耐光性処方を施すことが好ましい。しかし、該スクリーンのフレネルレンズに塗布される紫外線硬化型樹脂は、紫外線の照射を受けて硬化反応が進行する為、スクリーン用の樹脂に紫外線を吸収する等の硬化反応を阻害するものを添加することは実用的でない。更に、添加したものがスクリーン基材と紫外線硬化型樹脂との接着性を阻害するものであってはならない。また、添加するものが、該スクリーンの透明性を低下させることがあってはならない。   Moreover, since the screen etc. which are optical components will receive the light irradiated from CRT etc. for a long time, it is requested | required that the material used should have high light resistance. The resin of the present invention has excellent light resistance, but it is preferable to apply a further light resistance prescription in order to further improve long-term light resistance. However, the ultraviolet curable resin applied to the Fresnel lens of the screen undergoes a curing reaction upon irradiation with ultraviolet rays, and therefore, a resin that inhibits the curing reaction such as absorbing ultraviolet rays is added to the screen resin. That is not practical. Further, the added material should not inhibit the adhesion between the screen substrate and the ultraviolet curable resin. Also, the additive should not reduce the transparency of the screen.

本発明者らは、耐光性、硬化反応性及び接着性等を満足する耐光剤について鋭意検討した結果、ヒンダードアミン系安定剤が適することを見出した。即ち、本発明のスチレン系熱可塑性樹脂にヒンダードアミン系安定剤を加えることで、長時間の耐光性を更に高めることが可能となる。本発明のヒンダードアミン系安定剤(D)としては、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、及びメチル(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケートなどのセバシン酸ジエステル化合物、1−[2−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕エチル]−4−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ〕−2,2,6,6−テトラメチルピペリジン、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジン、8−アセチル−3−ドデシル−7,7,9,9−テトラメチル−1,3,8−トリアザスピロ[4,5]デカン−2,4−ジオン、コハク酸ジメチル−1−(2−ヒドロキシエチル)−4−ヒドロキシ−2,2,6,6−テトラメチルピペリジン重縮合物が挙げられ、その1種以上を用いることができる。それらの中でも、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケート、ビス(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケート、メチル(1,2,2,6,6−ペンタメチル−4−ピペリジル)セバケートなどのセバシン酸ジエステル化合物が好ましく、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケートが最も好ましい。   As a result of intensive studies on light resistance agents that satisfy light resistance, curing reactivity, adhesion, and the like, the present inventors have found that hindered amine stabilizers are suitable. That is, by adding a hindered amine stabilizer to the styrene thermoplastic resin of the present invention, it is possible to further improve long-term light resistance. Examples of the hindered amine stabilizer (D) of the present invention include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate and bis (1,2,2,6,6-pentamethyl-4-piperidyl). Sebacate and diester compounds such as methyl (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, 1- [2- [3- (3,5-di-t-butyl-4- Hydroxyphenyl) propionyloxy] ethyl] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy -2,2,6,6-tetramethylpiperidine, 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro [4,5] decane-2,4- Dione, dimethyl succinate-1- (2- Dorokishiechiru) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate and the like, may be used alone or more thereof. Among them, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, methyl (1,2,2) Sebacic acid diester compounds such as, 6,6-pentamethyl-4-piperidyl) sebacate are preferred, and bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate is most preferred.

ヒンダードアミン系安定剤(D)は、スチレン系熱可塑性樹脂100重量部に対し、0.05〜2.0重量部の範囲で添加することが好ましい。ヒンダードアミン系安定剤(D)の含有量は、好ましくは、樹脂100重量部に対し、0.1〜1.5重量部の範囲内であり、より好ましくは0.2〜1.0重量部の範囲内である。耐光性向上の観点から、安定剤(D)の含有量は、0.05重量部以上であり、紫外線硬化型樹脂との接着性の観点から2.0重量部以下とすることが好ましい。   The hindered amine stabilizer (D) is preferably added in the range of 0.05 to 2.0 parts by weight with respect to 100 parts by weight of the styrene thermoplastic resin. The content of the hindered amine stabilizer (D) is preferably in the range of 0.1 to 1.5 parts by weight, more preferably 0.2 to 1.0 parts by weight with respect to 100 parts by weight of the resin. Within range. From the viewpoint of improving light resistance, the content of the stabilizer (D) is 0.05 parts by weight or more, and preferably 2.0 parts by weight or less from the viewpoint of adhesion to the ultraviolet curable resin.

本発明のヒンダードアミン系安定剤は、スチレン系熱可塑性樹脂の重合時に添加することができる。また、押出機を用いてスチレン系熱可塑性樹脂を溶融する際に、樹脂ペレットと共にホッパー、あるいはサイドフィーダーから添加することもできる。さらにまた、光学部品用として用いる同種のスチレン系熱可塑性樹脂と安定剤とのマスターバッチを事前に準備し、光学部品を押出成形あるいは射出成形する際に、上記マスターバッチを添加する、簡便な方法をとることもできる。   The hindered amine stabilizer of the present invention can be added during polymerization of the styrene thermoplastic resin. Moreover, when melting a styrene-type thermoplastic resin using an extruder, it can also add from a hopper or a side feeder with a resin pellet. Furthermore, a simple method of preparing a masterbatch of the same kind of styrenic thermoplastic resin and stabilizer used for optical parts in advance and adding the masterbatch when the optical part is extruded or injection molded. You can also take

本発明のスチレン系熱可塑性樹脂及びスチレン系熱可塑性樹脂組成物は、光を拡散する目的の拡散材を0.1〜10重量%含有しても良い。一般的には、拡散材としては架橋させたアクリル樹脂、架橋させたスチレンーアクリル系樹脂、架橋したスチレン樹脂、架橋したシリコン系樹脂等の有機系拡散材や、炭酸カルシューム、タルク、酸化チタン、硫酸バリューム等の無機系拡散材があげられる。   The styrene thermoplastic resin and the styrene thermoplastic resin composition of the present invention may contain 0.1 to 10% by weight of a diffusion material for the purpose of diffusing light. In general, as the diffusing material, a cross-linked acrylic resin, a cross-linked styrene-acrylic resin, a cross-linked styrene resin, a cross-linked silicon-based organic diffusing material, calcium carbonate, talc, titanium oxide, Examples thereof include inorganic diffusing materials such as sulfuric acid valem.

本発明のスチレン系熱可塑性樹脂あるいはスチレン系熱可塑性樹脂組成物を用いて、射出成形あるいは押出成形により所望の成形品を得ることができる。特に大型部品になる程、押出成形のシートから加工するのが好ましい。例えば、本発明のスチレン系熱可塑性樹脂あるいはスチレン系熱可塑性樹脂組成物を設定温度240℃の65mm単軸押出機(東芝機械(株)製)で溶融し、押出機ヘッドに設けたTダイから押し出し、ついで3本ロール(温度:上ロール 98℃、中ロール 95℃、下ロール 85℃)を介して厚さ1.85mmの光学用のスクリーン基板を得ることができる。該基板に、さらに片側に熱硬化性樹脂を所望の形状、例えばフレネルレンズの形状に成形し、規定の紫外線を必要時間、照射し、熱硬化させることで、所望のリアプロジェクションテレビ用のスクリーンを得ることができる。   A desired molded article can be obtained by injection molding or extrusion molding using the styrene thermoplastic resin or styrene thermoplastic resin composition of the present invention. In particular, the larger the part, the more preferably it is processed from an extruded sheet. For example, the styrene thermoplastic resin or styrene thermoplastic resin composition of the present invention is melted by a 65 mm single screw extruder (manufactured by Toshiba Machine Co., Ltd.) having a set temperature of 240 ° C., and from a T die provided on the extruder head. An optical screen substrate having a thickness of 1.85 mm can be obtained through extrusion and then through three rolls (temperature: upper roll 98 ° C., middle roll 95 ° C., lower roll 85 ° C.). A thermosetting resin is further formed on the substrate in a desired shape, for example, in the shape of a Fresnel lens, irradiated with specified ultraviolet rays for a necessary time, and thermally cured to obtain a desired screen for a rear projection television. Obtainable.

以下、本発明の実施の形態を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の表中の各物性は、次に示す方法により評価した。
(1)飽和吸水率
射出成形された150mm×150mm×2.0mm厚さの平板試験片を、予め80℃にて3時間乾燥した後に、23℃のデシケーター中で冷却する。この時の試験片の重量をWとする。次に、この試験片を23℃の水中に浸漬し、重量増加が平衡に達した時の重量(W)を測定して、次式から飽和吸水率(重量%)を求める。
飽和吸水率=(W―W)/W×100
Hereinafter, although an embodiment of the invention is described in detail based on an example, the present invention is not limited to these examples. In addition, each physical property in the following table | surfaces was evaluated by the method shown next.
(1) Saturated water absorption rate The injection-molded flat plate test piece of 150 mm × 150 mm × 2.0 mm thickness is dried in advance at 80 ° C. for 3 hours, and then cooled in a desiccator at 23 ° C. The weight of this time of the test piece and W 0. Next, this test piece is immersed in water at 23 ° C., the weight (W 1 ) when the weight increase reaches equilibrium is measured, and the saturated water absorption (wt%) is obtained from the following formula.
Saturated water absorption rate = (W 1 −W 0 ) / W 0 × 100

(2)飽和吸水時の寸法変化
上記で飽和吸水率に達した後に、試験片を取出し、布で表面を拭く。平板の樹脂の流れ方向について、吸水前(L)と後(L)の寸法をノギスで測定し、吸水前後の寸法変化量を求め、その値を吸水前の寸法(L)で除して求める。
寸法変化率(%)=(L−L)/L×100
(2) Dimensional change during saturated water absorption After reaching the saturated water absorption rate as described above, the test piece is taken out and the surface is wiped with a cloth. For the flow direction of the resin on the flat plate, measure the dimensions before (L 0 ) and after (L 1 ) water absorption with calipers, determine the dimensional change before and after water absorption, and divide that value by the dimension before water absorption (L 0 ). And ask.
Dimensional change rate (%) = (L 1 −L 0 ) / L 0 × 100

(3)全光線透過率
50mm×90mm×2.5mm厚さの試験片を4枚重ねて、JIS K7105に準じて測定する。 但し、比較例4は、12.7mm×12.7mm×127mmの短冊試験片を、実施例2と比較例1に関しては両方の試験片を用いた。
(3) Total light transmittance Four test pieces having a thickness of 50 mm × 90 mm × 2.5 mm are stacked and measured according to JIS K7105. However, in Comparative Example 4, a 12.7 mm × 12.7 mm × 127 mm strip test piece was used, and in both Example 2 and Comparative Example 1, both test pieces were used.

(4)曇り度
50mm×90mm×2.5mm厚さの試験片を4枚重ねて、JIS K7105に準じて測定する。但し、比較例4は、12.7mm×12.7mm×127mmの短冊試験片を、実施例2と比較例1に関しては両方の試験片を用いた。
(4) Haze degree Four test pieces having a thickness of 50 mm × 90 mm × 2.5 mm are stacked and measured according to JIS K7105. However, in Comparative Example 4, a 12.7 mm × 12.7 mm × 127 mm strip test piece was used, and in both Example 2 and Comparative Example 1, both test pieces were used.

(5)耐光性試験
スガ試験機(株)製サンシャインウエザーメータ−を用いて、50mm×90mm×2.5mm厚さの試験片を下記の条件にて測定する。
BP温度63℃
降雨なし
500時間暴露
(5) Light resistance test
Using a sunshine weather meter manufactured by Suga Test Instruments Co., Ltd., a test piece having a thickness of 50 mm × 90 mm × 2.5 mm is measured under the following conditions.
BP temperature 63 ℃
No rain
500 hours exposure

(6)黄変指数変化(△YI)
耐光性試験500時間後の試料をスガ試験機(株)製多光源分光測色計MSC−5Nにて黄変指数(YI500)を測定し、下式のように、未暴露の試料の黄変指数(YI)との差で表す。
△YI=YI500−YI
(6) Yellowing index change (△ YI)
The yellowing index (YI 500 ) of a sample after 500 hours of light resistance test was measured with a multi-light source spectrocolorimeter MSC-5N manufactured by Suga Test Instruments Co., Ltd. Expressed as the difference from the variable index (YI 0 ).
ΔYI = YI 500 −YI 0

(7)接着性試験
紫外線硬化型樹脂として、ウレタンーアクリレート(共栄社化学株式会社製
UA−306H)を使用する。硬化剤として、イルガキュア907(日本バガルギー(株)製)を使用し、硬化型樹脂90%に対し、10%の割合で添加する。硬化剤を含んだ硬化型樹脂を試験片(寸法50mm×90mm×2.5mm)上に塗布した後、試験片側から光照射を行い、硬化型樹脂を硬化させる。硬化には高圧水銀灯(波長365nmにおける光強度150mw/cm)を用い、30秒照射とする。硬化させた面にナイフで1mmの碁盤目100個を作り、ニチバン製のセロハンテープを圧着した後に、45度の角度で速やかにセロテープを剥がし、硬化樹脂の接着状態を観察する。
尚、表2では、接着性が十分である場合を“A”、若干剥がれる部分がある場合を“B”、硬化樹脂の大半が剥がれる場合を“C”とした。また、表中の“−”印は、未含有または未測定を示す。
(7) Adhesion test As UV curable resin, urethane acrylate (manufactured by Kyoeisha Chemical Co., Ltd.)
UA-306H). As a curing agent, Irgacure 907 (manufactured by Japan Bagalgie Co., Ltd.) is used, and is added at a ratio of 10% with respect to 90% of the curable resin. After a curable resin containing a curing agent is applied on a test piece (dimensions 50 mm × 90 mm × 2.5 mm), light irradiation is performed from the test piece side to cure the curable resin. For curing, a high-pressure mercury lamp (light intensity of 150 mw / cm 2 at a wavelength of 365 nm) is used, and irradiation is performed for 30 seconds. After making 100 1 mm grids with a knife on the cured surface and pressing the cellophane tape made by Nichiban, the cellophane tape is quickly peeled off at an angle of 45 degrees, and the adhesive state of the cured resin is observed.
In Table 2, “A” indicates that the adhesiveness is sufficient, “B” indicates that there is a portion that is slightly peeled off, and “C” indicates that most of the cured resin is peeled off. In addition, “-” mark in the table indicates no inclusion or no measurement.

(8)樹脂組成分布の測定
試料0.05gを40mlのTHF(テトラヒドロフラン)に溶解し、高速液体クロマトグラフWaters TM600(Waters社製)を用い、カラムはμ BONDASPHERE 3.9mmφ×150mm、カラムオーブン 35℃、キャリアはヘキサン/クロロホルム 1mL/min、グラジエント条件は下記の条件、検出器は、Mass Detector ELSD−1000(Polymer Laboratories社製)で、Neb.温度 40℃、Eva.温度 70℃、キャリア液ガス流量 1.0L/minで共重合体中のアクリロニトリル組成分布を測定した。
グラジエント条件
TIME ヘキサン% クロロホルム%
0 50 50
15 0 100
20 0 100
(8) Measurement of resin composition distribution 0.05 g of a sample was dissolved in 40 ml of THF (tetrahydrofuran), and a high-performance liquid chromatograph Waters TM600 (manufactured by Waters) was used. The column was μ BONDASPHERE 3.9 mmφ × 150 mm, column oven 35 ℃, carrier is hexane / chloroform 1 mL / min, gradient conditions are the following conditions, detector is Mass Detector ELSD-1000 (manufactured by Polymer Laboratories), Neb. Temperature 40 ° C., Eva. The acrylonitrile composition distribution in the copolymer was measured at a temperature of 70 ° C. and a carrier liquid gas flow rate of 1.0 L / min.
Gradient condition TIME Hexane% Chloroform%
0 50 50
15 0 100
20 0 100

[実施例1〜3(製造例1〜3)]
60リットルの完全混合攪拌槽に下記に示す添加量のスチレン、アクリロニトリル、エチルベンゼンからなる単量体混合物、または、更にブチルアクリレートンからなる単量体混合物を連続的に供給し、開始剤として、t−ブチル−ペロキシ−イソプロピル−モノカーボネイトの存在下で下記条件で重合反応を行った。この際に、反応槽内は満液状態とした。重合率40%で反応生成物を定常的に取り出して、予熱器で255℃に加熱した後、脱揮槽に入れ、225℃、真空度20トールで未反応単量体等の揮発分を速やかに除去し、次いでベント付押出機で減圧下でペレットを得た。詳細条件と得られた樹脂の組成、分子量を表1に示す。
得られた各々の樹脂を東芝機械(株)製IS−55EPNを用いて、温度240℃、金型温度60℃の条件で射出成形し評価用試験片を作成した。評価結果を表2に示す。
[Examples 1 to 3 (Production Examples 1 to 3)]
A monomer mixture consisting of styrene, acrylonitrile, and ethylbenzene in the following addition amounts or a monomer mixture consisting of butyl acrylate are continuously fed to a 60 liter complete mixing and stirring tank, and t is used as an initiator. The polymerization reaction was carried out under the following conditions in the presence of -butyl-peroxy-isopropyl-monocarbonate. At this time, the reaction tank was filled with liquid. The reaction product is constantly taken out at a polymerization rate of 40%, heated to 255 ° C. with a preheater, put into a devolatilization tank, and quickly volatile components such as unreacted monomers at 225 ° C. and a vacuum of 20 Torr. And then pellets were obtained under reduced pressure in a vented extruder. Detailed conditions, the composition of the obtained resin, and the molecular weight are shown in Table 1.
Each obtained resin was injection-molded under the conditions of a temperature of 240 ° C. and a mold temperature of 60 ° C. using IS-55EPN manufactured by Toshiba Machine Co., Ltd., to produce test pieces for evaluation. The evaluation results are shown in Table 2.

Figure 2008222932
Figure 2008222932

[比較例1]
攪拌機付きの反応槽60リットルに25kgの蒸留水を仕込み、懸濁安定剤として部分懸化ポリビニルアルコール125g、更にラウリル硫酸ナトリウム0.7gを加えて溶解させる。その後スチレン8.3kg、アクリロニトリル3.7kg、ジ−t−ブチルパーオキシヘキサノエート22g、オクチルメルカブタン19gを次々と投入し、回転数80rpmで攪拌しながら80℃で7.5時間重合反応をさせた。更に、95℃に上げて2時間反応させた。得られた共重合体は、洗浄し、脱水し、乾燥させた。乾燥後のスチレン系樹脂の重量平均分子量は、198,000であった。評価結果を表2に示す。
[Comparative Example 1]
25 kg of distilled water is charged into a 60 liter reaction tank equipped with a stirrer, and 125 g of partially suspended polyvinyl alcohol and 0.7 g of sodium lauryl sulfate are added and dissolved as a suspension stabilizer. Thereafter, 8.3 kg of styrene, 3.7 kg of acrylonitrile, 22 g of di-t-butylperoxyhexanoate, and 19 g of octyl mercaptan are successively added, and the polymerization reaction is carried out at 80 ° C. for 7.5 hours while stirring at a rotational speed of 80 rpm. I let you. Further, the temperature was raised to 95 ° C. and reacted for 2 hours. The resulting copolymer was washed, dehydrated and dried. The weight average molecular weight of the styrene resin after drying was 198,000. The evaluation results are shown in Table 2.

[比較例2]
アクリロニトリル成分等を含有しないポリスチレンが、スチレン系熱可塑性樹脂の中で最も吸水率の低い樹脂であり、その代表としてPSJポリスチレンHF77(PSジャパン(株)製)を用いた。評価結果を表2に示す。
[Comparative Example 2]
Polystyrene that does not contain an acrylonitrile component or the like is the resin having the lowest water absorption among styrene-based thermoplastic resins, and PSJ polystyrene HF77 (manufactured by PS Japan Co., Ltd.) was used as a representative thereof. The evaluation results are shown in Table 2.

[実施例4〜7および比較例3]
実施例4は実施例1の樹脂を用い、実施例5〜7と比較例3は実施例2の樹脂を用いて、表2に示した量の安定剤を配合し、30mmベント式単軸押出機((株)石中鉄工所製 HS−B)を用いて、220℃で混練りし、目的の樹脂組成物を得た。安定剤としては、JF90(城北化学工業(株)製)を用いた。評価結果を表2に示す。
[Examples 4 to 7 and Comparative Example 3]
Example 4 uses the resin of Example 1, Examples 5 to 7 and Comparative Example 3 use the resin of Example 2, and blends the amount of stabilizer shown in Table 2 and 30 mm vent type single screw extrusion. Using a machine (HS-B manufactured by Ishinaka Iron Works Co., Ltd.), the mixture was kneaded at 220 ° C. to obtain the desired resin composition. As a stabilizer, JF90 (manufactured by Johoku Chemical Industry Co., Ltd.) was used. The evaluation results are shown in Table 2.

[比較例4]
部分懸化ポリビニルアルコール120g、更にラウリル硫酸ナトリウム0.6gを加えて溶解させる。その後スチレン9.7kg、アクリロニトリル2.5kg、ジ−t−ブチルパーオキシヘキサノエート24g、オクチルメルカブタン20gを次々と投入し、回転数80rpmで攪拌しながら80℃で8時間重合反応をさせた他は、比較例―1と同じように行った。乾燥後のスチレン系樹脂の重量平均分子量は、191,000であった。評価結果を表2に示す。
[Comparative Example 4]
120 g of partially suspended polyvinyl alcohol and 0.6 g of sodium lauryl sulfate are added and dissolved. Thereafter, 9.7 kg of styrene, 2.5 kg of acrylonitrile, 24 g of di-t-butylperoxyhexanoate, and 20 g of octyl mercabtan were successively added, and the polymerization reaction was allowed to proceed at 80 ° C. for 8 hours while stirring at a rotational speed of 80 rpm. Others were the same as in Comparative Example-1. The weight average molecular weight of the styrene resin after drying was 191,000. The evaluation results are shown in Table 2.

Figure 2008222932
Figure 2008222932

表2に示す通り、実施例1〜7は飽和吸水率が小さく、且つ寸法変化率も小さく、紫外線硬化型樹脂との接着性に優れている。
比較例1のようにアクリロニトリル含有量が高くなると、飽和吸水率は大きく、寸法変化率も大きくなる。比較例2のようにアクリロニトリルを含まないと吸水率は小さく、吸水寸法変化率も小さくなるが、紫外線硬化樹脂との接着性が得られなくなる。また、比較例3のように、実施例2の共重合体を用いても、安定剤の量が多くなると紫外線硬化樹脂との接着性が得られない。また比較例4のようにアクリロニトリルの組成分布が広くなると、光学特性が低下し、寸法変化が大きくなり好ましくない。
As shown in Table 2, Examples 1 to 7 have a low saturated water absorption rate and a small dimensional change rate, and are excellent in adhesiveness with an ultraviolet curable resin.
When the acrylonitrile content is high as in Comparative Example 1, the saturated water absorption is large and the dimensional change rate is also large. If acrylonitrile is not included as in Comparative Example 2, the water absorption is small and the water absorption dimensional change rate is small, but the adhesiveness with the ultraviolet curable resin cannot be obtained. Moreover, even if the copolymer of Example 2 is used like the comparative example 3, if the amount of a stabilizer increases, adhesiveness with an ultraviolet curable resin cannot be obtained. Further, when the composition distribution of acrylonitrile is wide as in Comparative Example 4, the optical characteristics are lowered and the dimensional change is increased, which is not preferable.

光学的に透明な樹脂製の大型スクリーン(フレネルレンズ、レンチキュラーレンズ)、前面パネル、拡散板、導光板等などに使用することが可能である。   It can be used for an optically transparent resin large screen (Fresnel lens, lenticular lens), front panel, diffusion plate, light guide plate, and the like.

Claims (12)

芳香族ビニル単位(A)、及び、不飽和ニトリル単位(B)からなるスチレン系熱可塑性樹脂であり、かつ、樹脂全体に対する成分(B)の含有量の平均値(X)が8≦X≦27重量%であり、
前記成分(B)を(X−5)重量%以下有する共重合体、及び、
前記成分(B)を(X+5)重量%以上有する共重合体の含有量が、それぞれ0.5〜5重量%であるスチレン系熱可塑性樹脂。
The average value (X) of the content of the component (B) with respect to the whole resin is a styrene-based thermoplastic resin composed of an aromatic vinyl unit (A) and an unsaturated nitrile unit (B), and 8 ≦ X ≦ 27% by weight,
A copolymer having the component (B) not more than (X-5)% by weight, and
A styrene-based thermoplastic resin in which the content of the copolymer having the component (B) is (X + 5) wt% or more is 0.5 to 5 wt%, respectively.
前記成分(A)と前記成分(B)の合計量100重量部に対して、アルキル(メタ)アクリレートからなる群より選ばれる少なくとも1種の成分(C)を、0〜20重量部含有する請求項1に記載のスチレン系熱可塑性樹脂。   Claims containing 0 to 20 parts by weight of at least one component (C) selected from the group consisting of alkyl (meth) acrylates based on 100 parts by weight of the total amount of the component (A) and the component (B). Item 5. A styrenic thermoplastic resin according to Item 1. 前記成分(B)を(X−5)重量%以下有する共重合体、及び、
前記成分(B)を(X+5)重量%以上有する共重合体の含有量が、それぞれ0.5〜3.5重量%である請求項1または2に記載のスチレン系熱可塑性樹脂。
A copolymer having the component (B) not more than (X-5)% by weight, and
The styrenic thermoplastic resin according to claim 1 or 2, wherein the content of the copolymer having (X + 5) wt% or more of the component (B) is 0.5 to 3.5 wt%.
請求項1〜3いずれか一項に記載のスチレン系熱可塑性樹脂100重量部に対して、ヒンダードアミン系安定剤(D)を0.05〜2.0重量部含有するスチレン系熱可塑性樹脂組成物。   The styrene-type thermoplastic resin composition which contains 0.05-2.0 weight part of hindered amine stabilizers (D) with respect to 100 weight part of styrene-type thermoplastic resins as described in any one of Claims 1-3. . 成分(D)が、セバシン酸ジエステル化合物である請求項4に記載のスチレン系熱可塑性樹脂組成物。   The styrenic thermoplastic resin composition according to claim 4, wherein component (D) is a sebacic acid diester compound. 成分(D)が、ビス(2,2,6,6−テトラメチル−4−ピペリジル)セバケートである請求項4に記載のスチレン系熱可塑性樹脂組成物。   The styrenic thermoplastic resin composition according to claim 4, wherein component (D) is bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate. 請求項1〜3のいずれか一項に記載のスチレン系熱可塑性樹脂、あるいは、請求項4〜6のいずれか一項に記載のスチレン系熱可塑性樹脂組成物からなる光学部品。   An optical component comprising the styrenic thermoplastic resin according to any one of claims 1 to 3 or the styrenic thermoplastic resin composition according to any one of claims 4 to 6. 光学部品が押出成形シートからなる請求項7に記載の光学部品。   The optical component according to claim 7, wherein the optical component is an extruded sheet. 光学部品が背面透過型プロジェクションテレビ用スクリーンである請求項7に記載の光学部品。   The optical component according to claim 7, wherein the optical component is a rear transmission type projection television screen. 光学部品が背面透過型プロジェクションテレビ用スクリーンのフレネルレンズ及びレンチキュラーレンズのレンズ基板である請求項7に記載の光学部品。   The optical component according to claim 7, wherein the optical component is a lens substrate of a Fresnel lens and a lenticular lens of a screen for rear transmission type projection television. 光学部品が薄型テレビ用前面パネル基板である請求項7に記載の光学部品。   The optical component according to claim 7, wherein the optical component is a front panel substrate for a thin television. 光学部品が液晶テレビ用拡散板である請求項7に記載の光学部品。   The optical component according to claim 7, wherein the optical component is a liquid crystal television diffusion plate.
JP2007065514A 2007-03-14 2007-03-14 Thermoplastic resin, thermoplastic resin composition and optical component Pending JP2008222932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007065514A JP2008222932A (en) 2007-03-14 2007-03-14 Thermoplastic resin, thermoplastic resin composition and optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007065514A JP2008222932A (en) 2007-03-14 2007-03-14 Thermoplastic resin, thermoplastic resin composition and optical component

Publications (1)

Publication Number Publication Date
JP2008222932A true JP2008222932A (en) 2008-09-25

Family

ID=39841917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007065514A Pending JP2008222932A (en) 2007-03-14 2007-03-14 Thermoplastic resin, thermoplastic resin composition and optical component

Country Status (1)

Country Link
JP (1) JP2008222932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222462A (en) * 2009-03-23 2010-10-07 Ps Japan Corp Styrene-based resin composition excellent in chemical resistance and molded article formed using this

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170631A (en) * 1987-12-25 1989-07-05 Mitsubishi Rayon Co Ltd Thermoplastic resin composition
JPH03269006A (en) * 1990-03-19 1991-11-29 Asahi Chem Ind Co Ltd New copolymer resin having excellent transparency
JPH0411660A (en) * 1990-04-27 1992-01-16 Kyodo Yakuhin Kk Synthetic resin composition
JP2004262987A (en) * 2003-02-28 2004-09-24 Asahi Kasei Chemicals Corp Production process for acrylonitrile-containing copolymer, and resin composition
JP2007106991A (en) * 2005-09-15 2007-04-26 Asahi Kasei Chemicals Corp Styrenic thermoplastic resin for optical component and thermoplastic resin composition
JP4986215B2 (en) * 2005-09-15 2012-07-25 旭化成ケミカルズ株式会社 Optical components

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170631A (en) * 1987-12-25 1989-07-05 Mitsubishi Rayon Co Ltd Thermoplastic resin composition
JPH03269006A (en) * 1990-03-19 1991-11-29 Asahi Chem Ind Co Ltd New copolymer resin having excellent transparency
JPH0411660A (en) * 1990-04-27 1992-01-16 Kyodo Yakuhin Kk Synthetic resin composition
JP2004262987A (en) * 2003-02-28 2004-09-24 Asahi Kasei Chemicals Corp Production process for acrylonitrile-containing copolymer, and resin composition
JP2007106991A (en) * 2005-09-15 2007-04-26 Asahi Kasei Chemicals Corp Styrenic thermoplastic resin for optical component and thermoplastic resin composition
JP4986215B2 (en) * 2005-09-15 2012-07-25 旭化成ケミカルズ株式会社 Optical components

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222462A (en) * 2009-03-23 2010-10-07 Ps Japan Corp Styrene-based resin composition excellent in chemical resistance and molded article formed using this

Similar Documents

Publication Publication Date Title
JP2010116501A (en) Agent for improving surface hardness, thermoplastic resin composition, and molding of the same
US9725588B2 (en) Methacrylic resin composition, method for producing the same, and molded article
US9914796B2 (en) Method for producing (meth)acrylic resin composition
JP4986215B2 (en) Optical components
JP6570371B2 (en) Thermoplastic resin composition, method for producing the same, and molded article
US20170226237A1 (en) Method for producing (meth)acrylic resin composition
EP3778762B1 (en) Thermoplastic resin composition
JP2008222932A (en) Thermoplastic resin, thermoplastic resin composition and optical component
JP2007106991A (en) Styrenic thermoplastic resin for optical component and thermoplastic resin composition
CN117321092A (en) Methacrylic copolymer, methacrylic resin composition, method for producing same, and molded article
JP2007108727A5 (en)
JP2008291198A (en) Acrylic resin composition and molded article from the same
JP2020090667A (en) Polymethacrylate composition and optical device formed from the same, and display device
JP2019116617A (en) Polymethacrylate composition, optical device formed from the same and display device
WO2007032464A1 (en) Thermoplastic resin, thermoplastic resin composition, and optical part
WO2019059179A1 (en) Light guide plate of display device for vehicle
EP4310113A1 (en) Methacrylic copolymer and method for producing same
US11891466B2 (en) Heat resistant PMMA copolymers having high temperature and high humidity environmental stability for electronic component applications
JP2005281363A (en) Methacrylic resin composition and transparent member
JP4864291B2 (en) Resin material for optical screen and optical screen
JP5457617B2 (en) Styrenic resin composition and molded body
JP6429762B2 (en) Surface hardness improver, thermoplastic resin composition and molded article thereof
JP2016129962A (en) Method for producing molding
JP6680213B2 (en) Resin composition
WO2021117903A1 (en) Methacrylic copolymer and manufacturing method suitable for manufacturing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100311

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130528